1,543 research outputs found

    Scalability Analysis of Parallel GMRES Implementations

    Get PDF
    Applications involving large sparse nonsymmetric linear systems encourage parallel implementations of robust iterative solution methods, such as GMRES(k). Two parallel versions of GMRES(k) based on different data distributions and using Householder reflections in the orthogonalization phase, and variations of these which adapt the restart value k, are analyzed with respect to scalability (their ability to maintain fixed efficiency with an increase in problem size and number of processors).A theoretical algorithm-machine model for scalability is derived and validated by experiments on three parallel computers, each with different machine characteristics

    A distributed-memory package for dense Hierarchically Semi-Separable matrix computations using randomization

    Full text link
    We present a distributed-memory library for computations with dense structured matrices. A matrix is considered structured if its off-diagonal blocks can be approximated by a rank-deficient matrix with low numerical rank. Here, we use Hierarchically Semi-Separable representations (HSS). Such matrices appear in many applications, e.g., finite element methods, boundary element methods, etc. Exploiting this structure allows for fast solution of linear systems and/or fast computation of matrix-vector products, which are the two main building blocks of matrix computations. The compression algorithm that we use, that computes the HSS form of an input dense matrix, relies on randomized sampling with a novel adaptive sampling mechanism. We discuss the parallelization of this algorithm and also present the parallelization of structured matrix-vector product, structured factorization and solution routines. The efficiency of the approach is demonstrated on large problems from different academic and industrial applications, on up to 8,000 cores. This work is part of a more global effort, the STRUMPACK (STRUctured Matrices PACKage) software package for computations with sparse and dense structured matrices. Hence, although useful on their own right, the routines also represent a step in the direction of a distributed-memory sparse solver

    New Sequential and Scalable Parallel Algorithms for Incomplete Factor Preconditioning

    Get PDF
    The solution of large, sparse, linear systems of equations Ax = b is an important kernel, and the dominant term with regard to execution time, in many applications in scientific computing. The large size of the systems of equations being solved currently (millions of unknowns and equations) requires iterative solvers on parallel computers. Preconditioning, which is the process of translating a linear system into a related system that is easier to solve, is widely used to reduce solution time and is sometimes required to ensure convergence. Level-based preconditioning (ILU(ℓ)) has long been used in serial contexts and is widely recognized as robust and effective for a wide range of problems. However, the method has long been regarded as an inherently sequential technique. Parallelism, it has been thought, can be achieved primarily at the expense of increased iterations. We dispute these claims. The first half of this dissertation takes an in-depth look at structurally based ILU(ℓ) symbolic factorization. There are two definitions of fill level, “sum” and “max,” that have been proposed. Hitherto, these definitions have been cast in terms of matrix terminology. We develop a sequence of lemmas and theorems that provide graph theoretic characterizations of both definitions; these characterizations are based on the static graph of a matrix, G(A). Our Incomplete Fill Path Theorem characterizes fill levels per the sum definition; this is the definition that is used in most library implementations of the “classic” ILU(ℓ) factorization algorithm. Our theorem leads to several new graph-search algorithms that compute factors identical, or nearly identical, to those computed by the “classic” algorithm. Our analyses shows that the new algorithms have lower run time complexity than that of the previously existing algorithms for certain classes of matrices that are commonly encountered in scientific applications. The second half of this dissertation presents a Parallel ILU algorithmic framework (PILU). This framework enables scalable parallel ILU preconditioning by combining concepts from domain decomposition and graph ordering. The framework can accommodate ILU(ℓ) factorization as well as threshold-based ILUT methods. A model implementation of the framework, the Euclid library, was developed as part of this dissertation. This library was used to obtain experimental results for Poisson\u27s equation, the Convection-Diffusion equation, and a nonlinear Radiative Transfer problem. The experiments, which were conducted on a variety of platforms with up to 400 CPUs, demonstrate that our approach is highly scalable for arbitrary ILU(ℓ) fill levels

    Efficient ICCG on a shared memory multiprocessor

    Get PDF
    Different approaches are discussed for exploiting parallelism in the ICCG (Incomplete Cholesky Conjugate Gradient) method for solving large sparse symmetric positive definite systems of equations on a shared memory parallel computer. Techniques for efficiently solving triangular systems and computing sparse matrix-vector products are explored. Three methods for scheduling the tasks in solving triangular systems are implemented on the Sequent Balance 21000. Sample problems that are representative of a large class of problems solved using iterative methods are used. We show that a static analysis to determine data dependences in the triangular solve can greatly improve its parallel efficiency. We also show that ignoring symmetry and storing the whole matrix can reduce solution time substantially

    Run-time parallelization and scheduling of loops

    Get PDF
    The class of problems that can be effectively compiled by parallelizing compilers is discussed. This is accomplished with the doconsider construct which would allow these compilers to parallelize many problems in which substantial loop-level parallelism is available but cannot be detected by standard compile-time analysis. We describe and experimentally analyze mechanisms used to parallelize the work required for these types of loops. In each of these methods, a new loop structure is produced by modifying the loop to be parallelized. We also present the rules by which these loop transformations may be automated in order that they be included in language compilers. The main application area of the research involves problems in scientific computations and engineering. The workload used in our experiment includes a mixture of real problems as well as synthetically generated inputs. From our extensive tests on the Encore Multimax/320, we have reached the conclusion that for the types of workloads we have investigated, self-execution almost always performs better than pre-scheduling. Further, the improvement in performance that accrues as a result of global topological sorting of indices as opposed to the less expensive local sorting, is not very significant in the case of self-execution

    Solving large sparse eigenvalue problems on supercomputers

    Get PDF
    An important problem in scientific computing consists in finding a few eigenvalues and corresponding eigenvectors of a very large and sparse matrix. The most popular methods to solve these problems are based on projection techniques on appropriate subspaces. The main attraction of these methods is that they only require the use of the matrix in the form of matrix by vector multiplications. The implementations on supercomputers of two such methods for symmetric matrices, namely Lanczos' method and Davidson's method are compared. Since one of the most important operations in these two methods is the multiplication of vectors by the sparse matrix, methods of performing this operation efficiently are discussed. The advantages and the disadvantages of each method are compared and implementation aspects are discussed. Numerical experiments on a one processor CRAY 2 and CRAY X-MP are reported. Possible parallel implementations are also discussed
    • …
    corecore