
Old Dominion University
ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Winter 2001

New Sequential and Scalable Parallel Algorithms
for Incomplete Factor Preconditioning
David A. Hysom
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds
Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Recommended Citation
Hysom, David A.. "New Sequential and Scalable Parallel Algorithms for Incomplete Factor Preconditioning" (2001). Doctor of
Philosophy (PhD), dissertation, Computer Science, Old Dominion University, DOI: 10.25777/1x0j-j564
https://digitalcommons.odu.edu/computerscience_etds/98

https://digitalcommons.odu.edu/?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/98?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

NEW SEQUENTIAL AND SCALABLE PARALLEL
ALGORITHMS FOR INCOMPLETE FACTOR

PRECONDITIONING

by

David A. Hysom
MS, Computer Science, Old Dominion University, 1997

BS, Sociology, The University of the State of New York, 1991

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirement for the Degree of

DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
December 2001

Approved by:

Alex Pothen (Director)

Michele Benzi (Member)

$avid Keyes (Member)

Linda Stals (Member)

Mohammad Zubair (Member)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

NEW SEQUENTIAL AND SCALABLE PARALLEL
ALGORITHMS FOR INCOMPLETE FACTOR

PRECONDITIONING

David A. Hysom
Old Dominion University, 2001

Director: Dr. Alex Pothen

The solution of large, sparse, linear systems of equations Ax = b is an important
kernel, and the dominant term with regard to execution time, in many applications
in scientific computing. The large size of the systems of equations being solved cur
rently (millions of unknowns and equations) requires iterative solvers on parallel
computers. Preconditioning, which is the process of translating a linear system into
a related system that is easier to solve, is widely used to reduce solution time and
is sometimes required to ensure convergence. Level-based preconditioning (ILU(£))
has long been used in serial contexts and is widely recognized as robust and effective
for a wide range of problems. However, the method has long been regarded as an
inherently sequential technique. Parallelism, it has been thought, can be achieved
primarily at the expense of increased iterations. We dispute these claims.

The first half of this dissertation takes an in-depth look at structurally based
ILU(£) symbolic factorization. There are two definitions of fill level, “sum” and
“max,” that have been proposed. Hitherto, these definitions have been cast in
terms of matrix terminology. We develop a sequence of lemmas and theorems that
provide graph theoretic characterizations of both definitions; these characteriza
tions are based on the static graph of a matrix, G(A).

Our Incomplete Fill Path Theorem characterizes fill levels per the sum definition;
this is the definition that is used in most library implementations of the “classic”
ILU(£) factorization algorithm. Our theorem leads to several new graph-search al
gorithms that compute factors identical, or nearly identical, to those computed by
the “classic” algorithm. Our analyses shows that the new algorithms have lower run
time complexity than that of the previously existing algorithms for certain classes
of matrices that are commonly encountered in scientific applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The second half of this dissertation presents a Parallel ILU algorithmic frame
work (PILU). This framework enables scalable parallel ILU preconditioning by com
bining concepts from domain decomposition and graph ordering. The framework
can accommodate ILU(l) factorization as well as threshold-based ILUT methods.

A model implementation of the framework, the Euclid library, was developed as
part of this dissertation. This library was used to obtain experimental results for
Poisson’s equation, the Convection-Diffusion equation, and a nonlinear Radiative
TVansfer problem. The experiments, which were conducted on a variety of plat
forms with up to 400 CPUs, demonstrate that our approach is highly scalable for
arbitrary ILU(£) fill levels.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Copyright © 2002, by David A. Hysom, All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dedicated to Phyllis Woods;
be kind to your secretaries.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

Graduate school, like life, comes with neither an instruction booklet nor a web
page. Or perhaps there really is an instruction booklet, only it has been hidden
away and forgotten on a dusty shelf in a faculty lunchroom. Whatever, I share the
common experience of many, that graduate school is like being left in a dark room
with an elephant, a hitherto unimagined beast. Some of us stumble across a trunk
and think, “aha, we’ve got it!” Others of us, groping leg or backside, are equally
sure we have comprehended the beasts nature. Alone, we know little. But working
together we slowly piece together the puzzle, an accurate picture of the elephant
falls into place.

First and foremost, I acknowledge Florin Dobrian and Gary Kumfert, fellow
students with whom, for several years, I shared a dark room with an elephant.
Dinesh Kaushik and Kara Olson also wandered in from time to time, and told us
interesting things about the elephant’s toenails and tusk.

I would like to thank my advisor, Alex Pothen, for opening doors, for providing
financial support, and for his meticulous insistence that we describe the elephant
exactly. My only regret is that our educational system demanded that he spend
much time perched on a stool in a cold, dim room writing grants. I wish he had
been free to spend more time with us, figuring out the elephant.

I extend many thanks to my committee members. My dissertation has benefited
greatly from your questions, comments, and editing. I am particularly grateful for
the support of David Keyes, who spends more time in airplanes traveling between
coasts than anyone I have ever known, but still finds time to walk into a darkened
room, light a match, and point out elephant shadows on the wall.

I am tempted to thank the federal government, who approved many of Alex and
David’s grants, thus funding much of my graduate studies. But the government is,
as some will remember, “we, the people,” so I do not think any special recognition
is in order. Instead, I urge any who are reading these words and also citizens of
the United States of America to pat themselves on the back. Folks, I couldn’t have
done it without you.

Penultimately, I thank my parents and siblings, Lee, Bev, Stu, Ron, and Tom,
for their encouragement and humor. Hey guys, I didn’t mean everything I said.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vii

You can go ahead and burn the tapes now, and don’t forget to delete the email.
Finally, Lawrence Livermore National Laboratory provided a truly nurturing

environment during my final 18 months of study. In particular, as an avid cyclist, I
thank the Cycletrons, http://www.llnl.gov/LLESA-groups/cycletrons/, whose
noon time rides provided much desperately needed stress release. Roll on!

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.llnl.gov/LLESA-groups/cycletrons/

viii

TABLE OF CONTENTS

LIST OF TABLES xii

LIST OF FIGURES xiv

1 INTRODUCTION 1

1.1 THE UNDERLYING THEM E.. 1

1.2 PRECONDITIONING R E V IE W .. 3

1.2.1 APPROXIMATE INVERSE PRECONDITIONING 6

1.2.2 DOMAIN DECOMPOSITION AND GRAPH PARTITION

ING ... 7

1.2.3 SUPPORT GRAPH PRECONDITIONERS......................... 8

1.2.4 ILU PRECONDITIONING .. 9

1.3 NEW CONTRIBUTIONS, RELATION TO EARLIER WORK,

AND THESIS SUMMARY... 11

1.3.1 GRAPH THEORETIC FILL CHARACTERIZATION . . . 11

1.3.2 GRAPH-SEARCH ALGORITHMS.. 12

1.3.3 PARALLEL ILU ALGORITHMIC FRAMEWORK 13

1.4 CODE AVAILABILITY.. 15

2 INCOMPLETE FILL PATH THEOREMS 16
2.1 INTRODUCTION.. 16

2.2 CLASSICAL ILU(^) FACTORIZATION.. 17

2.3 FILL LEVEL ASSIGNMENT RULES ... 18

2.4 GRAPH THEORETIC ILU(*) MODEL .. 21

2.5 STRUCTURAL CHARACTERIZATIONS....................................... 23

2.5.1 STATIC CHARACTERIZATION OF S-LEVEL FILL 23

2.5.2 STATIC CHARACTERIZATION OF M-LEVEL FILL . . . 27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ix

2.5.3 SIMILARITY OF S-LEVEL AND M-LEVEL FILL FOR

MONOTONIC FILL PATHS ... 34

3 INCOMPLETE FILL PATH THEOREM APPLICATIONS 40

3.1 INTRODUCTION.. 40

3.2 COMPUTING UPPER TRIANGULAR STRUCTURES............... 40

3.3 COMPUTING LOWER TRIANGULAR STRUCTURES.............. 43

3.3.1 G S -L O W E R .. 44

3.3.2 G S -L R O W ... 45

3.4 GRAPHS AND GRIDS.. 51

3.5 ILU(*) MEMORY ALLOCATION.. 52

3.6 GS-UROW COMPLEXITY .. 53

3.7 FILL DENSITIES FOR NATURALLY ORDERED GRAPHS . . . 58

3.8 CLASSIC-ILU C O M PLEX ITY .. 60

3.9 POTENTIAL-U GRAPH SEARCH ALGORITHM 60

4 PARALLEL ILU 66

4.1 INTRODUCTION.. 67

4.2 ALGORITHMS.. 68

4.2.1 THE PILU ALGORITHM... 68

4.2.2 RELAXING THE SUBDOMAIN GRAPH CONSTRAINT . 77

4.2.3 EXISTENCE OF PILU PRECONDITIONERS.................. 78

4.3 PERFORMANCE ANALYSIS.. 79

4.4 RESULTS.. 82

4.4.1 PARALLEL PERFORM ANCE.. 83

4.4.2 CONVERGENCE STUDIES .. 84

5 PARALLEL DESIGN AND SCALABILITY 93
5.1 SCALABILITY AND P I L U ... 94

5.2 PRECONDITIONER S E T U P .. 95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X

5.3 PRECONDITIONER APPLICATION.. 103

5.4 PERFORMANCE EXPECTATIONS... 103

5.5 EXPERIMENTAL RESULTS..107

5.6 ANALYTIC COMPARISON OF PILU AND BLOCK JACOBI . . 109

5.7 END-USER SCALABILITY PER SPEC TIV E 116

6 PARTITIONING AND INTERIOR/BOUNDARY NODE
RATIOS 118

6.1 PARTITIONING AND ORDERING BACKGROUND 118

6.2 DOES PILU PARTITION? ...119

6.3 PARTITIONING AND INTERIOR/BOUNDARY NODE RATIO

EFFEC TS..120

6.4 SUBDOMAIN SIZE AND INTERIOR/BOUNDARY NODE EF

FECTS ...123

6.5 EXPERIMENTAL RESULTS..123

6.5.1 PROBLEM DESCRIPTION... 126

6.5.2 EXPERIMENTAL RESULTS AND ANALYSIS......................128

7 SOLVING LARGE SYSTEMS 135
7.1 3D SYSTEMS...135

7.2 2D SYSTEMS...139

7.2.1 RADIATIVE TRANSPORT... 139

7.2.2 THREE-BOX PROBLEM .. 141

7.2.3 O PTIM ALITY ...141

8 CONCLUSION AND FUTURE WORK 146

REFERENCES 148

APPENDIX A PREVIOUSLY PUBLISHED MATERIAL 156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xi

APPENDIX B EXPERIMENTAL PLATFORMS 157

B.l SGI ORIGIN2000 ... 157

B.2 CORAL PC BEOWULF CLUSTER ...157

B.3 SUN HPC 10000 STARFIRE ..158

B.4 ASCI BLUE PA C IFIC ..159

VITA 160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xii

LIST OF TABLES

1 Symbolic factorization complexity upper bounds........................... 57

2 P otential-U run time complexity comparison.............................. 65

3 Factorization Timing, 3D problem (SGI, Beowulf, Starfire).. . . 84

4 Triangular solve timing, 3D problem (SGI, Beowulf, Starfire). . 85

5 Speedup for 3D constant-size problem (SGI).................................. 85

6 Fill comparisons for the 64 x 64 x 64 grid...................................... 88

7 Iteration comparisons for the 64 x 64 x 64 grid............................. 89

8 Communication pattern and scalability sum m ary........................... 105

9 Scalability data, 400 processors (ASCI Blue)..................................... 110

10 Scalability data, 225 processors (ASCI Blue)..................................... I l l

11 Scalability data, 64 processors (ASCI Blue)....................................... 112

12 Scalability data, 4 processors (ASCI Blue)... 113

13 Experimental a values for 2D five-point problems (ASCI Blue). 115

14 Interior/boundary node ratios and subdomain graph dimensions

for blocked and striped partitioning...122

15 Convergence comparison, simple and three-box problem.................. 127

16 Interior/boundary node ratios for experimental problems 129

17 Simple Problem (small), partitioning convergence effects

(ASCI Blue).. 131

18 Simple Problem (large), partitioning convergence effects

(ASCI Blue).. 132

19 Three-box problem (small), partitioning convergence effects

(ASCI Blue)..133

20 Three-box problem (large), partitioning convergence effects

(ASCI Blue).. 134

21 3D convection-diffusion problem, PILU (ASCI Blue)........................ 142

22 3D convection-diffusion problem, Block Jacobi ILU(£)(ASCI Blue). 143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xiii

23 2D three-box problem, PILU (ASCI Blue)...144

24 2D three-box problem, Block Jacobi ILU(£)(ASCI Blue) 145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xiv

LIST OF FIGURES

1 C la ssic -IL U algorithm... 19

2 Relationships of definitions, theorems, and observations..................... 24

3 M-level fill level and path length relationships..................................... 28

4 Bifurcated path lengths and edge counts.. 30

5 A fill path may be chorded, and its bifurcated length unchanged. . . 32

6 1-alternating and non-alternating fill paths.. 36

7 G S-U row ... 42

8 GS-U PPER driver... 42

9 GS-LOW ER... 45

10 G S-Lrow .. 46

11 Incompleteness of GS-Lrow ... 48

12 Multiple Search Rule... 50

13 A curious object.. 51

14 Fillin densities for naturally ordered structured graphs........................ 54

15 Number of vertices at distance I from seed vertex.i 56

16 Predicted vs. actual fill densities for 2D naturally ordered graphs. . 59

17 Vertices visited during GS-U row .. 62

18 P o t e n t ia l -U driver... 63

19 High level description of the PILU algorithm....................................... 69

20 PILU ordering pattern, level zero.. 70

21 PILU ordering patterns, levels four and ten.. 71

22 PILU partitioning, mapping, and vertex ordering.............................. 72

23 Counting lower triangular fill edges in a naturally ordered graph. . . 80

24 Convergence comparison for convection-diffusion problem.................... 91

25 Identifying boundary nodes in unsymmetric graphs............................. 97

26 PILU factorization algorithm... 100

27 PILU triangular solve setup algorithm..102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XV

28 Preconditioner application (triangular solves).. 104

29 Block Jacobi triangular solve scalability (ASCI Blue).............................108

30 PILU triangular solve scalability (ASCI Blue)... 108

31 Experimental a computation (ASCI Blue)... 114

32 Block and striped partitioning strategy comparison................................ 121

33 Laplacian 3-box problem description... 124

34 Solutions for the simple and 3-box Laplacian problems.......................... 125

35 Relative performance of PILU and Block Jacobi ILU (ASCI Blue). . 130

36 Scalability of 3D convection-diffusion problem (ASCI Blue).................. 137

37 Convection-diffusion problem, total solution time (ASCI Blue). . . . 138

38 Simplified 2D Radiative Transfer problem (ASCI Blue)..........................140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

CHAPTER 1

INTRODUCTION

1.1 THE UNDERLYING THEME

This dissertation is about structure, by which I mean the theoretical relationship of
paths in the graph of a matrix to the location of nonzero entries in an incomplete
factor of the matrix . Experimentally, the matrices we will be concerned with arise
from the discretization of systems of partial differential equations (PDEs) on grids
or meshes. Discretization of such PDEs give rise, directly or indirectly, to linear
systems of equations of the form

Ax = b.

Nowadays these systems are becoming very large, to the extent that we do not
have computing resources to solve the problems by direct factorization, but must
rely on iterative methods. In the most general terms, an iterative solution method
begins with a guess at the actual solution, e.g., the zero vector. This guess is then
refined (updated) during an iterative process by adding a correction vector, , to
the most recent solution vector

.̂(i+l) _ x (i) -f-p(0

The update vector can be considered to be a (complicated) function of the original
matrix A and the right-hand side vector b. Iterations are terminated and the system
is considered solved when an exit criterion is satisfied. Typically, the exit criterion
is specified as a relative reduction in the residual norm

| |r ^ 11 < rtol * 1111 where r® = b — A x^ .

The choice of exit criterion is somewhat problematical. If the matrix A is ill condi
tioned a large reduction in the residual norm may translate to only a small reduction
in the error norm. The error norm at the conclusion of the tth iteration is

||ew || = jjx - xw ||, where x is the true solution.

This dissertation is formatted in accordance with the SIAM Journal on Scientific Computing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

For experimental purposes, researchers frequently begin with a known solution z
and generate an artificial right-hand side,

6 = Az.

In such cases we can actually compute the true error (up to roundoff error in the
machine), and hence can compare the residual reduction with the error reduction.
While this may reveal information about the matrix’s conditioning, such an artifi
cial right-hand side also removes the influence of real-life boundary conditions and
source terms, which may lead to higher frequency components in the solution than
when z is simply chosen.

A large number of iterative methods, operating on various principles, have been
devised and investigated over the years [1, 38, 45, 77]. The multi-authored “Tem
plates” book [3], which is available online at h t tp : / /w v .n e t l ib .o rg , provides a
concise introduction and overview of both theory and implementation.

The convergence behavior (i.e., the required number of iterations) of the system
being solved depends on the numerical properties of A; the quality of the initial
guess; the specific iterative method of choice; and the right-hand side vector 6. For
PDEs the vector b typically represents boundary conditions and forcing terms. The
numerical properties of A include definiteness, symmetry, condition number, the
clustering and spread of the eigenvalues, and other properties.

Much past research has focused on the numerical properties of A and how these
properties affect convergence. Quite a bit is known concerning the behavior of
M-matrices and positive definite systems, although mathematicians remain some
what puzzled (i.e., there is little theory) as to how the numerical properties of
unsymmetric and indefinite systems affect convergence behavior.

This thesis is only peripherally concerned with the numerical properties of linear
systems. Numerical properties make themselves known in the experimental sections
wherein we report iteration counts, but nowhere in this thesis do we attempt to
prove, in the numeric analytic sense, convergence bounds. However, the parallel
ILU algorithms that are the topic of the second half of this dissertation can be
interpreted in a sequential context as a matrix reordering followed by factorization.
Hence, a plethora of known numerical results governing convergence behavior of
ILU preconditioned systems is directly applicable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://wv.netlib.org

3

1.2 PRECONDITIONING REVIEW

Mathematically, preconditioning can be summarized as the process of translating
the system

Ax = b

into the related system

M ~lAx = M ~lb

where the preconditioner M in some sense approximates A. This is a representation
of left preconditioning; more generally we have

M ilA M ;\M 2x) = M ~ \

where M = M\M2 « A. This is referred to as split preconditioning. If M2 = I
the system degenerates to left preconditioning, and if M\ = I we arrive at right
preconditioning. Although split, left, and right preconditioned systems may have
identical spectra, they sometimes require different numbers of iterations for con
vergence; these phenomena are described in more detail in [77], and changing the
preconditioner may change the norm in which convergence is most naturally mea
sured.

The preconditioner M is usually derived in some fashion from the matrix A.
Sometimes, as in multigrid methods, information from the underlying grid of un
knowns and discretization scheme may also be used. M is usually not directly com
puted, nor is the matrix-matrix multiplication Jiff1 A performed. In ILU methods
one computes the factors L and U, where LU = M. In approximate inverse meth
ods one may compute either A/-1 or the factors L and U, where U~lL~l — M ~l.

The preceding description of preconditioning is abstract. What happens inside
the computer for ILU preconditioning is this. Prior to the Krylov solve a precondi
tioner setup function is called. This function takes as input the matrix A and other
parameters such as level or threshold (depending on the ILU method employed),
and computes and returns a pair of incomplete factors of A. During each iteration
of a Krylov solve a preconditioner application function is called. This function takes
as input a vector, y , to which the preconditioner is applied, and the result is stored
and returned as a vector z. For ILU(£) the setup function has the form:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

PC.SetupCconst Matrix A_in,
const integer le v e l.in ,
Matrix L.out,
Matrix U_out)

{
//compute and return L.out and U.out, where
//L .out and U.out are ILU(level.in)
/ / incomplete factors of A.in.

>

For left preconditioning the application function has the form:

PC.Apply(cont Matrix L.in,
const Matrix U.in,
const Vector y .in ,
Vector z.out)

<

//so lv e : L.in * U.in * z.out = y .in
/ / for z.out

>

Most practical preconditioning methods can be placed in one of the classes [3,
77]:

• matrix-splitting, which includes Jacobi and SSOR;

• polynomial;

• Approximate Inverse;

• domain decomposition;

• Support-theory based;

• multilevel;

• ILU.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

This taxonomy is somewhat arbitrary. ILU preconditioners, for example, can be
considered the result of matrix splitting, and Block Jacobi is identical to zero-
overlap Additive Schwarz.

Approximate Inverse, domain decomposition, support theory, and ILU precon
ditioning methods are discussed in separate subsections below. Brief descriptions
of matrix-splitting and polynomial preconditioners follow.

A matrix can easily be split into strict lower triangular, diagonal, and upper
triangular components, A = E + D + F. Jacobi preconditioning results from taking
M = D, in which case the computation of M~l is trivially easy.

SSOR preconditioning is defined by the splitting

MSSOr(A) = (D - u,L)D~l (D - uF).

In practice it is common to take u = 1, since the determination of an optimal
value for a; is a nontrivial task, apart from certain well studied cases with constant
coefficients.

In polynomial preconditioning M is defined by M ~l = s(A), where s is some
polynomial, e.g., Neumann or Chebyshev, of low degree. Polynomial precondition
ing has a long history and is of interest due to its inherent parallelism. However,
the method has limitations that appear to preclude its effectiveness as a general
high-performance method. See [8] for additional discussion and references.

Most preconditioners have both point and block formulations. One should note
that block is an overloaded term and potentially misleading, having several common
connotations. First, when beginning with a set of equations such as Navier-Stokes
(NS) in CFD, we end up with multiple unknowns (aka, degrees of freedom (DOF))
associated with each grid point. For 2D NS for example, each gridpoint has five
DOF, and with nodal ordering the resulting (sparse) matrix is consequently com
posed of dense 5 x 5 blocks. Thus, block may refer to a division of the matrix into
equally sized square submatrices, such that each submatrix is either dense or zero.
On the other hand, a matrix may be blocked into a number of square submatri
ces where the block size is arbitrary, and has nothing to do with any underlying
equation(s); in this case the blocks will generally be sparse. A good discussion of
these distinctions can be found in [19]. Finally, in Block Jacobi preconditioning the
connotation is of a block diagonal matrix, with all off-diagonal entries set to zero.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

1.2.1 APPROXIMATE INVERSE PRECONDITIONING

There has recently been considerable interest in Approximate Inverse (APINV)
preconditioning, wherein the matrix M ~l «s A~l is computed, either explicitly
or in factored form. Depending on the specific algorithm, the inverse’s sparsity
pattern may be entirely determined before numerical computation begins, initially
determined then updated as numerical computation progresses, or entirely deter
mined during the course of numerical computation. APINV methods are attrac
tive from a parallel viewpoint since, once formed, preconditioner application con
sists of easily parallelizable matrix-vector multiplications. However, while some
algorithms for computing an approximate inverse are highly parallelizable (e.g.,
norm-minimization techniques such as SPAI), others are not. From a theoretical
viewpoint, APINV preconditioning relies on the assumption that a matrix inverse,
which is in general dense, can be well-represented by a sparse matrix. Justifica
tion for this assumption is so far mostly experimental; it has been shown [28] that,
given a matrix with an irreducible sparsity pattern, numerical values can always be
assigned such that the inverse is completely dense.

The earliest use of approximate inverses in parallel environments is credited to
Benson [5] and Frederickson [33]. Chow, et. al., [21] present a concise survey of
various APINV methods. A wealth of analysis, algorithms, experimental data, and
additional references can be found in [8, 9, 22].

APPROXIMATE INVERSE AND ILU COMPARISON

The study of APINV preconditioning is newer and hence less developed than that
of ILU, and perhaps partially for this reason comparisons between APINV and ILU
are inconclusive. Some researchers report that, although APINV preconditioning
is sometimes more robust and stable than ILU, it has not (yet) turned out to be
cost-competitive with ILU factorization [22]. Others report the APINV is superior
to ILU for a variety of problems [7, 8, 22]. After perusing numerous experimental
studies, this author is of the opinion that such seemingly conflicting reports are
mostly a reflection of the enormity of the experimental space and the numerous
possible bases for comparison. Problems may be symmetric or not, positive definite
or not, well or poorly conditioned, etc. Preconditioning for either ILU or APINV
may be left, right, or split. Matrices may be reordered and/or scaled. Performance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

comparison can be based on convergence (iteration count) or execution time, either
of which can (and probably should) be considered in conjunction with a second
dimension, the number of nonzeros in the preconditioner.

1.2.2 DOMAIN DECOMPOSITION AND GRAPH PARTITIONING

Briefly described, domain decomposition is the process of solving a system resulting
from the discretization of one or more partial differential equations (PDEs) on a grid
or mesh by partitioning the meshpoints into subdomains such that points within
subdomains share physical locality. Each subdomain then constitutes a smaller
problem that can be solved locally, although some subdomain solves may require
boundary node information horn other subdomains. Domain decomposition thus
revolves around the idea of divide-and-conquer [77].

In parallel computing, domain decomposition is often used synonymously with
data decomposition, which is the process of decomposing and distributing data
structures in a distributed memory environment. On the other hand, domain de
composition is also used to refer to the collection of local solutions, used as a
preconditioner for solution of a system of algebraic equations [79].

Domain decomposition terminology has been borrowed by researchers and im
plementors working in linear algebra and graph theory, and it is now common to
refer to “subdomains” rather than “subgraphs,” even for systems having no direct
physical counterpart. See [57, 78] for a discussion of this development.

PARTITIONING, LOCALITY, AND COMMUNICATION COSTS

A key component implicit in domain decomposition methods is the principle that
nodes inhabiting a common subdomain share locality. They should have, on aver
age, higher connectivity with each other than with nodes in foreign subdomains.
This locality may arise naturally, as is the case when formation of subdomains is
guided by the physical features of a problem, or when behavior in different por
tions of a physical system are described by different PDEs. Locality may also be
artificially imposed. A domain decomposition method may take as input a grid of
unknowns or a system of linear equations, and divide the whole into parts through
employment of a partitioning algorithm that attempts to minimize the number of
cut edges, a cut edge being an edge that crosses subdomain boundaries.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

In domain decomposition, cut edges represent scalar data dependencies. A cut
edge indicates that the value associated with a boundary node in one subdomain is
needed in the local solve of another subdomain. When there is a one-to-one mapping
between subdomains and processors in a distributed computing environment these
scalar data dependencies become communication dependencies.

DOMAIN DECOMPOSITION AND PARALLEL ILU COMPARISON

The Parallel ILU (PILU) algorithm proposed in the next section is similar to domain
decomposition methods in its partitioning requirements. It is also similar in that
the majority of computation is performed locally within subdomains. However, a
cut edge in PILU represents a data (communication) dependency that involves the
upper-triangular row of a matrix, whereas a cut edge in a domain decomposition
method is typically interpreted as representing dependence on a value from a vector.
It is then not surprising that PILU uses different data structures, and has different
communication cost-analyses, than domain decomposition methods.

1.2.3 SUPPORT GRAPH PRECONDITIONERS

Over a decade ago, Vaidya proposed a family of preconditioners for M-matrices [80].
Later, Gremban, Miller, and Zagha [39, 40] extended the support graph theory
that underlies the preconditioners, and constructed additional families of precon
ditioners. The Vaidya preconditioners have recently been implemented and tested
experimentally [16], and analytic and experimental research is ongoing [10, 11].

The support graph preconditioners can be interpreted as members of the ILU
family. One first forms a spanning tree of G{A), then augments this graph with
additional edges. This results in a preconditioner matrix that contains only a por
tion of the nonzero entries in A. A complete factorization of M is then performed.
This resulting L and U factors are thus incomplete factors of the original matrix,
A. A primary attraction of support graph theory is that it points the way to the
development of new analytical tools for analyzing convergence.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

1.2.4 ILU PRECONDITIONING

GRAPH THEORETIC CONSIDERATIONS

Modeling of sparse factorization by sequences called elimination graphs is cred
ited to Parter for symmetric matrices [70], and Haskins and Rose for unsymmetric
matrices [46]. Many researchers subsequently contributed to the theory, one of
the more influential works being that of Rose and Tarjan [73], wherein the Fill
Path Theorem was introduced. This theorem gives a static characterization of fill
for complete factorization, static meaning that fill is completely described by the
structure of the graph of the initial matrix, G(A). This modeling and characteri
zation led to the development of elimination trees, which form the basis for several
practical algorithms for computing fill for the complete L and U factors of struc
turally symmetric matrices. Liu’s survey article [59] provides an overview of many
of these developments.

An elimination tree is the transitive reduction of the directed graph of the
Cholesky factor L of a matrix A. This means that, if the factor contains a nonzero
entry then there is a fill path joining nodes i and j in G(A), and a directed
path joining nodes i and j in the elimination tree. Elimination trees are thus
path-preserving, but not path-length preserving.

ILU ALGORITHMS

ILU preconditioners were first developed for M-matrices [65], a canonical example
of which is the Laplacian discretized on a regular grid using central differencing with
three point support in the x and y directions. More formally, A is an M-matrix if
it is invertible, has all diagonal entries an > 0, all off diagonal entries < 0, and
all entries in the inverse (diagonal or otherwise) a~l > 0.

Many ILU variants have been developed over the years, most of which can be
placed into either of two categories, structure-based ILU(£) and threshold-based
ILUT. In ILU(£) the locations of permitted nonzero entries are determined in a
symbolic phase; this is followed by a numeric phase, wherein the actual values are
computed. This two-step procedure is analogous to that used for direct factorization
of symmetric matrices, where the factor’s structure is first computed through use
of its elimination tree. In ILUT, symbolic and numeric factorization is interleaved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

on a row by row basis. A row is updated from a previously factored row, and
entries permitted in the factor, only if the pivots or entries are larger than some
specified value. It is also common practice to put an upper limit on the number of
permitted entries in each row regardless of numeric value, e.g., only five entries may
be permitted in a row in addition to the number of entries in the corresponding
row of A.

Although ILU preconditioning is widely used and considered robust and effec
tive for a wide range of problems, the method can fail for a variety of reasons. The
following summary is taken from Chow and Saad [20], which provides an excel
lent review and reference list. Existence and a form of stability can be proved for
M-matrices [65], however, diagonal perturbations are required to help guarantee
existence for the general positive definite case. Unsymmetric matrices are more
problematical; here, the L and U factors may be much more poorly conditioned
than A, and the solves unstable. These problems can worsen for indefinite matrices.
Factorization may fail, or inaccuracies arise, due to zero or very small pivots. Exces
sive inaccuracies can be introduced if the dropping strategy results in the discard of
too many nonzero entries. Even when factorization goes through, the factors may
be far from diagonally dominant, resulting in unstable triangular solves.

ILU PRECONDITIONING AND PARALLELISM

Per the review by Chan and van der Vorst, [15], most researchers agree that par
allel computation of ILU preconditioners necessitates trading off convergence for
parallelism. The review identifies three methodologies for extracting or increasing
parallelism in ILU methods: matrix reordering, replacement of ILU by a series
expansion or polynomial preconditioner, and domain decomposition.

Numerous theoretical and experimental results have been reported regarding the
interplay of ordering, parallelism, and convergence [6, 29, 31]. Most authors con
clude that orderings that are “highly parallel,” such as red-black in matrices whose
graphs are two-colorable, result in increased iterations during iterative solution.
Most of these studies, however, concentrate on preconditioners that have approx
imately the same number of nonzeros as the initial problem. When additional fill
is permitted the “parallel” orderings can actually result in fewer iterations; this is
clearly evident in Duff and Meurant’s study in the results for ILUT and ILU(l) [29].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

Permitting increased fill, of course, results in increased execution time in both the
factorization phase and each application phase, and requires additional storage. For
these reasons preconditioner effectiveness can best be measured by execution time,
with a careful eye towards resource availability.

1.3 NEW CONTRIBUTIONS, RELATION TO EARLIER WORK,
AND THESIS SUMMARY

The following lists the primary new contributions presented in this dissertation.
Each contribution, and its relationship to previous work, is discussed in the subse
quent paragraphs. This section also serves as a roadmap to the remainder of this
work.

• Graph theoretic characterization of ILU(£) fill.

• Graph-search algorithms for computing ILU(f) fill and storage requirements.

• Scalable parallel ILU algorithmic framework (PILU).

1.3.1 GRAPH THEORETIC FILL CHARACTERIZATION

Chapter 2 of this work contains a sequence of lemmas and theorems that char
acterize where fill occurs in ILU(f) factors. We show that fill can be determined
“statically,” by examining the graph of a matrix, G(A), and that the nonzero
structure of each row in the incomplete factors L and U of A can be determined
independently. We develop characterizations for the two commonly used fill defi
nitions, the sum rule and the max rule. Hitherto, these rules were cast in terms of
matrix nomenclature, i.e, in terms of two nonzero entries in a matrix that cause
a previously zero entry to “fill” during factorization. Our theorems show that the
level of a fill entry corresponds to a path length in a graph.

Our fill theorems are generalizations of the original fill path theorem which, as
discussed above (Section 1.2), did not encompass the concept of fill path length.
We add the result that fill path lengths are determinants of fill levels in matrices.

Our characterization for fill in factors computed using the sum rule (Theorem 4)
was known to D’Azevedo, Forsyth, and Tang [24], who reported a similar finding.
There are two differences between their work and ours. First, although they were

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

clearly aware of the connection, they defined all fill levels in terms of path lengths
in G(A). We start with a far weaker premise. We only define level 0 fill entries,
which are nonzero entries in the original matrix, A. We then use a graph theoretic
model of row-oriented Gaussian elimination to prove the “if-and-only-if ’ relation
ship between path lengths in graphs and fill levels in matrices.

Second, D’Azevedo, Forsyth, and Tang’s characterization used the concept of
reachable sets, which is inherently dynamic in nature. A reachable set refers to the
set of vertices that has been removed from a graph during Gaussian elimination.
This concept is not needed as long as one assumes that an ordering is associated
with the vertices. Employing reachable sets obscures the observation that the fill
path lengths are static in nature, and hence the nonzero structure of each row in
the matrix can be determined independently of that of any other row.

We also develop a static characterization of fill for ILU factors that are computed
using the max rule. To the best of our knowledge there is no previous work in this
regard. Finally, we show where the two characterizations coincide, and where they
differ.

1.3.2 GRAPH-SEARCH ALGORITHMS

Chapter 3 contains several new algorithms for computing ILU(£) structures. Pre
vious algorithms (“classical ILU(£)”) for computing ILU(£) structures operated by
merging in previously factored rows of the U factor with the current row being
factored. Our algorithms operate on a different principle: they determine structure
by performing breadth first searches in the graph G(A). These algorithms are a
natural extension of the theorems developed in Chapter 2.

Determining fill by performing searches in graphs is not an entirely new con
cept. Eisenstat and Liu [32] used depth first searches to compute fill for complete
L and U factors of matrices. The main thrust of their work was to speed up the
symbolic factorization process of structurally unsymmetric matrices by making use
of that portion of a matrix that might be symmetric. (Although the elimination
tree leads to very fast algorithms for computing the structure of complete factors
for symmetric matrices, there is no equivalent method for computing the structures
of structurally unsymmetric matrices.) Gilbert and Liu [36] also presented an al
gorithm for computing the structure of complete L and U factors. Their algorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

combines row-merging and graph-search features.
To the best of our knowledge, we are the first to design graph search algorithms

for computing incomplete L and U factors. We prove that our new algorithms have
lower run time complexity than the classical algorithm for matrices arising from
PDG discretizations on 2D and 3D grids.

We also show how these algorithms can be modified to compute ILU(£) stor
age requirements in O(n) space. This is an advancement over current approaches,
which either artificially limit the amount of fill by, for example, stipulating the
maximum number of nonzero entries permitted in any row of the factor, or dy
namically reallocate storage during the factorization process. Placing an artificial
limit is disadvantageous since numerically large entries (which one would like to
remain in the factor) may be arbitrarily dropped, thereby lowering preconditioner
effectiveness. Dynamic reallocation is disadvantageous due to system call overhead
time, and the possibility of memory fragmentation.

1.3.3 PARALLEL ILU ALGORITHMIC FRAMEWORK

Chapter 4 introduces a Parallel ILU preconditioning framework that can accommo
date both ILU(£) and ILUT factorization methods. Chapter 5 contains amplifying
theory and results that show the method is scalable. Chapter 6 examines how
partitioning and subdomain size effect the algorithms performance. Chapter 7 con
tains additional results. Our algorithm attains parallelism through a dual (global
followed by local) reordering phase, and imposes a subdomain graph constraint
that permits communication patterns to be determined prior to factorization, thus
minimizing the possibility that long sequential dependency paths will arise during
the factorization process.

Although developed independently, our preconditioning algorithm shares fea
tures with work reported by other researchers. Earlier attempts at parallel algo
rithms for preconditioning (including approaches other than incomplete factoriza
tion) are surveyed in [15, 27, 81]; orderings suitable for parallel incomplete factor
izations have been studied inter alios in [6, 26, 29]. The surveys also describe the
alternate approximate inverse approach to preconditioning.

Saad [77, Section 12.6.1] discusses a distributed ILU(O) algorithm that has the
features of graph partitioning, elimination of interior nodes in a subdomain before

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

boundary nodes, and coloring the subdomains to process the boundary nodes in
parallel. Only level zero preconditioners are discussed there, so that fill between
subdomains, or within each subdomain, do not need to be considered. No imple
mentations or results were reported, although Saad has informed us recently of
a technical report [61] that includes an implementation and results. Our work,
done independently, shows how fill levels higher than zero can be accommodated
within this algorithmic framework. We also analyze our algorithm for scalability
and provide computational results on the performance of PILU preconditioners.
Our results show that fill levels higher than zero are indeed necessary to obtain
parallel codes with scalability and good performance.

Karypis and Kumar [55] have described a parallel ILUT implementation based
on graph partitioning. Their algorithm does not include a symbolic factorization,
and they discover the sparsity patterns and the values of the boundary rows after the
numerical computation of the interior rows in each subdomain. The factorization
of the boundary rows is done iteratively, as in the discussion given above, where we
show how the subdomain graph constraint might be relaxed. The partially filled
graph of the boundary rows after the interior rows are eliminated is formed, and this
graph is colored to compute a schedule for computing the boundary rows. Since
fill edges in the boundary rows are discovered as these rows are being factored,
this approach could lead to long dependency paths that are 0(p). The number
of boundary rows is fl(iV1/2) for 2D meshes, and Q(N2̂ 2) for 3D meshes with
good aspect ratios. If the cost of factoring and communicating a boundary row is
proportional to the number of rows, then this phase of their algorithm could cost
Sl(p>/N), severely limiting the scalability of the algorithm (cf. the discussion in
Section 4.3).

Recently Magolu monga Made and van der Vorst [62, 63] have reported vari
ations of a parallel algorithm for computing ILU preconditioners. They partition
the mesh, linearly order the subdomains, and then permit fill in the interior and
the boundaries of the subdomains. The boundary nodes are classified with respect
to the number of subdomains they are adjacent to, and are eliminated in increasing
order of this number. Since the subdomains are linearly ordered, a “burn from
both ends” ordering is employed to eliminate the subdomains. Our approaches are
similar, except that we additionally order the subdomains by means of a coloring

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

to reduce dependency path lengths to obtain a scalable algorithm. They have pro
vided an analysis of the condition number of the preconditioned matrices for a class
of 2D second order elliptic boundary value problems. They permit high levels of
fill (four or greater) as we do, and show that the increased fill permitted across
the boundaries enables the condition number of the preconditioned matrix to be
insensitive to the number of subdomains (except when the latter gets too great).
We have worked independently of each other.

A different approach, based on partitioning the mesh into rectangular strips and
then computing the preconditioner in parallel steps in which a “wavefront” of the
mesh is computed at each step by the processors, was proposed by Bastian and
Horton [4] and was implemented for shared memory multiprocessors recently by
Vuik, van Nooyen, and Wesseling [84]. This approach has less parallelism than the
one considered here.

1.4 CODE AVAILABILITY

As part of this dissertation, a model PILU implementation, the Euclid li
brary, was designed and implemented. This library, which is implemented
in C, has been tested on various experimental platforms, as detailed in Ap
pendix B. The code is freely available for download, along with an in
terface to PETSc [2], at h ttp ://w v .c s .o d u .ed u '/p o th en /so f tware.html or
h t tp : //www. c s .odu.edu/~hysom/Euclid/index.html.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.odu.edu/~hysom/Euclid/index.html

16

CHAPTER 2

INCOMPLETE FILL PATH THEOREMS

2.1 IN TR O D U C TIO N

Two incomplete fill path theorems, which are the primary theoretical contribution of
this work, are generalizations of the original fill path theorem, due to Rose, Tarjan,
and Leuker [72, 73]. The original theorem characterizes fill for the complete factors
of a matrix, A = LU. It describes an intimate relationship between the structure of
the graph of any given matrix, and the structure of the graph of that matrix’s factors
(for brevity, we sometimes abbreviate “the structure of the graph of a matrix” to
“the structure of a matrix”):

Definition 1 A fill path is a path joining two vertices i and j , all of whose interior
vertices are numbered lower than the end vertices i and j .

Theorem 2 Let F = L + U — I be the filled matrix corresponding to the complete
factorization of A. Then fij ^ 0 if and only if there exists a fill path joining i and
j in the graph G(A) [72, 73].

This theorem tells us that one can determine where fill will occur during fac
torization without actually performing the factorization. That is, fill locations are
directly discernible from the initial graph. Hence, the theorem is said to provide a
“static” characterization of fill.

(Regarding terminology, when describing the nonzero structure of a matrix’s
factors researchers have variously used the terms “fill,” “fillin,” and “fill-in.” Usu
ally, “fillin” or “fill-in” is used to describe entries that are zero in the original matrix
but, due to the existence of a fill path, are allowed to become nonzero in the factor.
We prefer to use the term “fill” to denote any nonzero entry in the factors. The
term filled matrix denotes the matrix F = L + U — I, where L and U are either
complete or incomplete factors of A.)

Application of Theorem 2 has resulted in the gradual development of the notion
of elimination trees, and many algorithms of practical importance for direct meth
ods. Liu provides a good overview of these developments in [59]. For symmetric

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

problems A = LLT, the structure of L can be computed extremely quickly, in time
essentially proportional to the number of nonzeros in the factor.

Just as in direct methods, it is possible to formulate static characterizations
of fill for certain classes of ILU factors. ILU(£) and IC(£) factors are of interest
since their products (although never explicitly formed during computation) have
long been recognized as effective preconditioners for the iterative solution of impor
tant scientific problems, e.g., elliptic systems resulting from the discretization of
second-order partial differential equations (PDEs). For symmetric positive definite
problems, the structure of the ILU(£) or IC(£) factors can be completely determined
prior to numerical factorization. For problems that require pivoting for numerical
stability, and factorizations produced by methods that employ numerical criteria
(e.g., ILUT), this is not possible. Since pivoting is dynamically determined during
the factorization, any static prediction of structure must include all the nonzeros
that would be present in all possible orderings. This is an upper bound, which,
though it can be computed, is too big in practice [34].

In this chapter we develop new incomplete fill path theorems that characterize
where fill occurs in ILU(£) factors. We begin with an overview of existing ILU(£)
algorithms, and go on to discuss two rules (sum and max) that have been used
to determine level assignments during ILU(£) factorization. We then introduce a
graph theoretic model for incomplete factorization that extends previously devel
oped models for complete factorization. With this foundation in place, we present
and prove several theorems that characterize incomplete fill.

2.2 CLASSICAL ILU(£) FACTORIZATION

By classical ILU(t) we refer to a family of widely known and implemented al
gorithms that compute ILU(£) factors by mimicking direct factorization. These
algorithms determine permitted fill based on the concept of a matrix entry’s level.
As in direct factorization, but unlike some ILU variants (e.g., ILUT), factorization
is divided into two distinct phases. In the symbolic phase the locations of permitted
nonzero fill entries are determined. In the subsequent numeric phase the values of
the entries are computed. (In this work, when we write “ILU(£),n we generally refer
to the symbolic factorization phase.)

As in direct factorization, in their outermost loops classical ILU(£) algorithms

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

may iterate over matrix rows, columns, or diagonal entries. Multifrontal approaches
are also possible. Since the vast majority of current scientific codes are row (i.e.,
equation) oriented, for the remainder of this work we will be exclusively concerned
with row-oriented algorithms.

Row-oriented ILU is said to be upward looking. That is, for every nonzero entry
fih with h < i, row i is updated by merging in the upper-triangular portion of the
previously factored row h. During this process a matrix entry fa , whose value was
previously zero, may become nonzero (i.e, may “fill in”) if there exists a nonzero
entry fhj- Here h < i, h < j , but j may be either greater or lesser than i. We say
the fill entry fa is caused by the existence of the two entries f a and fhj-

During ILU(£) factorization all matrix entries are assigned an integer-based
level To get the ball rolling, all nonzero entries in the original matrix are assigned
the level zero, and zero-valued entries are assigned the level infinity. (Actually,
the assignment of “infinity” is a mathematical nicety; algorithmically, inside the
computer, we simply ignore (do not allocate data structures for) zero entries.)

A potential fill entry fa is assigned a level based on the levels of its two causative
entries (the rules used to assign levels are discussed in the next section). If the
assigned level is not greater than £, the entry is permitted to become nonzero during
numeric factorization (mathematically, we say the entry is added to a sparsity set of
permitted fill). Since a fill entry may have many different pairs of causative entries,
and hence potentially be assigned many different levels, the tie-breaking rule is to
assign it the lowest possible level.

Figure 1 contains a statement of the row-oriented C la ssic-IL U algorithm.
Nonzero matrix entries are represented by adjacency lists. If row j of matrix A
contains a nonzero entry Qji, then the adjacency list adj{j) contains an element
i. The compressed sparse row storage format (CSR), which is arguably the most
commonly used data structure for computer matrix representation, is an adjacency
list construct. The computeWeight() function in Step 10 is the subject of the next
section.

2.3 FILL LEVEL ASSIGNMENT RULES

The level associated with a matrix entry fa in the matrix F = L + U - / , where
LU as A, is denoted level(i,j). As previously noted, entries in F corresponding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

C lassic-ILU (A , £)

1 # Initialization phase
2 for j = 1 to n
3 adj'(j) 4— 0
4 for £ € adj(j)
5 level(j, t) 4— 0
6 insert £ in adj'(j)
7 # Row-merge update phase
8 for each unprocessed i € adj'(j) with i < j in ascending order
9 for £ € adf(i) with £ > i
10 wt = compute Weight (/ e v e / i) , level (i, £))
11 i f w t < £

12 if £ 9 adj'{i)
13 insert £ in adj'(j)
14 level(j,t) *—wt
15 else
16 level (j , t) 4— min{/eue/ (j, £), u;£)}

F ig. 1. CLASSIC-ILU algorithm. The input matrix A contains n rows. The structure of a

row ajm is represented by the list a d j(j) . The structure of a factor row f j , is represented by the

list a d j'(j) .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

to nonzero entries in A are initially associated with the level zero, and numerically
zero entries are associated with the level infinity.

There are two rules in the literature for assigning levels to fill entries that arise
during factorization: the sum rule and the max rule. As before, we assume that fill
entry fa is caused by previously admitted entries Uh and fkj. Mathematically, the
sum rule states

level(i,j) = min {level(i, h) + level(h, j) + 1}. (1)
l< /i<m in{ij}

In words, this rule assigns a level which is the sum of the level of two causative
entries, incremented by 1. All ILU(£) implementations of which this author is aware
make use of the sum rule when assigning levels during factorization. Intuitively,
the sum rule is appealing since, by this rule, an entry’s level is a direct indication
of the minimum number of times any of its updates will be divided by a pivot value
during the numeric factorization phase. Hence, for important classes of matrices
(e.g., diagonally dominant) entries with higher levels are expected to be smaller in
absolute value, and hence have less influence in establishing the factor’s character.

In contrast, the max rule for level assignment states

level(i,j)= min max{level(i, h),level(h,j)} + 1. (2)
l</»<min{t j}

This method is intuitively appealing (particularly to computer scientists) due
to its recursive flavor. To compute an ILU(£) factor using the max rule, one can
perform an ILU(l) factorization I times. The input for the first iteration is the
structure on the initial matrix A , the input for subsequent iterations in the structure
(sparsity set) computed during the previous iteration. At the commencement of
each iteration, all entries in the input sparsity set are considered as level zero entries.
(Note that the sum and max rules always produce identical level assignments for
ILU(l) factorizations. For matrices arising from 2D, five-point discretizations, the
rules also produce identical results for ILU(2) factorizations.)

From a numerical viewpoint, however, this rule has less to recommend itself,
since with this rule an entry’s level is not indicative of the minimum number of
times any of its updates will be divided by a pivot value. With the max rule the
minimum number of pivot divisions for a level £ entry ranges between I and I1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

The origins of the sum and max rules are difficult to pin down precisely because
the foundational ideas were developed gradually, over many years. Historically,
incomplete factorization structures were specified either by considering gridpoint
operators associated with discretizations of PDEs on regularly structured, naturally
ordered grids; by examining the “banded” appearance (as would be seen in a Matlab
spy plot) of the resulting matrix [13, 15, 66, 68, 69, 83]; or by considering matrix
splittings. More accurate factorizations were arrived at by specifying larger stencils
for the factor, or by permitting the inclusion of additional diagonal bands, or by
adding the structure of the remainder matrix to the sparsity set.

The term “incomplete factorization” appears to have been coined by Meijerink
and Van der Vorst [65]. A discussion of recursive factorization, which can be shown
equivalent to the max rule, is presented by Axelsson [1], who attributes its origin
to Gustafsson [43]. The first clear statement of the sum rule that we have been
able to locate was enunciated by D’Azevedo, Forsyth, and Tang [24].

With reference to line 10 of Algorithm 1, we are primarily interested in two
weighting functions that are functional counterparts to the max and sum level
assignment rules. The sum weighting function is

computeWeight(level(i, /i), level(/i, j)) = level(i, h) + level(h, j)) + 1. (3)

The max weighting function is

computeWeight(level(i, h), level(/i, j)) = max{level(i, h), level(/i, j)} + 1. (4)

To distinguish between levels computed using the max or sum functions, we
sometimes write “S-level” or “M-level” in place of the more general term, “level.”
Similarly, we may write S-Ievel(t,j) or M-level(t, j) instead oflevel(i,j).

2.4 GRAPH THEORETIC ILU(f) MODEL

Parter [70], and later Rose and Tarjan [73], developed graph theoretic vertex elim
ination processes that model complete Gaussian Elimination. In this section we
formalize a similar model for structurally based incomplete factorization.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

A directed graph of a matrix G(.4) = (V, E) has vertex set V, which contains
a vertex for every row in the matrix, and edgeset E, which contains a directed
edge (i, j) for every nonzero entry a^. Edges are weighted, and the weight of
an edge (i,j) is denoted level(i,j) (or sometimes more specifically, S-level(i, j) or
M-level(i, j)). G(A) is an ordered graph such that, if matrix row i is numbered less
than matrix row j , then vertex i is ordered before vertex j .

All edges in G(A) are assigned the weight zero. Given any two edges (i, h) and
(h,j) that form a directed path P(i,j), a weight can be assigned to the hypothetical
edge (i , j) using either of the previously discussed weighting functions.

(Although we use brackets to indicate directed graph edges, for clarity we
omit the brackets when specifying edge weights, i.e., we write level(i,i) instead
of level((i, j)). By a path’s “length,” we refer to the number of edges contained
in the path. When a path P{i,j) contains a single edge we have the equivalence:

P{ i , j) = (hj)-)
The partial elimination process is a sequence of graphs that models Gaussian

elimination. The initial graph in the sequence, Go, is identical to the graph of
the matrix, G(A) = (V, E). We assume the vertex set V contains n vertices.
The graph Gi+1, for 0 < i < n, is formed by examining all pairs of edges in
G, that form directed paths of length two: i ,h , j , with h < min{i,ji}. For
each such path P{i,j), a directed edge (i,j) is inserted in if and only if
computeWeight(level(i, h),level(h,j)) is not greater than t. If the hypothetical
edge (i,j) has already been inserted, its weight is adjusted to the minimum of
its present weight and the newly calculated weight. Hence, we denote the partial
elimination process as

G(A) = G0, Gi, G2 . . . , Gn = G,. (5)

For specificity, we use a superscript “S” to indicate when edge weights were
calculated using the sum rule, e.g., G f. Similarly, a superscript “M” indicates that
edge weights were calculated using the max rule, e.g., G^f.

This partial elimination process models ILU(£) factorization since matrix fill
entries created or updated when row i is factored (iteration i in Algorithm 1)
correspond exactly to edges inserted or updated during the formation of graph G,.
Hence we have G. = G(F).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

The sequence of graphs defined above differs from previous models for com
plete factorization in at least one important aspect. The models for complete
factorization are based on bordering methods, in which outer-product updates are
performed while marching down a matrix’s diagonal. Accordingly, one vertex is
eliminated (removed) from Vj during the formation of graph Gi+1 = (Vj+i,/?,-+i)
from graph G, = (Vi, Ei).

Row oriented factorization requires that we leave the vertex set intact, i.e, Vi and
Vi+i are identical for 0 < i < n. While it is possible to formulate a graph theoretic
construct based on bordering for incomplete factorization, such a construct would
not model the operation of the C lassic-ILU algorithm.

(Since our vertex sets remain constant, one might wonder whether the construct
in Equation 5 is properly called an “elimination” model. Fortunately, good com
puter scientists, like politicians, are adept in the art of overloaded meanings. In
the present situation, Vo can be regarded as an unprocessed pool of vertices. When
each graph Gj+i is formed from graph Gj a single vertex is processed, and thus
eliminated from the pool of unprocessed vertices.)

2.5 STRUCTURAL CHARACTERIZATIONS

This section contains a collection of definitions, observations, lemmas, and theorems
that provide static characterization of incomplete S-level and M-level fill. We also
introduce the concept of 1-alternating fill paths, which are particular configurations
of fill paths for which the S-level and M-level characterizations coincide.

Figure 2 provides a pictorial summary of the interconnections of this chapter’s
results.

2.5.1 STATIC CHARACTERIZATION OF S-LEVEL FILL

This section’s first result tells us that nontrivial fill paths can always be decomposed
into shorter fill paths.

Lemma 3 Any fill path P (i , j) that contains two or more edges can be uniquely
decomposed into two fill paths, P(i,h) and P(h,j), each of which contains at least
a single edge.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

Dl: fill path

Th2: fill path theorem
El: sum rule
E2: max rule

classic ILU(k)

graph model

L3: fill path decomposition
(general)

Th4: incomplete fill path theorem
(S-level)

Thl5: bifurcated lengths of
1-altemating Ell paths

Thl6: equivalence of S-level and
M-level for 1-altemating
fill paths

Th5: M-level edge counts
D6: bifurcated lengths
07: fill path chording

Th8:incomplete fill path theorem
(M-level) _____

D9:1-altemating fill paths

010: non-alternating fill paths

Oil: fill path decomposition
(internal ascending)

012: fill path decomposition
(1-altemating)

013: fill path with 3 or fewer
edges are 1-altemating

014: extending 1-altemating
fill paths_____________

F ig . 2. Relationships of definitions, theorems, and observations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

Proof. Given a fill path P{i,j) containing two or more edges, let h denote the
highest numbered interior vertex on the path. The P(i, h) section of this path is
a fill path by the choice of h, since all intermediate vertices on this section are
numbered lower that h. Similarly, the P (h,j) section of this path is also a fill path.
Thus, the fill path can clearly be decomposed in two subpaths, both of which are
fill paths (existence).

To show uniqueness, suppose there exists some other decomposition. Let g be
an interior vertex on the P(i,j) path, distinct from h, such that both P(i,g) and
P(g,j) sections are fill paths. Then h, which is also on the P (i,j) path, must
either be situated between vertices i and g, or between vertices g and j . Without
loss of generality, assume vertex h is situated between vertices i and g. Then by
Definition 1, P(i, g) is not a fill path, since the path contains an interior vertex that
is numbered higher than one of the end vertices. □

The next theorem, which is this section’s main result, provides a static charac
terization of fill for classical ILU(f) factors that are computed using the sum rule
for level assignment.

T heorem 4 Let G(A) = (V, E) be the graph of a square matrix A, and let (i , j) be
a permitted edge in G f. Then S-level(i, j) = k if and only if there exists a shortest
fill path of length k + 1 that joins i and j in G(A).

Proof If there is a shortest fill path of length k + 1 joining i and j in G(A), we
prove the result, that an edge (i, j) with S-level(i,j) = k exists in Gf, by induction
on u, which is the length of the fill path.

The base case u = 1 is immediate, since, by the construction in Section 2.4, a
fill path of length one in the graph G(^4) is an edge (i,j) in G{A), and edges in
G(.4) are assigned level zero, and are also edges in G f.

Now assume that the result is true for all lengths u less than k -i-1; we show it
is also true for shortest paths of length u = k-1-1. Let P{i,j) be a shortest fill path
joining vertices i and j in G(A), and let this path have length u = k 4-1.

Let h denote the highest numbered interior vertex on the fill path P(i,j). We
claim that the P(i, h) section of this path is a shortest fill path in G(A) joining i
and h. This section is a fill path by the choice of h and Lemma 3. If there were a fill
path joining i and h that was shorter than the P(i, h) section, we would be able to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

concatenate it with the P (h,j) section to form a shorter P (i,j) fill path. Hence the
P(i, h) section is a shortest fill path joining i and h. Similarly, the P{h,j) section
of this path is the shortest fill path joining h and j .

Since each of these sections has fewer than k + 1 edges, and is a shortest fill
path, the inductive hypothesis applies. Denote the number of edges in the P(i, h)
(P{h, j)) section of this path by v (w), where v + w = u = k + 1 . By the inductive
hypothesis the edge (i, h) is a fill edge of level v — 1 = and the edge (h,j) is a
fill edge of level w — 1 = k^. Now by the sum rule for updating fill levels, when the
vertex h is eliminated, we have a fill edge (i,j) of level

k i + k 2 + l = (v — \) + (w - l) + l = v + w — l = u — l = {k + l) — l = k.

Now we prove the converse. Suppose that (i,j) is a fill edge of level k in Gf;
we show the result that there exists a shortest fill path in G(A) of length u = k +1
edges by induction on the level k.

The base case A: = 0 is immediate since, by the construction in Section 2.4, the
edge (i, j) constitutes a trivial fill path of length one.

Assume that the result is true for all fill levels less than k. Let the fill edge
(i, j) with S-level(i, j) = k be created in Gf1, when vertex i is eliminated, by the
previously existing edges (i, h) and (h ,j). Let the edge (i,h) have level ki and
the edge (h,j) have level k-i. By the sum rule for computing levels, we have that
k\ + &2 + 1 = k. By the inductive hypothesis, there is a shortest fill path of length
v = ki + 1 joining i and h, and such a path of length w = fc2 + 1 joining h and j.
Concatenating these paths, we find a fill path joining i and j of length

v + w = (ki 4-1) + (& 2 + 1) = k\ + Ai2 ■+■ 2 = k 4* 1.

We need to prove that the P(i, j) fill path in the previous paragraph is a shortest
fill path between i and j . Consider any other pair of edges (i,g) and (g, j) in Gf*
that causes the fill edge (i, j) when vertex i is eliminated. By the choice of the
vertex h, if the level of the edge (i, g) is k!v and that of {g,j) is k'2, then k[+k'2 > k.

The inductive hypothesis applies to the P{i,g) and P{g,j) sections, and hence
the sum of their lengths is at least k + 1. □

D’Azevedo, Forsyth, and Tang [24] defined the (sum) level of a fill edge {i,j)
using the length criterion employed here, and hence were aware of the connection

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

between matrix entry levels and fill path lengths. However, they did not postulate
or prove this connection as a theorem, as we have done. In passing, we note that
their work centers around a novel algorithm that combines an ordering technique
with ILU factorization. They consider G(A) to be initially unordered, and one
vertex is ordered during each elimination step. They define fill levels in terms of
path lengths through vertices in reachable sets, with a reachable set consisting of
vertices already eliminated and ordered.

As we will show in the next chapter, the static characterization of S-level fill
can be applied to develop new algorithms for computing ILU(£) factors, to analyze
the amount of fill for simple structured graphs, and to analyze ILU(£) run-time
complexities.

2.5.2 STATIC CHARACTERIZATION OF M-LEVEL FILL

We now turn our attention towards M-level fill entries and their associated fill
paths. While a fill edge with S-level(i, j) = k corresponds to a fill path with exactly
k + 1 edges, this section’s first result says that a fill edge with M-level(i,j) = k
corresponds to a fill path that may contain anywhere between A: + 1 and 2* edges.
Figure 3 illustrates the intuition underlying this claim. Two very simple graphs are
shown, both of which contain fill paths that correspond to level k = 3 fill edges.
The fill path in the Figure 3(a) contains 3 + l = fc + l = 4 edges, while the fill path
in Figure 3(b) contains 23 = 2* = 8 edges.

Theorem 5 Let G(A) = (V,E) be the graph of a square matrix A, let (i,j) be
a permitted edge in G^1 with M-level(i, j) = k, and let P (i , j) be a corresponding
fill path in G(A). Let u represent the number of edges in the path P (i,j) . Then
k + l < u < 2 k.

Proof. We argue by induction on the fill edge’s level, k. The base case A: = 0
is immediate since, by the construction specified in Section 2.4, a fill edge of
level zero corresponds to a fill path that contains u = 1 edges. In this case
A; + l = l < u < 2 * = l, so the result is true.

Now assume the result is true for all edges whose M-level is less than A:; we
show it is also true for edges with level k. Let h be the vertex whose elimination
creates the fill edge (i, j) of M-level k. Let the edge (i, h) have M-level Aq and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

F ig . 3. M-level fill level and path length relationships. Edges in G (A) are drawn with solid

lines. Edges in G?f are drawn with dashed lines, and labeled with their levels. The vertex num

bering indicates elimination ordering. Both graphs contain an M-level k = 3 fill edge. The

corresponding fill path in the graph on the left, 8,1,2,3,4, contains 3 + l = f c + l = 4 edges. The

corresponding fill path in the graph on the right, 8,1,5,2,7,3,6,4,9, contains 23 = 2* = 8 edges.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

the edge (h, j) have M-level k2. By the max rule for computing levels, we have
that max{A:1, k2} + 1 = fc, hence both ki and k2 are less than k, so the inductive
hypothesis applies. Also, either k\ = k — 1 or k2 = k — 1 or both. Without loss of
generality, assume ki = k — 1.

Let v represent the number of edges in the fill path joining i and h in (7(A), and
w the number of edges in the fill path joining h and j in G(A). By the inductive
hypothesis, ki + 1 < v < 2k\ and k2 + l < w < 2fca. When h is eliminated these
paths are concatenated, resulting in the fill path P (i,j) whose length u is bounded:

(ki + 1) + (k2 + 1) < u < 2kl + 2k\

To make the left-hand side as small as possible, assume k\ = k — I and k2 = 0,
which is possible if P(h,j) contains a single edge. In this case

u = {k\ + 1) + {k2 + 1) = ((k — 1) + 1) + (0 + 1) = k + 1.

To make the right-hand side as large as possible, let ki = k — 1 and k2 = k - 1.
In this case

u = 2kl + 2kt = 2(*-1) + 2(*-1) = 2*.

Therefore, fc + l < u < 2 fc. D
Not only is there wide latitude in fill path lengths associated with M-level fill

edges, but it is also the case that a fill path P (i,j) in G(A) that is associated
with a fill edge (i , j) in G^1 may not be the shortest fill path (that is, the fill path
containing the fewest number of edges) that connects vertices i and j in G(A).
Figure 4 illustrates this point. The figure shows a fill edge with M-level(i, j)=3
that arises due to the existence of a fill path that contains eight edges. Vertices i
and j are also connected by a fill path that only contains five edges; however, this
fill path would cause (i,j) to have M-level(i,j) = 4.

Hence, when fill is computed using the max rule, it appears that there is no
necessary connection between fill levels and path lengths (where “length” indicates,
as we use the term, the number of edges in a path). These observations suggest the
need for a definition of path length that does not strictly depend on the number of
edges in the path. Accordingly, we introduce the concept of bifurcated length, which
is recursive in nature. In the following definition the phrase “unique fill subpaths”
refers to the unique decomposition stated in Lemma 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F ig . 4. Bifurcated path lengths and edge counts. Top: a graph in which vertices i and j

are connected by two fill paths. In the middle and bottom, the paths are shown separately, with

bifurcated path lengths indicated by dashed lines. The path in the middle contains fewer edges but

has a larger bifurcated length than the path at the bottom. Vertex ordering is indicated by vertical

placement: vertices that are lower on the page are assumed to be ordered before vertices placed

higher on the page.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

Definition 6 A fill path containing a single edge has bifurcated length zero. A
fill path containing two or more edges, whose unique fill subpaths have bifurcated
lengths v and w, has bifurcated length u = max{u, u>} + 1.

Heretofore, we have used the phrase “shortest fill path” to indicate, of all pos
sible fill paths connecting two vertices in a graph, the (possibly nonunique) path
containing the fewest number of edges. When discussing bifurcated lengths we use
an analogous phrase, “fill path with shortest bifurcated length.” This term indi
cates, of all possible fill paths connecting two vertices in a graph, the (possibly
nonunique) path whose bifurcated length is the smallest possible.

A chord of a path is an edge that joins two non-consecutive vertices on the path.
If an edge is added to a graph such that the shortest fill path P{i,j) is chorded, the
result will be that vertices i and j are joined by a shorter fill path than previously,
and hence the corresponding S-level(z, j) will be reduced. This concept does not
transfer to the study of bifurcated path lengths.

O bservation 7 A fill path may be chorded, and its bifurcated length unchanged.

Figure 5 shows a fill path that contains 8 edges and has bifurcated length 4.
After chording, the resulting shorter fill path contains only 7 edges, however, its
bifurcated length is unchanged.

The next theorem provides a static characterization of M-level fill.

Theorem 8 Let G(A) = (V, E) be the graph of a square matrix A, and let (i,j)
be a permitted edge in . Then M-level(i, j) = k if and only if there exists a fill
path joining vertices i and j in G(A) with bifurcated length k, and this path has the
shortest bifurcated length amongst all fill paths between i and j .

Remark. In contrast to Theorem 4, here there is no “+1" difference between
bifurcated path lengths and M-levels. This is because the “+1” is incorporated into
the definition of bifurcated path lengths.

Proof. If there is a fill path with shortest bifurcated length k joining i and j in
G(A), we prove the result, that an edge (i,j) with M-level(i,j) = k exists in G ^ ,
by induction on u, which is the bifurcated length of the fill path.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FlC. 5. A fill path may be chorded, and its bifurcated length unchanged. Left: fill path

P { i , j) = i , h , t 2 , t 3 , t 4 , t s , t 6 , t j , j in G(A) contains 8 edges and has bifurcated length 4 • Right:

the sub path t$, ta, <7 has been chorded in G(A) ; i and j are now connected by the shorter fill

path P { i , j) = i , t i , t 2 , t 3 , t A, t s , t 7 , j . Ths path contains 7 edges, but the bifurcated length of P { i , j)

remains 4- Edges in G(A) are drawn with solid lines. Edges in G ^ are drawn with dashed lines,

and labeled with their levels. Vertex ordering is indicated by vertical placement: vertices that are

lower on the page are assumed to be ordered before vertices placed higher on the page.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

The base case u = 0 is immediate, since, by the construction in Section 2.4 and
Definition 6, a path with bifurcated length zero corresponds to an original edge in
G(A).

Now assume the result is true for all fill paths with bifurcated length u less than
k. We will prove that the result is true when the bifurcated length of a fill path is
u = k.

Let P (i , j) be a fill path with shortest bifurcated length that joins i to j in
G(A), and let the bifurcated length of this path be u = k. Let h be the highest-
numbered interior vertex in this fill path. Then P(i,h) and P (h ,j) are also fill
paths by Lemma 3.

Let the bifurcated length of the fill path P{i,h) be v and let the bifurcated
length of the fill path P{h,j) be w. By Definition 6, the bifurcated path length of
P {i,j) is max{t/,ti;} -I-1, so the bifurcated lengths of v and w are both less than
k. Note that either v or w (or both) is equal to k — 1. Without loss of generality,
assume that w is less than k — 1. Then it must be that v = k — 1, and therefore
the fill path P(i, h) has the shortest bifurcated length possible.

Now suppose there is a path P'{h,j) whose bifurcated length is less than w.
Then we can freely replace the path P(h,j) with the path P'{h,j), and the bifur
cated length of the path P{i,j) will be unchanged.

Thus P (i,j) is decomposable into two subpaths, P(i,h) and P(h,j), both of
which are fill paths and have shortest bifurcated lengths less than k. Hence, the
inductive hypothesis applies, so there exists a fill edge (t, h) with M-level u, and a
fill edge (h,j) with M-level w. By the max level rule, when vertex i is eliminated,
the fill edge (i,j) is created with M-level(i, j) = max{u,tn} + 1 = k.

Now we prove the converse. Suppose that (i,j) is a fill edge with
M-level(i, j) = k in ; we show the result that there exists a fill path P {i,j)
in G(A) with shortest bifurcated length it = k by induction on k, the edge’s level.

The base case k = 0 is immediate, since, by the construction in Section 2.4, a
fill edge with level zero corresponds to a fill path that contains a single edge, and
by Definition 6 this path has bifurcated length zero.

Now assume the result is true for all fill edges with M-level less than fc; we show
it is also true for fill edges with M-level equal to k.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

Assume the fill edge (i,j) with M-level(i, j) = k is created, when vertex i is
eliminated from Gf*, by the previously existing edges (z, h) and (h,j).

Let the edge (z, h) have M-level(z, h) = k\ and the edge (h,j) have
M-level(h,j) = fc2. By the max rule for computing levels, we have that
max{fci, A:2} + 1 = k. Then both fill edges (z, h) and (h, j) have levels less than A, so
the inductive hypothesis applies. Thus there exists a fill path that connects vertices
i and h and has shortest bifurcated length v = ki, and a fill path that connects
vertices h and j and has shortest bifurcated length w = fc2. Additionally, either
ki = k - 1 or k2 = k — 1 or both. Without loss of generality, assume ki = k — 1.

Now from Definition 6, the bifurcated length of the fill path P{i,j) is

u = max{u, w} + 1 = m a x ^ , w} + 1 = max{k — 1, w} + 1 = k.

We also need to prove that the P (i,j) fill path has the shortest bifurcated length
amongst all fill paths connecting vertices i and j in (7(A). Suppose there were a
path P '(z,i) in G(A) that had a shorter bifurcated length, that is, a bifurcated
length u' less than k. From the first part of this proof, the edge (i,j) in would
then have an M-level less than k, which contradicts the premise that the fill edge
(z, j) has M-level(z, j) = k. Q

2.5.3 SIMILARITY OF S-LEVEL AND M-LEVEL FILL FOR MONO
TONIC FILL PATHS

Some graphs have the property that an ILU(l) factorization employing the sum
rule computes factors identical to those computed when factorization employs the
max rule. This property is an attribute, e.g., of graphs whose associated matrices
arise from the discretization of partial differential equations on naturally ordered,
structured grids, for factorization levels of three or less (we will say much more
about this class of graphs in the following chapter). For these graphs, the shortest
fill path connecting any two vertices z and j , and the fill path with shortest bifur
cated length connecting the same two vertices z and j , are always identical when
level(z,j) < 3 . A consequence (which is the main result of this section) is that
M-level(z, j) = S-level(z, j) for such cases. To capture and generalize the particular
feature responsible for this consonance of level assignment, we define 1-altemating
fill paths.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

As a preliminary, an ascending path is a path (£1 , . . . , t k) that contains at least
two vertices, with tk < tk+1 for 1 < h < k. Similarly, a descending path is a path
(t i , . . . , tk) that contains at least two vertices, with tk > tk+i for 1 < h < k.

D efinition 9 A fill path P{i,j) is 1-altemating i f it ha3 one of the following forms.
(i) A single edge, (i,j).
(ii) An edge {i ,h) with i > h, concatenated with an ascending path P(h,j).
(Hi) A descending path P(i, h) concatenated with an edge (h , j) with h < j .
(iv) A descending path P(i,h) concatenated with an ascending path P(h,j).

Note that forms (ii) and (iii) are restricted forms of form (iv). We call a 1-
alternating path internal-ascending if it is either of form (ii), or consists of a single
edge (i , j) with i < j . We call a 1-altemating path intemal-desending if it is either
of form (iii), or consists of a single edge (i,j) with i > j. Figure 6 illustrates the
different species of 1-alternating fill paths, and the difference between 1-altemating
and non-alternating fill paths.

By way of building up to this section’s main result, and as an aid to intuition,
several observations concerning properties of 1-altemating fill paths follow.

Observation 10 A fill path is non-alternating if the path contains a sequence of
interior vertices, t f , . . . , t g, . . . , t k, such that t j < tg and tg > tk.

In the non-alternating path at the bottom right of Figure 6, £i < <2 and t2 > £3-

Observation 11 I f P (i,j) = i , t \ , t v , . . . , j is an internal-ascending fill path that
contains at least three edges, and h is any interior vertex on the path with h > t\,
then P(i, h) is also an internal-ascending fill path.

The truth of this observation follows immediately from Definitions 1 and 9.
Referring to the P(i,j) fill path illustrated in the top left portion of Figure 6, this
observation says that the paths P(i, £2) and P(i, £3) are internal-ascending fill paths.
Note, however, that neither P (t\ ,j) nor P(t2 , j) is a fill path. A similar observation
holds for internal-descending paths.

The next observation is based on the fact that the highest numbered interior
vertex of a 1-altemating path is necessarily adjacent to one of the end points of the
path.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

F ig . 6 . 1-altem ating and non-alternating fill paths. Top left: internal-ascending fill path.

Top right: internal-descending fill path. Bottom left: internal-alternating fill path. Bottom right:

non-alternating fill path. Here as elsewhere, vertical positioning of vertices is indicative of their

relative orderings.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

Observation 12 I f P (i,j) is a 1-altemating fill path containing k + 1 edges, where
k > 1, then the path can be uniquely decomposed into two 1-altemating fill paths
P(i,h) and P(h,j) . One of these fill paths will contain k edges, and the other a
single edge.

The existence and uniqueness of the decomposition was shown in Lemma 3. In
that lemma’s proof, we saw that the vertex h is necessarily the largest interior vertex
on the P (i,j) path. FYom Definition 9, this vertex is adjacent to either vertex i or
vertex j , hence either P(h,j) is a path containing a single edge, in which case the
path P(i, h) must contain k edges, or P{i, h) is a path containing a single edge, in
which case the path P (h ,j) must contain k edges. Referring again to Figure 6, the
P(i,j) fill path in the top left contains four edges, and can be decomposed into the
fill paths (i,tz) and (t3,j) , containing three edges and a single edge, respectively.

Observation 13 Any fill path with three or fewer edges is 1-altemating.

The truth for the one and two edge cases follows directly from definition 9. Now
consider a fill path with three edges, i , t l t t2 , j . Either tx < t2, or t2 < U; in either
case the fill path is 1-altemating by Definition 9. As illustrated in the bottom
right of Figure 6, paths with four or more edges are not necessarily 1-alternating.

Observation 14 I f P{i,j) is any species of 1-altemating fill path, then
(i) if (h,t) is an edge with t > j , then P{i,t) is also a 1-altemating fill path;
(ii) if (t , i) is an edge with t > i , then P (t , j) is also a 1-altemating fill path.

In top left of Figure 6, P{i,t3) is a 1-altemating fill path, and (t3, j) is an edge.
By this observation, P(i,j) is therefore a 1-alteroating fill path. This observation
states a condition that permits a fill path to be extended while preserving its 1-
alteraating character. As such it is the complement of Observation 12, which says
that any 1-altemating fill path can be decomposed.

Note that extending a 1-alteroating path does not necessarily preserve any
internal-descending or internal-ascending property it may possess. For example,
if an internal-descending fill path P{i, j) is extended by concatenation with an edge
(j , t) with t > j , then the resulting fill path P(i, t) is no longer internal-descending.

The following theorem establishes a relationship between path lengths and bi
furcated lengths of 1-altemating fill paths.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

Theorem 15 Let P(i, j) be a fill path that contains k + I edges. The bifurcated
length of P (i,j) is k if and only if the fill path is 1-altemating.

Proof. Suppose there exists a 1-alternating fill path that connects vertices i and
j and contains k + 1 edges. We prove the path has bifurcated length k by induction
on k, the number of edges in the path.

The base case k = 0 is immediate since a fill path containing a single edge
has bifurcated length zero by Definition 6. Now assume the result is true for all
1-alternating fill paths containing k or fewer edges; we show it is also true for
1-alternating fill paths containing k + 1 edges.

Let h denote the highest numbered interior vertex on the path joining i and j .
From Observation 12, h must be adjacent to either vertex i or vertex j . Without
loss of generality, assume it is adjacent to vertex j .

Thus, P(i,h) is a 1-alternating fill path containing k edges, and P(h,j) is a
1-alternating fill path containing a single edge, so the inductive hypothesis applies
to both subpaths.

By the inductive hypothesis, P(i,h) has bifurcated length k — 1, and P(h,j)
has bifurcated length zero. When these two paths are concatenated, the resulting
path P{i,j) has bifurcated length, by Definition 6, of

max{A; — 1,0} + 1 = k.

Now we prove the converse. Suppose vertices i and j are connected by a fill
path that contains k + 1 edges and has bifurcated length k. We show that the path
is 1-alternating by induction on k , the number of edges in the path.

The base case k = 0 is immediate since a fill path containing a single edge is
1-alternating (Definition 6). Now assume the result is true for any fill path that
contains j edges and has bifurcated length j — 1, where j < k. We show the result
is also true for paths that contain A; + 1 edges.

Let h denote the highest numbered interior vertex on the fill path joining i and
j . Let m i be the number of edges in the P(i, h) subpath, and m2 the number of
edges in the P (h,j) subpath. Then mi + m2 = k + 1.

Let ki be the bifurcated length of the P(i, h) subpath, and k2 be the bifurcated
length of the P{h,j) subpath. Then max{fci, k2} + 1 = k. Hence, either ki = k - 1
or k2 = A: — 1 or both. Without loss of generality, suppose ki = k — 1. Then from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

Theorem 5, the P(i, h) subpath must contain at least k edges, that is, mi > k.
And since mi + m2 = k + 1, it must contain exactly k edges, and m2 , the number
of edges in the P(h,j) subpath, must be 1.

Since P(i, h) has bifurcated length k — 1 and contains k edges, the inductive
hypothesis applies, i.e, P{i,h) is a 1-alternating fill path. Similarly, since P{h,j)
contains a single edge, and by definition 6 has bifurcated length zero, the inductive
hypothesis applies.

Finally, by Observation 14, when the P(i, h) path is concatenated with the
P (h , j) path, the resulting P{i,j) fill path is 1-alternating. □

This chapter’s final theorem formalizes the relationship between M-level and
S-level fill that was alluded to in this Section’s introduction.

Theorem 16 Let G(A) = (V, E) be the graph of a square matrix A, and let (i , j)
be a permitted edge in Gff with M-level(i, j) = k. I f the fill path with short
est bifurcated length that connects vertices i and j in G(A) is 1-altemating, then
M-level(i, j) = S-level(i, j).

Proof. If (i,j) is a permitted edge in G ^ with M-level k, and the fill path
P (i,j) with shortest bifurcated length is 1-alternating, then by Theorem 8 the
path contains k + 1 edges. By Theorem 5, there can be no shorter fill path (i.e, no
fill path with fewer edges) connecting vertices i and j . Therefore, by Theorem 4,
S-level(i,y) = k. □

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

CHAPTER 3

INCOMPLETE FELL PATH THEOREM APPLICATIONS

3.1 INTRODUCTION

This chapter contains a potpourri of algorithms and analyses that are logical conse
quences of the Incomplete Fill Path Theorem (Theorem 4). In sections 3.2 and 3.3
we present several algorithms that compute ILU(£) structures by performing
searches in the graph of a matrix. In section 3.4 we introduce the notion of natu
rally ordered graphs. In section 3.5 we show how these algorithms can be employed
to permit computation of ILU(£) storage requirements in space proportional to the
number of rows in the matrix.

These graphs form the basis of the analyses in sections 3.6, 3.7, and 3.8, wherein
we develop runtime complexity bounds and analyze fill densities. Finally, in sec
tion 3.9, we present an additional graph search algorithm that, for some classes of
graph, has lower runtime complexity than either C lassic-ILU (Algorithm 1) or
the graph search algorithms developed in earlier sections of this chapter.

3.2 COMPUTING UPPER TRIANGULAR STRUCTURES

In this and the following section we present new algorithms that compute ILU(l)
factors that are identical to those computed by C lassic-ILU. The new algorithms
operate by using breadth first searches to find, per Theorem 4, shortest fill paths
in G(A) that contain at most t + 1 edges. Unlike C lassic-ILU, which requires
the results of previously computed rows i to factor a current row j , our algorithms
rely only on the static structure of G(A), and hence have the novel feature that
the structure of each row (or column) in the factor can be computed completely
independently (i.e., in parallel).

GS-Urow, the subject of this section, computes ILU(£) row structures for
upper triangular factors. In graph theoretic terms, computing upper triangular row
structures is equivalent to finding, for each vertex i G G(A), all vertices j such that
j > i and the vertices i and j are connected by a fill path containing I + 1 or fewer
edges. For each such vertex j , an edge (i, j) is inserted in E', and G(U) = (V, E').
Our algorithms are presented in terms of adjacency list representations of graphs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

Inserting an element j in the adjacency list adj(i) can be interpreted either as
inserting an edge (i,j) in E', or as admitting the nonzero matrix entry fa.

(Concerning notation, we use adj(i) to indicate edges in the graph
G(A) = (V, E). That is, j € adj(i) denotes the existence of the edge (i,j) € E.
Similarly, we use adj'(i) to indicate edges in G(F), G(U), or G(L)\ adjT(i) to indi
cate edges in G(AT); and adjT,(i) to indicate edges in G(FT), G(UT), or G(LT).)

Consider a fill path i, <1 , t2, . . . , t/t, j , where i < j , and, per definition, < i for
1 < h < k. Break this path into two subpaths: P(i, tk), which contains k edges,
and P(tjk,j), which contains a single edge. (Note that (i, tk) is not necessarily a fill
path.) GS-Urow ’s underlying design principle can be stated as follows. Given a
graph G(A), an initial vertex i, and a level i, find all shortest paths P(i, tk) such
that i is the largest vertex in the path, and the path contains £ or fewer edges. For
each vertex tk in each such path, if there also exists an edge {tk,j) with j > i, insert
the element (i, j) in the set of permitted fill (equivalently, insert j in adj'[i), or, in
matrix terminology, admit fa as a fill entry).

Now recall that breadth first search (BFS) finds a shortest path (a path con
taining the fewest number of edges) between a seed vertex i and any vertex th that
is reachable from i (detailed descriptions of BFS can be found in many references;
[23] is particularly readable). Thus, we can find the shortest subpaths P{i,tk) by
performing BFS in the subgraph of G(A) that is induced by the subset of vertices
V = {h\h < i}. (By a subgraph induced by a subset of vertices V we mean a graph
G = (V , E), where E = {(ti,v) 6 E\u,v € V"}.) Finally, the vertices that terminate
the fill paths are those vertices j € adj(tk) and j 6 Vc , where V c = {j\j > i}.
(Mnemonically, V c is the “complementary” vertex set to the vertex set V.)

Figure 7 contains a statement of the GS-Urow procedure. (Mnemonically,
the name indicates that the algorithm performs graph searches (GS-) to compute
upper triangular row-oriented structures (Urow).) This procedure, which is called
once for every vertex i 6 V by GS-UPPER (Figure 8), takes as input a graph
G(A) in adjacency list representation; a level £; a vertex i that corresponds to the
row whose structure is sought; and an initially empty adjacency set, adj'(i). When
the procedure completes, adj'(i) contains the structure of row i in U. (To reduce
clutter, the length^ and visited\\ arrays are assumed global in scope. The visited^
array is initialized once, in the GS-UPPER driver, discussed below.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

GS-Urow(G(A), i, i, adj’{i))
1 # Initialization for BFS from vertex i
2 Q «- (0
3 length]}\ 4- 0
4 visited[i] 4— i
5 # BFS phase
6 while Q ^ 0
7 h 4- Dequeue(Q)
8 for t € adj(h) with visited[t] ^ i
9 visited[t] 4— i
10 if t < i and length[h\ < I
11 Enqueue(Q, t)
12 length[t] = length[h] + 1
13 if t > i
14 insert t in adj'(i)

F ig . 7. GS-UROW. This procedure computes the structure of row i in the the fa c to r’s upper

triangle. Here, as elsewhere in this work, indentation is used to demarcate code blocks.

GS-UPPER(Cj(i4), £)

1 # Initialization
2 5 4 -0
3 for each vertex i 6 V
4 visited[i] <-----1
5 # Compute structure of upper triangular row i
6 for each vertex i € V
7 adf(i) 4- 0
8 GS-UROW (G(A),/,*,«&'(*))
9 insert adf(i) in 5
10 return 5

F ig . 8. G S -U P P E R driver.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

G S-U row uses a first-in, first-out queue that supports the standard E nqueue
and D equeue operations described in [23] and elsewhere. The queue is instantiated
in Step 2 and seeded with a single vertex i. The value length\j\ indicates the length
of a shortest path from the seed vertex i to the vertex j (Steps 3 and 12). The
length of the path from a vertex to itself (Step 3) is defined as zero.

Vertices are marked with i when visited (Steps 4 and 9); in the interest of
efficiency, this eliminates the necessity of having to mark every vertex as unvisited
at the beginning of the procedure. (Were we to do so, the algorithm’s runtime
complexity would immediately be bounded below by fl(n2), where |Vj = n, a
situation we wish to avoid.)

The loop beginning in Step 6 employs BFS to search for previously unvisited
vertices. Steps 11-13 discover the previously discussed (*,£*) portions of potential
fill paths. (We say “potential,” since the paths are not necessarily part of any fill
path.) Finally, Steps 13 and 14 discover the (tk ,j) portions of the fill paths. Due
to the restriction “if t > i" in Step 14, an entry is only added to the adjacency list
in Step 15 if the fill edge (i,j) is upper triangular.

The driver, GS-UPPER of Figure 8 , performs global initializations in
Steps 2-4. In Steps 6-9 an empty adjacency list is initialized for each vertex in
the graph (row in the factor), and GS-Urow is called to compute the correspond
ing row structure. The algorithm returns the sparsity set 5, which contains a set
of adjacency lists that collectively represent the structure of the upper triangular
factor.

3.3 COMPUTING LOWER TRIANGULAR STRUCTURES

For structurally unsymmetric matrices it is necessary to compute both lower and
upper triangular factors. Our goal in this section is to design a symbolic factoriza
tion algorithm that operates similarly to GS-U row in that it: (1) computes lower
triangular row structures; (2) computes structures identical to those returned by

C lassic-ILU.
To motivate interest in design goal (1), we note that in many scientific appli

cations linear systems are developed by manipulating individual equations. For
example, for two or three dimensional problems in the physical sciences, one or
more equations is associated with each grid point. Each equation becomes a row in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

a matrix, and since implementations frequently mimic the way we are accustomed
to thinking (i.e, functions follow form), common practice is to develop, store, and
pass the matrix to a linear solver through row-oriented data structures. In paral
lel implementations, each processor is typically assigned a rectangular section of a
matrix, i.e., a contiguously numbered set of rows. Hence, efficient performance in
the preconditioner application (triangular solve) phase requires that the L and U
factors also be stored in a row-oriented format.

The first algorithm discussed in this section, GS-LOWER, is a driver that
forms the graph G(AT), then calls GS-U row . Unfortunately, the result is a
column-oriented structure, hence, design goal (1) is not achieved. The second al
gorithm, G S-Lrow , is a modified version of GS-U row that permits computation
of lower triangular row-oriented structures. However, we show that the returned
adjacency lists may only contain a subset of the entries computed by C lassic-ILU.
Hence, this algorithm fails to meet design goal (2). This prompts us to develop a
Multiple Search Rule, which provides a means of modifying GS-Lrow so that both
design goals are achieved.

3.3.1 GS-LOW ER

To find lower triangular fill edges we need to discover fill paths of the form
i, t\, t2, . . . , tk, h, where i > h. The simplest way to do this is to “mentally reverse”
the directed edges and search instead for fill paths of the form h ,tk, . . . , t 2,t\,i .
But that is precisely what GS-Urow does. To make use of our previous algorithm
we can form G(AT) = (V, Efr). This graph’s edgeset contains a directed edge {j, i)
for every nonzero entry a,j. Analogously, in adjacency list representation, adjT(j)
contains an entry i if j € adj(i).

Figure 9 presents the GS-LOWER driver that calls GS-U row to compute
lower triangular structures. The algorithm forms the transpose of the input graph
in Steps 3-11. (Since an adjacency list representation of G(A) can be interpreted
as a representation of A, we use the term “transpose of the graph” as shorthand
for “the graph of the transpose of the matrix.”) Steps 13-16 invoke GS-U row ,
which computes lower triangular column structures of L.

This algorithm computes structures L that are identical to those computed by
Classic-ILU. It has the drawbacks that (1) the transpose of the input must be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

GS-LOWER(G(A),£)
1 # Initialization
2 S
3 # Form G(Ar)
4 G(Ar) * - 0
5 for each vertex t € V
6 msi£ed[i]«---- 1
7 adjT(i) «- 0
8 insert adjT(i) in G(AT)
9 for each vertex i 6 V
10 { o T j € a d j { i)

1 1 insert t in adjT(j)
12 # Compute structure of lower triangular column i
13 for each vertex i € V
14 adjT,(i) <— 0
15 G S-Urow (G (A t), £, i, adjT,(i))
16 insert adj'(i) in S
17 return 5

F ig . 9. G S-LO W ER .

computed; (2) if the factor is required in row-oriented format, the transpose of the
output must also be computed.

3.3.2 GS-LROW

To design an algorithm that directly computes lower triangular factors in row-
oriented format we use reasoning similar to that described in section 3.2 for GS-
U r o w . Given a graph G(A), an initial vertex i, and a level I, consider fill paths
i, fi, £2> • • •»tk, h, where i > h, as composed of two subpaths, P(i, £*), containing £
or fewer edges, and P(£*, h), containing a single edge. (Again, note that P(i, tk) is
not necessarily a fill path.) As before, we use BFS to find all shortest paths P(t, tk)
that contain £ or fewer edges in the subgraph of G{A) induced by the vertex set,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

G S-Lrow (G (A), I, i, adj'(i))
1 # Initialization for BFS from vertex i
2 Q {*"}
3 length[i\«— 0

4 secondLargest[i] <---- 1
5 visited[i} «— i
6 # BFS phase
7 while Q 0
8 h «— Dequeue(Q)
9 for t 6 adj(h) with visited[t] i
1 0 visited[t\ «— i
1 1 if t < i and length[h] < t
1 2 Enqueue(Q, t)
13 length[t] = length[h] + 1

14 secondLargest[t\ = max{secondLargest[h\,t}
15 if t > secondLargest[h]
16 insert t in adj'(i)

F ig. 10. G S -L ro w .

V = {h\h < i}.
Previously, we discovered the single-edged subpaths by looking for terminating

vertices j € V c (recall that V c = {j\j > i}). Here, however, the initial vertex is
also the highest numbered vertex in any fill path, so all vertices in the fill paths
are contained in the vertex set V, hence we must conduct our entire search in the
subgraph induced by V. This leads to the design principle: concatenate a P(t*, h)
single-edged subpath to a P(i, tk) subpath, only ifh is larger than the second largest
vertex in the P(i, tk) path.

This added requirement, that we keep track of the second largest vertex in each
P (h t k) path, is the motivation behind G S -L row (Figure 10). This procedure is
similar in operation to G S-U row . As before, a queue is instantiated and seeded

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

with a single vertex i (Step 2), and we record the length of a path from the seed
vertex i to a vertex j in length\j\ (Steps 3 and 13). We also record the numbering
of the second largest vertex in the path P {i,j) in the variable secondLargest\j]
(Steps 4 and 14).

The information about the second largest vertex is used in Step 15. This step
ensures that £ is only inserted in adj'(i) if there is a path whose terminating vertices
(i and £) are larger than any vertices interior to the path.

While G S-Lrow returns a list of fill edges corresponding to shortest fill paths,
as we now explain it can fail to discover some edges that “should” be included.
By “should” we mean, with respect to our design goal (2), edges that would be
included in a C lassic-ILU computation. Figure 11 illustrates what can go wrong.
As amplified in the following discussion, fill edge (i , h) is not discovered since, even
though the there exists a fill path i, £2, £3 , h, the vertex h is first visited by a traversal
of the shorter path, i, £j, h, which is not a fill path. Similarly, fill edge (i, £4) is not
discovered since the shortest path from vertex i to £4 is not a fill path.

The following discussion is summarized in the table in the lower half of the
figure. Parentheses around entries in the columns titled SecondLargest and Length
indicate read operations; entries without parentheses indicate write operations.

Assume we are performing a level three search from vertex i in the graph il
lustrated in Figure 11. That is, we are attempting to discover all shortest fill
paths that contain four or fewer edges. Initially vertex i is enqueued (Step 1).
When this vertex is dequeued (Step 2), vertex £1 is discovered (Step 3). Since
£1 has not been previously visited, it is enqueued and the subsidiary information
recorded: length[t\\ <— 1 , which is the number of edges in the path i , . . . , £t; and
secondLargest[ti] «- £1 , indicating that £1 is the second highest numbered vertex
in this path. The fill edge (i,j) is also added to the sparsity set, since £1 is larger
than the second highest numbered vertex in the path P(i, i). Vertex £1 is compared
against the secondLargest value, —1, that was read when i was dequeued.

Similarly, vertex £2 is discovered, enqueued, and edge (i, £2) added to the sparsity
set (Step 4). Note that the ordering of Steps 3 and 4 is arbitrary; it would make
no difference if £2 were discovered before tL.

Next, £ 1 is dequeued (Step 5). Since the graph shown is undirected, vertex i is
contained in adj(ti). Since vertex i was previously visited, no action will be taken.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step Vertex
Previously
Visited? Enqueued? SecondLargest Length

Fill Edge
Added

1. i yes

2. dequeue t (-D (0)
3. tl no yes tl 1 (Mi)
4. t2 no yes t2 1 (M2)
5. dequeue tl (tl) (1)
6. h no yes tl 2
7. dequeue t2 (tl) (1)
8. t3 no yes t3 2
9. dequeue h (tl) (2)
10. t4 no yes tl 3
11. dequeue t3 (tl) (2)
12. h yes no

F ig . 11. Incompleteness of G S -L ro w . When graph at top of picture is input to G S -L ro w ,

neither the fill edge (i , h) that corresponds to the path i , t 2 , t z ,h , nor the fill edge (i ,U) that

corresponds to the path i , t 2 , t 3 ,h , U , will be discovered. See text for additional discussion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

(To reduce clutter, this and several similar steps have been omitted from the table.)
Searching from £4 we discover vertex h, which is enqueued (Step 6), and sub

sidiary information written indicating that tx is the largest vertex in the path
1.. . . , £1 , /i, which has length three. Since h is not larger than the second largest
vertex in the path i , . . . , £1 , no fill edge is discovered. Again, h is compared against
the secondLargest value, £i, that was read when ty was dequeued.

Similarly, vertex t2 is dequeued (Step 7) and vertex £3 subsequently enqueued
(Step 8). Again, the ordering of steps 5-6 and steps 7-8 could be exchanged with
no effects.

Next, vertex h is dequeued (Step 9), and the smallest vertex in the path i , . . . , /i
is read as £i. Next, £ 4 is encountered (Step 10). Since ty is larger than £4, we know
that i , . . . , h, £4 Is not a fill path, so no fill edge is added. Since £ 4 was not previously
visited, it is enqueued.

Things go wrong after vertex £3 is dequeued (Step 11). When h is encountered
(Step 12), we “should” discover fill edge {i,h}, since h is larger than the second
largest vertex in the path i , . . . , £3. However, since h was previously visited the
(i,h) edge is not discovered. Additionally, since h has already been enqueued
(when it was previously visited), it is not enqueued again. As a result, the fill path
1. . . . , £3, h, £4 will not be discovered.

This example suggests that need to modify GS-Lrow to permit a vertex to be
enqueued more than once. We need an algorithm whose operation encompasses the
following Multiple Search Rule. This rule is illustrated in Figure 12.

Multiple Search Rule: a vertex h should be re-queued if it was initially
discovered via a path P(i, h) = i , . . . , g i,. . . , h, where gy is the second
largest vertex in the path P(i, h), and on a subsequent visit it is discov
ered via a path P'(i, h) 5 2 , where g2 is the second largest
vertex in the path P'(i, h), and g2 < gy.

We can modify GS-Lrow to take account of the Multiple Search Rule quite
simply, by altering the conditional in Step 9. The revised formulation reads

for £ € adj (h)
if visited[t\ / i or secondLargest[h] < secondLargest[t]

(process £ as before).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

F ig . 12. Multiple Search Rule. A vertex h should be re-queued if it was initially discovered

via a path P(i , h) = i , . . . , g i , . . . , h, where gi is the second largest vertex in the path P(i , h), and

on a subsequent visit it is discovered via a path P(i , h)1 = i , . . . , g z , . . . , h, where g2 is the second

largest vertex in the path P{ i , h)', and < ffi • Without this rule, the fill path i, 52, h, t would not

be discovered.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

F ig . 13. A curious object. This picture can be interpreted either as a grid (the vector x in

the system A x = b) or the graph of a m atrix (the matrix .4 in the system A x = b). If interpreted

as a grid, the numbers indicate the gridpoint’s natural ordering.

3.4 GRAPHS AND GRIDS

In this section we introduce some terminology in order to clarify the distinction
between graphs and grids. The object pictured in Figure 13 can represent either
a grid (i.e., a collection of unknowns, each of which is associated with a Cartesian
coordinate), or a graph of a matrix (i.e., a set of vertices and a set of edges).
When the object is interpreted as a grid it represents the left-hand side vector in
the system Ax = b. When the object is interpreted as the graph of a matrix it
represents the matrix A in the system Ax = b.

For our purposes the connection between grid and matrix is that, if one starts
with a 2D grid, then discretizes a PDE using a five-point stencil, then draws pictures
of the grid and the graph, the pictures are identical, even though the underlying

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

mathematical and computational objects are quite different. That is, the grid
corresponds to a vector, and the graph corresponds to a matrix.

It is common to speak of naturally ordered grids meaning, informally, that the
gridpoints have been numbered from left to right and bottom to top. Natural or
dering can be described more formally by reference to the Cartesian coordinate
associated with each gridpoint. (In fact, this gives an easy way to extend the con
cept of natural ordering from structured to unstructured grids.) Although graphs,
being sets of vertices and edges, have no attached spatial coordinates, it is useful to
preserve the concepts of “natural order” and “spatiality” for matrices that derive
from the discretization of PDEs on grids.

Henceforth, we use the term structured graph to refer to a graph of a matrix
that arose from the discretization of a PDE or set of PDEs on a structured grid;
by extension, we refer to the corresponding matrix as a naturally ordered matrix.
The term naturally ordered structured graph, which we shorten to naturally or
dered graph, indicates that the gridpoints were naturally ordered. These graphs
are structurally symmetric (undirected), although their associated matrices may
be numerically unsymmetric.

3.5 ILU(£) MEMORY ALLOCATION

As noted in the previous chapter, it is possible to compute storage requirements
for complete LU factors of symmetric matrices in time essentially proportional
to the number of nonzeros in the factor and space proportional to the number
of matrix rows. Hence, all needed data structures can be allocated and set up
before factorization begins. Unfortunately, there is no known equivalent procedure
for predicting ILU storage requirements. One practice is to guess at the number
of nonzeros in the factor and initially allocate that much storage; if this proves
insufficient, the factorization fails. In some ILU schemes, such as ILUT, an arbitrary
limit is set on the number of nonzeros in each row. This ensures that adequate
storage will be allocated and, unless a zero-pivot is encountered, the factorization
will succeed. Another approach, for implementations coded in C or C++, is to
dynamically reallocate storage when the initial guess is insufficient. However, this
reallocation strategy can incur non-trivial overhead and can also fragment memory.

While we cannot offer a general solution to the storage allocation prediction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

problem for ILU factorization, our graph-search algorithms can easily be modified
to compute storage requirements for ILU(£) factors using 0(n) space. The modifi
cation for G S-U row (Figure 7) is accomplished as follows. Initialize a counter to
zero. Change Step 15, which previously inserted an element in an adjacency list,
to increment the counter. Return the counter’s value. Similar modifications can be
made to GS-Lrow.

While these modifications permit computation of a factor’s storage requirements
in 0 (n) space, the time complexity is identical to that required for actually per
forming symbolic factorization. It is an open question whether faster methods for
computing ILU storage requirements can be devised.

Experimentally, we can use our revised procedures to provide a qualitative feel
for the amount of fill likely to be generated for various matrix classes, orderings,
and levels.

The fill density, which we denote as p, is the ratio of the number of nonzeros
in F to the number of nonzeros in A. This density is an indication of memory
requirements and—ignoring memory hierarchies, communication costs, etc.—can
be interpreted as the amount of work required for preconditioner application.

Figure 14 shows how density grows as a function of level for 2D and 3D (five-
point and seven-point) structured graphs. Two characteristics, which are common
to all medium to large scale matrices we have examined, are apparent. First, fill
amounts vary smoothly with level; there are no points in the graphs where fill
ratios make unexpectedly large “jumps” between one factorization level and the
next. Second, even in this small example, there tends to be a great many levels
before complete factorization is achieved.

3.6 GS-UROW COMPLEXITY

In this section we formulate run time complexity bounds for GS-Urow for any
graph whose vertices have bounded degree; these bounds are not tight. We also
formulate tight run time complexity bounds for 2D and 3D structured graphs. The
bounds are cast as functions of I, the factorization level, and n, the number of
vertices in the graph.

The runtime cost of a single iteration of G S-U row is the cost of conducting a
BFS from a vertex x. In general, the runtime cost of BFS on a graph G = (V, E)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

ILU(k) fill density, 20
40

Natural
RCM

Nested Dissection35

30

25

20

15

10

5

0
160 18080 100 120 1400 20 40 60

level

ILU(k) fill density, 3D
120

 Natural.
---------------- RCM
Nested Dissection

100

Iu:
2
1

40 4520 25 30 35150 5 10
level

F ig . 14. Fillin densities for naturally ordered structured graphs. Data is from 2D 90 x 90

graph with 8,100 unknowns (top), and a 3D 20 x 20 x 20 graph with 8,000 unknowns (bottom).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

is known to be 0 (V + E), that is, BFS runs in time linear in the size of the
adjacency-list representation of G [23].

What is needed for our analysis is an expression for the number of vertices and
edges “touched” during a level £ BFS from a vertex i. We first consider a general
bound for any graph whose vertices have bounded degree c (e.g., for 2D structured
graphs c = 5; for 3D structured graphs c = 7.) When the initial seed vertex i
is dequeued each of c adjacent vertices are examined. If all of these vertices are
numbered less than i (which is certainly possible), all will be enqueued. At this
point we have completed a level zero search (i.e., we have examined all paths of
length one), at a cost of 0(c).

During the level one phase of the search each of possibly c vertices is dequeued,
and for each of these we examine and enqueue at most c vertices. Thus, the cost
for the level one phase is bounded by 0(c2). During the level two phase of the
search each of possibly c2 vertices is dequeued, and for each we again examine
and enqueue at most c vertices, so the cost for this phase is bounded by 0(c3).
Continuing in this repetitious line of reasoning, we conclude that the cost for a
level £ search from a single vertex is bounded by 0(c(<+1̂). For a matrix with n
rows and columns, n breadth-first searches are conducted, so the total runtime cost
is bounded by 0(nc(<+1*). In practice this bound is not at all tight since when a
vertex i is dequeued typically some or all of the c vertices in its adjacency list will
previously have been enqueued (visited).

Next, consider a 2D structured graph. As shown in Figure 15, it is easy to
devise a formula for counting the number of vertices that are within a distance £
from a seed vertex i. Since there are exactly 4£ vertices at distance £ from a seed
vertex t, the expression for the total number of vertices reachable by £ or fewer
edges from i (i.e., all the vertices that will be enqueued during BFS) is the sum

Since at most four edges will be examined when each vertex is dequeued, and n
searches are conducted, we arrive at the runtime complexity 0 (n (£ + l)2) ~ 0(n£2).
(The “+1” is needed since, when vertices at a distance £ are dequeued, no additional
vertices are enqueued. However, all vertices adjacent to the dequeued vertices are
examined, and entries corresponding to fill path lengths of £ + 1 may be added to

t

(6)
k= 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

1

4
*

1
\

\ i

— i

J

e
V

'1

9

— c
1

> -
4

\
\

/

19
\

\ /

9

T

1

4
✓✓■

\
4

4
1✓ K\

'l

- i
J✓ 9

s
9\\1

\
'l 1

J
4

I**
K\

n I 4
J✓ 9

1\\ *

T
F ig . 15. Number of vertices at distance I from seed vertex i. Number of vertices at distance

I from seed vertex i in a 2D structured graph. Cases for t = I, 2, and 3 are shown left to right

and top to bottom. The dashed lines are added as an aid to the eye in discerning the patterns.

We conclude from studying the patterns that there are 41 vertices at I edges distant from a given

vertex i.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T able 1

Symbolic factorization complexity upper bounds.

57

Algorithm 2D 3D bounded degree c general
C la ssic -IL U

G S -U r o w

0{nP)
0(nP)

0 { n t)
0(n£3)

0(nc2̂ +1)̂
0(nc^+l)̂

0(nc2̂ +l)̂
O(ne')

the sparsity set.)
For 3D, the number of vertices at a distance £ from a seed vertex i is

*-i
2 + A£ + Y lk-

fc=i
Geometrically, these vertices form the faces of two pyramids joined at their bases
(a rendering of which is beyond the artistic capabilities of this author). The total
number of vertices within £ edges from i

j= l \ k= l J

Since a search is conducted for each vertex in the graph, we arrive at a runtime
complexity of 0(n£3).

In all three cases (bounded degree; 2D structured; 3D structured), if the graphs
are arbitrarily ordered, there may be a fill edge between vertex i and any dequeued
vertex. Hence, the number of fill entries in any row of the matrix is bounded by
same complexity as the search cost from the corresponding vertex. As shown in the
next section, these bounds are not tight.

Finally, consider an arbitrary unsymmetric graph, about which we have no
a priori structural information. The cost of the BFS from each vertex is bounded
by the maximum of the number of vertices and edges in the matrix. Assuming the
graph is connected, this gives an upper bound of O(ne), where e is the number of
edges in the matrix.

Table 1 summarizes the results in this section. The table also includes complex
ity results for C lassic-ILU, which are developed in Section 3.8.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

3.7 FILL DENSITIES FOR NATURALLY ORDERED GRAPHS

For a 2D naturally ordered graph the analysis in the previous section shows that
the number of nonzeros in any row in the matrix is bounded by 0(£2). However,
in Figure 23 in the following chapter we use geometrical reasoning to show that
there are asymptotically 21 nonzeros in the strict upper triangular portion of the
matrix rows. Due to structural symmetry, there are also 21 nonzeros in the strict
lower triangular portion of matrix rows. Similar geometrical arguments show that
there are asymptotically P nonzero entries in the strict upper and lower triangular
portions of naturally ordered 3D graphs.

These results give us a theoretic means of estimating the fill density p. Asymp
totically, rows in A contain five nonzeros. Asymptotically, rows in F contain 1+ 41
nonzeros (a diagonal entry, plus 2£ entries in the strict upper and lower portions of
the row).

On the assumption that all matrix rows contain the same number of nonzero
entries, p can be defined as the ratio of the number of nonzero entries in a row in
F to the number of nonzero entries in a row in A. For 2D naturally ordered graphs
this is

! ± “ (9)

For 3D naturally ordered graphs the corresponding expression is

(10)

In Figure 16 we have plotted the predicted fill densities, and the actual fill
densities for several sizes of 2D naturally ordered graphs. As the graphs get larger
the actual densities more closely approach the predicted density. When fill levels
are high, the average number of nonzeros per row in F progressively decreases, due
to the grid boundaries (this explains the fall-off on the right-hand side of the plot).
Were we dealing with a torus (a 2D grid with wrap-around on the sides and edges),
this fall off would not occur.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fill
 d

en
si

ty

59

Fill level density prediction, 2D graphs
90

predicted
60 x 60 grid
40 x 40 grid
20 x 20 grid

80

70

60

50

40

30

20

10

0
100806020 400

level

F ig . 16. Predicted vs. actual fill densities fo r 2D naturally ordered graphs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

3.8 CLASSIC-ILU COM PLEX ITY

A statement of the C lassic-ILU algorithm appeared in chapter 2, Figure 1.
Classic-IL U ’s runtime complexity is determined by Steps 8 and 9. For every
entry i in adj'(j) with i < j (i.e., elements in the lower triangular portion of row j),
we “touch” every element k in adj'(i) with k > j (i.e., elements in the upper trian
gular portion of row i) (This analysis is equally applicable to complete as well as
incomplete factors). If the upper and lower triangular portion of each row contains
e entries, the run time complexity is thus 0{ne2).

In Section 3.6 we showed that, for structurally symmetric graphs of bounded
degree c, runtime complexity for GS-Urow 0(nc^+l)̂. Since any of the vertices
touched during a breadth first search can potentially result in fill entries, we con
clude that the number of fill entries in either upper or triangular sections of the
rows is bounded by e = 0(c^+l)̂. Hence, the runtime complexity of Classic-ILU
is bounded by 0(nc2(<+l)).

For 2D naturally ordered grids we have shown that e = 2L Hence, the runtime
complexity is 0{nP). This is identical to the run time complexity derived for
G S-U row in section 3.6.

For 3D naturally ordered grids e = O (^). Hence, the runtime complexity is
0{n£^). This is of higher order than the 0(n£3) run time complexity for GS-Urow
that was derived in section 3.6.

Runtime complexity analyses for more general matrices, structure we have no
a priori information is elusive. In general, we can only say that complexity is
bounded by that for complete factorization. This has been shown to be 0(ne*),
where e* is the number of edges in the filled graph G(F) [72].

These complexity results are summarized in Table 1. The table also contains
complexity results (developed in Section 3.6) for the GS-Urow Algorithm.

3.9 PO TEN TIA L-U G R A P H SEARCH A LG O RITH M

For our final application we introduce a graph search algorithm that, for some
classes of matrices, computes factors identical to those returned by GS-Urow,
but with lower runtime complexity. The new algorithm, called P otential-U, is a
logical extension of the ideas presented in previous sections of this chapter. Instead

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

of conducting a level I search on the unrestricted graph G{Al) as does GS-U row ,
P otential-U restricts its search by enqueuing only vertices that, on dequeue, are

guaranteed to result in the discovery of (possibly previously discovered) fill edges.
P otential- U always computes a set S that is a subset of that computed by

GS-Urow . For the structured graphs that were introduced in Section 3.4 the
two sets are always identical. For all other classes of graphs the sets are identical
for i = 0,1, or 2. For higher levels, the set of edges returned by P otential-U
may be only a proper subset of that returned by GS-U row . (We will state these
properties as theorems after introducing the algorithm). Hence, the two fill sets are
only “potentially” identical, from which observation the algorithm takes its name.
Before presenting the algorithm, we briefly discuss the observations and intuition
behind its design.

Figure 17, top, shows all vertices visited, edges traversed, and fill edges discov
ered during the ith iteration of GS-Urow(G(A), 5), when G{A) is a 2D naturally
ordered graph. The bottom half of the figure indicates the vertices and edges that
are part of the shortest fill paths associated with admitted fill entries; these are the
vertices and edges that represent “useful” work. Two observations are apparent
from inspection of these pictures. First, a great many of the vertices that are en
queued are not part of any of the fill paths associated with admitted edges. Visiting
these vertices is hence “useless” work, which we would like to avoid if we could.
Second, every vertex h that is part of a shortest fill path is adjacent to a vertex j
such that (t, j) is an admitted edge.

These observations suggest a simple method of restricting the BFS phase of
GS-Urow in order to avoid most of the “unnecessary” work. We introduce the
graph search constraint when conducting a BFS from vertex i, a vertex h is only
enqueued if there exists an edge (h ,j) in G(A), and h < i < j . This constraint
is implemented in the form of an 0(1) lookup table that is initialized in Steps 2
through 4 of the P otential-DRIVER, shown in Figure 18. This driver, like the
driver for G S-U row , calls the P otential-U algorithm once for each vertex in the
graph. The P otential-U algorithm itself is identical to the G S-U row algorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

»s

Fig. 17. Vertices visited during G S -U ro w . Top: vertices and edges visited during GS-
U ro w , level 5. All end point vertices of the bold edges are queued during the search. Bottom:
the fill edges discovered during the search are indicated with dashed lines. The edges that actually
participate in the shortest fill paths that lead to the discovered edges are bolded.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

P o te n tia l-D r iv e r (G (A) , £)

1 # Initialization
2 S < - 0
3 for each vertex i 6 V
4 largestNabor[t\ «- max{j : j 6 adj(i)}
5 m'sited[i] <----- 1
6 # Compute structure of upper triangular row i
7 for each vertex i € V
8 adf(i) <— 0
9 P OTENTIAL- U (G(A), £, i, adj'(i))
10 insert adj'(i) in 5
11 return S

F ig . 18. P o t e n t i a l - U driver.

(Figure 7), except that line 10, which formerly read:

if t < i and length[h] < t

is replaced by

if t < % and length[h] < £ and largestNabor[t\ > i.

We next state and prove three simple theorems concerning the output of
P OTENTI AL- U .

Theorem 17 For any graph G the set of fill edges returned by P OTENTIAL-U is a
subset of that returned by GS-U row .

Proof. This statement follows immediately from the graph search constraint.
An edge is only discovered due to the existence of a vertex j that is adjacent to an
enqueued vertex t. The effect of the graph search constraint is that only a subset
of the vertices enqueued by G S-Urow are enqueued by P otential- U. Q

Theorem 18 For any graph G and £ = 0,1, or 2, the set of fill edges returned by
POTENTIAL-U is identical to that returned by G S-U row .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

Proof. Consider a fill path j , where i < j . It suffices to show that vertex
h will be enqueued. The case for I = 0 is immediate, since here we are searching
for fill paths of the form i , j , and vertex i is always enqueued (Step 2, Figure 7).

For i = 1 POTENTIAL-U searches for fill paths containing two edges. These
paths must be of the form i ,h ,j , with h < i < j . Vertex i is always enqueued.
Since vertex h is adjacent to vertex i, and i > i, it will also be enqueued.

For t = 2, P OTENTI AL- U searches for fill paths containing three edges, which
are of the form i, hi, h2, j . From the argument for £ = 1 , vertex hi will always be
enqueued. When vertex hi is dequeued vertex h2 will be discovered. Since vertex
h2 is adjacent vertex j , this vertex will also be enqueued. □

Theorem 19 For any graph G and I > 3, the set of fill edges returned by
POTENTIAL-U may be only a subset of that returned by G S-U row .

Proof. The proof is by construction. It suffices to show an example for i = 3
where this is true. Consider the level 3 fill path, i ,h i,h 2,h$,j, and suppose that
h2 is the smallest vertex in the path. From the proof of the previous theorem,
vertices i and hi will necessarily be enqueued. When vertex hi is dequeued vertex
h2 will be discovered. Since this vertex is not adjacent to any vertex j > i, the
graph search constraint prohibits its enqueuement. Hence vertex /1 3 will not be
discovered or enqueued, and the terminating vertex in the fill path, level j , will not
be discovered. Q

Theorem 20 Given a 2D or 3D naturally ordered graph, G S-U row and
POTENTIAL-U compute identical sparsity sets.

Proof. The proof is geometrical in nature. Referring to the bottom half of
Figure 17, all vertices h in all shortest fill paths are necessarily adjacent to vertices
j such that j > i. 0

For 2D naturally ordered graphs, P o t e n t i a l - U has run time complexity of
0(n£). For 3D naturally ordered graphs, P o t e n t i a l - U has run time complexity of
0(n&). Again, the arguments are geometrical in nature. Table 2 compares the run
time complexities of POTENTIAL-U with other symbolic factorization algorithms
discussed in this chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

T able 2

POTENTIAL-U run time complexity comparison. Results for C la s s ic - IL U and G S -U ro w

apply for any ordering. The results for POTENTIAL-U for 2D and 3D are only guaranteed for

natural ordering.

Algorithm 2D 3D

Classic-ILU
GS-U row

P otential-U

0{nF)
0{n?)
0(n£)

0 (n i*)
0(n£3)
0{n?)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 6

CHAPTER 4

PARALLEL H U

This chapter describes a parallel algorithm for computing incomplete factor (ILU)
preconditioners. The algorithm attains a high degree of parallelism through graph
partitioning and a two-level ordering strategy. Both the subdomains and the nodes
within each subdomain are ordered to preserve concurrency. We show through an
algorithmic analysis and through computational results that this algorithm is scal
able. Experimental results include timings on three parallel platforms for problems
with up to 20 million unknowns running on up to 216 processors. The resulting
preconditioned Krylov solvers have the desirable property that the number of it
erations required for convergence is insensitive to the number of processors for a
given problem size, if the number of interior to boundary nodes is relatively large.

Material in this chapter has been published in the SIAM Journal of Scientific
Computing [53]. This chapter provides and introduction to and overview of the re
search with which the remainder of this dissertation is concerned. Follow on chap
ters provide additional algorithmic and scalability details and results, and describe
the model PILU implementation that was developed as part of this dissertation.

An outline of this chapter is as follows. Section 1 provides an overview and
introduction to the PILU algorithm. Section 2 describes the steps in the parallel
algorithm for computing the ILU preconditioner in detail and provides theoretical
justification. The algorithm is based on the incomplete fill path theorem that was
presented in Chapter 2. We also discuss the role that a subdomain graph con
straint plays in the design of the algorithm, show that the preconditioners exist
for special classes of matrices, and relate our work to earlier work on this problem.
Section 3 contains an analysis that shows that the parallel algorithm is scalable for
two-dimensional (2D-) and three-dimensional (3D-)model problems, when they are
suitably ordered and partitioned. Section 4 contains computational results on Pois-
son and convection-diffusion problems. The first subsection shows that the parallel
ILU algorithm is scalable on three parallel platforms; the second subsection reports
convergence studies. We tabulate how the number of Krylov solver iterations and
the number of entries in the preconditioner vary as a function of the preconditioner
level for three variations of the algorithm. The results show that fill levels higher

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

than one are effective in reducing the number of iterations; the number of iterations
is insensitive to the number of subdomains; and the subdomain graph constraint
does not affect the number of iterations while it makes possible the design of a
simpler parallel algorithm.

The background needed for ILU preconditioning may be found in several books;
see, e.g., [1, 38, 45, 77]. A preliminary version of the material in this chapter was
presented at Supercomputing ’99 and was published in the conference proceed
ings [49], and as technical reports [51, 52].

4.1 INTRODUCTION

Incomplete factorization (ILU) preconditioning is currently among the most robust
techniques employed to improve the convergence of Krylov space solvers for linear
systems of equations. However, scalable parallel algorithms for computing ILU
preconditioners have not been available until recently despite the fact that ILU
has been heavily used in applications for more than twenty years [27]. We report
the design, analysis, implementation, and computational evaluation of a parallel
algorithm for computing ILU preconditioners.

Our parallel algorithm assumes that three requirements are satisfied.

• The adjacency graph of the coefficient matrix (or the underlying finite element
or finite difference mesh) must have good edge separators, i.e., it must be
possible to remove a small set of edges to divide the problem into a collection
of subproblems that have roughly equal computational work requirements.

• The size of the problem must be sufficiently large relative to the number
of processors so that the work required by the subgraph on each processor
is suitably large to dominate the work and communications needed for the
boundary nodes.

• The subdomain intersection graph (to be defined later) should have a small
chromatic number. This requirement will ensure that the dependencies in
factoring the boundary rows do not result in undue losses in concurrency.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

4.2 ALGO RITHM S

In this section we discuss the Parallel ILU (PILU) algorithm and its underlying
theoretical foundations.

4.2.1 T H E PIL U A LG O RITH M

Figure 19 describes the steps of the PILU algorithm at a high level; the algorithm
is suited for implementation on both message-passing and shared-address space
programming models.

The PILU algorithm consists of four major steps. In the first step, we create par
allelism by dividing the problem into subproblems by means of graph partitioning.
In the second step, we preserve the parallelism in the interior of the subproblems by
locally scheduling the computations in each subgraph. In the third step, we preserve
parallelism in the boundaries of the subproblems by globally ordering the subprob
lems through coloring a suitably defined graph. In the final step, we compute the
preconditioner in parallel.

Before discussing the four steps in greater detail, an example may prove illumi
nating. Figure 20, top, shows a Matlab spy plot of a matrix arising from a five-point
discretization on a 2D grid. The spy plot in the bottom half of the figure shows the
same matrix, after it has been partitioned amongst nine processors (first step), and
reordered (second and third steps). Figure 21 shows spy plots of the filled matrix,
F = L + U — / , following factorization (fourth step). The top spy plot shows fill
for PILU(4), and the bottom spy plot show fill for PILU(IO).

Step 1: G raph partitioning . In the first step of PILU, we partition the
adjacency graph G{A) of the coefficient matrix A into p subgraphs by removing a
small set of edges that connects the subgraphs to each other. Each subgraph will
be mapped to a distinct processor that will be responsible for the computations
associated with the subgraph.

An example of a model five-point grid partitioned into four subgraphs is shown
in Figure 22. For clarity, the edges corresponding to the coefficient matrix elements
(within each subgraph or between subgraphs) are not shown. The edges drawn
correspond to fill elements (elements that are zero in the coefficient matrix but are
nonzero in the incomplete factors) that join the different subgraphs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

Input: A coefficient matrix, its adjacency graph, and the number of processors

P-
Output: The incomplete factors of the coefficient matrix.

1. Partition the adjacency graph of the matrix into p subgraphs (subdo
mains), and map each subgraph to a processor. The objectives of the
partitioning are that the subgraphs should have roughly equal work, and
there should be few edges that join the different subgraphs.

2. On each subgraph, locally order interior nodes first, and then order
boundary nodes.

3. Form the subdomain intersection graph corresponding to the partition,
and compute an approximate minimum vertex coloring for it. Order
subdomains according to color classes.

4. Compute the incomplete factors in parallel.
a. Factor interior rows of each subdomain.
b. Receive sparsity patterns and numerical values of the nonzeros of the
boundary rows of lower-numbered subdomains adjacent to a subdomain
(if any).
c. Factor boundary rows in each subdomain and send the sparsity pat
terns and numerical values to higher-numbered neighboring subdomains
(if any).

FlC. 19. High level description of the PILU algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

100

200

300

400

500

600

700

600

900 100 200 300 400 500 600 700 600 900
nz-4036

100

200

300

400

500

600

700

800

900 900100 200 300 400 500 600 700 800
nz«4036

Fig. 20. PILU ordering pattern, level zero. Top: spy plot of a naturally ordered matrix
arising from a five-point stencil on a 30 x 30 grid; Bottom: matrix has been partitioned into nine

subdomains and ordered per the PILU algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

100

200

300

400

500

600

700

800

900 800 900700100 200 300 400 500 600
ru ■ 15818

100

200

300

400

500

600

700

800

900 100 200 300 400 500 600 700 800 900
nz» 33754

F ig . 21. PIL U ordering patterns, levels Jour and ten. Top: level Jour Jill Jor m atrix Jrom

Figure 20; Bottom : level ten Jill.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

129 130 131 132 133 144

124 123 126 127 128

119 120 121 122 123
S_2

114 US 116 117 118

109 110 111 112 113

W

.102

.101

.100

S_0S_1

F ig . 22. PILU partitioning, mapping, and vertex ordering. An example that shows the

partitioning, mapping, and vertex ordering used in the PILU algorithm. The graph on the top is a

regular 12 x 12 grid with a five-point stencil partitioned into four subdomains and then mapped on

four processors. The subdomains are ordered by a coloring algorithm to reduce dependency path

lengths. Only the level one and two fill edges that join the different subdomains are shown; all other

edges are omitted fo r clarity. The figure on the bottom right shows the subdomain intersection

graph when the subdomain graph constraint is enforced. (This prohibits fill between the boundary

nodes of the subdomains S i and S2 , indicated by the broken edges in the top graph.) The graph

on the bottom left shows the subdomain intersection graph when the subdomain graph constraint

is no t enforced.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

To state the objective function of the graph partitioning problem, we need to
introduce some terminology. An edge is a separator edge if its endpoints belong
to different subgraphs. A vertex in a subgraph is an interior vertex if all of its
neighbors belong to that subgraph; it is a boundary vertex if it is adjacent to one or
more vertices belonging to another subgraph. By definition, an interior vertex in a
subgraph is not adjacent to a vertex (boundary or interior) in another subgraph. In
Figure 22, the first 25 vertices are interior vertices of the subgraph So, and vertices
numbered 26 through 36 are its boundary vertices. The goal of the partitioning is
to keep the amount of work associated with the incomplete factorization of each
subgraph roughly equal, while keeping the communication costs needed to factor
the boundary rows as small as possible.

There is a difficulty with modeling the communication costs associated with the
boundary rows. In order to describe this difficulty, we need to relate this cost more
precisely to the separators in the graph. Define the higher degree of a vertex v as
the number of vertices numbered higher than v in a given ordering. We assume that
upward-looking, row-oriented factorization is used. At each boundary between two
subgraphs, elements need to be communicated from the lower numbered subgraph
to the higher numbered subgraph. The number of these elements is proportional to
the sum of the higher degrees (in the filled graph G(F)) of the boundary vertices
in the lower numbered subgraph. But unfortunately, we do not know the fill edges
at this point since we have neither computed an ordering of G(A) nor computed
a symbolic factorization. We could approximate by considering higher degrees of
the boundary vertices in the graph G(A) instead of the filled graph G(F), but even
this requires us to order the subgraphs in the partition.

The union of the boundary vertices on all the subgraphs forms a wide vertex
separator. This means that the shortest path from an interior vertex in any sub
graph to an interior vertex in another subgraph consists of at least three edges;
such a path has length at least three. The communication cost in the (forward and
backward) triangular solution steps is proportional to the sum of the sizes of the
wide vertex separators. None of the publicly available graph partitioning software
has the minimization of wide separators as its objective function, but it is possible
to modify existing software to optimize this objective.

The goal of the partitioning step is to keep the amount of work associated with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

each subgraph roughly equal (for load balance) while making the communication
costs due to the boundaries as small as possible. As the previous two paragraphs
show, modeling the communication costs accurately in terms of edge and vertex
separators in the initial graph G(A) is difficult, but we could adopt the minimization
of the wide separator sizes as a reasonable goal. This problem is NP-complete, but
there exist efficient heuristic algorithms for partitioning the classes of graphs that
occur in practical situations. (Among these graph classes are 2D-finite element
meshes and 3D-meshes with good aspect ratios.)

S tep 2: Local reordering. In the second step, in each subgraph we order the
interior vertices before the boundary vertices. This ordering ensures that during
the incomplete factorization, an interior vertex in one subgraph cannot be joined
by a fill edge to a vertex in another subgraph, as will be shown later. Fill edges
between two subgraphs can join only their boundary vertices together. Thus inte
rior vertices corresponding to the initial graph G(A) remain interior vertices in the
graph of the factor G(F). The consequences of this are that the rows correspond
ing to the interior vertices in each subdomain of the initial problem G{A) can be
factored concurrently, and that communication is required only for factoring rows
corresponding to the boundary rows. The reader can verify that in each subgraph
in Figure 22 the interior nodes have been ordered before the boundary nodes.

The observation concerning fill edges in the preceding paragraph results from
an application of the Theorems 2 and 4 from Chapter 2. Now consider the adja
cency graph G{A) and a partition II = {5o,. . . ,Sp~i} of it into subgraphs (sub-
domains). Any path joining two interior nodes in distinct subdomains must in
clude at least two boundary nodes, one from each of the subgraphs; since each
boundary node is numbered higher than (at least one of) the path’s end ver
tices (since these are interior nodes in the subgraph), this path cannot be a fill
path. If two interior nodes belonging to separate subgraphs were connected by a
fill path and the corresponding fill entry were permitted in F, the interior nodes
would be transformed into boundary nodes in G(F). This is undesirable for par
allelism, since then there would be fewer interior nodes to be eliminated concur
rently.

The local ordering step preserves interior and boundary nodes during the factor
ization and ensures that a subdomain’s interior rows can be factored independently

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

of row updates from any other subdomain. Therefore, when subdomains have
relatively large interior/boundary node ratios, and contain approximately equal
amounts of computational work, we expect PILU to exhibit a high degree of par
allelism.

S tep 3: G lobal ordering. The global ordering phase is intended to preserve
parallelism while factoring the rows corresponding to the boundary vertices. In
order to explain the loss of concurrency that could occur during this phase of the
algorithm, we need the concept of a subdomain intersection graph, which we shall
call a subdomain graph for brevity.

The subdomain graph S{G, II) = (V,, Es) is computed from a graph G and its
partition II = {So, • • •, Sp- 1 } into subgraphs. The vertex set Va contains a vertex
corresponding to every subgraph in the partition; the edge set Es contains edge
(Si,Sj) if there is an edge in G with one endpoint in Si and the other in Sj. We
can compute a subdomain graph S(A) corresponding to the initial graph G(A) and
its partition. (This graph should be denoted S(G(A), II), but we shall write S(A)
for simplicity.) We could also compute a subdomain graph S(F) corresponding to
the graph of the factor G{F). The subdomain graph S(A) corresponding to the
partition of the initial graph G{A) (the top graph) in Figure 22 is shown in the
graph at the bottom right in that figure.

We impose a constraint on the fill, the subdomain graph constraint. The subdo
main graph corresponding to G(F) is restricted to be identical to the subdomain
graph corresponding to G(A). This prohibits some fill in the filled graph G(F):
if two subdomains are not joined by an edge in the original graph G(A), any fill
edge that joins those subdomains is not permitted in the graph of the incomplete
factor G(F). The description of the PILU algorithm in Figure 19 assumes that the
subdomain graph constraint is satisfied. This constraint makes it possible to ob
tain scalability in the parallel ILU algorithm. Later, we discuss how the algorithm
should be modified if this constraint is relaxed.

Each subdomain’s nodes (in G{A)) are ordered contiguously. Consequently,
saying “subdomain r is ordered before subdomain s” is equivalent to saying “all
nodes in subdomain r are ordered, and then all nodes in subdomain s are ordered.”
This permits S(A) to be considered as a directed graph, with edges oriented from
lower to higher numbered vertices.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

Edges in S(F) indicate data dependencies in factoring the boundary rows of the
subdomains. If an edge in 5(F) joins r and s and subdomain r is ordered before
subdomain s, then updates from the boundary rows of r have to be applied to the
boundary rows of s before the factorization of the latter rows can be completed.
It follows that ordering S(F) so as to reduce directed path lengths reduces serial
bottlenecks in factoring the boundary rows. If we impose the subdomain graph
constraint, these observations apply to the subdomain graph 5(A) as well since
then 5(A) is identical with 5(F).

We reduce directed path lengths in 5(A) by coloring the vertices of the sub-
domain graph with few colors using a heuristic algorithm for graph coloring, and
then by numbering the subdomains by color classes. The boundary rows of all
subdomains corresponding to the first color can be factored concurrently without
updates from any other subdomains. These subdomains update the boundary rows
of higher numbered subdomains adjacent to them. After the updates, the subdo
mains that correspond to the second color can factor their boundary rows. This
process continues by color classes until all subdomains have factored their bound
ary rows. The number of steps it takes to factor the boundary rows is equal to the
number of colors it takes to color the subdomain graph.

In Figure 22, let Pi denote the processor that computes the subgraph 5,. Then
Po computes the boundary rows of Sq and sends them to processors p\ and p?.
Similarly, p3 computes the boundary rows of subgraph 53 and sends them to pi
and p2 . The latter processors first apply these updates and then compute their
boundary rows.

How much parallelism can be gained through subdomain graph reordering? We
can gain some intuition through analysis of simplified model problems, although we
cannot answer this question a priori for general problems and all possible partitions.
Consider a matrix arising from a second order PDE that has been discretized on
a regularly structured 2D grid using a standard five-point stencil. Assume that
the grid is naturally ordered and that it has been partitioned into square subgrids
and mapped into a square grid of p processors. In the worst case, the associated
subdomain graph, which itself has the appearance of a regular 2D grid, can have
a dependency path of length 2(v/p — 1). Similarly, a regularly structured 3D grid
discretized with a seven-point stencil that is naturally ordered and then mapped

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

on a cube containing p processors can have a dependency path length of 3(^/p— 1).
However, regular 2D grids with the five-point stencil and regular 3D grids with
the seven-point stencil are bipartite graphs and can be colored with two colors. If
all subdomains of the first color class are numbered first, and then all subdomains
of the second color class are numbered, the longest dependency path in 5 will be
reduced to one. This discussion shows that coloring the subdomain graph is an
important step in obtaining a scalable parallel algorithm.

Step 4: P reconditioner com putation. Now that the subdomains and the
nodes in each subdomain have been ordered, the preconditioner can be computed.
We employ an upward-looking, row oriented factorization algorithm. The interior of
each subdomain can be computed concurrently by the processors, and the boundary
nodes can be computed in increasing order of the color classes. Either a level-based
ILU(f) or a numerical threshold based ILUT algorithm may be employed on each
subdomain. Different incomplete factorization algorithms could be employed in
different subdomains when appropriate, as in multiphysics problems. Different fill
levels could be employed for the interior nodes in a subdomain and for the boundary
nodes to reduce communication and synchronization costs.

4.2.2 RELA X IN G TH E SUBDOM AIN G R A PH CO N STRA IN T

Now we consider how the subdomain graph constraint might be relaxed. Given a
graph G(A) and a partition of it into subgraphs, we color the subdomain graph
5(A) and order its subdomains as before. Then we compute the graph G(F) of an
incomplete factor and its subdomain graph S{F). To do this, we need to discover
the dependencies in 5(F), but initially we have only the dependencies in S(A)
available. This has to be done in several rounds, because fill edges could create
additional dependencies between the boundary rows of subdomains, which in turn
might lead to further dependences. The number of rounds needed is the length
of a longest dependency path in the subdomain graph G(F), and this could be
fi(p). This discussion applies when an ILU {I) algorithm is employed, with symbolic
factorization preceding numerical factorization. If ILUT were to be employed, then
symbolic factorization and numerical factorization must be interleaved, as would
be done in a sequential algorithm.

We can then color the vertices of 5(F) to compute a schedule for factoring

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

the boundary rows of the subdomains. For achieving concurrency in this step the
subdomain graph 5(F) should have a small chromatic number (independent of the
number of vertices in G(A)). Note that the description of the PILU algorithm in
Figure 19 needs to be modified to reflect this discussion when the subdomain graph
constraint is relaxed.

The graph G(F) in Figure 22 indicates the fill edges that join Si to S2 as broken
lines. The corresponding subdomain intersection graph 5(F) is shown on the lower
left. The edge between Si and S2 necessitates three colors to color 5(F): the
subdomains So and S3 form one color class; 5 t by itself constitutes the second color
class; and S2 by itself makes up the third color class. Thus three steps are needed for
the computation of the boundary rows of the preconditioner when the subdomain
graph constraint is relaxed. Note that the processor responsible for the subdomain
52 can begin computing its boundary rows when it receives an update from either
So or S3 , but that it cannot complete its computation until it has received the
update from the subdomain Si.

Theorem 4 has an intuitively simple geometric interpretation. Given an initial
node i in G(A), construct a topological “sphere” containing all nodes that are at a
distance less than or equal to k + 1 edges. Then a fill entry fa is admissible in an
ILU(f) factor only if j is within the sphere. Note that all such nodes j do not cause
fill edges since there needs to be a fill path joining i and j . By applying Theorem 4,
we can gain an intuitive understanding of the fill entries that may be discarded
on account of the subdomain graph constraint. Referring again to Figure 22, we
see that prohibited edges arise when two nonadjacent subdomains in G(A) have
nodes that are joined by a fill path of length less than k + 1. No level zero edge is
discarded by the constraint.

4.2.3 EXISTENCE OF PILU PRECONDITIONERS

The existence of preconditioners computed from the PILU algorithm can be proven
for some classes of problems.

Meijerink and van der Vorst [65] proved that if A is an M-matrix, then ILU
factors exist for any predetermined sparsity pattern, and Manteuffel [64] extended
this result to H-matrices with positive diagonal elements. These results immediately
show that PILU preconditioners with sparsity patterns based on level values exist

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

for these classes of matrices. This is true even when different level values are used
for the various subdomains and boundaries.

Incomplete Cholesky (IC) preconditioners for symmetric problems could be com
puted with our parallel algorithmic framework using preconditioners proposed by
Jones and Plassmann [54] and by Lin and More [58] on each subdomain and on
the boundaries. The sparsity patterns of these preconditioners are determined by
the numerical values in the matrix and by memory constraints. Lin and More have
proved that these preconditioners exist for M- and H-matrices. Parallel IC precon
ditioners also can be shown to exist for M- and H-matrices. If the subdomain graph
constraint is not enforced, then the preconditioner computed in parallel corresponds
to a preconditioner computed by the serial algorithm from a reordered matrix.

4.3 PERFORMANCE ANALYSIS

In this section we present simplified theoretical analyses of algorithmic behavior for
matrices arising from PDEs discretized on 2D grids with five-point stencils and 3D
grids with seven-point stencils. Since our arguments are structural in nature, we
assume ILU(l) is the factorization method used.

We assume the grid has been block-partitioned, with each subdomain consisting
of a square subgrid of dimension c x c. We also assume the subdomain grid has
dimensions y/p x y/p, so there are p processors in total. There are thus N = (?p
nodes in the grid, and subdomains have at most 4c = 4 boundary nodes.

If subdomain interior nodes are locally numbered in natural order and t c,
each row in the factor F asymptotically has 21 (strict) upper triangular and 21
(strict) lower triangular nonzero entries. The justification for this statement arises
from a consideration of the incomplete fill path theorem; the intuition is illustrated
in Figure 23.

Assuming that the classical ILU(l) algorithm is used for symbolic factorization,
both symbolic and numeric factorization of row j entails 412 arithmetic operations.
This is because for each lower triangular entry fa in matrix row j , factorization
requires an arithmetic operation with each upper triangular entry in row i.

A red-black ordering of the subdomain graph gives an optimal bipartite division.
If red subdomains are numbered before black subdomains, our algorithm simplifies
to the following three stages.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

7 s 0 10 i i

1 2 3 4 5

7 ft 10 i i

r \

12

12

F ig . 23. Counting lower triangular fill edges in a naturally ordered graph. We count the

number of edges incident on vertex 9. Considering the graphs from top to bottom, we find that

there are two level 0 edges; there is one level 1 edge, due to fill path 9 ,3 ,4 ; there is one level 2

edge due to fill path 9, 3, 4, 5; there are two level 3 edges, due to fill paths 9, 3, 4, 5, 6 and 9, 3,

2, 1, 7. We can generalize that two additional fill edges are created for every level greater than

three, except near the boundaries. We conclude that asymptotically there are 2k lower triangular

edges incident on a vertex in a level k factorization. Since the mesh corresponds to a structurally

sym m etric problem, there are 2k upper triangular edges incident on a vertex as well.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

1. Red processors eliminate all nodes; black processors eliminate interior nodes.

2. Red processors send boundary-row structure and values to black processors.

3. Black processors eliminate boundary nodes.

If these stages are nonoverlapping, the cost of the first stage is bounded by the cost
of eliminating all nodes in a subdomain. This cost is 4£2c2 =

The cost for the second stage is the cost of sending structural and numerical
values from the upper-triangular portions of the boundary rows to neighboring
processors. If t c, the incomplete fill path theorem can be used to show that,
asymptotically, a processor only needs to forward values from c rows to each neigh
bor. We assume a standard, noncontentious communication model wherein a and
/3 represent message startup and per-word-transfer times, respectively. We measure
these times in non-dimensional units of flops by dividing them by the time it takes
to execute one flop. The time for an arithmetic operation is thus normalized to
unity. Then the cost for the second step is 4(a + 2£(3c) = 4(a + 2

Since the cost of factoring a boundary row can be shown to be asymptotically
identical to that for factoring an interior row, the cost for eliminating the 4c bound
ary nodes is (4£2)(4c) = Speedup can then be expressed as

4 F N
speedup = ------------------------y=------------ ?=.

seil + 4(a + 2<0v/ f) + 16Pv/ f

The numerator represents the cost for sequential execution, and the three terms
in the denominator represent the costs for the three stages (arithmetic for interior
nodes, communication costs, and arithmetic for the boundary nodes) of the parallel
algorithm.

Three implications from this equation are in order. First, for a fixed problem
size and number of processors, the parallel computational cost (the first and third
terms in the denominator) is proportional to I2, while the communication cost (the
second term in the denominator) is proportional to £. This explains the increase
in efficiency with level that we have observed. Second, if the ratio N /p is large
enough, the first term in the denominator will become preeminent, and efficiency
will approach 100%. Third, if we wish to increase the number of processors p by
some factor while maintaining a constant efficiency, we need only increase the size of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

the problem N by the same factor. This shows that our algorithm is scalable. This
observation is not true for a direct factorization of the coefficient matrix, where the
dependencies created by the additional fill cause loss in concurrency.

For the 3D case we assume partitioning into cubic subgrids of dimension c x
c x c and a subdomain grid of dimension p1̂ 3 x p1/3 x p1/3, which gives N = c?p.
Subdomains have at most 6c2 boundary nodes. A development similar to that above
shows that, asymptotically, matrix rows in the factor F have 2fP (strict) upper and
lower triangular entries, so the cost for factoring a row is 4£4. Speedup for this case
can then be expressed as

4 t*N
speedup - 4^ v +6(q + W (^)1/3) + 2 4 ^ (^) 1 / 3

2 £4iV
^ + 3(a + 2£2/3(f)i/3) + 12£4(*) 1/3'

4.4 RESULTS

Results in this section are based on the following model problems.
Problem 1. Poisson’s equation in two or three dimensions:

Au = g.

Problem 2. Convection-diffusion equation with convection in the xy plane:
d d

- e A u + —exau + —e_xyu = g .
ox oy

Homogeneous boundary conditions were used for both problems. Deriva
tive terms were discretized on the unit square or cube, using 3-point cen
tral differencing on regularly spaced nx x riy x nz grids (nz = 1 for 2D).
The values for e in Problem 2 were set to 1/500 and 1/1000. The prob
lem becomes increasingly unsymmetric, and more difficult to solve accurately
as e decreases. The right-hand sides of the resulting systems, Ax =
6, were artificially generated as b = Ae, where e is the all-ones vec
tor.

In addition to demonstrating that our algorithm can provide high degrees of
parallelism, we address several other issues. We study the influence of the sub-
domain graph constraint on the fill permitted in the preconditioner and on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

convergence of preconditioned Krylov space solvers. We also report convergence
results as a function of the number of nonzeros in the preconditioner.

4.4.1 PARALLEL PERFORMANCE

We now report timing and scalability results for preconditioner factorization and
application on three parallel platforms:

• an SGI 0rigin2000 at NASA Ames Research Center (AMES);

• the Coral PC Beowulf cluster at ICASE, NASA Langley Research Center;

• a Sun HPC 10000 Starfire server at Old Dominion University (ODU).

Machine configuration information for these platforms appears in Appendix B.
Both problems were solved using Krylov subspace methods as implemented in the
PETSc [2] software library. Problem 1 was solved using the conjugate gradient
method, and Problem 2 was solved using Bi-CGSTAB [82]. PETSc’s default con
vergence criterion was used, which is five orders of magnitude (105) reduction in
the residual of the preconditioned system. We used our own codes for problem
generation, partitioning, ordering, and symbolic factorization.

Table 3 shows incomplete factorization timings for a 3D memory-scaled problem
with approximately 91,125 unknowns per processor. As the number of processors
increases, so does the size of the problem. The coefficient matrix of the problem fac
tored on 216 processors has about 19.7 million rows. ILU(2) was employed for the
interior nodes, and ILU(l) was employed for the boundary nodes. Reading down
any of the columns shows that performance is highly scalable, e.g., for the SGI Ori-
gin2000, factorization for 216 processors and 19.7 million unknowns required only
62% longer than the serial case. Scanning horizontally indicates that performance
was similar across all platforms, e.g., execution time differed by less than a factor
of two between the fastest (0rigin2000) and slowest (Beowulf) platforms.

Table 4 shows similar data and trends for the triangular solves for the scaled
problem. Scalability for the solves was not quite as good as for factorization; e.g.,
the solve with 216 processors took about 2.5 times longer than the serial case.
This is expected due to the lower computation cost relative to communication and
synchronization costs in triangular solution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

Table 3

Factorization Timing, 3D problem (SGI, Beowulf, Starfire). Scaled problem, 91,125 unknowns

per processor, seven-point stencil, ILU(2) factorization on interior nodes, and ILU (l) factorization

on boundary nodes. Dashes (-) for Beowulf and H PC 10000 indicate that the machines have

insufficient cpus to perform the runs.

Procs Origin2000
AMES

Beowulf
(ICASE)

HPC 10000
(ODU)

1 2.04 2.27 2.13
8 2.44 3.11 2.43

27 2.96 4.06 2.97
64 3.11 4.64 -

125 3.18 - -

216 3.32 - -

We observed that the timings for identical repeated runs on the HPC 10000
and SGI typically varied by 50% or more, while repeated runs on the Beowulf were
remarkably consistent.

Table 5 shows speedup for a constant-sized problem of 1.7 million unknowns.
There is a clear correlation between performance and subdomain interior/boundary
node ratios; this ratio needs to be reasonably large for good performance.

The performances reported in these tables are applicable to any PDE that has
been discretized with a seven-point central difference stencil since the sparsity pat
tern of the symbolic factor depends on the grid and the stencil only.

4.4.2 CONVERGENCE STUDIES

Our approach for designing parallel ELU algorithms reorders the coefficient matrices
whose incomplete factorization is being computed. This reordering could have a
significant influence on the effectiveness of the ILU preconditioners. Accordingly,
in this section we report the number of iterations of a preconditioned Krylov space
solver needed to reduce the residual by a factor of 10s.

We compare three different algorithms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

T able 4

Triangular solve timing, 3D problem (SGI, Beowulf, Starfire). Scaled problem, 91,125 un

knowns per processor, seven-point stencil, ILU(2) factorization on interior nodes, ILU(1) factor

ization on boundary nodes. Dashes (-) for Beowulf and H PC 10000 indicate that the machines

have insufficient cpus to perform the runs.

Procs Origin2000
(AMES)

Beowulf
(ICASE)

HPC 10000
(ODU)

1 .182 .187 .289
8 .431 .359 .515

27 .405 .508 .629
64 .472 .556 -

125 .610 - -

216 .646 - -

T able 5

Speedup fo r 3D constant-size problem (SGI), total of approximately 1.7 million unknowns;

data is fo r ILU{0) factorization performed on the SG I On<7«n2000; “I /B ra tio” is the ratio of

interior to boundary nodes in each subdomain.

Procs Unknowns/
Processor

I/B
ratio

Time
(sec.)

Efficiency

(%)
8 216,000 9.3 2.000 100

27 64,000 6.0 0.846 70
64 27,000 4.3 .408 61

125 13,824 3.4 .307 42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

• Constrained PILU(£) is the parallel ILU(£) algorithm with the subdomain
graph constraint enforced.

• In unconstrained PILU(£), the subdomain graph constraint is dropped, and
all fill edges up to level £ between the boundary nodes of different subdomains
are permitted, even when such edges join two nonadjacent subdomains of the
initial subdomain graph S(A).

• In Block Jacobi ILU(£) (BJILU(£)), all fill edges joining two different subdo
mains are excluded.

Intuitively, one expects, especially for diagonally dominant matrices, that larger
amounts of fill in preconditioners will reduce the number of iterations required for
convergence.

FILL COUNT COMPARISONS

For a given problem, the number of permitted fill edges is a function of three
components: the factorization level, £; the subdomain size(s); and the discretization
stencil. While the numerical values of the coefficients of a particular PDE influence
convergence, they do not affect fill counts. Therefore, our first set of results consists
of fill count comparisons for problems discretized on a 64 x 64 x 64 grid using a
standard, seven-point stencil.

Table 6 shows fill count comparisons between unconstrained PILU(£), con
strained PILU(£), and Block Jacobi ILU(£) for various partitionings and factor
ization levels. The data shows that more fill is discarded as the factorization level
increases, and as subdomain size (the number of nodes in each subdomain) de
creases. These two effects hold for both constrained PILU(£) and Block Jacobi
ILU(£) but are much more pronounced for the latter. For example, less than 5%
of fill is discarded from unconstrained PILU(£) factors when subdomains contain
at least 512 nodes (so that the subgraphs on each processor are not too small),
but up to 42% is discarded from Block Jacobi factors. Thus, one might tentatively
speculate that, for a given subdomain size and level, PILU(£) will provide more
effective preconditioning than BJILU(£). We have observed similar behavior for 2D
problems also. For both 2D and 3D problems, when there is a single subdomain the
factors returned by the three algorithms are identical. For the single subdomain

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

case, the ordering we have used corresponds to the natural ordering for these model
problems.

An important observation to make in Table 6 is how the sizes (number of nonze
ros) of the preconditioners depend on levels of fill. For the 3D problems considered
here (cube with 64 points on each side, seven-point stencil), a level one precondi
tioner typically requires twice as much storage as the coefficient matrix A; when
the level is two, this ratio is about three; when the level is three, it is about six;
and when the level is four, it is about ten. For 2D problems (square grid with 256
points on a side, five-point stencil), the growth of fill with level is slower; the ratios
are about 1.4 for level one, 1.8 for level two, 2.6 for level three, 3.5 for level four,
4.3 for level five, and 5.4 for level six.

In parallel computation fill levels higher than those employed in sequential com
puting are feasible since modern multiprocessors are either clusters or have virtual
shared memory, and these have memory sizes that increase with the number of
processors. Another point to note is that the added memory requirement for these
level values is not as prohibitive as it is for a complete factorization. Hence it is
practical to trade-off increased storage in preconditioners for reducing the number
of iterations in the solver.

CONVERGENCE OF PRECONDITIONED ITERATIVE SOLVERS

The fill results in the previous subsection are not influenced by the ac
tual numerical values of the nonzero coefficients; however, the convergence
of preconditioned Krylov space solvers is influenced by the numerical val
ues. Accordingly, Table 7 shows iterations required for convergence for
various partitionings and fill levels for the three variant algorithms that
we consider. The data in these tables can be interpreted in various
ways; we begin by discussing two ways that we think are primarily signifi
cant.

First, by scanning vertically one can see how changing the number of subdo
mains, and hence, matrix ordering, affects convergence. The basis for comparison
is the iteration count when there is a single subdomain. The partitioning and or
dering for these cases is identical to, and our data in close agreement with, that
reported by Benzi, Joubert, and Mateescu [6] for natural ordering. (They report

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

Table 6
Fill comparisons for the 64x64x64 grid. U denotes unconstrained, C denotes constrained, and

B denotes Block Jacobi ILU{k) preconditioners. The columns headed unzF/nzA " show the ratio of
the number of nonzeros in the preconditioner to the number of nonzeros in the original problem and

are indicative of storage requirements. The columns headed “constraint effects” present another
view of the same data: here, the percentage of nonzeros in the constrained PILU{k) and Block
Jacobi ILU{k) factors are shown relative to that for the unconstrained PILU(k). These columns
show the amount of fill dropped due to the subdomain graph constraint.

Nodes per Subdom. nzF/nzA C onstrain t effects (%)

subdom. count Level U C B C B
262,144 1 0 1.00 1.00 1.00 100.00 100.00

1 1.84 1.84 1.84 100.00 100.00
2 3.22 3.22 3.22 100.00 100.00
3 5.96 5.96 5.96 100.00 100.00
4 9.73 9.73 9.73 100.00 100.00

32,768 8 0 1.00 1.00 0.99 100.00 98.64
1 1.87 1.87 1.80 99.99 96.53
2 3.36 3.35 3.12 99.96 92.91
3 6.32 6.32 5.70 99.92 90.13
4 10.50 10.49 9.19 99.89 87.56

4,096 64 0 1.00 1.00 0.96 100.00 95.93
1 1.89 1.89 1.72 99.90 91.24
2 3.45 3.44 2.91 99.62 84.36
3 6.51 6.47 5.19 99.34 79.72
4 10.81 10.70 8.17 99.06 75.61

512 512 0 1.00 1.00 0.90 100.00 90.50
1 1.92 1.91 1.57 99.46 81.62
2 3.59 3.52 2.53 98.05 70.35
3 6.72 6.50 4.27 96.62 63.47
4 10.96 10.43 6.32 95.20 57.69

64 4,096 0 1.00 1.00 0.80 100.00 79.64
1 1.97 1.92 1.29 97.58 65.15
2 3.73 3.42 1.86 91.67 49.79
3 6.60 5.64 2.71 85.37 41.04
4 10.01 7.76 3.35 77.56 33.45

8 32,768 0 1.00 1.00 0.58 100.00 57.92
1 2.05 1.85 0.80 90.07 38.81
2 3.98 2.55 0.87 64.14 21.84
3 6.15 2.89 0.90 46.95 14.72
4 7.40 2.90 0.90 39.26 12.23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

T able 7

Iteration comparisons for the 64 x 64 x 64 grid. U denotes unconstrained, C denotes con
strained, and B denotes Block Jacobi ILU(k) preconditioners. The starred entries (*) indicate
that, since there is a single subdomain, the factor is structurally and numerically identical to the
unconstrained PILU(k). Dashed entries (-) indicate the solutions either diverged or faded to con
verge after 200 iterations. For Problem 2, when e = 1/500 the level zero preconditioners did not
reduce the relative error in the solution by a factor of 105 at termination; when e = 1/1000, the
level one preconditioners did not do so either.

Problem 1 Problem 2
Nodes per Subdom. c = 1/500 e — 1/1000

subdom. count Level U C B U C B U c B
262,144 1 0 43 * * 19 * * - * *

1 29 * * 16 * * 30 * *

2 24 * * 8 * * 32 * *

3 19 * * 8 * * 14 « *

4 16 * * 6 * * 8 * *

32,768 8 0 45 45 53 32 32 26 - - -
1 32 33 41 14 14 19 38 39 41
2 27 29 37 11 11 17 38 38 66
3 22 24 33 8 8 13 16 15 21
4 19 21 29 7 7 13 10 11 18

4,096 64 0 43 43 55 33 33 49 - - -
1 31 32 45 15 15 21 42 41 46
2 25 27 41 12 11 22 24 28 78
3 20 23 39 9 9 16 18 17 28
4 17 20 36 8 8 19 11 12 27

512 512 0 41 41 56 28 28 67 - - -
1 29 31 48 18 16 29 39 40 I ll
2 25 26 46 11 12 36 21 21 106
3 21 23 44 11 11 31 20 21 no
4 18 21 43 9 12 34 13 14 70

64 4,096 0 43 43 64 28 28 - 63 63 -
1 30 33 60 17 18 124 55 56 -
2 26 30 58 13 15 115 25 28 -
3 21 28 58 12 17 127 24 36 -
4 17 28 58 10 17 132 11 27 -

8 32,768 0 46 46 83 43 43 - 83 83 -
1 32 41 82 24 46 - 152 - -
2 25 40 82 11 45 - 13 115 -
3 19 40 82 5 44 - 7 107 -
4 16 40 82 4 45 - 6 111 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

results for Problem 2 with e = 1/500 but not for e = 1/1000.)
A pleasing property of both the constrained and unconstrained PILU algorithms

is that the number of iterations increases only mildly when we increase the num
ber of subdomains from one to 512 for these problems. This insensitivity to the
number of subdomains when the number of nodes per subdomain is not too small
confirms that the PILU algorithms enjoy the property of parallel algorithmic scal
ability. For example, Poisson’s equation (Problem 1) preconditioned with a level
two factorization and a single subdomain required 24 iterations. Preconditioning
with the same level, constrained PILU(£) on 512 subdomains needed only two more
iterations. Similar results are observed for the convection-diffusion problems also.
This property is a consequence of the fill between the subdomains that is included
in the PILU algorithm.

Similar results have been reported in [62, 63] and the first paper includes a
condition number analysis supporting this observation.

Increasing the level of fill generally has the beneficial effect of reducing the
number of iterations needed; this influence is largest for the worse-conditioned
convection-diffusion problem with e = 1/1000. For this problem, level zero precon
ditioners do not converge for reasonable subdomain sizes. Also, even though level
one preconditioners require fewer iteration numbers than level two preconditioners
in some cases, when the PETSc solvers terminate because the residual norms are
reduced by 105, the relative errors are larger than 10-5 for the former precondi
tioners. The relative errors are also large for the convection-diffusion problem with
e = 1/500 when the level is set to zero.

Second, scanning the data in Table 7 horizontally permits evaluation of the
subdomain graph constraint’s effects. Again, unless subdomains are small and the
factorization level is high; constrained and unconstrained PILU(^) show very similar
behavior. Consider, for example, Poisson’s equation (Problem 1) preconditioned
with a level two factorization and 512 subdomains. The solution with unconstrained
PILU(£) required 25 iterations while constrained PILU(£) required 26.

We also see that PILU(£) preconditioning is more effective than BJILU(£) for all
3D trials. (Recall that the single apparent exception, Problem 2, e — 1/500, ILU(0)
with 32,768 nodes per subdomain, has large relative errors at termination.) Again,
the extremes of convergence behavior are seen for Problem 2 with e = 1/1000. Here,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

512 nadm pMtuOdomMn, 512 (u b to r a n
70

Block JacofcULUlM —
ConM PlUJtki ——

UnconM PIUKk)SO

50

40

X
20

10

0
126 5 to0 2 4

nzF/nzA

4006 nodaa PM tubdorrwm. 54 subdomains
50

Block JacottlUKk) —
Con»L PIUKk

UnconM. PIUKk)45

40

X

X

25

20

IS

10

5 9 10« 7 5 112 3 4 50 1
m fin A

32785 nodM par luMomMn. 5 lubdonaim
35 Block Jaootk ILU(k)

ConM PIUKk
UnconM. PIUKk]

X

25

20

15

10

5
107 S 9 115 60 2 3 4

laFlraA

Fig. 24. Convergence comparison for convection-diffusion problem, e = 1/500 on the 64 x
64 x 64 grid. Data points are for levels 0 through 4. Data points for constrained and unconstrained
PILU(k) are indistinguishable in the third graph.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

with level one preconditioners, BJILU(£) suffers large relative errors at termination
while the other two algorithms do not, when the number of subdomains is 64 or
fewer.

On 2D domains, while PILU(£) is more effective than BJILU(£) for Poisson’s
equation, BJILU(£) is sometimes more effective in the convection-diffusion prob
lems.

We also examine iteration counts as a function of preconditioner size graphically.
A plot of this data appears in Figure 24. In these figures the performance of the
constrained and unconstrained PILU algorithms is often indistinguishable. We
find again that PILU(£) preconditioning is more effective than BJILU(£) for 3D
problems for a given preconditioner size; however, this conclusion does not always
hold for 2D problems, especially for lower fill levels. As the number of vertices in
the subdomains increases, higher fill levels become more effective in reducing the
number of iterations needed for convergence. We find that fill levels as high as
four to six can be the most effective when the subdomains are sufficiently large.
Fill levels higher than these do not seem to be merited by these problems, even
for the difficult convection-diffusion problems with e = 1/1000, where a level four
preconditioner reduces the number of iterations below ten.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

CHAPTER 5

PARALLEL DESIGN AND SCALABILITY

In this chapter we examine several aspects related to PILU preconditioner scalabil
ity. First, we explain what we mean by our claim that PILU is scalable. Second,
we discuss some details of the model PILU implementation (the Euclid library)
that was developed as part of this dissertation. This discussion focuses on commu
nication patterns and how they affect PILU’s scalability; algorithmic design and
implementation issues; and how PILU might be altered to yield better performance,
e.g., by taking advantage of known symmetry when it exists. Third, we present
experimental scalability results and develop an analytic result that states a scala
bility relationship between PILU and Block Jacobi ILU. The main thrust of this
chapter is an examination of preconditioner setup costs, and per-iteration costs of
applying the preconditioner.

Like many preconditioning techniques PILU consists of two distinct phases:
preconditioner setup and preconditioner application. For Block Jacobi ILU precon
ditioning, setup consists of symbolic and numeric factorization and no communi
cation is required. For PILU, setup additionally entails formation, coloring, and
ordering of the subdomain graph; local reordering to place boundary nodes last; ex
change of boundary node permutations; and setting up persistent communications
that are used in triangular solves. Some of these steps require global communica
tion (e.g., identification of boundary nodes for structurally unsymmetric problems),
while others require only nearest neighbor communication (e.g., exchange of per
mutations and factorization). Communication costs can sometimes be lessened or
dispensed with by taking advantage of special information, such as structural sym
metry (with reference to the matrix), and regular structure (with reference to the
processor grid).

In contrast to preconditioner setup, the application phase only requires nearest
neighbor communication and is algorithmically much simpler. Unlike the setup
phase, symmetry and processor grid structure do not help to lessen communication
costs.

The scalability and communication costs examined in this chapter do not de
pend on the numerical properties of any particular problem. Given for example

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

a finite element grid, setup cost and application cost per iteration are identical
whether one is solving a numerically well-behaved elliptic problem or a troublesome
convection-diffusion problem. The costs involved derive entirely from combinatorial
considerations.

In this chapter’s first section we discuss the meaning of scalability, and how it
applies to the PILU technique. In the second section we discuss details of the pre
conditioner setup phase. In the third section we discuss details of the preconditioner
application (triangular solve) phase. The explanations and algorithms presented in
the second and third sections expand on the high level description of PILU that
was presented in Chapter 4. In the fourth section we summarize the influence of
communication patterns on performance. In the fifth section we present experi
mental results for preconditioner setup and application on a per-iteration basis. In
the final section we develop an analytic formula that permits comparison of PILU
and Block Jacobi ILU performance.

In the interest of concreteness we explicitly reference MPI calls in the discussions
in this chapter. However, PILU can of course be implemented using other message
passing libraries, or in shared memory. Additionally, some of the algorithms pre
sented in this chapter reflect specific solutions we developed in the course of coding
our model PILU implementation; other, perhaps more efficient solutions are possi
ble.

5.1 SCALABILITY AND PILU

Scalability is a term that is thrown about so freely by researchers and has so many
connotations that there is a single implication to which all parties are likely to
agree: to be scalable is good; to be unscalable is bad. A discussion of the various
meanings of scalability, with references to many authors can be found in Chapter
4 of [56]. In this Chapter we are primarily interested in scalability with respect to
scaled problem size. This is related to the concept of scaled speedup, whose origin
is attributed to Gustafson [41, 42].

We claim that PILU has good scalability properties in that, if we hold prob
lem size per processor constant while scaling the global problem size and processor

“When I use a word,” Humpty Dumpty said in rather a scornful tone, “it means just what I

choose it to mean—neither more nor less” [14].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

count, (1) execution time for the preconditioner setup phase remains constant or
grows very slowly, and (2) execution time for the preconditioner application phase
remains constant or grows very slowly. By this definition, Block Jacobi ILU pre
conditioning (which is identical to additive Schwarz ILU with zero overlap) also has
good scalability properties. The distinguishing feature of PILU is that the required
number of iterations, for many problems we have examined to date, is lower for
PILU than for Block Jacobi ILU.

5.2 PRECONDITIONER SETUP

PILU preconditioner setup involves three primary tasks, the first of which is divided
into several stages.

1. Subdomain graph setup.

(a) Exchange of row-ownership information.

(b) Identification of boundary nodes.

(c) Formation, coloring, and ordering of the subdomain graph.

(d) Local reordering to place boundary nodes last in each subdomain.

(e) Identification of nearest neighbors in the subdomain graph.

(f) Exchange of boundary node permutations with nearest neighbors.

2. Symbolic and numeric factorization.

3. Setup persistent communications for the triangular solves.

SUBDOMAIN GRAPH SETUP

When Euclid is initialized through its interface with a linear solver library, it takes as
input a matrix that is assumed to have been been partitioned and distributed such
that each processor owns a consecutively numbered chunk of matrix rows (referred
to as a subdomain), with each subdomain having a “large” interior/boundary node
ratio. These assumptions are in accordance with common practice in computational
physics and with the solver libraries to which Euclid interfaces (as of this writing,
PETSc and Hypre).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

Initially, each processor informs all others of the global numbering of its first
locally owned row, and the number of locally owned rows. This is accomplished
through calls to MPI-Alltoall, which result in each processor having an identical
copy of the arrays beg .row \\ and rowxm nt\\, each of which has as many bins as
there are processors. The global number of the first row owned by processor Pu
is stored in begjrow[Pu], and the number of Pu's locally owned rows is stored in
rowjcount[Pu\. Given an external (non-locally owned) row i, a processor uses these
arrays to identify the processor that owns the row i.

For structurally symmetric matrices, processors can completely identify both
their local boundary rows and their neighbors in the subdomain graph by scanning
the adjacency list representation of their locally owned rows. Processors look for
entries of of the form j € adj(i), where i is a locally owned row and j is an external
row. Pu can discern, by consulting the beg.row\\ and rawjcount\\ arrays, that (1)
row i is a boundary row; (2) row j is owned by Pv and hence Pv is Ptt’s neighbor
in the subdomain graph; (3) the factored matrix row i will need to be sent to Pv
during factorization, if Pu is numbered less than Pu following subdomain graph
coloring and ordering. By symmetry, P„’s adjacency lists must contain an entry of
the form i 6 adj(j), which allows Pv to discern similar information concerning its
boundary rows and subdomain graph neighbors.

For unsymmetric matrices identification of boundary rows requires a non-trivial
communication step. Figure 25 illustrates why a processor Pu may not be able to
identify all local boundary rows using purely local information. We have imple
mented a Boundary Node Identification algorithm that permits all processors to
completely identify their local boundary rows in structurally unsymmetric cases.

In the Boundary Node Identification algorithm each processor initially identifies
as many internal and external boundary nodes as possible by scanning once through
its adjacency lists. Note that if Ptt owns rows i and j but not k, and its adjacency
list contains the entries k € adj(i) and k 6 adj(j), then the external boundary row
k will be discovered twice. We implemented a SortedSet class to deal with this
non-uniqueness problem. When an element (row index) is added by invoking this
class’s insert method, the element is inserted into a sorted list, or discarded if an
identical element was previously inserted. Ensuring that the set of external row
indices is sorted lessens the complexity of determining which processor owns which

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

II

III
II

P_0

• • •
• •

• •
P-1

• •
• • •

•
F ig . 25. Identifying boundary nodes in unsymmetric graphs. The graph (top) o f an unsym

m etric matrix (bottom) has been partitioned amongst two processors. Nodes 2, 3, 4, and 6 are

boundary nodes. Processor Pi can discern, by scanning its load adjacency lists, that local node 4

and external node 2 are boundary nodes, but cannot discover that local node 6 is also a boundary

node. Processor Po can discern, by scanning its local adjacency lists, that nodes 2 and 3 are local

boundary nodes, and nodes 4 and 6 are external boundary nodes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

rows, a point upon which we will not comment further.
Each processor must now tell all other processors of any external boundary nodes

of which it is aware. This involves a call to MPI-Alltoall, wherein each processor
sends every other processor a scalar value. A processor Pu sends a value ‘x’ to every
other processor Pv, indicating the number of boundary nodes that Pu has identified
as belonging to Pv. Processors can then allocate buffer space for receiving the
lists of nodes (if any) from other processors, after which lists are exchanged via
asynchronous MPI-Isend and MPI_Irecv calls. Finally, each processor merges its
list of locally-identified boundary nodes with the lists of boundary nodes received
from other processors.

In addition to identifying all local boundary rows, the Boundary Node Identifi
cation algorithm permits a processor to completely identify all its neighbors in the
subdomain graph. Pv is Ptt’s neighbor if (1) Pu sent a nonzero datum to Pu during
the all-to-all exchange, and/or (2) Pu received a nonzero value from Pv during the
exchange.

The subdomain graph, which is the amalgamation of each processor’s list of
neighbors, is always symmetric. Suppose Pu owns matrix row i and Pv owns matrix
row j . Then there will be an undirected edge {Pu, P„} in the subdomain graph if
either or both of the matrix entries and o,i exist.

Once each processor has identified its neighbors in the subdomain graph the
global subdomain graph must be assembled, colored, and ordered. Our implemen
tation uses an algorithm wherein each processor sends the root processor P<j its
subdomain neighbor adjacency list. Pq then assembles the global subdomain graph
and broadcasts this graph to all processors. Finally, each processor employs an
identical algorithm to color and order the nodes in the graph.

Subdomain graph formation involves both a reduction and fan-out operation
and hence, like the all-to-all communication in the previous step, is not perfectly
scalable. However, given a priori information about the processor grid and dis
cretization technique, communication costs can sometimes be entirely eliminated.
For example, given a structured grid and the number of processors in the x, y, and
z directions, one can design simple algorithms to identify all neighbors and color
the subdomain graph. Note here that knowledge of the discretization technique is
essential. For example, in a 2D processor grid with a five-point stencil discretization

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

of PDEs, each processor has (at most) four neighbors. For a nine-point discretiza
tion, however, a processor has (at most) eight neighbors. In the former case two
colors will suffice for coloring, while the latter case require four colors.

Once all local boundary rows have been identified, each processor locally com
putes a permutation that orders its interior nodes first, then orders its boundary
nodes. Our convention is that interior nodes maintain the same relative ordering
before and after ordering, and similarly for boundary nodes; however, other options
are possible. For example, one could apply an ROM or nested dissection ordering to
the interior nodes, and/or unsymmetric row reorderings that may increase stability.

After local reordering processors must exchange the boundary node portion of
their permutation with their neighbors in the subdomain graph. Our model imple
mentation uses the following strategy. Pu sends to all its neighbors in the subdomain
graph the total number of boundary nodes in its subdomain, and receives from all
its neighbors the boundary node count in their subdomains. Processors can then
allocate buffers of the proper length to receive the permutation lists from their
neighbors. Finally, the actual permutation lists are exchanged via asynchronous
send/receive pairs.

Common practice is to store permutation information in an array, for example,
j = oldToNew[i] indicates that matrix row i is to be permuted to position j . This
approach would require all processors to maintain arrays of length m, where m is
the global number of rows in the matrix. Since this approach is not scalable, our
implementation stores local permutation information in a lookup array and external
permutation information (that received from other processors) in a hash table.

FACTORIZATION

Figure 26 contains a detailed description of the PILU factorization algorithm. This
is an expanded version of the high level description presented in Chapter 4, Fig
ure 19. The more comprehensive version presented here includes details such as
buffer allocation, additional communication pattern details, and access to external
rows during factorization. The factorization proper (steps 1 and 3) can potentially
employ many variants of ILU(£) or ILUT.

For factoring interior rows our implementation uses algorithms that are essen
tially unchanged from their sequential counterparts. Scalable factoring of boundary

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

Input: Adjacency graph representation of a matrix A , and its corresponding
subdomain graph object.
Output: The incomplete factors of the coefficient matrix.

1. Factor interior rows.

2. For all lower ordered neighbors in the subdomain graph: a. Receive
nonzero counts for the upper triangular portion of the neighbor’s bound
ary rows. b. Allocate buffer space to receive rows, and insert the buffer
space addresses into a hash table, c. Wait for all external rows to arrive.

3. Factor boundary rows. a. Previously factored locally owned rows to be
merged with the row being factored are referenced via standard sparse
row storage scheme, b. Previously factored external rows to be merged
with the row being factored are referenced via hash lookup.

4. For all higher ordered neighbors in the subdomain graph: a. Send
the nonzero count for the upper triangular portion of this subdomain’s
boundary rows. b. Send the upper triangular column indices and values
for this subdomain’s boundary rows.

5. Wait for all sends to complete.

 — -------------------------

F ig . 26. PILU factorization algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

rows, however, is a bit tricky. When factoring a matrix row i, common practice in
the sequential world is to expand the row into a working vector of length n, where n
is the number of global rows and columns in the matrix. However, this approach is
inherently unscalable since we cannot expect processors to have sufficient resources
to allocate arrays of length n. We therefore insert, retrieve, and update column
elements in the row being factored through use of a SortedList object. This object
only requires 0 (c) storage, where c is the number of nonzeros in the factored row.
The tradeoff is that the cost of the insert, retrieve, and update operations is po
tentially much more expensive than the 0(1) costs that would be incurred were we
able to use an array.

Currently, our SortedList object uses a simple list traversal to locate column
indices. This is arguably horrible, since it results in each lookup operation’s cost
being bounded by 0(c2). This cost could be reduced by using a more complicated
binary search, however, we believe our experimental results demonstrate that the
cost in practice is unlikely to be excessive.

During factorization, matrix row indices and values are transmitted between
processors. For simplicity, our implementation uses two send/receive pairs, one
for the integer data and one for the floating point data. Packing the integer and
floating point data into a single send/receive pair should reduce communication
costs.

TRIANGULAR SOLVE SETUP

In the triangular solve setup phase each processor informs its neighboring processors
in the subdomain graph of the vector indices it requires for completing its forward
triangular solve (solving Lw = x for w) and its backward triangular solve (solving
Uy = x for y). The lists of requested indices are exchanged a single time, in
this setup phase; the corresponding values will be exchanged repeatedly, whenever
preconditioner application is invoked by the Krylov solver. Figure 27 summarizes
the triangular solve setup algorithm.

The triangular solve setup phase is similar to the subdomain graph setup phase
in that, for structurally unsymmetric cases, a processor cannot necessarily identify
which nodes it needs to receive or send to whom by scanning its adjacency list
representation of the L and U factors. As before, if the filled matrix F — L+ U — I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

Input: The incomplete L and U factors in adjacency list representation, the
corresponding subdomain graph object, and the number of processors p.
Output: On return, persistent communications have been initialized.

1. Initialize elements in arrays counts-L^ and counts JJ\\ of length p to
zero.

2. Each processor Ptt scans its adjacency lists of L and U to determine the
boundary nodes required from other processors. (At the completion of
this step, count-L[PV] or count U[PV\ can be nonzero only if Pu and Pv
are neighbors in the subdomain graph.) a. For each external node i,
where i is required for a forward triangular solve involving L, and i is
owned by Pv, increment count J j[Pv], and insert i in the list of nodes
required from Pv. b. For each external node i, where i is required for a
backward triangular solve involving U, and i is owned by P„, increment
count.U[Pv], and insert i in the list of nodes required from Pv.

3. Processor Pu receives the number of nodes which its neighboring proces
sors P„ require for their triangular solves. (These are the counts from
the counts_L[] and counts .U^ arrays.)

4. Each Processor P„ allocates buffer space for receiving the lists of indices
required by its neighboring processors Pv for their triangular solves.

5. Processors exchange their lists of requested indices via asynchronous
send/receive pairs.

6. Each processor Pu allocates buffer space for receiving the values associ
ated with the index lists it requested.

7. Start persistent communication for sending and receiving the values.

FIG. 27. PILU triangular solve setup algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

is structurally symmetric, this information can be used to reduce communication
costs. Note that F may be structurally unsymmetric even when A is both struc
turally and numerically symmetric. F may become unsymmetric for many reasons,
e.g., due to roundoff error; when small values in A are discarded during factoriza
tion; when values in A are row scaled; or when ILUT is the factorization algorithm
of choice.

5.3 PRECONDITIONER APPLICATION

Figure 28 contains a description of the preconditioner application (triangular solve)
algorithm. The solves are similar to those used during the sequential solution of
LUy = x for y. The difference here is that values in the working vector w and
the solution vector x that are associated with boundary nodes must be sent to and
received from neighboring processors in the subdomain graph. Indices in w will
be received from lower ordered neighbors, and sent to higher ordered neighbors.
Indices in y will be received from higher ordered neighbors, and sent to lower
ordered neighbors.

This nearest-neighbor communication uses the persistent communications that
were established during the triangular solve setup phase. Additionally, as in the
factorization phase, we overlap computation and communication. Unlike the fac
torization phase, where hash tables were used to access local copies of external
data, in this phase we employ a global-to-local mapping strategy that permits the
direct lookup of external values in an array. (This strategy is also used in the trian
gular solve setup phase.) Our mapping strategies, and the algorithms employed to
send, receive, and access external vector values, were adopted from code and ideas
developed by Edmond Chow for the mat-vec multiply functions in his ParaSails
code [17].

5.4 PERFORMANCE EXPECTATIONS

Table 8 summarizes the communication patterns discussed in this chapter’s pre
ceding sections, and additional considerations discussed in this section. We have
divided communication into four categories, and indicated which patterns our im
plementation employs in the various setup and application stages. The patterns

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

Input: The incomplete L and U factors, and a vector x (the vector to which
the preconditioner is to be applied).
Output: The preconditioned vector y, where LUy = x.

1. Permute local portions of the the vector x.

2. Start receives from higher and lower ordered neighbors in the subdomain
graph as appropriate.

3. Perform forward triangular solve, Lw = x for w, on interior nodes.

4. Wait for values from w from lower ordered neighbors.

5. Perform forward triangular solve, Lw = x for w, on boundary nodes.

6. Send values from w to higher ordered neighbors.

7. Wait for values in y from higher ordered neighbors.

8. Perform backward triangular solve, Uy — w for y, on boundary nodes.

9. Send values from y to lower ordered neighbors.

10. Perform backward triangular solve, Uy = w for y, on interior nodes.

11. Unpermute local portions of the preconditioned vector y.

12. Wait for all sends to complete.

FlC. 28. Preconditioner application (triangular solves).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

Table 8

Communication pattern and scalability summary. The four communication patterns are listed,

from left to right, with reference to increasing globality; the more global the pattern, the poorer we

expect will be the algorithmic scalability. In the rightmost column, larger comp/comm ratios are

also indicative of better scalability.

Setup task
none

Communica
peer-to-peer

tion P a tte
reduction

rn
all-to-all

C om p/com m
ratio

exchange ownership
information X low

identify boundary
nodes X med
form, color, order
subdomain graph X high
local
reordering X infinite

identify neighbors
in subdomain graph X infinite
exchange
permutations X medium

symbolic and numeric
factorization X low

triangular solve
setup X low

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

are listed with reference to “increasing globality.” The more global the pattern,
the poorer we expect will be the algorithmic scalability. The first pattern is none,
or purely local operation. The second pattern is peer-to-peer, which we have also
referred to as nearest-neighbor, and is accomplished through calls to MPI_Irecv and
MPI_Isend. The third pattern is reduction, which is a global operation to which
each processor contributes data, with the result transmitted to all processors. The
contributed data may be scalar, as in the case of inner product computation, or
multi-valued, as in the case of subdomain graph formation. Our implementation
uses calls to MPI .Reduce for scalar data. For subdomain graph formation we employ
calls to MPI.Irecv and MPI_Isend, with all MPI_Irecv calls at the root processor,
followed by MPI_Bcast. The fourth pattern is all-to-all, wherein each processor
sends every other processor a unique piece of information; this pattern makes use
of the MPI_Alltoall call.

In addition to communication patterns, performance and scalability are influ
enced by the computation/communication (comp/comm) ratio. In general, the
larger the comp/comm ratio, the better the expected performance. Note that the
concept of comp/comm ratio is orthogonal to the concept of granularity. Granu
larity refers to the amount of independent work that can be performed before or
between communication stages. The comp/comm ratio, on the other hand, refers
to the total amount of computation and the total amount of communication; it says
nothing about how the computation and communication are interspersed.

Comp/comm ratios reflect globality as well as the total amount of communica
tion. For example, if a processor must perform some computation then transmit the
result to all other processors, we say that section of code has a lower comp/comm
ratio than it would were the processor only required to transmit the result to a
subset of the other processors.

Comp/comm ratios are a feature of hardware as well as software. For exam
ple, the Pentium chips in the Coral Beowulf cluster at ICASE are blazingly fast
computationally, but are connected together by Fast Ethernet, which nowadays is
considered somewhat slow . In contrast, the processors on ASCI Blue Pacific are
computationally slower than the Pentiums, but the interconnect is faster. Hence we

Coral has a second interconnect network, Gigabit Ethernet, which is fast. However, our
experiments and hence discussion only made use of the slower Fast Ethernet interconnect.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

categorize the comp/comm ratio of the Coral cluster as high, and the comp/comm
ratio of the ASCI Blue Pacific platform as low.

Amortization of the preconditioner setup time also influences expected perfor
mance. We amortize the setup time by dividing it over the total number of Krylov
iterations. Linear systems whose solution requires a relatively small number of
iterations—perhaps because we only wish to knock down their residuals by a cou
ple of orders of magnitude—have poor amortization behavior. For these systems
preconditioner setup time may become a performance limiter. On the other hand,
applications involving nonlinear systems typically require the solution of a series of
linear systems having similar structure. In these contexts subdomain graph setup,
symbolic factorization, and triangular solve setup steps need only be performed
when solving the first system. For subsequent systems this information can be
reused, and we need only perform numeric factorization. This type of application
has favorable amortization behavior. As previously noted, special symmetry and
structural information can sometimes be used to strengthen amortization behavior.

An important caveat concerning our model implementation is here in order.
Although we believe that our model PILU implementation is reasonably efficient,
there are several places, some of which were pointed out in preceding sections,
where, to ensure correctness and simplify the implementation, less than optimal
algorithms and MPI communication patterns were employed. However, virtually
all such shortcuts were taken during implementation of the preconditioner setup
phase. In contrast, we believe that our implementation of the triangular solve
(preconditioner application) phase is highly efficient.

5.5 EXPERIMENTAL RESULTS

Experimental scalability results for up to 400 processors on ASCI Blue Pacific
appear in Figures 29 and 30 and in Tables 9 through 12 (machine configuration
information for this platform appears in Appendix B). Results are for a PDE dis
cretized with a five-point stencil (three-point central differencing) on a 2D grid.
The problem was scaled from 65.5K unknowns to 26.2M unknowns; in all cases
each processor was assigned a square 256 subgrid (65.5K unknowns per proces
sor). Figures 29 and 30 are plots of the triangular solve timings that appear in
the rightmost column of the tables, which are averages over 20 iterations of CG.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tim
e

pe
r

tri
an

gu
lar

 s
olv

e
(s

ec
on

ds
)

tim
e

pe
r

tri
an

gu
lar

 s
olv

e
(s

ec
on

ds
)

108

Block Jacobi triangular solve scalability, ASCI Blue Pacific
0.3

bi ILU(V
b ILU(3
b ILU(6]

0.25

0.15

0.1

0.05
50 100 150 200 250 300 350 4000

processor count

FtG . 29. Block Jacobi triangular solve scalability (ASCI Blue).

PILU triangular solve scalability, ASCI Blue Pacific
0.45

PILU(1;
PILU(3
PILU(60.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05
50 100 200 250 300 350 4000 150

processor count

F ig . 30. PIL U triangular solve scalability (A SC I Blue).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

Each processor independently timed the various stages using MPI.Wtime; reported
timings are the maximum over all processors.

Although these results are for structurally symmetric matrices arising from dis
cretizations of PDEs on regularly structured grids with partitioning such that the
subdomain graph itself was also structured and symmetric, none of this a pri
ori “special” information was made visible during execution. In other words, for
experimental purposes both the matrix and subdomain graph were assumed un-
symmetric and unstructured. As discussed above, use of this special information
would have resulted in a large diminution of the subdomain graph setup time and
would also have reduced triangular solve setup times.

Figures 29 and 30 show that both PILU and Block Jacobi ILU triangular solves
have nearly perfect scalability over a wide range of scaled problem sizes. The four-
processor PILU case executed more quickly than the larger runs since in the four-
processor case each subdomain had only two neighbors in the subdomain graph.
For the larger runs most processors have four neighbors, and hence increased com
munication costs.

Our experience on ASCI Blue Pacific is that timings for identical runs show
considerable variance. For our reported results each run (each horizontal entry in
the tables) was repeated on three separate occasions. The figures in the tables
are for the fastest of the three timings, with selection based on the “application
per iteration” entry. Timing variance is readily discernible in the “subdomain
graph setup” column in the tables. For a given number of processors all entries
in this column should be identical, since the factorization level does not influence
subdomain graph setup time.

5.6 ANALYTIC COMPARISON OF PILU AND BLOCK JACOBI

Results and discussion in this and other chapters show that both Parallel ILU
and Block Jacobi ILU are highly scalable and effective preconditioning techniques.
PILU is more powerful than Block Jacobi in the sense that, for preconditioners
of approximately the same size (having similar nonzero counts) and level, PILU
preconditioned systems require fewer iterations to converge. In contrast, Block
Jacobi is far easier to implement and has lower setup cost and application cost per
iteration. In practice the choice between PILU or Block Jacobi preconditioning is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

T able 9

Scalability data, 400 processors (ASCI Blue). Timings in seconds. Local grid size is 256 x 256

(65.5K unknowns per processor, 26.6M globed unknowns). Application timings are averages over

21 solves. The “Setup, solve ” column represents the one-time cost fo r setting up communications

fo r transmitted of boundary nodes; this stage u not applicable to Block Jacobi, hence the zero

timings.

Setup A pplication
strategy level subdomain graph factorization solve per iteration

PILU 0 1.39 1.70 0.84 0.1547
1 1.59 2.04 1.03 0.1751
2 1.77 2.74 1.46 0.2049
3 1.53 3.68 1.91 0.2570
4 1.49 5.24 2.48 0.2898
5 1.64 7.23 3.54 0.3363
6 1.65 9.63 4.75 0.3627

Block 0 0.01 1.40 0 0.0973
Jacobi 1 0.03 1.47 0 0.1134

2 0.01 1.67 0 0.1305
3 0.02 1.80 0 0.1619
4 0.01 2.27 0 0.1887
5 0.01 2.58 0 0.2119
6 0.01 2.81 0 0.2343

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l

T able 10

Scalability data, 225 processors (ASCI Blue). Timings in seconds. Local grid size is 256 x 256

(65 .5K unknowns per processor, 14.7M global unknowns). Application timings are averages over

21 solves. The “Setup, solve” column represents the one-time cost fo r setting up communications

fo r transm ittal of boundary nodes; this stage is not applicable to Block Jacobi, hence the zero

timings.

Setup Application
strategy level subdomain graph factorization solve per iteration

PILU 0 1.27 1.62 0.80 0.1487
1 1.27 2.00 1.02 0.1769
2 1.58 2.62 1.34 0.2012
3 2.14 3.62 1.81 0.2393
4 1.47 5.21 2.55 0.2886
5 1.35 7.23 3.64 0.3244
6 1.41 9.32 4.46 0.3605

Block 0 0.01 1.31 0 0.0960
Jacobi 1 0.01 1.45 0 0.1092

2 0.01 1.73 0 0.1294
3 0.01 1.77 0 0.1617
4 0.01 2.24 0 0.1861
5 0.01 2.48 0 0.2076
6 0.01 2.71 0 0.2299

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

Table 11

Scalability data, 64 processors (A SC I Blue). Timings in seconds. Local grid size is 256 x 256

(65.5K unknowns per processor, 4-2M global unknowns). Application timings are averages over 21

solves. The “Setup, solve” column represents the one-time cost fo r setting up communications for

transmitted of boundary nodes; this stage is not applicable to Block Jacobi, hence the zero timings.

Setup A pplication
strategy level subdomain graph factorization solve per iteration

PILU 0 1.20 1.49 0.44 0.1343
1 1.05 1.87 0.64 0.1611
2 1.37 2.45 1.16 0.1923
3 1.24 3.41 1.47 0.2330
4 1.23 5.11 2.17 0.2677
5 1.05 6.94 2.87 0.3062
6 1.35 9.47 4.27 0.3397

Block 0 0.01 1.22 0 0.0910
Jacobi 1 0.01 1.44 0 0.1091

2 0.01 1.61 0 0.1247
3 0.01 1.69 0 0.1605
4 0.01 2.22 0 0.1803
5 0.01 2.63 0 0.2089
6 0.01 2.94 0 0.2355

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

Table 12

Scalability data, 4 processors (ASCI Blue). Timings in seconds. Locd grid size is 256 x 256

(65 .5K unknowns per processor, 262K global unknowns). Application timings are averages over 21

solves. The “Setup, solve” column represents the one-time cost fo r setting up communications for

transm ittal of boundary nodes; this stage is not applicable to Block Jacobi, hence the zero timings.

Setup A pplication
strategy level subdomain graph factorization solve per iteration

PILU 0 0.99 1.38 0.32 0.0986
1 0.99 1.66 0.42 0.1138
2 0.99 2.11 0.54 0.1307
3 0.99 2.76 0.80 0.1613
4 0.99 3.98 1.17 0.1902
5 1.00 5.33 1.75 0.2113
6 0.99 7.11 2.52 0.2389

Block 0 0.01 1.26 0 0.0913
Jacobi 1 0.01 1.34 0 0.1084

2 0.01 1.58 0 0.1234

3 0.01 1.81 0 0.1540
4 0.01 2.35 0 0.1788
5 0.01 2.59 0 0.2033
6 0.01 2.92 0 0.2270

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

Level 3 PILU and Block Jacobi per iteration application time
0.3

PILU(3)
Block Jacobi ILU(3)

-3T 0.25
T J

1•2 . 0.2
J
Si
S 0.15
3O)c
(0

• c 0.1
i.
1 0.05

300 350 400250100 150 20050
processor count

FlC. 31. Experimental a computation (A SC I Blue). The upper line in the graph represents

c + a values; the lower line represents c values; a is the vertical distance between the two lines,

here approximately 0.08.

likely to be determined experimentally. In this section, however, we formulate an
analytic performance comparison expression.

Let ip represent the number of iterations required for convergence of some linear
system when preconditioned with PILU, and let ib represent the number of itera
tions required for convergence when the linear system is preconditioned with Block
Jacobi ILU. We make the simplifying assumption that the time per iteration of an
unpreconditioned Krylov method (such as CG) remains constant when problem size
and processor number are scaled per our discussions throughout this chapter. Our
experiments show that both Block Jacobi and PILU application time per iteration
also remain (nearly) constant over a wide range of problem sizes. We therefore
let c represent the cost per iteration of one iteration of a Krylov solve precondi
tioned with Block Jacobi, and c + a the cost per iteration of a similar iteration
preconditioned with PILU.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

T a ble 13

Experimental a values for 2D five-point problems (A SC I Blue).

Level a
0 .0527
1 .0677
2 .0718
3 .0776
4 .1025
5 .1168
6 .1306

Experimental measurements of c and c + a are graphed in Figure 31. The results
are for a 2D, 5-point stencil problem run on ASCI Blue Pacific with local grid size
of 256 (?s 65K unknowns per processor). Pictorially, a is the distance between the
two plotted lines. Table 13 lists values for a based on the experiments presented in
the preceding section. Since the lines for preconditioner application timing for both
PILU and Block Jacobi ILU were seen to remain nearly flat for processor counts
ranging from 64 through 400, the values in the table were computed using data
from the 225 processor runs.

Disregarding preconditioner setup time, total solution time for a scaled sys
tem when Block Jacobi preconditioning is employed is db,and total solution time
when PILU preconditioning is employed is (c + a)ip. PILU should then be the
preconditioning method of choice when

ip(c + a) < ibC

which upon rearranging gives

Now let us assume we have a given grid and processor topology upon which
a series of PDEs will be discretized using a five-point stencil. The right-hand
side of Equation 11 is totally independent of any of the PDEs; it is a function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

of combinatorics only. Moreover, it remains constant as problem size is scaled
upwards. It will only change if each processor’s local grid size changes, or if some
different discretization method is employed.

In contrast, the ratio on the left-hand side is determined by the numerical
properties of the particular PDE (along with its boundary conditions) being solved,
when global grid and processor topology are held constant. If we solve a particular
PDE repeatedly, while scaling the problem size, the ratio will also be influenced by
the global grid size. In either case, however, the left-hand side remains constant.

Another interpretation of Equation 11 is that the smaller the a, the greater
will be the advantage in employing PILU. The value of a should shrink as subdo
main/interior boundary node ratios increase.

5.7 END-USER SCALABILITY PERSPECTIVE

Much of the discussion in this chapter has centered around details that may remain
opaque to end-users of the Euclid library. Faced with a multitude of preconditioning
codes from which to choose, users need quick answers to questions such as “does
the code scale for my problem?” and “is Euclid more effective than library X YZ in
reducing solution time for my problem?”

These are difficult questions to answer in an analytic sense, for any except the
simplest of problems. Since preconditioner setup time can be amortized over a large
number of Krylov iterations, the main determinant of solution time is the number
of Krylov iterations multiplied by the time for each Krylov iteration. The number
of iterations depends on mathematical properties of the system being solved and
the preconditioner. Timing for a single Krylov iteration is dependent on many
structural factors of the matrix, as discussed in this and the following chapter, and
defies simple summarization. In the future we hope to develop software that will
quickly analyze matrix structural properties, and use this as a guide in determining
timing per Krylov iteration.

Therefore, an answer to the question, “should I use Euclid?” is likely to remain
largely experimental. However, the following guidance is pertinent.

If ILU preconditioning is not effective for sequentially-solvable problems that
are similar to the problem of interest, then PILU is unlikely to be effective for
larger problems that can only be solved in parallel, and users should investigate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

other preconditioning approaches. If ILU preconditioning is effective for similar
sequentially-solvable problems, and if it is known that the problem can be parti
tioned in such a way that subdomains have large interior/boundary node ratios,
then PILU preconditioning is likely to be effective.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

CHAPTER 6

PARTITIONING AND INTERIOR/BOUNDARY NODE
RATIOS

In this chapter we are concerned with two issues that affect PILU performance.
The first issue is partitioning, by which we mean the manner in which a matrix and
its incomplete factor are distributed amongst the processors (here, as elsewhere, we
use “processors” synonymously with “subdomains”). The second issue is subdo
main size (the number of matrix rows or unknowns in each subdomain). Subdomain
size is a function of both processor number and global problem size. For our pur
poses partitioning and subdomain size are similar in their performance effects since
changes in either can modify subdomain interior/boundary node ratios.

For the scalability studies in this chapter, we are interested in examining what
happens when we either (1) hold the problem size constant, while increasing the
number of subodmains (processors); (2) hold the number of processors constant
while increasing problem size; or (3) hold both problem size and subdomain count
constant while varying the partitioning strategy. More fundamentally, we want to
examine how performance is affected by varying interior/boundary node ratios.

6.1 PARTITIONING AND ORDERING BACKGROUND

In the purest sense, partitioning is the division of the elements in a set into two
or more disjoint subsets (sometimes called blocks). In graph theory the set to be
partitioned is frequently taken to be the set of vertices in a graph. Due to our
construction wherein each vertex in a graph is associated with a unique row in a
matrix, we speak of “partitioning a matrix,” by which we mean the division of
matrix rows amongst two or more subsets, called subdomains.

Within this work we have implicitly assumed what we might call a domain
decomposition constraint. This is a constraint on how the set of vertices in G(A)
may be partitioned. Within each subdomain, every vertex is constrained to be edge-
connected to at least one other vertex in the same subdomain, and subdomains are
constrained to have large interior/boundary node ratios. The constraint is desirable
since large interior/boundary node ratios are essential for getting good performance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

out of PILU, and the largest ratios can usually be attained when nodes within a
partition block are connected. However, the assumption is not strictly necessary,
either theoretically or in our model implementation.

In the interests of full disclosure we note that the concept of partitioning a
graph or matrix is distinct from the concept of ordering (a.k.a, reordering) a graph
or matrix, though we have sometimes blurred the lines of demarcation. For example,
we have said that “each subdomain’s nodes (in G(A)) are ordered contiguously,”
and “each processor is assigned a rectangular section of a matrix, i.e., a contiguously
numbered set of rows.” In a more formal sense both these statements reflect the
operations of (1) partitioning a graph or matrix, followed by (2) ordering the vertices
or rows such that all members of each subset are numbered contiguously, and (3)
mapping each subdomain to a processor. Note, however, that one can sometimes get
good results by reversing steps (1) and (2), i.e., by performing a global ordering then
partitioning. For example, for some matrices one can attain high interior/boundary
node ratios by first computing an RCM ordering for G(A), then employing the
partitioning strategy of assigning contiguously numbered sections of matrix rows
to subsets.

6.2 DOES PILU PARTITION?

The high level PILU description presented in Chapter 4, Figure 19 states that PILU
begins by partitioning a matrix into subdomains and then distributing (mapping)
the subdomains amongst the processors. In Chapter 5, however, we said that our
model implementation takes as input a matrix that is assumed to already have been
partitioned and distributed. Since readers justifiably may find this confusing, some
clarification is in order.

The presentation in Chapter 4 is concerned with what we would theoretically
like to be able to do in order to get the best possible advantage from PILU pre
conditioning. In contrast, the discussion in Chapter 5 is concerned with the model
implementation, and is reflective of interface and memory limitations that must
be dealt with during the software design process. Our model implementation was
designed to conform to the following specifications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

1. When Euclid’s services are invoked by a Krylov solver, the matrix A in the lin
ear system Ax = b may only be accessed by a generic interface abstraction of
the form: getRov(rovIN, lenOUT, const colOUT[], const valsOUT[]).

2. Euclid should not make a duplicate copy of the matrix.

The getRovO abstraction implies that we are prohibited from directly access
ing or manipulating the solver’s private data structures. Although this may result
in some loss of efficiency during factorization, it greatly eases the burden of design
ing interfaces between Euclid and solver libraries. For example, as of this writing
PETSc’s petscm at.h header file identifies 17 matrix storage formats. Employ
ing the getRovO abstraction isolates Euclid from the details of these structures,
which PETSc considers private and subject to change. The second specification is
intended to reduce memory requirements.

To perform partitioning services, Euclid would need to duplicate the matrix
(which could be accomplished using the getRowO interface), partition, and redis
tribute the copy. Unfortunately, this would give rise to added overhead during the
triangular solves. Since we cannot partition and redistribute the matrix owned by
the solver, the result would be that, whenever the solver calls Euclid with a vector to
which the preconditioner is to be applied, the vector would have to be redistributed
before the triangular solves could commence, and the preconditioned vector would
have to be un-distributed before returning to the solver. These are details which,
while in no way profound, raise complications that were judged beyond the purview
of the model PILU implementation.

6.3 PARTITIONING AND INTERIOR/BOUNDARY NODE RATIO
EFFECTS

Our finite difference matrix generator class produces matrices that are partitioned
and distributed according to one of two strategies with respect to structured grids,
as illustrated in Figure 32. A grid contains n nodes (unknowns) and is of dimension
y/n x y/n for 2D problems, and n1/3 x n1/3 x n 1/3 for 3D problems. Matrices are
distributed amongst p processors.

In blocked partitioning, subdomains consist of square (2D) or cubic (3D) sub
grids. In this strategy the subdomain graph is itself regularly structured. For 2D

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

P_2 P_3

P 0 P 1

P_3

P_2

P_1

P 0

PlG. 32. Block and striped partitioning strategy comparison. Block (left) and striped (right)

partitioning strategies. A n n x n grid (individual grid points are not shown) has been partitioned

into four blocks and mapped to four processors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

T able 14

Interior/boundary node ratios and subdomain graph dimensions for blocked and striped parti

tioning.

Partitioning
Strategy

Subdomain
Dimensions

Interior/boundary
Node Ratio

Subdomain Graph
Dimensions

2D blocked v W f V j y/P* y/V

2D striped y/n x & y/n
2p 1 x p

3D blocked I a/2
6 V P <w •tt

l
X <w •O
l

x <M
i

3D striped $n
2p 1 X p

problems the subdomain graph has dimensions yfp x yfp, and each subdomain
asymptotically contains 4 y ^ interior/boundary nodes. The interior/boundary

node ratio is thus asymptotically These statistics, along with figures for
3D problems, are summarized in Table 14. Blocked partitioning is reasonably op
timal in terms of maximizing interior/boundary node ratios.

In striped partitioning, subdomains consist of “long skinny” rectangles. The
processor grid is of dimension 1 x p for both 2D and 3D problems. For 2D, sub-
domains have dimensions y/n x and contain 2y/n boundary nodes. The in
terior/boundary node ratio is thus asymptotically The striped partitioning
strategy is less optimal than the blocked strategy in terms of maximizing the inte
rior/boundary node ratios.

We can reason that a problem that has been stripe-partitioned will likely re
quire more iterations to converge than when it has been block partitioned as
follows. For Block Jacobi ILU, inter-subdomain coupling information is “lost”
at interior/boundary nodes. Since stripe-partitioned problems have larger inte
rior/boundary node ratios than their block-partitioned counterparts, we expect
there will be greater coupling information loss in the former. Therefore, at least for
well-behaved elliptic problems, we expect that striped partitioning will mandate
a greater number of iterations, thus increasing execution time. In contrast, the
preconditioners will contain fewer nonzeros, so application time per iteration will

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

shorten, which will decrease execution time.
PILU preconditioning preserves inter-subdomain coupling information, so it is

less obvious whether changing from block to striped partitioning should affect itera
tion counts. We suspect there is some effect, since the different partitionings result
in different matrix orderings and filled matrix structures. However, based on the ev
idence presented in chapter 4, we expect the reorderings to have scant effect when
subdomains are relatively large. On the other hand, striped partitioning should
definitely cause application time per iteration to increase, since the increased inte
rior/boundary node count lessens parallelism and increases communication costs.

6.4 SUBDOMAIN SIZE AND INTERIOR/BOUNDARY NODE EF
FECTS

Subdomain size (the number of unknowns per subdomain) is a function of both
problem size and the number of subdomains into which the problem is partitioned.
For a given partitioning strategy the “Interior/boundary Node Ratio” column in
Table 14 shows this relationship.

Suppose we gradually decrease problem size while holding the partitioning strat
egy and subdomain count constant. We are interested in the comparative perfor
mance of PILU with Block Jacobi ILU on a per-iteration basis. Let t& represent
execution time for a single application of a Block Jacobi ILU preconditioner, and let
tp represent execution time for a single application of a PILU of the same level. We
take as our metric the ratio tb/ tp. As problem size increases the interior/boundary
node ratio for PILU also increases, hence the triangular solve phase for PILU be
comes relatively less expensive in terms of communication. We thus expect that
the tb/tp ratio should also increase. (This relationship is shown experimentally in
Figure 35, which is presented in the next section.)

6.5 EXPERIMENTAL RESULTS

Experiments in this section were conducted on the ASCI Blue Pacific platform.
Machine configuration information for this platform appears in Appendix B.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

(y = 1) heat source

(x = 0)

insulated

BOX 1

BOX 3

BOX 2

(X = 1)
insulated

(y = 0) heat sink

F ig . 33. Laplacian 3-box problem description.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 D

F ig . 34. Solutions for the simple and 3-box Laplacian problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

6.5.1 PROBLEM DESCRIPTION

Although PILU was originally designed as a preconditioner for unsymmetric prob
lems, in real life a great many problems of interest are, and will continue to be,
elliptical in nature, symmetric, and positive definite. Some of these problems are
quite difficult to solve efficiently, so it is altogether fitting to inquire how PILU
performs on some of these seemingly simple problems.

Results in this section are based on the equation

V • aVtt = 0,

discretized on the unit square with interior/boundary conditions

u{x, 0) = 0

u{x, 1) = 1

u*(0,y) = 0

U x(l ,y) = 0.

This equation characterizes heat diffusion in a square plate with a heat source
along one side, a heat sink along the opposite side, and perfect insulation along
the two remaining sides. We examined two problems that are distinguished by
the function a(x, y). The diffusivity constant for the simple problem is a(x, y) = 1,
which is Laplace’s equation. The diffusivity constant for the three-box problem varies
with respect to the location of three inset “boxes,” and is illustrated in Figure 33.
Figure 34 shows visualizations of the solutions of both problems.

It is instructive at the outset to get a feel for how difficult these problems
are, compared to each other, and for varying ILU(£) factorization levels. Table 15
shows comparative convergence data on a naturally ordered 100 x 100 grid (10K
unknowns). The data shows that solving the 3-box problem is considerably more
difficult than the simple problem, particularly with preconditioners with low fac
torization level values.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

T a b l e 15

Convergence comparison, simple and three-box problem. Results for discretization on a 100 x

100 grid; convergence criterion was le8 residual reduction o f preconditioned system; the Krylov

method used was CG. The (*) indicates failure to converge after 5,000 iterations.

Problem
Level Simple Three-box

1 526 *

3 62 220
5 33 121
7 25 84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

6.5.2 EXPERIMENTAL RESULTS AND ANALYSIS

The simple and three-box problems were solved for two grid sizes, 350 x 350 (122.5K
unknowns) and 700 x 700 (490K unknowns), on a 7 x 7 processor grid (49 proces
sors) on the Coral cluster at ICASE. The problems were solved with both block
and striped partitioning. Due to the nature of the problem—the placement and
shape of the boxes for the three-box problem, and the boundary conditions for both
problems—one expects that the orientation of the striped partitioning “skinny rect
angles” should affect convergence behavior. We therefore used both x-striped and
y-striped partitioning, where x- and y- indicate the orientation of the long dimen
sion of the rectangular subdomains with respect to the standard labeling of the
Cartesian coordinate axes.

Results appear in Tables 17 through 20. The problems were solved using
PETSc’s CG Krylov solver with Euclid preconditioning. Convergence criterion
was le8 residual reduction of preconditioned system.

As in the previous chapter, no advantage was taken of problem symmetry or
structure. The implication—recalling also that our preconditioner setup implemen
tation has known inefficiencies—is that the timing values in both the factorization
and total timing columns are higher than would be expected for a more optimized
code. The trends indicated by the data in these columns, however, are most in
structive, and should be a valid indicator of expectations for other implementations.

Preconditioner setup timings for both x-striped and y-striped partitionings
should be in agreement, since the interior/boundary node ratios, and hence CPU
operation count and message traffic, is identical in both cases. Similarly, the time
per iteration (which is not shown, but can be calculated from data in the tables)
should be similar. The orientation of the rectangular subdomains should only affect
the number of iterations required for convergence. For y-striped partitioning, the
long dimension of the subdomains is aligned in the the direction of flow so, partic
ularly for Block Jacobi ILU, we expect this partitioning to converge faster (require
fewer iterations) than the x-striped partitioning.

Table 16 lists the interior/boundary node ratios for the partitioning strategies
and grid sizes reported on in this section. The larger ratios for the blocked cases
indicate that these partitionings have higher comp/comm ratios, and thus we expect
better performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

T able 16

Interior/boundary node ratios fo r experimental problems.

Nodes per
subdomain

Partitioning Strategy
striped blocked

2.5K
10K

3.6 12.5
7.1 25

Concerning x- and y-striped partitioning, from a physical viewpoint the most
important coupling is parallel to the y-axis, that is, from the side where the source
is located to the side where the sink is located. We therefore expect that y-striped
partitioning should outperform x-striped partitioning in terms of iterations required
for convergence, and this is in fact what the results show. (Since time per iteration
for both x- and y-striped partitioning is identical, here the number of iterations
directly reflects the comparative execution time.)

For nearly all cases block partitioning gave the fastest execution time. How
ever, for a fill level of three, y-striped partitioning tended to outperform block
partitioning; this was true for both PILU and Block Jacobi methods. For example,
in Table 20, “BLOCKED PILU level 3” required 4282 iterations to resolve, while
“y-STRIPED PILU level 3” only required 1318 iterations.

The higher level preconditioner conveyed greater benefit to the PILU runs than
to the Block Jacobi ILU runs. For example, of the 12 combinations of partitioning
(3 choices) and grid sizes (2 choices) and problem choice (2 choices), the fastest
execution time for 11 of 12 cases for PILU was observed with level seven precon
ditioning. In contrast, for Block Jacobi preconditioning only three out of the 12
combinations was resolved fastest with level seven preconditioning.

Figure 35 shows relative performance of PILU and Block Jacobi ILU on a per-
iteration basis for a block partitioned 2D problem on a 7 x 7 processor grid. As
predicted, for small subdomain sizes (i.e., small interior/boundary node ratios)
PILU performs poorly on a per-iteration basis compared to Block Jacobi ILU. As
subdomain size increases we begin to see asymptotic behavior.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

Triangular solve comparison, (20,49 processors, Coral)

0.9

0.8

3 0.7

1 “ 0.6

S 0.5
0.4

5 0.3
0.2

0.1

unknowns per subdomain

F ig . 35. Relative performance of PILU and Block Jacobi ILU (A SC I Blue). Results are for

a 7 x 7 processor grid on A SC I Blue Pacific. The plot shows t(,/tp as a function of the number of

local unknowns. (Global problem size varies from 4-9K to 4-4M unknowns).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

Table 17

Simple Problem (small), partitioning convergence effects (ASCI Blue). 122.SK unknowns. (*)
indicates failure to converge after 5,000 iterations.

Partitioning paralielization Timing (seconds)
Strategy method level its setup solve total

1 4315 3.9 79.8 83.7
pilu 3 221 4.4 4.7 9.1

5 130 2.2 3.0 5.2
BLOCKED 7 93 3.7 2.4 6.1

1 *

bj 3 364 .05 5.6 5.6
5 239 .06 3.9 3.9
7 222 .07 4.0 4.0

1 *

pilu 3 306 2.7 6.1 8.9
5 203 6.2 4.8 11.0

x-STRIPED 7 164 15.7 4.7 20.4
1 *

bj 3 498 0.5 7.0 7.1
5 429 0.5 6.5 6.6
7 370 0.7 6.7 6.7

1 *

pilu 3 226 5.8 4.6 10.4
5 174 6.2 4.3 10.6

y-STRIPED 7 139 12.8 4.0 16.9
1 *

bj 3 420 .05 5.8 5.9
5 410 .06 6.5 6.5
7 408 .08 7.1 7.2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

T a b l e 18

Simple Problem (large), partitioning convergence effects (ASCI Blue). 490K unknowns. (*)
indicates failure to converge after 5,000 iterations.

Timing (seconds)
level its setup solve total

Partitioning parallelization
Strategy method

pilu 558
238
176BLOCKED

720
338
335

pilu 568
268
214x-STRIPED

1118
576
543

pilu 404
267
209y-STRIPED

564
512
500

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

T able 19

Three-box problem (small), partitioning convergence effects (ASCI Blue). 122.5K unknowns.
(*) indicates failure to converge after 5,000 iterations.

Timing (seconds)
level its setup solve total

Partitioning parallelization
Strategy method

pilu 1618
556
399 3.8BLOCKED

2645
922
819

3099
845
629

pilu

x-STRIPED

3388
1550

pilu 801
724
494y-STRIPED

1401
1580
1312

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

T a b l e 20

Three-box problem (large), partitioning convergence effects (ASCI Blue). 122.5K unknowns.
(*) indicates failure to converge after 5,000 iterations.

Timing (seconds)
level its setup solve total

Partitioning parallelization
Strategy method

pilu 1618
556
399BLOCKED 3.8

2645
922
819

pilu 3099
845
629x-STRIPED

3388
1550

pilu 801
724
494y-STRIPED

1401
1580
1312

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

CHAPTER 7

SOLVING LARGE SYSTEMS

In chapter 5 we presented results with the intent of demonstrating that PILU
scales well on a per-iteration basis. In chapter 6 we presented results with the
intent of examining how partitioning and subdomain size affect boundary node
ratios and hence PILU’s performance. In this chapter we present results with the
intent of answering the million dollar question, “does PILU perform really well at
preconditioning large 2D and 3D systems?”

In chapters 5 and 6 our sample results were from the 2D realm. We chose to ex
amine scalability and performance affects on 2D problems because one can perform
meaningful scaling experiments with far fewer processors in much less time when
using 2D as opposed to 3D grids. For example, for a 2D block partitioned problem
one needs 9 processors in order to “fill the communication pipe,” as opposed to
27 processors for 3D problems. (By “fill the pipe” we mean there is at least one
processor that communicates with its neighbors to the maximum extent that any
processor will ever have to do so as the problem is scaled upwards.)

The PC Coral cluster at ICASE tends to have much faster turnaround time and
consistently delivers results with less variance than the ASCI Blue Pacific cluster
at LLNL. For these reasons Coral is this author’s platform of choice for gathering
the extensive experimental data needed to identify statistical performance trends.
However, the Coral cluster has far fewer CPUs than ASCI Blue Pacific. There are
enough processors to identify scaling trends for 2D problems, but doing so for 3D
cases is problematical.

In this chapter’s first section we present complete solution results for a typical
3D convection-diffusion problem. In the second section we present complete solu
tion results for a nonlinear radiative transport problem and the three-box problem
introduced in chapter 6. In both sections our interest is in holding problem size per
processor constant while varying the number of processors.

7.1 3D SYSTEMS

Results in this section axe based on the convection diffusion equation:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The diffusivity coefficient vector e was 0.01 in the x and y directions and 1
in the z direction. Homogeneous boundary conditions were used for all trials.
Derivative terms were discretized on the unit cube using 3-point central differencing
on regularly spaced nx XTiyXnz grids. The right-hand sides of the resulting systems,
Ax = 6, were artificially generated as b = Ae, where e is the all-ones vector. Systems
were solved using PETSc’s BICGSTAB Krylov method with Euclid preconditioning,
with convergence criterion of le-8 residual reduction.

The local grid size for all runs was 40x40x40, or 64,000 unknowns per processor.
(We also experimented with local grid sizes of 30 x 30 x 30 and 50 x 50 x 50, and
witnessed similar behavior.) As before, we made no use of known structural and
symmetry information, and remind the reader that total execution time would be
lower had we done so.

Tables 21 and 22 show iteration counts and timing results for PILU and Block
Jacobi ILU for levels 0, 1, and 2. In all cases ILU(l) preconditioning gave the
shortest execution time. Note that timings in the “per iteration” column are for
one iteration of the preconditioned Krylov solve (i.e, the “solve” column divided by
the “its” column). This differs from our usage in the tables in chapter 5, where we
considered “per iteration” timing with respect to preconditioner application. Fig
ure 36 illustrates scalability on a per-iteration basis for the preconditioned Krylov
solve. The time per iteration does not scale as well as we would like (in which case
we would see a flat line), however, the time required for one iteration only increases
by approximately 50% when scaling from eight to 343 processors, (scaling global
problem size from .5M to 22M). The line’s slope is attributable to the global nature
of the inner product computations in the Krylov solver. The PILU preconditioned
iterations, although more expensive than those for Block Jacobi ILU, scale equally
well.

Figure 37 plots total solution time (preconditioner setup plus the complete
Krylov solve) as a function of processor count (equivalently, global problem size).
PILU outperforms Block Jacobi as the problem is scaled upward, and more impor
tantly has an increasing advantage as problem size increases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

Timing for one iteration of preconditioned Bicgstab, ASCI Blue Pacific
0.55

PILU —-
Block Jacobi ILU — *

0.5

0.45

<0

0.4

0.35

0.3

0.25
350250 300150 2000 50 100

processor count

F ig . 36. Scalability of 3D convection-diffusion problem (A SC I Blue). Data is fo r a single

iteration of the preconditioned Krylov solve.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

se
co

nd
s

138

Total solution time, ASCI blue pacific
350

PILU
Block Jacobi ILU

300

250

200

150

100

50

0
300 350200 25015050 1000

processor count

F ig . 37. Convection-diffusion problem, total solution tim e (A SC I Blue).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

7.2 2D SYSTEMS

7.2.1 RADIATIVE TRANSPORT

Results in this section are for the nonlinear simplified 2D Radiative Transport
problem

- V • (aT^VT) = 0.

where (5 = 2.5 and a = 1.0. The problem was uniformly discretized in the unit
square with a five-point stencil and the boundary conditions

u(x, 0) = 1.0

u(x, 1) = 0.1

Ux(0 ,y) = 0

Uxihy) = 0.

This example, whose code is distributed with the PETSc source code [2], was
executed on up to 400 processors. Each processor was assigned 10,000 grid points,
so the largest instance solved contained 4 million unknowns. Solution in all cases
required eight or nine Newton iterations and a linear system was solved each iter
ation. Preliminary investigations on smaller numbers of processors indicated that
the shortest execution time was generally obtained with ILU(6) preconditioning.

Figure 38 shows execution timing result comparison when the linear systems
were preconditioned using PILU and Block Jacobi ILU. Due to the long execution
times for the larger problem sizes (e.g., the 400 processor run with Block Jacobi ILU
preconditioning requires approximately 25 minutes), only results for a factorization
level of six are reported. The results indicate that PILU increasingly outperforms
Block Jacobi PILU as global problem size increases, and that the linear solves
comprise the time-dominating kernel in this nonlinear problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

2D radiative transfer
1600

Block Jacobi ILU(6]
PILU(61400

1200CO
TJc
8 1000©<o

800
co«s
8
8
©

600

400

200

100 150 2 0 0 2 5 0 3 0 0 3 5 0 4 0 00 50
processor count

F ig . 38. Simplified 2D Radiative Transfer problem (A SC I Blue). Problem size is 10K un

knowns per processor. Results obtained from code distributed with PETSc. Solution for all problem

sizes required eight or nine newton iterations, and a linear system was solved each iteration. Pre

conditioning used level four PILU or Block Jacobi ILU.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

7.2.2 THREE-BOX PROBLEM

Tables 23 and 24 show results for the three-box problem that was described in
chapter 6, Figure 33. Convergence criteria was le-5 residual reduction of the pre
conditioned system. Each processor was assigned a 100 x 100 subgrid, for a total
of 10,000 unknowns. The number of processors was scaled from 9 (90K global un
knowns) to 225 (2.3M global unknowns). The systems were solved with PILU and
Block Jacobi preconditioning, levels three through seven.

Level three or four preconditioners were most effective for the smaller numbers
of processors. For the larger runs the level six or seven preconditioners gave the
fastest execution time. PILU preconditioning appears to derive greater benefit from
the higher levels for large numbers of processors. For example, for the 225 proces
sor runs a level six preconditioner gave the fastest solution time (78.55 seconds),
compared to a level seven preconditioner for PILU (63.75 seconds).

Block Jacobi ILU(£) failed to converge after 2000 iterations for level three pre
conditioning for the larger runs (64 or more processors), while PILU achieved con
vergence in all cases.

7.2.3 OPTIMALITY

The condition of elliptically dominated problems scales like the inverse of the mesh
spacing squared. For 2D problems on quasi uniform grids with N unknowns, this is
0 (N); for 3D problems with N unknowns this is 0 (N 2̂ 3). Incomplete factorization
preconditioners generally improve the constants in these condition number scaling
laws, but not the exponents. In contrast, multilevel methods such as geometric
multigrid or algebraic multigrid can improve these condition numbers to 0(1).
Therefore, ILU and its parallel forms cannot be expected to compete favorably with
optimal multilevel preconditioners on arbitrarily large elliptical problems. However,
PILU, being very general purpose, may be employed (recursively) as a “smoother”
component in difficult multilevel problems, where simple multigrid smoothers like
point Jacobi may be too weak. In this sense, an efficient parallel implementation
of incomplete fatorization may be considered part of an optimal algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

T a ble 21

3D convection-diffusion problem, PILU (ASCI Blue).

np level its setup
Timing

solve
(seconds'

total perlt
global

unknowns

0
8 1

2

219
99
89

4.94
8.58
19.08

56.74
32.79
37.88

61.68
41.37
56.96

0.2591
0.3312
0.4256

512K

0
27 1

2

351
177
149

8.80
14.53
31.25

97.62
62.92
67.61

106.42
77.45
98.87

0.2781
0.3555
0.4538

l.mM

0
64 1

2

481
249
219

8.61
15.26
33.90

144.88
94.15
106.65

153.49
109.41
140.55

0.3012
0.3781
0.4870

4M

0
125 1

2

613
327
281

8.57
15.27
33.63

203.99
135.58
145.38

212.56
150.85
179.01

0.3328
0.4146
0.5174

8M

0
216 1

2

769
417
351

9.28
16.27
34.92

303.41
187.35
195.19

312.69
203.62
230.11

0.3946
0.4493
0.5561

14M

0
343 1

2

907
523
445

9.60
16.10
35.27

379.41
263.44
269.84

389.01
279.54
305.12

0.4183
0.5037
0.6064

2.2M

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

T able 22
3D convection-diffusion problem, Block Jacobi ILU(l)(ASCI Blue).

Timing (seconds) global
np level its setup solve total perlt unknowns

8 0 275 1.42 57.05 58.48 0.2075 512K
1 161 1.88 40.69 42.57 0.2527
2 163 2.78 51.78 54.56 0.3176

27 0 411 1.39 89.17 90.55 0.2170 1.7M
1 267 1.88 71.92 73.80 0.2694
2 253 2.75 86.01 88.76 0.3400

64 0 617 1.31 144.92 146.23 0.2349 4M
1 369 1.79 106.07 107.86 0.2875
2 351 2.64 123.88 126.53 0.3529

125 0 751 1.33 206.21 207.54 0.2746 8M
1 505 1.72 160.01 161.73 0.3169
2 465 2.62 177.80 180.42 0.3824

216 0 913 1.32 268.52 269.84 0.2941 14M
1 641 1.72 223.15 224.87 0.3481
2 635 2.51 268.94 271.44 0.4235

343 0 1135 1.32 378.81 380.13 0.3338 22M
1 783 1.67 309.48 311.14 0.3952
2 749 2.51 391.45 393.96 0.5226

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

T a b le 23

2D three-box problem, PILU (ASCI Blue).

Timing (seconds) global
np level its setup solve total unknowns

9 3 497 1.05 17.91 18.96 90K
4 165 1.50 6.64 8.15
5 126 2.09 5.55 7.64
6 113 2.86 5.45 8.31
7 105 3.89 5.48 9.37

36 3 544 1.15 24.37 25.52 360K
4 332 1.83 18.18 20.01
5 257 2.30 13.37 15.67
6 216 3.28 13.11 16.39
7 191 4.70 12.74 17.44

64 3 778 1.32 40.45 41.77 640K
4 460 2.67 26.80 29.47
5 325 2.34 21.02 23.35
6 275 3.66 19.55 23.21
7 244 4.40 18.45 22.85

100 3 1035 1.20 71.63 72.83 1M
4 591 1.69 50.14 51.84
5 418 2.37 35.29 37.66
6 349 3.51 31.01 34.51
7 313 4.43 29.93 34.36

144 3 1346 1.36 103.84 105.19 1.4M
4 639 1.84 54.74 56.57
5 473 2.54 48.14 50.68
6 392 3.38 39.35 42.74
7 341 4.54 35.90 40.43

225 3 1699 1.27 158.40 159.66 2.25M
4 842 1.79 80.57 82.36
5 617 2.63 68.95 71.59
6 539 3.52 64.68 68.20
7 473 4.47 59.28 63.75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T a b l e 24

2D three-box problem, Block Jacobi IL U (l)(A S C I Blue).

Timing (seconds) global
np level its setup solve total unknowns

9 3 430 0.27 14.33 14.60 90K
4 251 0.34 9.45 9.79
5 387 0.37 15.68 16.05
6 354 0.42 15.42 15.84
7 368 0.46 17.40 17.85

36 3 1591 0.26 73.71 73.97 360K
4 474 0.34 21.96 22.30
5 504 0.37 26.28 26.65
6 464 0.42 24.08 24.50
7 368 0.46 23.06 23.52

64 3 2001 0.26 95.95 96.21 640K
4 683 0.33 37.85 38.18
5 583 0.37 33.62 33.99
6 656 0.41 42.89 43.30
7 490 0.45 30.57 31.02

100 3 2001 0.25 111.96 112.21 1M
4 824 0.32 48.37 48.70
5 636 0.36 39.17 39.52
6 582 0.40 42.07 42.47
7 558 0.44 49.31 49.75

144 3 2001 0.25 138.56 138.81 1.4M
4 897 0.33 63.18 63.50
5 733 0.35 51.07 51.42
6 669 0.39 53.76 54.15
7 641 0.43 50.21 50.64

225 3 2001 0.25 147.82 148.07 2.25M
4 1267 0.31 98.27 98.58
5 1001 0.34 84.12 84.47
6 915 0.38 78.18 78.55
7 875 0.42 87.88 88.30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146

CHAPTER 8

CONCLUSION AND FUTURE WORK

This thesis has presented new algorithms for computing ILU(£) structure, predict
ing ILU(l) storage requirements, and parallelizing preconditioner factorization and
application for all ILU variants. The algorithms spring from a collection of lem
mas and theorems, developed in Chapter 2, that elucidate the structure of ILU(£)
factors. Although we were not directly concerned with matrix numerical proper
ties, the experimental results presented indicate that the parallel algorithm can be
highly effective in practice.

The PILU algorithm is primarily intended for the preconditioning of scaled
problems on large numbers of processors. Results presented indicate it should be
far less effective from that standpoint of speedup, i.e., “solving a given problem
size faster.” The reason for this is that, as the number of processors increase, the
boundary node ratio within each subdomain decreases, and we have shown that this
degrades parallel performance. If one is only interested in obtaining speedup using
a relatively small number of processors, however, a shared-memory implementation
executed on an SMP node might give good results.

Our reported results are for a PILU implementation that uses MPI message
passing for inter-processor communication. A shared-memory implementation in
many respects would require far less software design effort. In such an implemen
tation, for example, there could be a single global permutation vector, and the
need for the explicit exchange of boundary node permutation information would be
eliminated. Additionally, one could return to the sequential practice, discussed in
Chapter 5, of performing the factorization by unpacking the row being factored in a
working vector of length n. However, a shared memory implementation is unlikely
to scale well to hundreds or thousands of processors.

It is possible that the concept of graph search algorithms could be extended to
include numeric factorization. The goal would be to reduce factorization time by
performing only those numerical updates that correspond to shortest path lengths.
This would probably result in less effective preconditioners, in the sense that re
quired iterations would increase, but this might be offset by a reduction in factor
ization time. However, we do not at present know how to design such an algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147

Although we have shown how to compute ILU(£) storage requirements in 0(ri)
space, the method has the same run time complexity as actually performing the
factorization. This stands in stark contrast to the e-tree storage prediction methods
for complete factors of symmetric matrices, which operate in essentially O(n) time
as well as 0(n) space. It is an open question whether a similar result can be devised
for incomplete factors.

The model PILU implementation has proven effective in practice; however, many
improvements can be made. As discussed in Chapter 5, the factorization (setup)
phase has known inefficiencies in communication and look-up of external bound
ary rows. Additionally, support should be added for complex numbers (researchers
from two different national labs have expressed interest in complex PILU). Some
PDE systems, such as the Navier Stokes equations, have multiple degrees of free
dom associated with each gridpoint. This results in a “small” block structure that
could be exploited to reduce both communication and computation time. Finally,
the model implementation supports only ILU(£) symbolic and numeric factoriza
tion. Support should be added for ILUT and other ILU variants. Fortunately,
due to Euclid’s object-oriented design, incorporating these additional factorization
methods requires no alteration to Euclid’s communication classes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

REFERENCES

[1] O . A x e l s s o n , Iterative Solution Methods, Cambridge University Press, Cam
bridge, UK, 1994.

[2] S. B a la y , W. D. G r o p p , L. C u rfm a n M c I n n e s , and B . F. S m it h ,

PETSc home page, http://w ww.m cs.anl.gov/petsc, 2001.

[3] R . B a r r e t t , M. B e r r y , T . F. C h a n , J. D e m m e l , J . D o n a t o , J. D on-

g a r r a , V . E ijk h o u t , R . P o z o , C . R o m in e , and H . Van d e r Vo r s t ,

Templates for the Solution of Linear Systems: Building Blocks for Iterative
Methods, 2nd Edition, SIAM, Philadelphia, PA, 1994.

[4] P . B a st ia n and G. HORTON, Parallelization of robust multigrid methods:
ILU factorization and frequency decomposition method, SIAM J. Sci. Stat.
Comput., 12 (1991), pp. 1457-1470.

[5] M. W. B e n so n , Iterative solution of large scale linear systems, tech. report,
Lakehead University, Thunder Bay, ON, 1972.

[6] M . B e n z i, W . J o u b e r t , AND G. M a t e e s c u , Numerical experiments with
parallel orderings for ILU preconditioners, Electronic TYansactions on Numer
ical Analysis, 8 (1999), pp. 88-114.

[7] M. B e n z i, J . M a r in , and M. T um a , A two-level parallel preconditioner
based on sparse approximate inverses, in Iterative Methods in Scientific Com
putation IV, D. R. Kincaid and A. C. Elster, eds., vol. 5 of IMACS Series iu
Computational and Applied Mathematics, IMACS, 1999, pp. 167-178.

[8] M. B e n z i a n d M. T u m a , A comparative 3tudy of sparse approximate inverse
preconditioners, Applied Numerical Mathematics, 30 (1999), pp. 305-340.

[9] ----- , Orderings for factorized sparse approximate inverse preconditioners,
SIAM J. Sci. Comput., 21 (2000), pp. 1851-1868.

[10] M . B e r n , J . R . G il b e r t , B . H e n d r ic k s o n , N . N g u y e n , and

S. T o l e d o , Support-graph preconditioners. Submitted to SIAM J. Mat. Anal,
and App., 29 pages, January 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.mcs.anl.gov/petsc

149

[11] E. G. Boman, D. Chen, B. Hendrickson, and S. Toledo, Maximum-
weight-basis preconditioners. Submitted to the Journal on Numerical Linear
Algebra, 29 pages, June 2001.

[12] A. M . B r u a se t an d H . P . LANGTANGEN, Object-oriented design of precon
ditioned iterative methods in Diffpack, ACM Transactions on Mathematical
Software, (1997), pp. 50-80.

[13] N. I. B uleev, A numerical method for the solution of two-dimensional and
three-dimensional equations of diffusion, Math. Sb., 51 (1960), pp. 227-238.

[14] L. CARROLL, Through the Looking-Glass, Project Gutenberg, Urbana, Illinois,
1991.

[15] T. C han and H. van der Vorst , Approximate and incomplete factor
izations, in Parallel Numerical Algorithms, D. E. Keyes, A. H. Samed, and
V. Venkatakrishnan, eds., vol. 4 of ICASE/LaRC Interdisciplinary Series in
Science and Engineering, Kluwer Academic Press, 1997, pp. 167-202.

[16] D. C hen and S. T oledo , Implementation and evaluation of Vaidya’s pre
conditioners. Submitted to Electronic Transactions on Numerical Analysis, 20
pages, August 2001.

[17] E. Chow, Parasails home page. http://ww .llnl.gov/CA SC/parasails,
2000.

[18] E. C how AND M. A. HEROUX, Block preconditioning toolkit.
h t tp : / /v w -u s e r s . cs .umn. edu/"chow/bpkit .html, 1997.

[19] ----- , An object-oriented framework for block preconditioning, ACM Trans.
Math. Softw., 24 (1998), pp. 159-183.

[20] E. CHOW and Y. Saad, Experimental study of ILU preconditioners of indef
inite matrices, J. Comput. Appl. Math, 86 (1997), pp. 387-414.

[21] ----- , Parallel approximate inverse preconditioners, in Eighth SIAM Conference
on Parallel Processing for Scientific Computing, March 1997. Minneapolis, MN,
(CD-ROM proceedings).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://ww.llnl.gov/CASC/parasails

150

[22] ----- , Approximate inverse preconditioners via sparse-sparse iterations, SIAM
J. Sci. Comput., 19 (1998), pp. 995-1023.

[23] T. H. C o r m e n , C. E. L e i s e r s o n , a n d R. L. R i v e s t , Introduction to
algorithms, McGraw-Hill, San Francisco, CA, 1990.

[24] E. F. D ’A z e v e d o , P. A. F o r s y t h , a n d W .-P. T a n g , Towards a cost-
effective ILU preconditioner with high level fill, BIT, 32 (1992), pp. 442-463.

[25] S. Doi AND A. L i c h n e w s k y , A graph-theory approach for analyzing the ef
fects of ordering on ILU preconditioning, Tech. Report 1452, Institut National
de Recherche in Informatique et en Automatique, Rocquencourt, BP105-78153,
Le Chesnay Cedex, France, 1991.

[26] S. Doi AND T. W a s h i o , Ordering strategies and related techniques to over
come the trade-off between parallelism and convergence in incomplete factor
izations, Parallel Comput., 25 (1995), pp. 1995-2014.

[27] J. J. D o n g a r r a , I. S. D u f f , D. C. S o r e n s e n , a n d H. A. v a n d e r

V o r s t , Numerical Linear Algebra for High Performance Computers, SIAM,
Philadelphia, PA, 1998.

[28] I. S. D u f f , A. M. E r i s m a n , C. W. G e a r , a n d J. K. R e i d , Sparsity
structure and Gaussian elimination, SIGNUM Newsletter, 23 (1988), pp. 2-9.

[29] I. S. D U F F a n d G. A. M e u r a n t , The effect of ordering on preconditioned
conjugate gradients, BIT, 29 (1989), pp. 635-657.

[30] I. S. D u f f AND J. R e i d , The multifrontal solution of indefinite sparse
symmetric linear equations, ACM Transactions on Mathematical Software, 9
(1983), pp. 302-325.

[31] V. ElJKHOUT, Analysis of parallel incomplete point factorizations, Linear Al
gebra and its Applications, 154-156 (1991), pp. 723-740.

[32] S. C. E i s e n s t a t AND J. W. H. Liu, Exploiting structural symmetry in
unsymmetric sparse symbolic factorization, SIAM J. Mat. Anal, and App., 13
(1992), pp. 202-211.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151

[33] P . FREDERICKSON, Fast approximate inversion of large sparse linear systems,
Tech. Report Math. Report 7, Lakehead University, Thunder Bay, Canada,
1975.

[34] A. G e o r g e , J. R. G il b e r t , a n d W. H. L i u , Graph Theory and Sparse
Matrix Computation, Springer-Verlag, 1993.

[35] A. G e o r g e a n d J. W. H. Liu, Computer Solution of Large Sparse Positive
Definite Systems, Prentice Hall, 1981.

[36] J. R. G il b e r t a n d J. W. H. L i u , Elimination structures for unsymmetric
sparse LU factors, SIAM J. Mat. Anal, and App., 14 (1993), pp. 334-352.

[37] G. G o l u b a n d J. M. O r t e g a , Scientific Computing, Academic Press, San
Diego, 1993.

[38] A. GREENBAUM, Iterative Methods for Solving Linear Systems, SIAM,
Philadelphia, 1997.

[39] K. G r e m b a n , G. M i l l e r , a n d M. Z a g h a , Performance evaluation of a
parallel preconditioner, in 9th International Parallel Processing Symposium,
Santa Barbara, April 1995, pp. 65-69.

[40] K. D. G r e m b a n , Combinatorial Preconditioners for Sparse, Symmetric, Di
agonally Dominant Linear Systems, PhD thesis, Carnegie Mellon University,
October 1996. Technical Report CMU-CS-96-123.

[41] J. L. GUSTAFSON, Reevaluating Amdahl’s law, Communications of the ACM,
31 (1988), pp. 532-533.

[42] J. L. G u s t a f s o n , G. R. M o n t r y , a n d R. E. B e n n e r , Development
of parallel methods for a 1 0 2 4 -processor hypercube, SIAM J. Sci. Comput.,
9 (1988), pp. 609-638.

[43] I. G u s t a f s s o n , A class of first-order factorization methods, BIT, 18 (1978),
pp. 142-156.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

152

[44] W. H a c k b u s c h , Iterative Solution of Large Sparse Systems of Equations,
vol. 95 of Applied Mathematical Sciences, Springer-Verlag, New York, U.S.A,
1993.

[45] W. H a c k b u s c h a n d G. W i t t u m , eds., Incomplete Decomposition ILU: Al
gorithms, Theory, and Applications, Notes Numer. Fluid Mech. 41, Vieweg,
Braunschweig, Wiesbaden, 1993.

[46] L. Haskins AND D. J. Rose, Toward a characterization of perfect elimination
digraphs, SIAM J. Comput., 2 (1973), pp. 217-224.

[47] M. R. H e s t e n e s a n d E. L. S t i e f e l , Methods of conjugate gradients for
solving linear systems, J. Res. Nat. Bur. Standards, 49 (1952), pp. 409-436.

[48] D. H y s o m a n d A. POTHEN, Symmetric reduction redux: Incomplete factors,
in Fifth Copper Mountain Conference on Iterative Methods, March 1998.

[49] ----- , Efficient parallel computation of ILU(k) preconditioners, in SC99, ACM,
November 1999. published on CDROM, ISBN #1-58113-091-0, ACM Order
#415990, IEEE Computer Society Press Order # RS00197.

[50] , Parallel incomplete factorization preconditioning, in Ninth SIAM Con
ference on Parallel Processing for Scientific Computing, March 1999. SIAM,
Philadelphia (CDROM).

[51] , Efficient parallel computation of ILU(k) preconditioners, Tech. Report
2000-23, ICASE, NASA Langley Research Center, Hampton, VA, 2000.

[52] , Parallel ILU ordering and convergence relationships: Numerical experi
ments, Tech. Report 2000-24, ICASE, NASA Langley Research Center, Hamp
ton, VA, 2000.

[53] ----- , A scalable parallel algorithm for incomplete factor preconditioning, SIAM
J. Sci. Comput., 22 (2001), pp. 2194-2215.

[54] M. T. J o n e s a n d P. E. P l a s s m a n n , An improved incomplete Cholesky
factorization, ACM Trans. Math. Software, 21 (1995), pp. 5-17.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

153

[55] G. K a r y p i s a n d V. K u m a r , Parallel threshold-based ILU factorization,
Tech. Report 061, University of Minnesota, Department of Computer Sci
ence/Army HPC Research Center, Minneapolis, MN 5455,1998.

[56] V. K u m a r , A. G r a m a , A. G u p t a , a n d G. K a r y p i s , Introduction to Par
allel Computing, Benjamin/Cummings Publishing Company, Inc., 1994.

[57] S. K u z n e t s o v , G. L o , a n d Y. S a a d , Parallel solution of general sparse lin
ear systems, Tech. Report IMSI-97-98, University of Minnesota, Minneapolis,
1997.

[58] C .-J. L in a n d J. J. M o r e , Incomplete Cholesky factorizations with limited
memory, SIAM J. Sci. Comput., 21 (1999), pp. 24-45.

[59] J . W. H. Liu, The role of elimination trees in sparse factorization, SIAM J.
Mat. Anal, and App., 11 (1990), pp. 134-172.

[60] ----- , The multifrontal method for sparse matrix solution: theory and practice,
SIAM Review, 34 (1992), pp. 82-109.

[61] S. M a a n d Y. S a a d , Distributed ILU(O) and SOR preconditioners for un
structured sparse linear systems, Tech. Report AHPCRC-94-027, Army High
Performance Computing Research Center, University of Minnesota, Minneapo
lis, MN, 1994.

[62] M. M agolu monga Made and H. A. van der Vorst, Parallel incomplete
factorizations with pseudo-overlapped subdomains, Parallel Computing, 27(8)

(2001), pp. 989-1008.

[63] ----- , Spectral analysis of parallel incomplete factorizations with implicit
pseudo-overlap, Numer. Linear Algebra App., to appear, 9 (2002).

[64] T . A. M a n t e u f f e l , An incomplete factorization technique for positive defi
nite linear systems, Math. Comput., 34 (1980), pp. 307-327.

[65] J. M e i j e r i n k a n d H. v a n d e r V o r s t , An iterative solution method for
linear systems of which the coefficient matrix is a symmetric M-matrix, Math.
Comp., 31 (1977), pp. 148-162.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

154

[66] ------, Guidelines for the usage of incomplete decompositions in solving sets
of linear equations as they occur in practical problems, J. Comput. Phys., 44
(1981), pp. 134-155.

[67] B. M. M u r r a y , C++ Strategies and Tactics, Addison-Wesley, 1993.

[68] T . A. OLIPHANT, An implicit numerical method for solving two-dimensional
time-dependent diffusion problems, Quart. Appl. Math., 19 (1961), pp. 221—
229.

[69] ------, An extrapolation process for solving linear systems, Quart. Appl. Math.,
20 (1962), pp. 257-267.

[70] S. P a r t e r , The use of linear graphs in Gauss elimination, SIAM Review, 3
(1961), pp. 119-130.

[71] D. J . R o s e a n d R. E . T a r j a n , Algorithmic aspects of vertex elimination
on directed graphs, Tech. Report STAN-CS-75-531, Computer Science Depart
ment, Stanford University, 1975.

[72] ------, Algorithmic aspects of vertex elimination on directed graphs, SIAM J.
Appl. Math., 23 (1978), pp. 176-197.

[73] D. J. R o s e , R. E. T a r j a n , a n d G. S. L u e k e r , Algorithmic aspects of
vertex elimination on directed graphs, SIAM J. Comput., 5 (1976), pp. 266-
283.

[74] Y. Saad, SPARSKIT: a basic tool kit for sparse matrix com
putations, tech. report, Research Institute for Advanced Computer
Science, NASA Ames Research Center, Moffett Field, CA, 1990.
h t tp : / /v w - u s e r s . c s . umn. edu /'saad /so ftw are . html.

[75] ------, Highly parallel preconditioners for general sparse matrices, Tech. Report
AHPCRC Preprint 92-087, University of Minnesota, Minneapolis, 1992.

[76] ----- , ILUT: A dual-threshold incomplete LU factorization, Numer. Linear Al
gebra App., (1994), pp. 387-402.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155

[77] Y. S a a d , Iterative Methods for Sparse Linear Systems, PWS Publishing Com
pany, 20 Park Plaza, Boston, MA 02116, 1996.

[78] Y. Saad AND M. Sosonkina, Enhanced parallel multicolor preconditioning
techniques for linear systems, in SIAM conf. Parallel Processing for Scientific
Computing, November 1999.

[79] B. F. Sm ith , P. B jorstad , and W. G r o pp , Domain Decomposition, Cam
bridge University Press, 1996.

[80] P . M . V a id y a , Solving linear equations with symmetric diagonally dominant
matrices by constructing good preconditioners (unpublished manuscript). A
talk based on the manuscript was presented at the IMA Workshop on Graph
Theory and Sparse Matrix Computation, Octoboer 1991, Minneapolis.

[81] H. A. VAN DER V o r s t , High performance preconditioning, SIAM J. Sci. Stat.
Comput., 10 (1989), pp. 1174-1185.

[82] ----- , Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the
solution of non-symmetric linear systems, SIAM J. Sci. Stat. Comput., 13
(1992), pp. 631-634.

[83] R. S. V a r g a , Factorization and normalized iterative methods, in Boundary
Problems in Differential Equations, R. E. Langer, ed., University of Wisconsin
Press, Madison, WI, 1960, pp. 121-142.

[84] C. V uiK , R. R. P . VAN NOOYEN, AND P. W e s s e l in g , Parallelism in ILU-
preconditioned GMRES, Parallel Comput., (1998), pp. 1927-1946.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

APPENDIX A

PREVIOUSLY PUBLISHED MATERIAL

The bulk of the material in Chapter 4 has been published in the SIAM Journal
of Scientific Computing [53]. Permission to use this material has been granted by
SIAM, per the following email, dated November 27, 2001.

SIAM is pleased to grant you permission to include the article “A scal
able parallel algorithm for incomplete factor preconditioning,” by David
Hysom and Alex Pothen, SIAM Journal on Scientific Computing 22
(2001), pp. 2194-2215, in your PhD thesis.

Please indicate that portions of your thesis were published in this article
and include the complete citation.

The SIAM copyright transfer agreement you, or your coauthor on behalf
of you, signed gives you the specific right to use the work in any other
work also authored by you. This includes your thesis.

Please let me know if you have any questions or if you need a hardcopy
letter.

Sincerely,

Mary Rose Muccie
Journals Publisher
muccieQsiam.org

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

157

APPENDIX B

EXPERIMENTAL PLATFORMS

Euclid, the model implementation of the PILU Algorithm, has been tested on a va
riety of platforms; this appendix summarizes the hardware characteristics of these
various machines. Readers should note, however, that Euclid’s development, and
the experiments reported in this dissertation, spanned a period of over 2 1/2 years.
As practitioners are aware, most large scale parallel platforms are in a continual
state of flux. Both software (operating system, compilers, MPI implementations)
and hardware are continually being modified, sometimes on a weekly basis. There
fore, the reported machine configurations may not reflect precisely the configuration
in place when experiments were conducted. However, the Euclid code has, for sev
eral months, performed reliably and consistently on all platforms tested, and it is
this author’s belief that the statistics presented below, coupled with the experimen
tal evidence reported in previous chapters of this dissertation, provide an accurate
reflective of what end users can reasonably expect in terms of performance.

B .l SGI ORIGIN2000

The SGI 0rigin2000 is located at NASA Ames Research Center (AMES). The
cluster employs SGI’s cc-NUMA architecture. The compute cluster Steger has
128 nodes, 256 CPUs and a total of 64GB system memory. Each processors is a
MIPS RISC R10000 64-bit CPU, with a 32KB two-way set-associative instruction
cache, a 32KB two-way set-associative data cache, and 4MB L2 cache. System bus
bandwidth as measured by bisection bandwidth is reported at 40GB/sec sustained,
50GB/sec peak.

B.2 CORAL PC BEOWULF CLUSTER

The Coral PC Beowulf cluster, located at ICASE, NASA Langley Research Center,
Hampton, Virginia, is a heterogeneous cluster consisting of 32 single CPU and 32
dual CPU compute nodes, built in four phases. The complete system has 54.5
GB of RAM and 1.2 TB of raw disk space. The communication network consists
of two fast ethernet switches trunked together via dual Gigabit Ethernet, with a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158

Gigabit Ethernet uplink to a Gigabit Ethernet switch connecting the servers and
one of the dual CPU 800 MHz Pentium III compute nodes. Coral’s 32 dual CPU
compute nodes are also connected via a high performance cLAN network in a full
bandwidth configuration, delivering up to 113 Mbyte/s with MVICH latency under
14 microseconds. This cluster runs Red Hat Linux 7.1 updated to Linux kernel
2.4.3-12 and tuned for high network performance.

Phase I started with the 32 single CPU nodes and the front-end server. Each
single CPU node has a 400 MHz Pentium II processor, 384 MB of 100 MHz RAM,
a fast 6.5 GB local disk, a floppy drive and a fast ethernet card.

Phase II added 16 dual CPU nodes, Gigabit Ethernet network and two file
servers. Each Phase II dual CPU node has two 500MHz Pentium III processors,
512 MB of 100 MHz RAM, a fast 14.4 GB local disk, a floppy drive and a fast
ethernet card.

Phase III added another 16 dual CPU nodes and the 32-node cLAN network in
a full bandwidth configuration. Each Phase III dual CPU node has two 800MHz
Pentium III ’Coppermine’ processors, 1 GB of 133 MHz RAM, a cLAN adaptor on
a 64-bit PCI bus, a fast 30 GB local disk, a floppy drive and dual fast ethernet.
The cLAN adaptors were also added to Phase II dual CPU nodes, so that a total
of 64 CPUs are connected to this high performance network fabric.

Phase IV replaced 24 of the old Phase I nodes with new 1.7 GHz Pentium 4
nodes with 400 MHz memory (PC800 RDRAM). The new machines also have more
memory (two have 2 GB each and the rest have 1 GB each). Initial uniprocessor
tests confirm that these nodes are about four times faster than the Phase I nodes
they replaced.

Experiments reported in this dissertation used the capabilities of phases I
through III, and the MPICH library and fast ethernet for communication.

B.3 SUN HPC 10000 STARFIRE

The Sun HPC 10000 Starfire server is located at Old Dominion University, Norfolk,
Virginia. The server contains 32 superscalar 64-bit RISC CMOS UltraSPARCTM-
II processors. This shared-memory NUMA machine contains a total of 32 gigabytes
of system memory. Each processor contains a 16KB direct mapped non-blocking LI
data cache, a 16KB direct mapped non-blocking LI instruction cache, and a 4MB

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

159

L2 direct mapped cache. Each CPU can execute 4 instructions/clock cycle (9-stage
pipeline), and has 4 integer, 2 floating-point, and 2 graphics execution units. CPUs
are rated at up to to 1.3 Gbytes/sec memory transfers.

The system has a Gigaplane-XB Interconnect that adheres to Sun Microsystems’
UltraSPARCTM Port Architecture (UPA) specification, which defines separate ad
dress and data paths. The Gigaplane-XB-a 16-byte wide, 16x16 non-blocking, true
crossbar connects the system boards via one global data router and four global
address buses. Separating the buses allows the data and address topologies to be
independently optimized for their respective purposes. In contrast, the four global
address buses allow four simultaneous address transfers or broadcasts throughout
the system.

B.4 ASCI BLUE PACIFIC

The ASCI Blue Pacific IBM-SP cluster is located at Lawrence Livermore National
Laboratory, Livermore, California. The machine is composed of 332 Mhz 604e
4-way SMP compute nodes. Each shared-memory node contains four CPUs, a
single Network Interface, and a total of 1.5 GB main memory. Each CPU has one
floating-point unit and one load/store unit; a 32KB LI 4 way associative cache
with 32 byte cache lines and an LRU replacement scheme; and a 500KB L2 cache.
Tests used IBM’s MPI library in user-space mode. Node to node bi-directional
bandwidth is 150 Mbyte/s.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA

160

David A. Hysom
Department of Computer Science
Old Dominion University
Norfolk, VA 23529

David Hysom received a B.S. in Sociology from The University of the State of New
York, 1991, and an M.S. in Computer Science from Old Dominion University in
1997. Much of his PhD academic career was supported by a GAANN fellowship
from the Department of Education. He has published several papers and technical
reports on the Parallel ILU algorithm, and has presented his work at several inter
national conferences. One of his papers was a runner-up for the best paper at the
Supercomputing ’99 Conference. David currently holds a post-doc position in the
Center for Applied Scientific Computing (CASC), at Lawrence Livermore National
Laboratory (LLNL), where he is working on the SAMRAI and EMSolve projects.

Typeset using ET]eX.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Old Dominion University
	ODU Digital Commons
	Winter 2001

	New Sequential and Scalable Parallel Algorithms for Incomplete Factor Preconditioning
	David A. Hysom
	Recommended Citation

	tmp.1569419729.pdf.lJP2r

