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ABSTRACT

NEW SEQUENTIAL AND SCALABLE PARALLEL 
ALGORITHMS FOR INCOMPLETE FACTOR 

PRECONDITIONING

David A. Hysom 
Old Dominion University, 2001 

Director: Dr. Alex Pothen

The solution of large, sparse, linear systems of equations Ax = b is an important 
kernel, and the dominant term with regard to execution time, in many applications 
in scientific computing. The large size of the systems of equations being solved cur­
rently (millions of unknowns and equations) requires iterative solvers on parallel 
computers. Preconditioning, which is the process of translating a linear system into 
a related system that is easier to solve, is widely used to reduce solution time and 
is sometimes required to ensure convergence. Level-based preconditioning (ILU(£)) 
has long been used in serial contexts and is widely recognized as robust and effective 
for a wide range of problems. However, the method has long been regarded as an 
inherently sequential technique. Parallelism, it has been thought, can be achieved 
primarily at the expense of increased iterations. We dispute these claims.

The first half of this dissertation takes an in-depth look at structurally based 
ILU(£) symbolic factorization. There are two definitions of fill level, “sum” and 
“max,” that have been proposed. Hitherto, these definitions have been cast in 
terms of matrix terminology. We develop a sequence of lemmas and theorems that 
provide graph theoretic characterizations of both definitions; these characteriza­
tions are based on the static graph of a matrix, G(A).

Our Incomplete Fill Path Theorem characterizes fill levels per the sum definition; 
this is the definition that is used in most library implementations of the “classic” 
ILU(£) factorization algorithm. Our theorem leads to several new graph-search al­
gorithms that compute factors identical, or nearly identical, to those computed by 
the “classic” algorithm. Our analyses shows that the new algorithms have lower run 
time complexity than that of the previously existing algorithms for certain classes 
of matrices that are commonly encountered in scientific applications.
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The second half of this dissertation presents a Parallel ILU algorithmic frame­
work (PILU). This framework enables scalable parallel ILU preconditioning by com­
bining concepts from domain decomposition and graph ordering. The framework 
can accommodate ILU(l) factorization as well as threshold-based ILUT methods.

A model implementation of the framework, the Euclid library, was developed as 
part of this dissertation. This library was used to obtain experimental results for 
Poisson’s equation, the Convection-Diffusion equation, and a nonlinear Radiative 
TVansfer problem. The experiments, which were conducted on a variety of plat­
forms with up to 400 CPUs, demonstrate that our approach is highly scalable for 
arbitrary ILU(£) fill levels.
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1

CHAPTER 1 

INTRODUCTION

1.1 THE UNDERLYING THEME

This dissertation is about structure, by which I mean the theoretical relationship of 
paths in the graph of a matrix to the location of nonzero entries in an incomplete 
factor of the matrix . Experimentally, the matrices we will be concerned with arise 
from the discretization of systems of partial differential equations (PDEs) on grids 
or meshes. Discretization of such PDEs give rise, directly or indirectly, to linear 
systems of equations of the form

Ax =  b.

Nowadays these systems are becoming very large, to the extent that we do not 
have computing resources to solve the problems by direct factorization, but must 
rely on iterative methods. In the most general terms, an iterative solution method 
begins with a guess at the actual solution, e.g., the zero vector. This guess is then 
refined (updated) during an iterative process by adding a correction vector, , to 
the most recent solution vector

.̂(i+l) _  x (i) -f-p(0

The update vector can be considered to be a (complicated) function of the original 
matrix A and the right-hand side vector b. Iterations are terminated and the system 
is considered solved when an exit criterion is satisfied. Typically, the exit criterion 
is specified as a relative reduction in the residual norm

| |r ^  11 < rtol * 1111 where r® = b — A x^ .

The choice of exit criterion is somewhat problematical. If the matrix A  is ill condi­
tioned a large reduction in the residual norm may translate to only a small reduction 
in the error norm. The error norm at the conclusion of the tth iteration is

||ew || =  jjx -  xw ||, where x  is the true solution.

This dissertation is formatted in accordance with the SIAM Journal on Scientific Computing.
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For experimental purposes, researchers frequently begin with a known solution z 
and generate an artificial right-hand side,

6 =  Az.

In such cases we can actually compute the true error (up to roundoff error in the 
machine), and hence can compare the residual reduction with the error reduction. 
While this may reveal information about the matrix’s conditioning, such an artifi­
cial right-hand side also removes the influence of real-life boundary conditions and 
source terms, which may lead to higher frequency components in the solution than 
when z is simply chosen.

A large number of iterative methods, operating on various principles, have been 
devised and investigated over the years [1, 38, 45, 77]. The multi-authored “Tem­
plates” book [3], which is available online at h t tp : / /w v .n e t l ib .o rg , provides a 
concise introduction and overview of both theory and implementation.

The convergence behavior (i.e., the required number of iterations) of the system 
being solved depends on the numerical properties of A; the quality of the initial 
guess; the specific iterative method of choice; and the right-hand side vector 6. For 
PDEs the vector b typically represents boundary conditions and forcing terms. The 
numerical properties of A  include definiteness, symmetry, condition number, the 
clustering and spread of the eigenvalues, and other properties.

Much past research has focused on the numerical properties of A and how these 
properties affect convergence. Quite a bit is known concerning the behavior of 
M-matrices and positive definite systems, although mathematicians remain some­
what puzzled (i.e., there is little theory) as to how the numerical properties of 
unsymmetric and indefinite systems affect convergence behavior.

This thesis is only peripherally concerned with the numerical properties of linear 
systems. Numerical properties make themselves known in the experimental sections 
wherein we report iteration counts, but nowhere in this thesis do we attempt to 
prove, in the numeric analytic sense, convergence bounds. However, the parallel 
ILU algorithms that are the topic of the second half of this dissertation can be 
interpreted in a sequential context as a matrix reordering followed by factorization. 
Hence, a plethora of known numerical results governing convergence behavior of 
ILU preconditioned systems is directly applicable.
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1.2 PRECONDITIONING REVIEW

Mathematically, preconditioning can be summarized as the process of translating 
the system

Ax  =  b

into the related system

M ~lAx  =  M ~lb

where the preconditioner M  in some sense approximates A. This is a representation 
of left preconditioning; more generally we have

M ilA M ;\M 2x) = M ~ \

where M  =  M\M2 «  A. This is referred to as split preconditioning. If M2 =  I  
the system degenerates to left preconditioning, and if M\ = I  we arrive at right 
preconditioning. Although split, left, and right preconditioned systems may have 
identical spectra, they sometimes require different numbers of iterations for con­
vergence; these phenomena are described in more detail in [77], and changing the 
preconditioner may change the norm in which convergence is most naturally mea­
sured.

The preconditioner M  is usually derived in some fashion from the matrix A. 
Sometimes, as in multigrid methods, information from the underlying grid of un­
knowns and discretization scheme may also be used. M  is usually not directly com­
puted, nor is the matrix-matrix multiplication Jiff1 A performed. In ILU methods 
one computes the factors L and U, where LU =  M. In approximate inverse meth­
ods one may compute either A/-1 or the factors L and U, where U~lL~l — M ~l.

The preceding description of preconditioning is abstract. What happens inside 
the computer for ILU preconditioning is this. Prior to the Krylov solve a precondi­
tioner setup function is called. This function takes as input the matrix A  and other 
parameters such as level or threshold (depending on the ILU method employed), 
and computes and returns a pair of incomplete factors of A. During each iteration 
of a Krylov solve a preconditioner application function is called. This function takes 
as input a vector, y , to which the preconditioner is applied, and the result is stored 
and returned as a vector z. For ILU(£) the setup function has the form:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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PC.SetupCconst Matrix A_in,
const integer le v e l.in ,
Matrix L.out,
Matrix U_out)

{
//compute and return L.out and U.out, where 
//L .out and U.out are ILU(level.in)
/ /  incomplete factors of A.in.

>

For left preconditioning the application function has the form:

PC.Apply(cont Matrix L.in, 
const Matrix U.in, 
const Vector y .in ,
Vector z.out)

<

//so lv e :  L.in * U.in * z.out = y .in
/ /  for z.out

>

Most practical preconditioning methods can be placed in one of the classes [3,
77]:

•  matrix-splitting, which includes Jacobi and SSOR;

•  polynomial;

•  Approximate Inverse;

•  domain decomposition;

•  Support-theory based;

•  multilevel;

•  ILU.
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This taxonomy is somewhat arbitrary. ILU preconditioners, for example, can be 
considered the result of matrix splitting, and Block Jacobi is identical to zero- 
overlap Additive Schwarz.

Approximate Inverse, domain decomposition, support theory, and ILU precon­
ditioning methods are discussed in separate subsections below. Brief descriptions 
of matrix-splitting and polynomial preconditioners follow.

A matrix can easily be split into strict lower triangular, diagonal, and upper 
triangular components, A =  E + D  + F. Jacobi preconditioning results from taking 
M  =  D, in which case the computation of M~l is trivially easy.

SSOR preconditioning is defined by the splitting

MSSOr(A) = ( D -  u,L)D~l(D -  uF).

In practice it is common to take u  =  1, since the determination of an optimal 
value for a; is a nontrivial task, apart from certain well studied cases with constant 
coefficients.

In polynomial preconditioning M  is defined by M ~l =  s(A), where s is some 
polynomial, e.g., Neumann or Chebyshev, of low degree. Polynomial precondition­
ing has a long history and is of interest due to its inherent parallelism. However, 
the method has limitations that appear to preclude its effectiveness as a general 
high-performance method. See [8] for additional discussion and references.

Most preconditioners have both point and block formulations. One should note 
that block is an overloaded term and potentially misleading, having several common 
connotations. First, when beginning with a set of equations such as Navier-Stokes 
(NS) in CFD, we end up with multiple unknowns (aka, degrees of freedom (DOF)) 
associated with each grid point. For 2D NS for example, each gridpoint has five 
DOF, and with nodal ordering the resulting (sparse) matrix is consequently com­
posed of dense 5 x 5  blocks. Thus, block may refer to a division of the matrix into 
equally sized square submatrices, such that each submatrix is either dense or zero. 
On the other hand, a matrix may be blocked into a number of square submatri­
ces where the block size is arbitrary, and has nothing to do with any underlying 
equation(s); in this case the blocks will generally be sparse. A good discussion of 
these distinctions can be found in [19]. Finally, in Block Jacobi preconditioning the 
connotation is of a block diagonal matrix, with all off-diagonal entries set to zero.

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.
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1.2.1 APPROXIMATE INVERSE PRECONDITIONING

There has recently been considerable interest in Approximate Inverse (APINV) 
preconditioning, wherein the matrix M ~l «s A~l is computed, either explicitly 
or in factored form. Depending on the specific algorithm, the inverse’s sparsity 
pattern may be entirely determined before numerical computation begins, initially 
determined then updated as numerical computation progresses, or entirely deter­
mined during the course of numerical computation. APINV methods are attrac­
tive from a parallel viewpoint since, once formed, preconditioner application con­
sists of easily parallelizable matrix-vector multiplications. However, while some 
algorithms for computing an approximate inverse are highly parallelizable (e.g., 
norm-minimization techniques such as SPAI), others are not. From a theoretical 
viewpoint, APINV preconditioning relies on the assumption that a matrix inverse, 
which is in general dense, can be well-represented by a sparse matrix. Justifica­
tion for this assumption is so far mostly experimental; it has been shown [28] that, 
given a matrix with an irreducible sparsity pattern, numerical values can always be 
assigned such that the inverse is completely dense.

The earliest use of approximate inverses in parallel environments is credited to 
Benson [5] and Frederickson [33]. Chow, et. al., [21] present a concise survey of 
various APINV methods. A wealth of analysis, algorithms, experimental data, and 
additional references can be found in [8, 9, 22].

APPROXIMATE INVERSE AND ILU COMPARISON

The study of APINV preconditioning is newer and hence less developed than that 
of ILU, and perhaps partially for this reason comparisons between APINV and ILU 
are inconclusive. Some researchers report that, although APINV preconditioning 
is sometimes more robust and stable than ILU, it has not (yet) turned out to be 
cost-competitive with ILU factorization [22]. Others report the APINV is superior 
to ILU for a variety of problems [7, 8, 22]. After perusing numerous experimental 
studies, this author is of the opinion that such seemingly conflicting reports are 
mostly a reflection of the enormity of the experimental space and the numerous 
possible bases for comparison. Problems may be symmetric or not, positive definite 
or not, well or poorly conditioned, etc. Preconditioning for either ILU or APINV 
may be left, right, or split. Matrices may be reordered and/or scaled. Performance
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comparison can be based on convergence (iteration count) or execution time, either 
of which can (and probably should) be considered in conjunction with a second 
dimension, the number of nonzeros in the preconditioner.

1.2.2 DOMAIN DECOMPOSITION AND GRAPH PARTITIONING

Briefly described, domain decomposition is the process of solving a system resulting 
from the discretization of one or more partial differential equations (PDEs) on a grid 
or mesh by partitioning the meshpoints into subdomains such that points within 
subdomains share physical locality. Each subdomain then constitutes a smaller 
problem that can be solved locally, although some subdomain solves may require 
boundary node information horn other subdomains. Domain decomposition thus 
revolves around the idea of divide-and-conquer [77].

In parallel computing, domain decomposition is often used synonymously with 
data decomposition, which is the process of decomposing and distributing data 
structures in a distributed memory environment. On the other hand, domain de­
composition is also used to refer to the collection of local solutions, used as a 
preconditioner for solution of a system of algebraic equations [79].

Domain decomposition terminology has been borrowed by researchers and im­
plementors working in linear algebra and graph theory, and it is now common to 
refer to “subdomains” rather than “subgraphs,” even for systems having no direct 
physical counterpart. See [57, 78] for a discussion of this development.

PARTITIONING, LOCALITY, AND COMMUNICATION COSTS

A key component implicit in domain decomposition methods is the principle that 
nodes inhabiting a common subdomain share locality. They should have, on aver­
age, higher connectivity with each other than with nodes in foreign subdomains. 
This locality may arise naturally, as is the case when formation of subdomains is 
guided by the physical features of a problem, or when behavior in different por­
tions of a physical system are described by different PDEs. Locality may also be 
artificially imposed. A domain decomposition method may take as input a grid of 
unknowns or a system of linear equations, and divide the whole into parts through 
employment of a partitioning algorithm that attempts to minimize the number of 
cut edges, a cut edge being an edge that crosses subdomain boundaries.
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In domain decomposition, cut edges represent scalar data dependencies. A cut 
edge indicates that the value associated with a boundary node in one subdomain is 
needed in the local solve of another subdomain. When there is a one-to-one mapping 
between subdomains and processors in a distributed computing environment these 
scalar data dependencies become communication dependencies.

DOMAIN DECOMPOSITION AND PARALLEL ILU COMPARISON

The Parallel ILU (PILU) algorithm proposed in the next section is similar to domain 
decomposition methods in its partitioning requirements. It is also similar in that 
the majority of computation is performed locally within subdomains. However, a 
cut edge in PILU represents a data (communication) dependency that involves the 
upper-triangular row of a matrix, whereas a cut edge in a domain decomposition 
method is typically interpreted as representing dependence on a value from a vector. 
It is then not surprising that PILU uses different data structures, and has different 
communication cost-analyses, than domain decomposition methods.

1.2.3 SUPPORT GRAPH PRECONDITIONERS

Over a decade ago, Vaidya proposed a family of preconditioners for M-matrices [80]. 
Later, Gremban, Miller, and Zagha [39, 40] extended the support graph theory 
that underlies the preconditioners, and constructed additional families of precon­
ditioners. The Vaidya preconditioners have recently been implemented and tested 
experimentally [16], and analytic and experimental research is ongoing [10, 11].

The support graph preconditioners can be interpreted as members of the ILU 
family. One first forms a spanning tree of G{A), then augments this graph with 
additional edges. This results in a preconditioner matrix that contains only a por­
tion of the nonzero entries in A. A complete factorization of M  is then performed. 
This resulting L and U factors are thus incomplete factors of the original matrix, 
A. A primary attraction of support graph theory is that it points the way to the 
development of new analytical tools for analyzing convergence.
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1.2.4 ILU PRECONDITIONING 

GRAPH THEORETIC CONSIDERATIONS

Modeling of sparse factorization by sequences called elimination graphs is cred­
ited to Parter for symmetric matrices [70], and Haskins and Rose for unsymmetric 
matrices [46]. Many researchers subsequently contributed to the theory, one of 
the more influential works being that of Rose and Tarjan [73], wherein the Fill 
Path Theorem was introduced. This theorem gives a static characterization of fill 
for complete factorization, static meaning that fill is completely described by the 
structure of the graph of the initial matrix, G(A). This modeling and characteri­
zation led to the development of elimination trees, which form the basis for several 
practical algorithms for computing fill for the complete L and U factors of struc­
turally symmetric matrices. Liu’s survey article [59] provides an overview of many 
of these developments.

An elimination tree is the transitive reduction of the directed graph of the 
Cholesky factor L of a matrix A. This means that, if the factor contains a nonzero 
entry then there is a fill path joining nodes i and j  in G(A), and a directed 
path joining nodes i and j  in the elimination tree. Elimination trees are thus 
path-preserving, but not path-length preserving.

ILU ALGORITHMS

ILU preconditioners were first developed for M-matrices [65], a canonical example 
of which is the Laplacian discretized on a regular grid using central differencing with 
three point support in the x  and y directions. More formally, A is an M-matrix if 
it is invertible, has all diagonal entries an > 0, all off diagonal entries < 0, and 
all entries in the inverse (diagonal or otherwise) a~l > 0.

Many ILU variants have been developed over the years, most of which can be 
placed into either of two categories, structure-based ILU(£) and threshold-based 
ILUT. In ILU(£) the locations of permitted nonzero entries are determined in a 
symbolic phase; this is followed by a numeric phase, wherein the actual values are 
computed. This two-step procedure is analogous to that used for direct factorization 
of symmetric matrices, where the factor’s structure is first computed through use 
of its elimination tree. In ILUT, symbolic and numeric factorization is interleaved
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on a row by row basis. A row is updated from a previously factored row, and 
entries permitted in the factor, only if the pivots or entries are larger than some 
specified value. It is also common practice to put an upper limit on the number of 
permitted entries in each row regardless of numeric value, e.g., only five entries may 
be permitted in a row in addition to the number of entries in the corresponding 
row of A.

Although ILU preconditioning is widely used and considered robust and effec­
tive for a wide range of problems, the method can fail for a variety of reasons. The 
following summary is taken from Chow and Saad [20], which provides an excel­
lent review and reference list. Existence and a form of stability can be proved for 
M-matrices [65], however, diagonal perturbations are required to help guarantee 
existence for the general positive definite case. Unsymmetric matrices are more 
problematical; here, the L and U factors may be much more poorly conditioned 
than A, and the solves unstable. These problems can worsen for indefinite matrices. 
Factorization may fail, or inaccuracies arise, due to zero or very small pivots. Exces­
sive inaccuracies can be introduced if the dropping strategy results in the discard of 
too many nonzero entries. Even when factorization goes through, the factors may 
be far from diagonally dominant, resulting in unstable triangular solves.

ILU PRECONDITIONING AND PARALLELISM

Per the review by Chan and van der Vorst, [15], most researchers agree that par­
allel computation of ILU preconditioners necessitates trading off convergence for 
parallelism. The review identifies three methodologies for extracting or increasing 
parallelism in ILU methods: matrix reordering, replacement of ILU by a series 
expansion or polynomial preconditioner, and domain decomposition.

Numerous theoretical and experimental results have been reported regarding the 
interplay of ordering, parallelism, and convergence [6, 29, 31]. Most authors con­
clude that orderings that are “highly parallel,” such as red-black in matrices whose 
graphs are two-colorable, result in increased iterations during iterative solution. 
Most of these studies, however, concentrate on preconditioners that have approx­
imately the same number of nonzeros as the initial problem. When additional fill 
is permitted the “parallel” orderings can actually result in fewer iterations; this is 
clearly evident in Duff and Meurant’s study in the results for ILUT and ILU(l) [29].
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Permitting increased fill, of course, results in increased execution time in both the 
factorization phase and each application phase, and requires additional storage. For 
these reasons preconditioner effectiveness can best be measured by execution time, 
with a careful eye towards resource availability.

1.3 NEW CONTRIBUTIONS, RELATION TO EARLIER WORK, 
AND THESIS SUMMARY

The following lists the primary new contributions presented in this dissertation. 
Each contribution, and its relationship to previous work, is discussed in the subse­
quent paragraphs. This section also serves as a roadmap to the remainder of this 
work.

•  Graph theoretic characterization of ILU(£) fill.

•  Graph-search algorithms for computing ILU(f) fill and storage requirements.

•  Scalable parallel ILU algorithmic framework (PILU).

1.3.1 GRAPH THEORETIC FILL CHARACTERIZATION

Chapter 2 of this work contains a sequence of lemmas and theorems that char­
acterize where fill occurs in ILU(f) factors. We show that fill can be determined 
“statically,” by examining the graph of a matrix, G(A), and that the nonzero 
structure of each row in the incomplete factors L and U of A  can be determined 
independently. We develop characterizations for the two commonly used fill defi­
nitions, the sum rule and the max rule. Hitherto, these rules were cast in terms of 
matrix nomenclature, i.e, in terms of two nonzero entries in a matrix that cause 
a previously zero entry to “fill” during factorization. Our theorems show that the 
level of a fill entry corresponds to a path length in a graph.

Our fill theorems are generalizations of the original fill path theorem which, as 
discussed above (Section 1.2), did not encompass the concept of fill path length. 
We add the result that fill path lengths are determinants of fill levels in matrices.

Our characterization for fill in factors computed using the sum rule (Theorem 4) 
was known to D’Azevedo, Forsyth, and Tang [24], who reported a similar finding. 
There are two differences between their work and ours. First, although they were
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clearly aware of the connection, they defined all fill levels in terms of path lengths 
in G(A). We start with a far weaker premise. We only define level 0 fill entries, 
which are nonzero entries in the original matrix, A. We then use a graph theoretic 
model of row-oriented Gaussian elimination to prove the “if-and-only-if ’ relation­
ship between path lengths in graphs and fill levels in matrices.

Second, D’Azevedo, Forsyth, and Tang’s characterization used the concept of 
reachable sets, which is inherently dynamic in nature. A reachable set refers to the 
set of vertices that has been removed from a graph during Gaussian elimination. 
This concept is not needed as long as one assumes that an ordering is associated 
with the vertices. Employing reachable sets obscures the observation that the fill 
path lengths are static in nature, and hence the nonzero structure of each row in 
the matrix can be determined independently of that of any other row.

We also develop a static characterization of fill for ILU factors that are computed 
using the max rule. To the best of our knowledge there is no previous work in this 
regard. Finally, we show where the two characterizations coincide, and where they 
differ.

1.3.2 GRAPH-SEARCH ALGORITHMS

Chapter 3 contains several new algorithms for computing ILU(£) structures. Pre­
vious algorithms (“classical ILU(£)”) for computing ILU(£) structures operated by 
merging in previously factored rows of the U factor with the current row being 
factored. Our algorithms operate on a different principle: they determine structure 
by performing breadth first searches in the graph G(A). These algorithms are a 
natural extension of the theorems developed in Chapter 2.

Determining fill by performing searches in graphs is not an entirely new con­
cept. Eisenstat and Liu [32] used depth first searches to compute fill for complete 
L and U factors of matrices. The main thrust of their work was to speed up the 
symbolic factorization process of structurally unsymmetric matrices by making use 
of that portion of a matrix that might be symmetric. (Although the elimination 
tree leads to very fast algorithms for computing the structure of complete factors 
for symmetric matrices, there is no equivalent method for computing the structures 
of structurally unsymmetric matrices.) Gilbert and Liu [36] also presented an al­
gorithm for computing the structure of complete L and U factors. Their algorithm
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combines row-merging and graph-search features.
To the best of our knowledge, we are the first to design graph search algorithms 

for computing incomplete L and U factors. We prove that our new algorithms have 
lower run time complexity than the classical algorithm for matrices arising from 
PDG discretizations on 2D and 3D grids.

We also show how these algorithms can be modified to compute ILU(£) stor­
age requirements in O(n) space. This is an advancement over current approaches, 
which either artificially limit the amount of fill by, for example, stipulating the 
maximum number of nonzero entries permitted in any row of the factor, or dy­
namically reallocate storage during the factorization process. Placing an artificial 
limit is disadvantageous since numerically large entries (which one would like to 
remain in the factor) may be arbitrarily dropped, thereby lowering preconditioner 
effectiveness. Dynamic reallocation is disadvantageous due to system call overhead 
time, and the possibility of memory fragmentation.

1.3.3 PARALLEL ILU ALGORITHMIC FRAMEWORK

Chapter 4 introduces a Parallel ILU preconditioning framework that can accommo­
date both ILU(£) and ILUT factorization methods. Chapter 5 contains amplifying 
theory and results that show the method is scalable. Chapter 6 examines how 
partitioning and subdomain size effect the algorithms performance. Chapter 7 con­
tains additional results. Our algorithm attains parallelism through a dual (global 
followed by local) reordering phase, and imposes a subdomain graph constraint 
that permits communication patterns to be determined prior to factorization, thus 
minimizing the possibility that long sequential dependency paths will arise during 
the factorization process.

Although developed independently, our preconditioning algorithm shares fea­
tures with work reported by other researchers. Earlier attempts at parallel algo­
rithms for preconditioning (including approaches other than incomplete factoriza­
tion) are surveyed in [15, 27, 81]; orderings suitable for parallel incomplete factor­
izations have been studied inter alios in [6, 26, 29]. The surveys also describe the 
alternate approximate inverse approach to preconditioning.

Saad [77, Section 12.6.1] discusses a distributed ILU(O) algorithm that has the 
features of graph partitioning, elimination of interior nodes in a subdomain before
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boundary nodes, and coloring the subdomains to process the boundary nodes in 
parallel. Only level zero preconditioners are discussed there, so that fill between 
subdomains, or within each subdomain, do not need to be considered. No imple­
mentations or results were reported, although Saad has informed us recently of 
a technical report [61] that includes an implementation and results. Our work, 
done independently, shows how fill levels higher than zero can be accommodated 
within this algorithmic framework. We also analyze our algorithm for scalability 
and provide computational results on the performance of PILU preconditioners. 
Our results show that fill levels higher than zero are indeed necessary to obtain 
parallel codes with scalability and good performance.

Karypis and Kumar [55] have described a parallel ILUT implementation based 
on graph partitioning. Their algorithm does not include a symbolic factorization, 
and they discover the sparsity patterns and the values of the boundary rows after the 
numerical computation of the interior rows in each subdomain. The factorization 
of the boundary rows is done iteratively, as in the discussion given above, where we 
show how the subdomain graph constraint might be relaxed. The partially filled 
graph of the boundary rows after the interior rows are eliminated is formed, and this 
graph is colored to compute a schedule for computing the boundary rows. Since 
fill edges in the boundary rows are discovered as these rows are being factored, 
this approach could lead to long dependency paths that are 0(p). The number 
of boundary rows is fl(iV1/2) for 2D meshes, and Q(N2̂ 2) for 3D meshes with 
good aspect ratios. If the cost of factoring and communicating a boundary row is 
proportional to the number of rows, then this phase of their algorithm could cost 
Sl(p>/N), severely limiting the scalability of the algorithm (cf. the discussion in 
Section 4.3).

Recently Magolu monga Made and van der Vorst [62, 63] have reported vari­
ations of a parallel algorithm for computing ILU preconditioners. They partition 
the mesh, linearly order the subdomains, and then permit fill in the interior and 
the boundaries of the subdomains. The boundary nodes are classified with respect 
to the number of subdomains they are adjacent to, and are eliminated in increasing 
order of this number. Since the subdomains are linearly ordered, a “burn from 
both ends” ordering is employed to eliminate the subdomains. Our approaches are 
similar, except that we additionally order the subdomains by means of a coloring
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to reduce dependency path lengths to obtain a scalable algorithm. They have pro­
vided an analysis of the condition number of the preconditioned matrices for a class 
of 2D second order elliptic boundary value problems. They permit high levels of 
fill (four or greater) as we do, and show that the increased fill permitted across 
the boundaries enables the condition number of the preconditioned matrix to be 
insensitive to the number of subdomains (except when the latter gets too great). 
We have worked independently of each other.

A different approach, based on partitioning the mesh into rectangular strips and 
then computing the preconditioner in parallel steps in which a “wavefront” of the 
mesh is computed at each step by the processors, was proposed by Bastian and 
Horton [4] and was implemented for shared memory multiprocessors recently by 
Vuik, van Nooyen, and Wesseling [84]. This approach has less parallelism than the 
one considered here.

1.4 CODE AVAILABILITY

As part of this dissertation, a model PILU implementation, the Euclid li­
brary, was designed and implemented. This library, which is implemented 
in C, has been tested on various experimental platforms, as detailed in Ap­
pendix B. The code is freely available for download, along with an in­
terface to PETSc [2], at h ttp  ://w v .c s .o d u .ed u '/p o th en /so f tware.html or 
h t tp : //www. c s .odu.edu/~hysom/Euclid/index.html.
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CHAPTER 2 

INCOMPLETE FILL PATH THEOREMS

2.1 IN TR O D U C TIO N

Two incomplete fill path theorems, which are the primary theoretical contribution of 
this work, are generalizations of the original fill path theorem, due to Rose, Tarjan, 
and Leuker [72, 73]. The original theorem characterizes fill for the complete factors 
of a matrix, A  =  LU. It describes an intimate relationship between the structure of 
the graph of any given matrix, and the structure of the graph of that matrix’s factors 
(for brevity, we sometimes abbreviate “the structure of the graph of a matrix” to 
“the structure of a matrix”):

Definition 1 A fill path is a path joining two vertices i and j ,  all of whose interior 
vertices are numbered lower than the end vertices i and j .

Theorem  2 Let F  = L + U — I  be the filled matrix corresponding to the complete 
factorization of A. Then fij ^  0 if and only if there exists a fill path joining i and 
j  in the graph G(A) [72, 73].

This theorem tells us that one can determine where fill will occur during fac­
torization without actually performing the factorization. That is, fill locations are 
directly discernible from the initial graph. Hence, the theorem is said to provide a 
“static” characterization of fill.

(Regarding terminology, when describing the nonzero structure of a matrix’s 
factors researchers have variously used the terms “fill,” “fillin,” and “fill-in.” Usu­
ally, “fillin” or “fill-in” is used to describe entries that are zero in the original matrix 
but, due to the existence of a fill path, are allowed to become nonzero in the factor. 
We prefer to use the term “fill” to denote any nonzero entry in the factors. The 
term filled matrix denotes the matrix F  =  L +  U — I, where L and U are either 
complete or incomplete factors of A.)

Application of Theorem 2 has resulted in the gradual development of the notion 
of elimination trees, and many algorithms of practical importance for direct meth­
ods. Liu provides a good overview of these developments in [59]. For symmetric
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problems A  =  LLT, the structure of L  can be computed extremely quickly, in time 
essentially proportional to the number of nonzeros in the factor.

Just as in direct methods, it is possible to formulate static characterizations 
of fill for certain classes of ILU factors. ILU(£) and IC(£) factors are of interest 
since their products (although never explicitly formed during computation) have 
long been recognized as effective preconditioners for the iterative solution of impor­
tant scientific problems, e.g., elliptic systems resulting from the discretization of 
second-order partial differential equations (PDEs). For symmetric positive definite 
problems, the structure of the ILU(£) or IC(£) factors can be completely determined 
prior to numerical factorization. For problems that require pivoting for numerical 
stability, and factorizations produced by methods that employ numerical criteria 
(e.g., ILUT), this is not possible. Since pivoting is dynamically determined during 
the factorization, any static prediction of structure must include all the nonzeros 
that would be present in all possible orderings. This is an upper bound, which, 
though it can be computed, is too big in practice [34].

In this chapter we develop new incomplete fill path theorems that characterize 
where fill occurs in ILU(£) factors. We begin with an overview of existing ILU(£) 
algorithms, and go on to discuss two rules (sum and max) that have been used 
to determine level assignments during ILU(£) factorization. We then introduce a 
graph theoretic model for incomplete factorization that extends previously devel­
oped models for complete factorization. With this foundation in place, we present 
and prove several theorems that characterize incomplete fill.

2.2 CLASSICAL ILU(£) FACTORIZATION

By classical ILU(t) we refer to a family of widely known and implemented al­
gorithms that compute ILU(£) factors by mimicking direct factorization. These 
algorithms determine permitted fill based on the concept of a matrix entry’s level. 
As in direct factorization, but unlike some ILU variants (e.g., ILUT), factorization 
is divided into two distinct phases. In the symbolic phase the locations of permitted 
nonzero fill entries are determined. In the subsequent numeric phase the values of 
the entries are computed. (In this work, when we write “ILU(£),n we generally refer 
to the symbolic factorization phase.)

As in direct factorization, in their outermost loops classical ILU(£) algorithms
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may iterate over matrix rows, columns, or diagonal entries. Multifrontal approaches 
are also possible. Since the vast majority of current scientific codes are row (i.e., 
equation) oriented, for the remainder of this work we will be exclusively concerned 
with row-oriented algorithms.

Row-oriented ILU is said to be upward looking. That is, for every nonzero entry 
fih with h < i, row i is updated by merging in the upper-triangular portion of the 
previously factored row h. During this process a matrix entry fa , whose value was 
previously zero, may become nonzero (i.e, may “fill in”) if there exists a nonzero 
entry fhj- Here h < i, h < j ,  but j  may be either greater or lesser than i. We say 
the fill entry fa  is caused by the existence of the two entries f a  and fhj-

During ILU(£) factorization all matrix entries are assigned an integer-based 
level To get the ball rolling, all nonzero entries in the original matrix are assigned 
the level zero, and zero-valued entries are assigned the level infinity. (Actually, 
the assignment of “infinity” is a mathematical nicety; algorithmically, inside the 
computer, we simply ignore (do not allocate data structures for) zero entries.)

A potential fill entry fa  is assigned a level based on the levels of its two causative 
entries (the rules used to assign levels are discussed in the next section). If the 
assigned level is not greater than £, the entry is permitted to become nonzero during 
numeric factorization (mathematically, we say the entry is added to a sparsity set of 
permitted fill). Since a fill entry may have many different pairs of causative entries, 
and hence potentially be assigned many different levels, the tie-breaking rule is to 
assign it the lowest possible level.

Figure 1 contains a statement of the row-oriented C la ssic-IL U  algorithm. 
Nonzero matrix entries are represented by adjacency lists. If row j  of matrix A 
contains a nonzero entry Qji, then the adjacency list adj{j) contains an element 
i. The compressed sparse row storage format (CSR), which is arguably the most 
commonly used data structure for computer matrix representation, is an adjacency 
list construct. The computeWeight() function in Step 10 is the subject of the next 
section.

2.3 FILL LEVEL ASSIGNMENT RULES

The level associated with a matrix entry fa  in the matrix F  =  L + U -  / ,  where 
LU as A, is denoted level(i,j). As previously noted, entries in F  corresponding
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C lassic-ILU (A , £)

1 #  Initialization phase
2 for j  =  1 to n
3 adj'(j) 4— 0
4 for £ € adj(j)
5 level(j, t) 4— 0
6 insert £ in adj'(j)
7 #  Row-merge update phase
8 for each unprocessed i € adj'(j) with i < j  in ascending order
9 for £ € adf(i) with £ > i
10 wt =  compute Weight ( / e v e / i ) ,  level (i, £))
11 i f w t < £

12 if £ 9 adj'{i)
13 insert £ in adj'(j)
14 level(j,t) *—wt
15 else
16 level (j , t) 4— min{/eue/ (j, £), u;£)}

F ig. 1. CLASSIC-ILU algorithm. The input matrix A contains n  rows. The structure of a 

row ajm is represented by the list a d j( j) . The structure of a factor row f j ,  is represented by the 

list a d j'(j) .
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to nonzero entries in A  are initially associated with the level zero, and numerically 
zero entries are associated with the level infinity.

There are two rules in the literature for assigning levels to fill entries that arise 
during factorization: the sum rule and the max rule. As before, we assume that fill 
entry fa  is caused by previously admitted entries Uh and fkj. Mathematically, the 
sum rule states

level(i,j) = min {level(i, h) +  level(h, j)  +  1}. (1)
l< /i<m in{ij}

In words, this rule assigns a level which is the sum of the level of two causative 
entries, incremented by 1. All ILU(£) implementations of which this author is aware 
make use of the sum rule when assigning levels during factorization. Intuitively,
the sum rule is appealing since, by this rule, an entry’s level is a direct indication
of the minimum number of times any of its updates will be divided by a pivot value 
during the numeric factorization phase. Hence, for important classes of matrices 
(e.g., diagonally dominant) entries with higher levels are expected to be smaller in 
absolute value, and hence have less influence in establishing the factor’s character.

In contrast, the max rule for level assignment states

level(i,j)=  min max{level(i, h),level(h,j)} + 1. (2)
l</»<min{t j}

This method is intuitively appealing (particularly to computer scientists) due 
to its recursive flavor. To compute an ILU(£) factor using the max rule, one can 
perform an ILU(l) factorization I times. The input for the first iteration is the 
structure on the initial matrix A , the input for subsequent iterations in the structure 
(sparsity set) computed during the previous iteration. At the commencement of 
each iteration, all entries in the input sparsity set are considered as level zero entries. 
(Note that the sum and max rules always produce identical level assignments for 
ILU(l) factorizations. For matrices arising from 2D, five-point discretizations, the 
rules also produce identical results for ILU(2) factorizations.)

From a numerical viewpoint, however, this rule has less to recommend itself, 
since with this rule an entry’s level is not indicative of the minimum number of 
times any of its updates will be divided by a pivot value. With the max rule the 
minimum number of pivot divisions for a level £ entry ranges between I  and I1.
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The origins of the sum and max rules are difficult to pin down precisely because 
the foundational ideas were developed gradually, over many years. Historically, 
incomplete factorization structures were specified either by considering gridpoint 
operators associated with discretizations of PDEs on regularly structured, naturally 
ordered grids; by examining the “banded” appearance (as would be seen in a Matlab 
spy plot) of the resulting matrix [13, 15, 66, 68, 69, 83]; or by considering matrix 
splittings. More accurate factorizations were arrived at by specifying larger stencils 
for the factor, or by permitting the inclusion of additional diagonal bands, or by 
adding the structure of the remainder matrix to the sparsity set.

The term “incomplete factorization” appears to have been coined by Meijerink 
and Van der Vorst [65]. A discussion of recursive factorization, which can be shown 
equivalent to the max rule, is presented by Axelsson [1], who attributes its origin 
to Gustafsson [43]. The first clear statement of the sum rule that we have been 
able to locate was enunciated by D’Azevedo, Forsyth, and Tang [24].

With reference to line 10 of Algorithm 1, we are primarily interested in two 
weighting functions that are functional counterparts to the max and sum level 
assignment rules. The sum weighting function is

computeWeight(level(i, /i), level(/i, j)) =  level(i, h) +  level(h, j))  + 1. (3)

The max weighting function is

computeWeight(level(i, h), level(/i, j))  =  max{level(i, h), level(/i, j)}  +  1. (4)

To distinguish between levels computed using the max or sum functions, we 
sometimes write “S-level” or “M-level” in place of the more general term, “level.” 
Similarly, we may write S-Ievel(t,j) or M-level(t, j)  instead oflevel(i,j).

2.4 GRAPH THEORETIC ILU(f) MODEL

Parter [70], and later Rose and Tarjan [73], developed graph theoretic vertex elim­
ination processes that model complete Gaussian Elimination. In this section we 
formalize a similar model for structurally based incomplete factorization.
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A directed graph of a matrix G(.4) =  (V, E) has vertex set V, which contains 
a vertex for every row in the matrix, and edgeset E, which contains a directed 
edge (i, j )  for every nonzero entry a^. Edges are weighted, and the weight of 
an edge (i,j)  is denoted level(i,j) (or sometimes more specifically, S-level(i, j) or 
M-level(i, j)). G(A) is an ordered graph such that, if matrix row i is numbered less 
than matrix row j ,  then vertex i is ordered before vertex j .

All edges in G(A) are assigned the weight zero. Given any two edges (i, h) and 
(h,j)  that form a directed path P(i,j),  a weight can be assigned to the hypothetical 
edge (i , j )  using either of the previously discussed weighting functions.

(Although we use brackets to indicate directed graph edges, for clarity we 
omit the brackets when specifying edge weights, i.e., we write level(i,i) instead 
of level((i, j)).  By a path’s “length,” we refer to the number of edges contained 
in the path. When a path P{i,j) contains a single edge we have the equivalence:

P{ i , j )  =  (hj )-)
The partial elimination process is a sequence of graphs that models Gaussian 

elimination. The initial graph in the sequence, Go, is identical to the graph of 
the matrix, G(A) =  (V, E). We assume the vertex set V  contains n vertices. 
The graph Gi+1, for 0 < i < n, is formed by examining all pairs of edges in 
G, that form directed paths of length two: i ,h , j ,  with h < min{i,ji}. For 
each such path P{i,j), a directed edge (i,j) is inserted in if and only if 
computeWeight(level(i, h),level(h,j)) is not greater than t. If the hypothetical 
edge (i,j)  has already been inserted, its weight is adjusted to the minimum of 
its present weight and the newly calculated weight. Hence, we denote the partial 
elimination process as

G(A) =  G0, Gi, G2 . . . ,  Gn =  G,. (5)

For specificity, we use a superscript “S” to indicate when edge weights were 
calculated using the sum rule, e.g., G f. Similarly, a superscript “M” indicates that 
edge weights were calculated using the max rule, e.g., G^f.

This partial elimination process models ILU(£) factorization since matrix fill 
entries created or updated when row i is factored (iteration i in Algorithm 1) 
correspond exactly to edges inserted or updated during the formation of graph G,. 
Hence we have G. =  G(F).
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The sequence of graphs defined above differs from previous models for com­
plete factorization in at least one important aspect. The models for complete 
factorization are based on bordering methods, in which outer-product updates are 
performed while marching down a matrix’s diagonal. Accordingly, one vertex is 
eliminated (removed) from Vj during the formation of graph Gi+1 =  (Vj+i,/?,-+i) 
from graph G, =  (Vi, Ei).

Row oriented factorization requires that we leave the vertex set intact, i.e, Vi and 
Vi+i are identical for 0 < i < n. While it is possible to formulate a graph theoretic 
construct based on bordering for incomplete factorization, such a construct would 
not model the operation of the C lassic-ILU algorithm.

(Since our vertex sets remain constant, one might wonder whether the construct 
in Equation 5 is properly called an “elimination” model. Fortunately, good com­
puter scientists, like politicians, are adept in the art of overloaded meanings. In 
the present situation, Vo can be regarded as an unprocessed pool of vertices. When 
each graph Gj+i is formed from graph Gj a single vertex is processed, and thus 
eliminated from the pool of unprocessed vertices.)

2.5 STRUCTURAL CHARACTERIZATIONS

This section contains a collection of definitions, observations, lemmas, and theorems 
that provide static characterization of incomplete S-level and M-level fill. We also 
introduce the concept of 1-alternating fill paths, which are particular configurations 
of fill paths for which the S-level and M-level characterizations coincide.

Figure 2 provides a pictorial summary of the interconnections of this chapter’s 
results.

2.5.1 STATIC CHARACTERIZATION OF S-LEVEL FILL

This section’s first result tells us that nontrivial fill paths can always be decomposed 
into shorter fill paths.

Lemma 3 Any fill path P ( i , j ) that contains two or more edges can be uniquely 
decomposed into two fill paths, P(i,h) and P(h,j), each of which contains at least 
a single edge.
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Dl: fill path

Th2: fill path theorem
El: sum rule 
E2: max rule
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Th4: incomplete fill path theorem 
(S-level)

Thl5: bifurcated lengths of 
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012: fill path decomposition 
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014: extending 1-altemating 
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F ig . 2. Relationships of definitions, theorems, and observations.
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Proof. Given a fill path P{i,j)  containing two or more edges, let h denote the 
highest numbered interior vertex on the path. The P(i, h) section of this path is 
a fill path by the choice of h, since all intermediate vertices on this section are 
numbered lower that h. Similarly, the P (h,j)  section of this path is also a fill path. 
Thus, the fill path can clearly be decomposed in two subpaths, both of which are 
fill paths (existence).

To show uniqueness, suppose there exists some other decomposition. Let g be 
an interior vertex on the P(i,j)  path, distinct from h, such that both P(i,g) and 
P(g,j)  sections are fill paths. Then h, which is also on the P (i,j)  path, must 
either be situated between vertices i and g, or between vertices g and j .  Without 
loss of generality, assume vertex h is situated between vertices i and g. Then by 
Definition 1, P(i, g) is not a fill path, since the path contains an interior vertex that 
is numbered higher than one of the end vertices. □

The next theorem, which is this section’s main result, provides a static charac­
terization of fill for classical ILU(f) factors that are computed using the sum rule 
for level assignment.

T heorem  4 Let G(A) =  (V, E) be the graph of a square matrix A, and let (i , j ) be 
a permitted edge in G f. Then S-level(i, j )  =  k if and only if there exists a shortest 
fill path of length k + 1 that joins i and j  in G(A).

Proof If there is a shortest fill path of length k + 1 joining i and j  in G(A), we 
prove the result, that an edge (i, j)  with S-level(i,j) =  k exists in Gf, by induction 
on u, which is the length of the fill path.

The base case u = 1 is immediate, since, by the construction in Section 2.4, a 
fill path of length one in the graph G(^4) is an edge (i,j) in G{A), and edges in 
G(.4) are assigned level zero, and are also edges in G f.

Now assume that the result is true for all lengths u less than k -i-1; we show it 
is also true for shortest paths of length u = k-1-1. Let P{i,j)  be a shortest fill path 
joining vertices i and j  in G(A), and let this path have length u = k 4-1.

Let h denote the highest numbered interior vertex on the fill path P(i,j). We 
claim that the P(i, h) section of this path is a shortest fill path in G(A) joining i 
and h. This section is a fill path by the choice of h and Lemma 3. If there were a fill 
path joining i and h that was shorter than the P(i, h) section, we would be able to
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concatenate it with the P (h,j)  section to form a shorter P (i,j)  fill path. Hence the 
P(i, h) section is a shortest fill path joining i and h. Similarly, the P{h,j)  section 
of this path is the shortest fill path joining h and j .

Since each of these sections has fewer than k + 1 edges, and is a shortest fill 
path, the inductive hypothesis applies. Denote the number of edges in the P(i, h) 
(P{h, j)) section of this path by v (w), where v + w = u =  k + 1 . By the inductive 
hypothesis the edge (i, h) is a fill edge of level v — 1 =  and the edge (h,j) is a 
fill edge of level w — 1 =  k^. Now by the sum rule for updating fill levels, when the 
vertex h is eliminated, we have a fill edge (i,j) of level

k i + k 2 +  l  =  (v — \) +  ( w - l )  +  l  =  v +  w — l  =  u — l =  {k +  l) — l =  k.

Now we prove the converse. Suppose that (i,j) is a fill edge of level k in Gf; 
we show the result that there exists a shortest fill path in G(A) of length u = k +1 
edges by induction on the level k.

The base case A: =  0 is immediate since, by the construction in Section 2.4, the 
edge (i, j )  constitutes a trivial fill path of length one.

Assume that the result is true for all fill levels less than k. Let the fill edge 
(i, j)  with S-level(i, j)  =  k be created in Gf1, when vertex i is eliminated, by the 
previously existing edges (i, h) and (h ,j). Let the edge (i,h) have level ki and 
the edge (h,j) have level k-i. By the sum rule for computing levels, we have that 
k\ +  &2 +  1 =  k. By the inductive hypothesis, there is a shortest fill path of length 
v = ki + 1 joining i and h, and such a path of length w =  fc2 +  1 joining h and j. 
Concatenating these paths, we find a fill path joining i and j  of length

v +  w =  (ki 4-1) +  (& 2 +  1) =  k\ +  Ai2 ■+■ 2 =  k 4* 1.

We need to prove that the P(i, j)  fill path in the previous paragraph is a shortest 
fill path between i and j .  Consider any other pair of edges (i,g) and (g, j)  in Gf* 
that causes the fill edge (i, j)  when vertex i is eliminated. By the choice of the 
vertex h, if the level of the edge (i, g) is k!v  and that of {g,j) is k'2, then k[ +k'2 > k.

The inductive hypothesis applies to the P{i,g) and P{g,j) sections, and hence 
the sum of their lengths is at least k +  1. □

D’Azevedo, Forsyth, and Tang [24] defined the (sum) level of a fill edge {i,j) 
using the length criterion employed here, and hence were aware of the connection
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between matrix entry levels and fill path lengths. However, they did not postulate 
or prove this connection as a theorem, as we have done. In passing, we note that 
their work centers around a novel algorithm that combines an ordering technique 
with ILU factorization. They consider G(A) to be initially unordered, and one 
vertex is ordered during each elimination step. They define fill levels in terms of 
path lengths through vertices in reachable sets, with a reachable set consisting of 
vertices already eliminated and ordered.

As we will show in the next chapter, the static characterization of S-level fill 
can be applied to develop new algorithms for computing ILU(£) factors, to analyze 
the amount of fill for simple structured graphs, and to analyze ILU(£) run-time 
complexities.

2.5.2 STATIC CHARACTERIZATION OF M-LEVEL FILL

We now turn our attention towards M-level fill entries and their associated fill 
paths. While a fill edge with S-level(i, j)  = k corresponds to a fill path with exactly 
k + 1 edges, this section’s first result says that a fill edge with M-level(i,j) =  k 
corresponds to a fill path that may contain anywhere between A: + 1  and 2* edges. 
Figure 3 illustrates the intuition underlying this claim. Two very simple graphs are 
shown, both of which contain fill paths that correspond to level k =  3 fill edges. 
The fill path in the Figure 3(a) contains 3 +  l =  fc +  l  =  4 edges, while the fill path 
in Figure 3(b) contains 23 =  2* =  8 edges.

Theorem 5 Let G(A) =  (V,E) be the graph of a square matrix A, let (i,j) be 
a permitted edge in G^1 with M-level(i, j)  = k, and let P ( i , j ) be a corresponding 
fill path in G(A). Let u represent the number of edges in the path P (i,j) .  Then 
k + l < u < 2 k.

Proof. We argue by induction on the fill edge’s level, k. The base case A: =  0 
is immediate since, by the construction specified in Section 2.4, a fill edge of 
level zero corresponds to a fill path that contains u =  1 edges. In this case 
A; +  l  =  l < u < 2 *  =  l, so the result is true.

Now assume the result is true for all edges whose M-level is less than A:; we 
show it is also true for edges with level k. Let h be the vertex whose elimination 
creates the fill edge (i, j )  of M-level k. Let the edge (i, h) have M-level Aq and
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F ig . 3. M-level fill level and path length relationships. Edges in G (A ) are drawn with solid 

lines. Edges in G?f are drawn with dashed lines, and labeled with their levels. The vertex num­

bering indicates elimination ordering. Both graphs contain an M-level k =  3 fill edge. The 

corresponding fill path in the graph on the left, 8,1,2,3,4, contains 3 + l = f c + l = 4  edges. The 

corresponding fill path in the graph on the right, 8,1,5,2,7,3,6,4,9, contains 23 =  2* =  8 edges.
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the edge (h, j )  have M-level k2. By the max rule for computing levels, we have 
that max{A:1, k2} +  1 =  fc, hence both ki and k2 are less than k, so the inductive 
hypothesis applies. Also, either k\ = k — 1 or k2 = k — 1 or both. Without loss of 
generality, assume ki = k — 1.

Let v represent the number of edges in the fill path joining i and h in (7(A), and 
w the number of edges in the fill path joining h and j  in G(A). By the inductive 
hypothesis, ki +  1 < v < 2k\  and k2 + l < w < 2fca. When h is eliminated these 
paths are concatenated, resulting in the fill path P (i,j)  whose length u is bounded:

(ki +  1) +  (k2 +  1) < u < 2kl + 2k\

To make the left-hand side as small as possible, assume k\ = k — I and k2 =  0, 
which is possible if P(h,j)  contains a single edge. In this case

u =  {k\ +  1) +  {k2 + 1) =  ((k — 1) +  1) +  (0 + 1) = k +  1.

To make the right-hand side as large as possible, let ki = k — 1 and k2 =  k -  1.
In this case

u  =  2kl +  2kt =  2(*-1 ) +  2(*-1 ) =  2*.

Therefore, fc +  l < u < 2 fc. D
Not only is there wide latitude in fill path lengths associated with M-level fill 

edges, but it is also the case that a fill path P (i,j)  in G(A) that is associated 
with a fill edge (i , j )  in G^1 may not be the shortest fill path (that is, the fill path 
containing the fewest number of edges) that connects vertices i and j  in G(A). 
Figure 4 illustrates this point. The figure shows a fill edge with M-level(i, j)=3 
that arises due to the existence of a fill path that contains eight edges. Vertices i 
and j  are also connected by a fill path that only contains five edges; however, this 
fill path would cause (i,j) to have M-level(i,j) =  4.

Hence, when fill is computed using the max rule, it appears that there is no 
necessary connection between fill levels and path lengths (where “length” indicates, 
as we use the term, the number of edges in a path). These observations suggest the 
need for a definition of path length that does not strictly depend on the number of 
edges in the path. Accordingly, we introduce the concept of bifurcated length, which 
is recursive in nature. In the following definition the phrase “unique fill subpaths” 
refers to the unique decomposition stated in Lemma 3.
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F ig . 4. Bifurcated path lengths and edge counts. Top: a graph in which vertices i and j  

are connected by two fill paths. In the middle and bottom, the paths are shown separately, with 

bifurcated path lengths indicated by dashed lines. The path in the middle contains fewer edges but 

has a larger bifurcated length than the path at the bottom. Vertex ordering is indicated by vertical 

placement: vertices that are lower on the page are assumed to be ordered before vertices placed 

higher on the page.
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Definition 6 A fill path containing a single edge has bifurcated length zero. A 
fill path containing two or more edges, whose unique fill subpaths have bifurcated 
lengths v and w, has bifurcated length u =  max{u, u>} +  1.

Heretofore, we have used the phrase “shortest fill path” to indicate, of all pos­
sible fill paths connecting two vertices in a graph, the (possibly nonunique) path 
containing the fewest number of edges. When discussing bifurcated lengths we use 
an analogous phrase, “fill path with shortest bifurcated length.” This term indi­
cates, of all possible fill paths connecting two vertices in a graph, the (possibly 
nonunique) path whose bifurcated length is the smallest possible.

A chord of a path is an edge that joins two non-consecutive vertices on the path. 
If an edge is added to a graph such that the shortest fill path P{i,j) is chorded, the 
result will be that vertices i and j  are joined by a shorter fill path than previously, 
and hence the corresponding S-level(z, j) will be reduced. This concept does not 
transfer to the study of bifurcated path lengths.

O bservation 7 A fill path may be chorded, and its bifurcated length unchanged.

Figure 5 shows a fill path that contains 8 edges and has bifurcated length 4. 
After chording, the resulting shorter fill path contains only 7 edges, however, its 
bifurcated length is unchanged.

The next theorem provides a static characterization of M-level fill.

Theorem  8 Let G(A) =  (V, E) be the graph of a square matrix A, and let (i,j) 
be a permitted edge in . Then M-level(i, j)  =  k if and only if  there exists a fill 
path joining vertices i and j  in G(A) with bifurcated length k, and this path has the 
shortest bifurcated length amongst all fill paths between i and j .

Remark. In contrast to Theorem 4, here there is no “+1" difference between 
bifurcated path lengths and M-levels. This is because the “+1” is incorporated into 
the definition of bifurcated path lengths.

Proof. If there is a fill path with shortest bifurcated length k joining i and j  in 
G(A), we prove the result, that an edge (i,j)  with M-level(i,j) =  k exists in G ^ , 
by induction on u, which is the bifurcated length of the fill path.
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FlC. 5. A fill path may be chorded, and its bifurcated length unchanged. Left: fill path 

P { i , j )  =  i , h , t 2 , t 3 , t 4 , t s , t 6 , t j , j  in G(A)  contains 8 edges and has bifurcated length 4 • Right: 

the sub path t$, ta, <7 has been chorded in G(A) ;  i  and j  are now connected by the shorter fill 

path P { i , j )  =  i , t i , t 2 , t 3 , t A, t s , t 7 , j .  Ths path contains 7 edges, but the bifurcated length of P { i , j )  

remains 4- Edges in G(A)  are drawn with solid lines. Edges in G ^  are drawn with dashed lines, 

and labeled with their levels. Vertex ordering is indicated by vertical placement: vertices that are 

lower on the page are assumed to be ordered before vertices placed higher on the page.
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The base case u =  0 is immediate, since, by the construction in Section 2.4 and 
Definition 6, a path with bifurcated length zero corresponds to an original edge in 
G(A).

Now assume the result is true for all fill paths with bifurcated length u less than 
k. We will prove that the result is true when the bifurcated length of a fill path is 
u = k.

Let P ( i , j ) be a fill path with shortest bifurcated length that joins i to j  in 
G(A), and let the bifurcated length of this path be u =  k. Let h be the highest- 
numbered interior vertex in this fill path. Then P(i,h) and P (h ,j) are also fill 
paths by Lemma 3.

Let the bifurcated length of the fill path P{i,h) be v and let the bifurcated 
length of the fill path P{h,j) be w. By Definition 6, the bifurcated path length of 
P {i,j) is max{t/,ti;} -I-1, so the bifurcated lengths of v and w are both less than 
k. Note that either v or w (or both) is equal to k — 1. Without loss of generality, 
assume that w is less than k — 1. Then it must be that v = k — 1, and therefore 
the fill path P(i, h) has the shortest bifurcated length possible.

Now suppose there is a path P'{h,j) whose bifurcated length is less than w. 
Then we can freely replace the path P(h,j) with the path P'{h,j), and the bifur­
cated length of the path P{i,j) will be unchanged.

Thus P (i,j)  is decomposable into two subpaths, P(i,h) and P(h,j), both of 
which are fill paths and have shortest bifurcated lengths less than k. Hence, the 
inductive hypothesis applies, so there exists a fill edge (t, h) with M-level u, and a 
fill edge (h,j) with M-level w. By the max level rule, when vertex i is eliminated, 
the fill edge (i,j) is created with M-level(i, j)  =  max{u,tn} +  1 =  k.

Now we prove the converse. Suppose that (i,j)  is a fill edge with 
M-level(i, j )  =  k in ; we show the result that there exists a fill path P {i,j) 
in G(A) with shortest bifurcated length it =  k by induction on k, the edge’s level.

The base case k = 0 is immediate, since, by the construction in Section 2.4, a 
fill edge with level zero corresponds to a fill path that contains a single edge, and 
by Definition 6 this path has bifurcated length zero.

Now assume the result is true for all fill edges with M-level less than fc; we show 
it is also true for fill edges with M-level equal to k.
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Assume the fill edge (i,j)  with M-level(i, j)  = k is created, when vertex i is 
eliminated from Gf*, by the previously existing edges (z, h) and (h,j).

Let the edge (z, h) have M-level(z, h) =  k\ and the edge (h,j) have 
M-level(h,j) = fc2. By the max rule for computing levels, we have that 
max{fci, A:2} +  1 =  k. Then both fill edges (z, h) and (h, j)  have levels less than A, so 
the inductive hypothesis applies. Thus there exists a fill path that connects vertices 
i and h and has shortest bifurcated length v = ki, and a fill path that connects 
vertices h and j  and has shortest bifurcated length w =  fc2. Additionally, either 
ki = k -  1 or k2 = k — 1 or both. Without loss of generality, assume ki =  k — 1.

Now from Definition 6, the bifurcated length of the fill path P{i,j)  is

u =  max{u, w} + 1 =  m a x ^ ,  w} +  1 =  max{k — 1, w} +  1 =  k.

We also need to prove that the P (i,j)  fill path has the shortest bifurcated length 
amongst all fill paths connecting vertices i and j  in (7(A). Suppose there were a 
path P '(z,i) in G(A) that had a shorter bifurcated length, that is, a bifurcated 
length u' less than k. From the first part of this proof, the edge (i,j) in would
then have an M-level less than k, which contradicts the premise that the fill edge
(z, j)  has M-level(z, j )  =  k. Q

2.5.3 SIMILARITY OF S-LEVEL AND M-LEVEL FILL FOR MONO­
TONIC FILL PATHS

Some graphs have the property that an ILU(l) factorization employing the sum 
rule computes factors identical to those computed when factorization employs the 
max rule. This property is an attribute, e.g., of graphs whose associated matrices 
arise from the discretization of partial differential equations on naturally ordered, 
structured grids, for factorization levels of three or less (we will say much more 
about this class of graphs in the following chapter). For these graphs, the shortest 
fill path connecting any two vertices z and j ,  and the fill path with shortest bifur­
cated length connecting the same two vertices z and j ,  are always identical when 
level(z,j) < 3 . A consequence (which is the main result of this section) is that 
M-level(z, j )  =  S-level(z, j )  for such cases. To capture and generalize the particular 
feature responsible for this consonance of level assignment, we define 1-altemating 
fill paths.
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As a preliminary, an ascending path is a path (£1 , . .  . , t k) that contains at least 
two vertices, with tk < tk+1 for 1 < h < k. Similarly, a descending path is a path 
( t i , . . . ,  tk) that contains at least two vertices, with tk > tk+i for 1 < h < k.

D efinition 9 A fill path P{i,j) is 1-altemating i f  it ha3 one of the following forms.
(i) A single edge, (i,j).
(ii) An edge {i ,h ) with i > h, concatenated with an ascending path P(h,j).
(Hi) A descending path P(i, h) concatenated with an edge (h , j ) with h < j .
(iv) A descending path P(i,h) concatenated with an ascending path P(h,j).

Note that forms (ii) and (iii) are restricted forms of form (iv). We call a 1- 
alternating path internal-ascending if it is either of form (ii), or consists of a single 
edge (i , j )  with i < j .  We call a 1-altemating path intemal-desending if it is either 
of form (iii), or consists of a single edge (i,j) with i > j.  Figure 6 illustrates the 
different species of 1-alternating fill paths, and the difference between 1-altemating 
and non-alternating fill paths.

By way of building up to this section’s main result, and as an aid to intuition, 
several observations concerning properties of 1-altemating fill paths follow.

Observation 10 A fill path is non-alternating if the path contains a sequence of 
interior vertices, t f , . . . , t g, . . . , t k, such that t j  < tg and tg > tk.

In the non-alternating path at the bottom right of Figure 6, £i < <2 and t2 >  £3-

Observation 11 I f  P (i,j)  =  i , t \ , t v , . . . , j  is an internal-ascending fill path that 
contains at least three edges, and h is any interior vertex on the path with h > t\, 
then P(i, h) is also an internal-ascending fill path.

The truth of this observation follows immediately from Definitions 1 and 9. 
Referring to the P(i,j)  fill path illustrated in the top left portion of Figure 6, this 
observation says that the paths P(i, £2) and P(i, £3) are internal-ascending fill paths. 
Note, however, that neither P (t\ ,j)  nor P(t2 , j )  is a fill path. A similar observation 
holds for internal-descending paths.

The next observation is based on the fact that the highest numbered interior 
vertex of a 1-altemating path is necessarily adjacent to one of the end points of the 
path.
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F ig . 6 . 1-altem ating and non-alternating fill paths. Top left: internal-ascending fill path. 

Top right: internal-descending fill path. Bottom left: internal-alternating fill path. Bottom  right: 

non-alternating fill path. Here as elsewhere, vertical positioning of vertices is indicative of their 

relative orderings.
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Observation 12 I f  P (i,j)  is a 1-altemating fill path containing k + 1 edges, where 
k > 1, then the path can be uniquely decomposed into two 1-altemating fill paths 
P(i,h) and P(h,j) . One of these fill paths will contain k edges, and the other a 
single edge.

The existence and uniqueness of the decomposition was shown in Lemma 3. In 
that lemma’s proof, we saw that the vertex h is necessarily the largest interior vertex 
on the P (i,j)  path. FYom Definition 9, this vertex is adjacent to either vertex i or 
vertex j ,  hence either P(h,j)  is a path containing a single edge, in which case the 
path P(i, h) must contain k edges, or P{i, h) is a path containing a single edge, in 
which case the path P (h ,j ) must contain k edges. Referring again to Figure 6, the 
P(i,j)  fill path in the top left contains four edges, and can be decomposed into the 
fill paths (i,tz) and (t3,j) , containing three edges and a single edge, respectively.

Observation 13 Any fill path with three or fewer edges is 1-altemating.

The truth for the one and two edge cases follows directly from definition 9. Now 
consider a fill path with three edges, i , t l t t2 , j .  Either tx < t2, or t2 < U; in either 
case the fill path is 1-altemating by Definition 9. As illustrated in the bottom 
right of Figure 6, paths with four or more edges are not necessarily 1-alternating.

Observation 14 I f  P{i,j) is any species of 1-altemating fill path, then
(i) if (h,t) is an edge with t > j ,  then P{i,t) is also a 1-altemating fill path;
(ii) if (t , i ) is an edge with t > i ,  then P ( t , j ) is also a 1-altemating fill path.

In top left of Figure 6, P{i,t3) is a 1-altemating fill path, and (t3, j )  is an edge. 
By this observation, P(i,j)  is therefore a 1-alteroating fill path. This observation 
states a condition that permits a fill path to be extended while preserving its 1- 
alteraating character. As such it is the complement of Observation 12, which says 
that any 1-altemating fill path can be decomposed.

Note that extending a 1-alteroating path does not necessarily preserve any 
internal-descending or internal-ascending property it may possess. For example, 
if an internal-descending fill path P{i, j )  is extended by concatenation with an edge 
(j , t) with t > j ,  then the resulting fill path P(i, t) is no longer internal-descending.

The following theorem establishes a relationship between path lengths and bi­
furcated lengths of 1-altemating fill paths.
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Theorem 15 Let P(i, j)  be a fill path that contains k  +  I edges. The bifurcated 
length of P (i,j)  is k if and only if the fill path is 1-altemating.

Proof. Suppose there exists a 1-alternating fill path that connects vertices i and 
j  and contains k + 1 edges. We prove the path has bifurcated length k by induction 
on k, the number of edges in the path.

The base case k =  0 is immediate since a fill path containing a single edge 
has bifurcated length zero by Definition 6. Now assume the result is true for all 
1-alternating fill paths containing k or fewer edges; we show it is also true for 
1-alternating fill paths containing k + 1 edges.

Let h denote the highest numbered interior vertex on the path joining i and j .  
From Observation 12, h must be adjacent to either vertex i or vertex j .  Without 
loss of generality, assume it is adjacent to vertex j .

Thus, P(i,h) is a 1-alternating fill path containing k edges, and P(h,j)  is a 
1-alternating fill path containing a single edge, so the inductive hypothesis applies 
to both subpaths.

By the inductive hypothesis, P(i,h) has bifurcated length k — 1, and P(h,j)  
has bifurcated length zero. When these two paths are concatenated, the resulting 
path P{i,j)  has bifurcated length, by Definition 6, of

max{A; — 1,0} +  1 =  k.

Now we prove the converse. Suppose vertices i and j  are connected by a fill 
path that contains k + 1 edges and has bifurcated length k. We show that the path 
is 1-alternating by induction on k , the number of edges in the path.

The base case k = 0 is immediate since a fill path containing a single edge is 
1-alternating (Definition 6). Now assume the result is true for any fill path that 
contains j  edges and has bifurcated length j  — 1, where j  < k. We show the result 
is also true for paths that contain A; +  1 edges.

Let h denote the highest numbered interior vertex on the fill path joining i and 
j .  Let m i be the number of edges in the P(i, h) subpath, and m2 the number of 
edges in the P (h,j)  subpath. Then mi + m2 = k + 1.

Let ki be the bifurcated length of the P(i, h) subpath, and k2 be the bifurcated 
length of the P{h,j) subpath. Then max{fci, k2} + 1 = k. Hence, either ki = k - 1  
or k2 =  A: — 1 or both. Without loss of generality, suppose ki = k — 1. Then from
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Theorem 5, the P(i, h) subpath must contain at least k edges, that is, mi > k. 
And since mi +  m2 =  k + 1, it must contain exactly k edges, and m2 , the number 
of edges in the P(h,j)  subpath, must be 1.

Since P(i, h) has bifurcated length k — 1 and contains k edges, the inductive 
hypothesis applies, i.e, P{i,h) is a 1-alternating fill path. Similarly, since P{h,j) 
contains a single edge, and by definition 6 has bifurcated length zero, the inductive 
hypothesis applies.

Finally, by Observation 14, when the P(i, h) path is concatenated with the 
P (h , j ) path, the resulting P{i,j)  fill path is 1-alternating. □

This chapter’s final theorem formalizes the relationship between M-level and 
S-level fill that was alluded to in this Section’s introduction.

Theorem 16 Let G(A) = (V, E) be the graph of a square matrix A, and let (i , j ) 
be a permitted edge in Gff with M-level(i, j) = k. I f  the fill path with short­
est bifurcated length that connects vertices i and j  in G(A) is 1-altemating, then 
M-level(i, j )  = S-level(i, j ).

Proof. If (i,j)  is a permitted edge in G ^  with M-level k, and the fill path 
P (i,j)  with shortest bifurcated length is 1-alternating, then by Theorem 8 the 
path contains k + 1 edges. By Theorem 5, there can be no shorter fill path (i.e, no 
fill path with fewer edges) connecting vertices i and j .  Therefore, by Theorem 4, 
S-level(i,y) =  k. □
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CHAPTER 3 

INCOMPLETE FELL PATH THEOREM APPLICATIONS

3.1 INTRODUCTION

This chapter contains a potpourri of algorithms and analyses that are logical conse­
quences of the Incomplete Fill Path Theorem (Theorem 4). In sections 3.2 and 3.3 
we present several algorithms that compute ILU(£) structures by performing 
searches in the graph of a matrix. In section 3.4 we introduce the notion of natu­
rally ordered graphs. In section 3.5 we show how these algorithms can be employed 
to permit computation of ILU(£) storage requirements in space proportional to the 
number of rows in the matrix.

These graphs form the basis of the analyses in sections 3.6, 3.7, and 3.8, wherein 
we develop runtime complexity bounds and analyze fill densities. Finally, in sec­
tion 3.9, we present an additional graph search algorithm that, for some classes of 
graph, has lower runtime complexity than either C lassic-ILU (Algorithm 1) or 
the graph search algorithms developed in earlier sections of this chapter.

3.2 COMPUTING UPPER TRIANGULAR STRUCTURES

In this and the following section we present new algorithms that compute ILU(l) 
factors that are identical to those computed by C lassic-ILU. The new algorithms 
operate by using breadth first searches to find, per Theorem 4, shortest fill paths 
in G(A) that contain at most t  +  1 edges. Unlike C lassic-ILU, which requires 
the results of previously computed rows i to factor a current row j ,  our algorithms 
rely only on the static structure of G(A), and hence have the novel feature that 
the structure of each row (or column) in the factor can be computed completely 
independently (i.e., in parallel).

GS-Urow, the subject of this section, computes ILU(£) row structures for 
upper triangular factors. In graph theoretic terms, computing upper triangular row 
structures is equivalent to finding, for each vertex i G G(A), all vertices j  such that 
j  > i and the vertices i and j  are connected by a fill path containing I  + 1  or fewer 
edges. For each such vertex j ,  an edge (i, j)  is inserted in E', and G(U) =  (V, E'). 
Our algorithms are presented in terms of adjacency list representations of graphs.
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Inserting an element j  in the adjacency list adj(i) can be interpreted either as 
inserting an edge (i,j) in E', or as admitting the nonzero matrix entry fa.

(Concerning notation, we use adj(i) to indicate edges in the graph 
G(A) =  (V, E). That is, j  € adj(i) denotes the existence of the edge (i,j)  € E. 
Similarly, we use adj'(i) to indicate edges in G(F), G(U), or G(L)\ adjT(i) to indi­
cate edges in G(AT); and adjT,(i) to indicate edges in G(FT), G(UT), or G(LT).)

Consider a fill path i, <1 , t2, . . . ,  t/t, j ,  where i < j ,  and, per definition, < i for 
1 < h < k. Break this path into two subpaths: P(i, tk), which contains k edges, 
and P(tjk,j), which contains a single edge. (Note that (i, tk) is not necessarily a fill 
path.) GS-Urow ’s underlying design principle can be stated as follows. Given a 
graph G(A), an initial vertex i, and a level i, find all shortest paths P(i, tk) such 
that i is the largest vertex in the path, and the path contains £ or fewer edges. For 
each vertex tk in each such path, if there also exists an edge {tk,j) with j  > i, insert 
the element (i, j )  in the set of permitted fill (equivalently, insert j  in adj'[i), or, in 
matrix terminology, admit fa  as a fill entry).

Now recall that breadth first search (BFS) finds a shortest path (a path con­
taining the fewest number of edges) between a seed vertex i and any vertex th that 
is reachable from i (detailed descriptions of BFS can be found in many references; 
[23] is particularly readable). Thus, we can find the shortest subpaths P{i,tk) by 
performing BFS in the subgraph of G(A) that is induced by the subset of vertices 
V  =  {h\h < i}. (By a subgraph induced by a subset of vertices V  we mean a graph 
G =  (V , E), where E  =  {(ti,v) 6 E\u,v  € V"}.) Finally, the vertices that terminate 
the fill paths are those vertices j  € adj(tk) and j  6 Vc , where V c = {j\j  > i}. 
(Mnemonically, V c  is the “complementary” vertex set to the vertex set V.)

Figure 7 contains a statement of the GS-Urow procedure. (Mnemonically, 
the name indicates that the algorithm performs graph searches (GS-) to compute 
upper triangular row-oriented structures (Urow).) This procedure, which is called 
once for every vertex i 6 V  by GS-UPPER (Figure 8), takes as input a graph 
G(A) in adjacency list representation; a level £; a vertex i that corresponds to the 
row whose structure is sought; and an initially empty adjacency set, adj'(i). When 
the procedure completes, adj'(i) contains the structure of row i in U. (To reduce 
clutter, the length^ and visited\\ arrays are assumed global in scope. The visited^ 
array is initialized once, in the GS-UPPER driver, discussed below.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

GS-Urow(G(A), i, i, adj’{i))
1 #  Initialization for BFS from vertex i
2 Q «- ( 0
3 length]}\ 4-  0
4 visited[i] 4—  i
5 #  BFS phase
6 while Q ^  0
7 h 4-  Dequeue(Q)
8 for t € adj(h) with visited[t] ^  i
9 visited[t] 4—  i
10 if t < i  and length[h\ < I
11 Enqueue(Q, t)
12 length[t] =  length[h] + 1
13 if t > i
14 insert t in adj'(i)

F ig . 7. GS-UROW. This procedure computes the structure of row i  in the the fa c to r’s  upper 

triangle. Here, as elsewhere in this work, indentation is used to demarcate code blocks.

GS-UPPER(Cj(i4), £)

1 #  Initialization
2 5 4 -0
3 for each vertex i 6 V
4 visited[i] <-----1
5 #  Compute structure of upper triangular row i
6 for each vertex i € V
7 adf(i) 4-  0
8 GS-UROW (G(A),/,*,«&'(*))
9 insert adf(i) in 5
10 return 5

F ig . 8. G S -U P P E R  driver.
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G S-U row  uses a first-in, first-out queue that supports the standard E nqueue 
and D equeue operations described in [23] and elsewhere. The queue is instantiated 
in Step 2 and seeded with a single vertex i. The value length\j\ indicates the length 
of a shortest path from the seed vertex i to the vertex j  (Steps 3 and 12). The 
length of the path from a vertex to itself (Step 3) is defined as zero.

Vertices are marked with i when visited (Steps 4 and 9); in the interest of 
efficiency, this eliminates the necessity of having to mark every vertex as unvisited 
at the beginning of the procedure. (Were we to do so, the algorithm’s runtime 
complexity would immediately be bounded below by fl(n2), where |Vj =  n, a 
situation we wish to avoid.)

The loop beginning in Step 6  employs BFS to search for previously unvisited 
vertices. Steps 11-13 discover the previously discussed (*,£*) portions of potential 
fill paths. (We say “potential,” since the paths are not necessarily part of any fill 
path.) Finally, Steps 13 and 14 discover the (tk ,j) portions of the fill paths. Due 
to the restriction “if t > i" in Step 14, an entry is only added to the adjacency list 
in Step 15 if the fill edge (i,j)  is upper triangular.

The driver, GS-UPPER of Figure 8 , performs global initializations in 
Steps 2-4. In Steps 6-9 an empty adjacency list is initialized for each vertex in 
the graph (row in the factor), and GS-Urow is called to compute the correspond­
ing row structure. The algorithm returns the sparsity set 5, which contains a set 
of adjacency lists that collectively represent the structure of the upper triangular 
factor.

3.3 COMPUTING LOWER TRIANGULAR STRUCTURES

For structurally unsymmetric matrices it is necessary to compute both lower and 
upper triangular factors. Our goal in this section is to design a symbolic factoriza­
tion algorithm that operates similarly to GS-U row  in that it: (1) computes lower 
triangular row structures; (2) computes structures identical to those returned by 

C lassic-ILU.
To motivate interest in design goal (1 ), we note that in many scientific appli­

cations linear systems are developed by manipulating individual equations. For 
example, for two or three dimensional problems in the physical sciences, one or 
more equations is associated with each grid point. Each equation becomes a row in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



44

a matrix, and since implementations frequently mimic the way we are accustomed 
to thinking (i.e, functions follow form), common practice is to develop, store, and 
pass the matrix to a linear solver through row-oriented data structures. In paral­
lel implementations, each processor is typically assigned a rectangular section of a 
matrix, i.e., a contiguously numbered set of rows. Hence, efficient performance in 
the preconditioner application (triangular solve) phase requires that the L and U 
factors also be stored in a row-oriented format.

The first algorithm discussed in this section, GS-LOWER, is a driver that 
forms the graph G(AT), then calls GS-U row . Unfortunately, the result is a 
column-oriented structure, hence, design goal (1 ) is not achieved. The second al­
gorithm, G S-Lrow , is a modified version of GS-U row that permits computation 
of lower triangular row-oriented structures. However, we show that the returned 
adjacency lists may only contain a subset of the entries computed by C lassic-ILU. 
Hence, this algorithm fails to meet design goal (2). This prompts us to develop a 
Multiple Search Rule, which provides a means of modifying GS-Lrow so that both 
design goals are achieved.

3.3.1 GS-LOW ER

To find lower triangular fill edges we need to discover fill paths of the form 
i, t\, t2, . . . ,  tk, h, where i > h. The simplest way to do this is to “mentally reverse” 
the directed edges and search instead for fill paths of the form h ,tk, . . . , t 2,t\,i . 
But that is precisely what GS-Urow does. To make use of our previous algorithm 
we can form G(AT) =  (V, Efr ). This graph’s edgeset contains a directed edge {j, i) 
for every nonzero entry a,j. Analogously, in adjacency list representation, adjT(j) 
contains an entry i if j  € adj(i).

Figure 9 presents the GS-LOWER driver that calls GS-U row  to compute 
lower triangular structures. The algorithm forms the transpose of the input graph 
in Steps 3-11. (Since an adjacency list representation of G(A) can be interpreted 
as a representation of A, we use the term “transpose of the graph” as shorthand 
for “the graph of the transpose of the matrix.”) Steps 13-16 invoke GS-U row , 
which computes lower triangular column structures of L.

This algorithm computes structures L that are identical to those computed by 
Classic-ILU. It has the drawbacks that (1) the transpose of the input must be
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GS-LOWER(G(A),£)
1  #  Initialization
2 S
3 #  Form G(Ar )
4 G(Ar ) * - 0
5 for each vertex t € V
6 msi£ed[i]«---- 1
7 adjT(i) «- 0
8  insert adjT(i) in G(AT)
9 for each vertex i 6  V
10 { o T j € a d j { i )

1 1  insert t in adjT( j)
12 #  Compute structure of lower triangular column i
13 for each vertex i € V
14 adjT,(i) <— 0
15 G S-Urow (G (A t ), £, i, adjT,(i))
16 insert adj'(i) in S
17 return 5

F ig . 9. G S-LO W ER .

computed; (2 ) if the factor is required in row-oriented format, the transpose of the 
output must also be computed.

3.3.2 GS-LROW

To design an algorithm that directly computes lower triangular factors in row- 
oriented format we use reasoning similar to that described in section 3.2 for GS- 
U r o w . Given a graph G(A), an initial vertex i, and a level I, consider fill paths 
i, fi, £2> • • •»tk, h, where i > h, as composed of two subpaths, P(i, £*), containing £ 
or fewer edges, and P(£*, h), containing a single edge. (Again, note that P(i, tk) is 
not necessarily a fill path.) As before, we use BFS to find all shortest paths P(t, tk) 
that contain £ or fewer edges in the subgraph of G{A) induced by the vertex set,
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G S-Lrow (G (A ), I, i, adj'(i))
1 #  Initialization for BFS from vertex i
2 Q {*"}
3 length[i\«— 0

4 secondLargest[i] <---- 1
5 visited[i} «— i
6 #  BFS phase
7 while Q 0
8 h «— Dequeue(Q)
9 for t 6  adj(h) with visited[t] i
1 0 visited[t\ «— i
1 1 if t < i  and length[h] < t
1 2 Enqueue(Q, t)
13 length[t] = length[h] + 1

14 secondLargest[t\ =  max{secondLargest[h\,t}
15 if t > secondLargest[h]
16 insert t in adj'(i)

F ig. 10. G S -L ro w .

V  =  {h\h < i}.
Previously, we discovered the single-edged subpaths by looking for terminating 

vertices j  € V c  (recall that V c = {j\j > i}). Here, however, the initial vertex is 
also the highest numbered vertex in any fill path, so all vertices in the fill paths 
are contained in the vertex set V, hence we must conduct our entire search in the 
subgraph induced by V. This leads to the design principle: concatenate a P(t*, h) 
single-edged subpath to a P(i, tk) subpath, only ifh  is larger than the second largest 
vertex in the P(i, tk) path.

This added requirement, that we keep track of the second largest vertex in each 
P ( h t k )  path, is the motivation behind G S -L row  (Figure 10). This procedure is 
similar in operation to G S-U row . As before, a queue is instantiated and seeded
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with a single vertex i (Step 2), and we record the length of a path from the seed 
vertex i to a vertex j  in length\j\ (Steps 3 and 13). We also record the numbering 
of the second largest vertex in the path P {i,j)  in the variable secondLargest\j] 
(Steps 4 and 14).

The information about the second largest vertex is used in Step 15. This step 
ensures that £ is only inserted in adj'(i) if there is a path whose terminating vertices 
(i and £) are larger than any vertices interior to the path.

While G S-Lrow  returns a list of fill edges corresponding to shortest fill paths, 
as we now explain it can fail to discover some edges that “should” be included. 
By “should” we mean, with respect to our design goal (2), edges that would be 
included in a C lassic-ILU computation. Figure 11 illustrates what can go wrong. 
As amplified in the following discussion, fill edge (i , h) is not discovered since, even 
though the there exists a fill path i, £2, £3 , h, the vertex h is first visited by a traversal 
of the shorter path, i, £j, h, which is not a fill path. Similarly, fill edge (i, £4 ) is not 
discovered since the shortest path from vertex i to £4 is not a fill path.

The following discussion is summarized in the table in the lower half of the 
figure. Parentheses around entries in the columns titled SecondLargest and Length 
indicate read operations; entries without parentheses indicate write operations.

Assume we are performing a level three search from vertex i in the graph il­
lustrated in Figure 11. That is, we are attempting to discover all shortest fill 
paths that contain four or fewer edges. Initially vertex i is enqueued (Step 1). 
When this vertex is dequeued (Step 2), vertex £1 is discovered (Step 3). Since 
£1 has not been previously visited, it is enqueued and the subsidiary information 
recorded: length[t\\ <— 1 , which is the number of edges in the path i , . . . ,  £t; and 
secondLargest[ti] «- £1 , indicating that £1 is the second highest numbered vertex 
in this path. The fill edge (i,j)  is also added to the sparsity set, since £1 is larger 
than the second highest numbered vertex in the path P(i, i). Vertex £1 is compared 
against the secondLargest value, —1, that was read when i was dequeued.

Similarly, vertex £2  is discovered, enqueued, and edge (i, £2) added to the sparsity 
set (Step 4). Note that the ordering of Steps 3 and 4 is arbitrary; it would make 
no difference if £2  were discovered before tL.

Next, £ 1 is dequeued (Step 5). Since the graph shown is undirected, vertex i is 
contained in adj(ti). Since vertex i was previously visited, no action will be taken.
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Step Vertex
Previously
Visited? Enqueued? SecondLargest Length

Fill Edge 
Added

1. i yes

2. dequeue t (-D (0)
3. tl no yes tl 1 (Mi)
4. t2 no yes t2 1 (M2 )
5. dequeue tl (tl) (1)
6. h no yes tl 2
7. dequeue t2 (tl) (1)
8. t3 no yes t3 2
9. dequeue h (tl) (2)
10. t4 no yes tl 3
11. dequeue t3 (tl) (2)
12. h yes no

F ig . 11. Incompleteness of G S -L ro w . When graph at top of picture is input to G S -L ro w , 

neither the fill edge (i , h ) that corresponds to the path i , t 2 , t z ,h ,  nor the fill edge ( i ,U) that 

corresponds to the path i , t 2 , t 3 ,h , U , will be discovered. See text for additional discussion.
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(To reduce clutter, this and several similar steps have been omitted from the table.)
Searching from £4 we discover vertex h, which is enqueued (Step 6 ), and sub­

sidiary information written indicating that tx is the largest vertex in the path
1.. . . ,  £1 , /i, which has length three. Since h is not larger than the second largest 
vertex in the path i , . . . ,  £1 , no fill edge is discovered. Again, h is compared against 
the secondLargest value, £i, that was read when ty was dequeued.

Similarly, vertex t2 is dequeued (Step 7) and vertex £3 subsequently enqueued 
(Step 8 ). Again, the ordering of steps 5-6 and steps 7-8 could be exchanged with 
no effects.

Next, vertex h is dequeued (Step 9), and the smallest vertex in the path i , . . . ,  /i 
is read as £i. Next, £ 4 is encountered (Step 10). Since ty is larger than £4, we know 
that i , . . . ,  h, £4 Is not a fill path, so no fill edge is added. Since £ 4 was not previously 
visited, it is enqueued.

Things go wrong after vertex £3 is dequeued (Step 11). When h is encountered 
(Step 12), we “should” discover fill edge {i,h}, since h is larger than the second 
largest vertex in the path i , . . . ,  £3. However, since h was previously visited the 
(i,h) edge is not discovered. Additionally, since h has already been enqueued 
(when it was previously visited), it is not enqueued again. As a result, the fill path
1. . . . ,  £3, h, £4 will not be discovered.

This example suggests that need to modify GS-Lrow to permit a vertex to be 
enqueued more than once. We need an algorithm whose operation encompasses the 
following Multiple Search Rule. This rule is illustrated in Figure 12.

Multiple Search Rule: a vertex h should be re-queued if it was initially 
discovered via a path P(i, h) = i , . . . ,  g i,. . . ,  h, where gy is the second 
largest vertex in the path P(i, h), and on a subsequent visit it is discov­
ered via a path P'(i, h) 5 2 , where g2 is the second largest
vertex in the path P'(i, h), and g2 < gy.

We can modify GS-Lrow to take account of the Multiple Search Rule quite 
simply, by altering the conditional in Step 9. The revised formulation reads

for £ € adj (h)
if visited[t\ /  i or secondLargest[h] < secondLargest[t]

(process £ as before).
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F ig . 12. Multiple Search Rule. A vertex h should be re-queued if  it was initially discovered 

via a path P( i ,  h) =  i , . . . ,  g i , . . . ,  h, where gi is the second largest vertex in the path P( i ,  h), and 

on a subsequent visit it is discovered via a path P( i ,  h)1 =  i , . . .  , g z , . . . ,  h, where g2  is the second 

largest vertex in the path P{ i ,  h)', and <  ffi • Without this rule, the fill path i, 52, h, t  would not 

be discovered.
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F ig . 13. A curious object. This picture can be interpreted either as a grid (the vector x  in 

the system  A x =  b) or the graph of a m atrix (the matrix .4 in the system  A x  =  b). If interpreted 

as a grid, the numbers indicate the gridpoint’s natural ordering.

3.4 GRAPHS AND GRIDS

In this section we introduce some terminology in order to clarify the distinction 
between graphs and grids. The object pictured in Figure 13 can represent either 
a grid (i.e., a collection of unknowns, each of which is associated with a Cartesian 
coordinate), or a graph of a matrix (i.e., a set of vertices and a set of edges). 
When the object is interpreted as a grid it represents the left-hand side vector in 
the system Ax  =  b. When the object is interpreted as the graph of a matrix it 
represents the matrix A in the system Ax = b.

For our purposes the connection between grid and matrix is that, if one starts 
with a 2D grid, then discretizes a PDE using a five-point stencil, then draws pictures 
of the grid and the graph, the pictures are identical, even though the underlying
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mathematical and computational objects are quite different. That is, the grid 
corresponds to a vector, and the graph corresponds to a matrix.

It is common to speak of naturally ordered grids meaning, informally, that the 
gridpoints have been numbered from left to right and bottom to top. Natural or­
dering can be described more formally by reference to the Cartesian coordinate 
associated with each gridpoint. (In fact, this gives an easy way to extend the con­
cept of natural ordering from structured to unstructured grids.) Although graphs, 
being sets of vertices and edges, have no attached spatial coordinates, it is useful to 
preserve the concepts of “natural order” and “spatiality” for matrices that derive 
from the discretization of PDEs on grids.

Henceforth, we use the term structured graph to refer to a graph of a matrix 
that arose from the discretization of a PDE or set of PDEs on a structured grid; 
by extension, we refer to the corresponding matrix as a naturally ordered matrix. 
The term naturally ordered structured graph, which we shorten to naturally or­
dered graph, indicates that the gridpoints were naturally ordered. These graphs 
are structurally symmetric (undirected), although their associated matrices may 
be numerically unsymmetric.

3.5 ILU(£) MEMORY ALLOCATION

As noted in the previous chapter, it is possible to compute storage requirements 
for complete LU factors of symmetric matrices in time essentially proportional 
to the number of nonzeros in the factor and space proportional to the number 
of matrix rows. Hence, all needed data structures can be allocated and set up 
before factorization begins. Unfortunately, there is no known equivalent procedure 
for predicting ILU storage requirements. One practice is to guess at the number 
of nonzeros in the factor and initially allocate that much storage; if this proves 
insufficient, the factorization fails. In some ILU schemes, such as ILUT, an arbitrary 
limit is set on the number of nonzeros in each row. This ensures that adequate 
storage will be allocated and, unless a zero-pivot is encountered, the factorization 
will succeed. Another approach, for implementations coded in C or C++, is to 
dynamically reallocate storage when the initial guess is insufficient. However, this 
reallocation strategy can incur non-trivial overhead and can also fragment memory.

While we cannot offer a general solution to the storage allocation prediction
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problem for ILU factorization, our graph-search algorithms can easily be modified 
to compute storage requirements for ILU(£) factors using 0(n)  space. The modifi­
cation for G S-U row  (Figure 7) is accomplished as follows. Initialize a counter to 
zero. Change Step 15, which previously inserted an element in an adjacency list, 
to increment the counter. Return the counter’s value. Similar modifications can be 
made to GS-Lrow.

While these modifications permit computation of a factor’s storage requirements 
in 0 (n ) space, the time complexity is identical to that required for actually per­
forming symbolic factorization. It is an open question whether faster methods for 
computing ILU storage requirements can be devised.

Experimentally, we can use our revised procedures to provide a qualitative feel 
for the amount of fill likely to be generated for various matrix classes, orderings, 
and levels.

The fill density, which we denote as p, is the ratio of the number of nonzeros 
in F  to the number of nonzeros in A. This density is an indication of memory 
requirements and—ignoring memory hierarchies, communication costs, etc.—can 
be interpreted as the amount of work required for preconditioner application.

Figure 14 shows how density grows as a function of level for 2D and 3D (five- 
point and seven-point) structured graphs. Two characteristics, which are common 
to all medium to large scale matrices we have examined, are apparent. First, fill 
amounts vary smoothly with level; there are no points in the graphs where fill 
ratios make unexpectedly large “jumps” between one factorization level and the 
next. Second, even in this small example, there tends to be a great many levels 
before complete factorization is achieved.

3.6 GS-UROW COMPLEXITY

In this section we formulate run time complexity bounds for GS-Urow for any 
graph whose vertices have bounded degree; these bounds are not tight. We also 
formulate tight run time complexity bounds for 2D and 3D structured graphs. The 
bounds are cast as functions of I, the factorization level, and n, the number of 
vertices in the graph.

The runtime cost of a single iteration of G S-U row  is the cost of conducting a 
BFS from a vertex x. In general, the runtime cost of BFS on a graph G =  (V, E)
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F ig . 14. Fillin densities for naturally ordered structured graphs. Data is from 2D 90 x  90 

graph with 8,100 unknowns (top), and a 3D  20 x 20 x  20 graph with 8,000 unknowns (bottom).
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is known to be 0 (V  +  E), that is, BFS runs in time linear in the size of the 
adjacency-list representation of G [23].

What is needed for our analysis is an expression for the number of vertices and 
edges “touched” during a level £ BFS from a vertex i. We first consider a general 
bound for any graph whose vertices have bounded degree c (e.g., for 2D structured 
graphs c =  5; for 3D structured graphs c =  7.) When the initial seed vertex i 
is dequeued each of c adjacent vertices are examined. If all of these vertices are 
numbered less than i (which is certainly possible), all will be enqueued. At this 
point we have completed a level zero search (i.e., we have examined all paths of 
length one), at a cost of 0(c).

During the level one phase of the search each of possibly c vertices is dequeued, 
and for each of these we examine and enqueue at most c vertices. Thus, the cost 
for the level one phase is bounded by 0(c2). During the level two phase of the 
search each of possibly c2 vertices is dequeued, and for each we again examine 
and enqueue at most c vertices, so the cost for this phase is bounded by 0(c3). 
Continuing in this repetitious line of reasoning, we conclude that the cost for a 
level £ search from a single vertex is bounded by 0(c(<+1̂ ). For a matrix with n 
rows and columns, n breadth-first searches are conducted, so the total runtime cost 
is bounded by 0(nc(<+1*). In practice this bound is not at all tight since when a 
vertex i is dequeued typically some or all of the c vertices in its adjacency list will 
previously have been enqueued (visited).

Next, consider a 2D structured graph. As shown in Figure 15, it is easy to 
devise a formula for counting the number of vertices that are within a distance £ 
from a seed vertex i. Since there are exactly 4£ vertices at distance £ from a seed 
vertex t, the expression for the total number of vertices reachable by £ or fewer 
edges from i (i.e., all the vertices that will be enqueued during BFS) is the sum

Since at most four edges will be examined when each vertex is dequeued, and n 
searches are conducted, we arrive at the runtime complexity 0 (n (£ + l)2) ~  0(n£2). 
(The “+1” is needed since, when vertices at a distance £ are dequeued, no additional 
vertices are enqueued. However, all vertices adjacent to the dequeued vertices are 
examined, and entries corresponding to fill path lengths of £ + 1  may be added to

t

(6)
k= 1
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I from  seed vertex i in a 2D structured graph. Cases for t  =  I, 2, and 3 are shown left to right 

and top to bottom. The dashed lines are added as an aid to the eye in discerning the patterns. 

We conclude from studying the patterns that there are 41 vertices at I  edges distant from a given 

vertex i.
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Algorithm 2D 3D bounded degree c general
C la ssic -IL U

G S -U r o w

0{nP)
0(nP )

0 { n t)
0(n£3)

0(nc2̂ +1 )̂
0(nc^+l )̂

0(nc2̂ +l )̂
O(ne')

the sparsity set.)
For 3D, the number of vertices at a distance £ from a seed vertex i is

*-i
2 + A£ + Y lk-

fc=i
Geometrically, these vertices form the faces of two pyramids joined at their bases 
(a rendering of which is beyond the artistic capabilities of this author). The total 
number of vertices within £ edges from i

j= l \  k= l J

Since a search is conducted for each vertex in the graph, we arrive at a runtime 
complexity of 0(n£3).

In all three cases (bounded degree; 2D structured; 3D structured), if the graphs 
are arbitrarily ordered, there may be a fill edge between vertex i and any dequeued 
vertex. Hence, the number of fill entries in any row of the matrix is bounded by 
same complexity as the search cost from the corresponding vertex. As shown in the 
next section, these bounds are not tight.

Finally, consider an arbitrary unsymmetric graph, about which we have no 
a priori structural information. The cost of the BFS from each vertex is bounded 
by the maximum of the number of vertices and edges in the matrix. Assuming the 
graph is connected, this gives an upper bound of O(ne), where e is the number of 
edges in the matrix.

Table 1 summarizes the results in this section. The table also includes complex­
ity results for C lassic-ILU, which are developed in Section 3.8.
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3.7 FILL DENSITIES FOR NATURALLY ORDERED GRAPHS

For a 2D naturally ordered graph the analysis in the previous section shows that 
the number of nonzeros in any row in the matrix is bounded by 0(£2). However, 
in Figure 23 in the following chapter we use geometrical reasoning to show that 
there are asymptotically 21 nonzeros in the strict upper triangular portion of the 
matrix rows. Due to structural symmetry, there are also 21 nonzeros in the strict 
lower triangular portion of matrix rows. Similar geometrical arguments show that 
there are asymptotically P  nonzero entries in the strict upper and lower triangular 
portions of naturally ordered 3D graphs.

These results give us a theoretic means of estimating the fill density p. Asymp­
totically, rows in A  contain five nonzeros. Asymptotically, rows in F  contain 1+ 41 
nonzeros (a diagonal entry, plus 2£ entries in the strict upper and lower portions of 
the row).

On the assumption that all matrix rows contain the same number of nonzero 
entries, p can be defined as the ratio of the number of nonzero entries in a row in 
F  to the number of nonzero entries in a row in A. For 2D naturally ordered graphs 
this is

! ± “  (9)

For 3D naturally ordered graphs the corresponding expression is

(10)

In Figure 16 we have plotted the predicted fill densities, and the actual fill 
densities for several sizes of 2D naturally ordered graphs. As the graphs get larger 
the actual densities more closely approach the predicted density. When fill levels 
are high, the average number of nonzeros per row in F  progressively decreases, due 
to the grid boundaries (this explains the fall-off on the right-hand side of the plot). 
Were we dealing with a torus (a 2D grid with wrap-around on the sides and edges), 
this fall off would not occur.
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F ig . 16. Predicted vs. actual fill densities fo r  2D naturally ordered graphs.
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3.8 CLASSIC-ILU COM PLEX ITY

A statement of the C lassic-ILU algorithm appeared in chapter 2, Figure 1. 
Classic-IL U ’s runtime complexity is determined by Steps 8 and 9. For every 
entry i in adj'(j) with i < j  (i.e., elements in the lower triangular portion of row j), 
we “touch” every element k in adj'(i) with k >  j  (i.e., elements in the upper trian­
gular portion of row i) (This analysis is equally applicable to complete as well as 
incomplete factors). If the upper and lower triangular portion of each row contains 
e entries, the run time complexity is thus 0{ne2).

In Section 3.6 we showed that, for structurally symmetric graphs of bounded 
degree c, runtime complexity for GS-Urow 0(nc^+l )̂. Since any of the vertices 
touched during a breadth first search can potentially result in fill entries, we con­
clude that the number of fill entries in either upper or triangular sections of the 
rows is bounded by e =  0(c^+l )̂. Hence, the runtime complexity of Classic-ILU 
is bounded by 0(nc2(<+l)).

For 2D naturally ordered grids we have shown that e =  2L Hence, the runtime 
complexity is 0{nP ). This is identical to the run time complexity derived for 
G S-U row  in section 3.6.

For 3D naturally ordered grids e =  O (^). Hence, the runtime complexity is 
0{n£^). This is of higher order than the 0(n£3) run time complexity for GS-Urow 
that was derived in section 3.6.

Runtime complexity analyses for more general matrices, structure we have no 
a priori information is elusive. In general, we can only say that complexity is 
bounded by that for complete factorization. This has been shown to be 0(ne*), 
where e* is the number of edges in the filled graph G(F) [72].

These complexity results are summarized in Table 1. The table also contains 
complexity results (developed in Section 3.6) for the GS-Urow Algorithm.

3.9 PO TEN TIA L-U  G R A P H  SEARCH A LG O RITH M

For our final application we introduce a graph search algorithm that, for some 
classes of matrices, computes factors identical to those returned by GS-Urow, 
but with lower runtime complexity. The new algorithm, called P otential-U, is a 
logical extension of the ideas presented in previous sections of this chapter. Instead
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of conducting a level I search on the unrestricted graph G{Al) as does GS-U row , 
P otential-U restricts its search by enqueuing only vertices that, on dequeue, are 

guaranteed to result in the discovery of (possibly previously discovered) fill edges.
P otential- U always computes a set S  that is a subset of that computed by 

GS-Urow . For the structured graphs that were introduced in Section 3.4 the 
two sets are always identical. For all other classes of graphs the sets are identical 
for i  =  0,1, or 2. For higher levels, the set of edges returned by P otential-U 
may be only a proper subset of that returned by GS-U row . (We will state these 
properties as theorems after introducing the algorithm). Hence, the two fill sets are 
only “potentially” identical, from which observation the algorithm takes its name. 
Before presenting the algorithm, we briefly discuss the observations and intuition 
behind its design.

Figure 17, top, shows all vertices visited, edges traversed, and fill edges discov­
ered during the ith iteration of GS-Urow(G(A), 5), when G{A) is a 2D naturally 
ordered graph. The bottom half of the figure indicates the vertices and edges that 
are part of the shortest fill paths associated with admitted fill entries; these are the 
vertices and edges that represent “useful” work. Two observations are apparent 
from inspection of these pictures. First, a great many of the vertices that are en­
queued are not part of any of the fill paths associated with admitted edges. Visiting 
these vertices is hence “useless” work, which we would like to avoid if we could. 
Second, every vertex h that is part of a shortest fill path is adjacent to a vertex j  
such that (t, j)  is an admitted edge.

These observations suggest a simple method of restricting the BFS phase of 
GS-Urow  in order to avoid most of the “unnecessary” work. We introduce the 
graph search constraint when conducting a BFS from vertex i, a vertex h is only 
enqueued if there exists an edge (h ,j) in G(A), and h < i < j .  This constraint 
is implemented in the form of an 0(1) lookup table that is initialized in Steps 2 
through 4 of the P otential-DRIVER, shown in Figure 18. This driver, like the 
driver for G S-U row , calls the P otential-U algorithm once for each vertex in the 
graph. The P otential-U algorithm itself is identical to the G S-U row  algorithm
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»s

Fig. 17. Vertices visited during G S -U ro w . Top: vertices and edges visited during GS- 
U ro w , level 5. All end point vertices of the bold edges are queued during the search. Bottom: 
the fill edges discovered during the search are indicated with dashed lines. The edges that actually 
participate in the shortest fill paths that lead to the discovered edges are bolded.
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P o te n tia l-D r iv e r (G (A ) , £)

1 #  Initialization
2 S < - 0
3 for each vertex i 6 V
4 largestNabor[t\ «- max{j : j  6 adj(i)}
5 m'sited[i] <----- 1
6 #  Compute structure of upper triangular row i
7 for each vertex i € V
8 adf(i) <— 0
9 P  OTENTIAL- U (G(A), £, i, adj'(i))
10 insert adj'(i) in 5
11 return S

F ig . 18. P o t e n t i a l - U  driver.

(Figure 7), except that line 10, which formerly read: 

if t < i and length[h] < t  

is replaced by

if t < % and length[h] < £ and largestNabor[t\ > i.

We next state and prove three simple theorems concerning the output of 
P OTENTI AL- U .

Theorem 17 For any graph G the set of fill edges returned by P OTENTIAL-U is a 
subset of that returned by GS-U row .

Proof. This statement follows immediately from the graph search constraint. 
An edge is only discovered due to the existence of a vertex j  that is adjacent to an 
enqueued vertex t. The effect of the graph search constraint is that only a subset 
of the vertices enqueued by G S-Urow are enqueued by P otential- U. Q

Theorem 18 For any graph G and £ = 0,1, or 2, the set of fill edges returned by 
POTENTIAL-U is identical to that returned by G S-U row .
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Proof. Consider a fill path j , where i < j .  It suffices to show that vertex
h will be enqueued. The case for I =  0 is immediate, since here we are searching 
for fill paths of the form i , j ,  and vertex i is always enqueued (Step 2, Figure 7).

For i  =  1 POTENTIAL-U searches for fill paths containing two edges. These 
paths must be of the form i ,h ,j ,  with h < i < j .  Vertex i is always enqueued. 
Since vertex h is adjacent to vertex i, and i > i, it will also be enqueued.

For t  =  2, P OTENTI AL- U searches for fill paths containing three edges, which 
are of the form i, hi, h2, j .  From the argument for £ =  1 , vertex hi will always be 
enqueued. When vertex hi is dequeued vertex h2 will be discovered. Since vertex 
h2 is adjacent vertex j ,  this vertex will also be enqueued. □

Theorem 19 For any graph G and I > 3, the set of fill edges returned by 
POTENTIAL-U may be only a subset of that returned by G S-U row .

Proof. The proof is by construction. It suffices to show an example for i  =  3 
where this is true. Consider the level 3 fill path, i ,h i,h 2,h$ ,j, and suppose that 
h2 is the smallest vertex in the path. From the proof of the previous theorem, 
vertices i and hi will necessarily be enqueued. When vertex hi is dequeued vertex 
h2 will be discovered. Since this vertex is not adjacent to any vertex j  > i, the 
graph search constraint prohibits its enqueuement. Hence vertex /1 3  will not be 
discovered or enqueued, and the terminating vertex in the fill path, level j ,  will not 
be discovered. Q

Theorem 20 Given a 2D or 3D naturally ordered graph, G S-U row and 
POTENTIAL-U compute identical sparsity sets.

Proof. The proof is geometrical in nature. Referring to the bottom half of 
Figure 17, all vertices h in all shortest fill paths are necessarily adjacent to vertices 
j  such that j  > i. 0

For 2D naturally ordered graphs, P o t e n t i a l - U  has run time complexity of 
0(n£). For 3D naturally ordered graphs, P o t e n t i a l - U  has run time complexity of 
0(n& ). Again, the arguments are geometrical in nature. Table 2 compares the run 
time complexities of POTENTIAL-U with other symbolic factorization algorithms 
discussed in this chapter.
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T able  2

POTENTIAL-U run  time complexity comparison. Results for C la s s ic - IL U  and G S -U ro w  

apply for any ordering. The results for POTENTIAL-U for 2D and 3D are only guaranteed for 

natural ordering.

Algorithm 2D 3D

Classic-ILU
GS-U row

P otential-U

0{nF)
0{n?)
0(n£)

0 (n i*) 
0(n£3) 
0{n?)
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CHAPTER 4 

PARALLEL H U

This chapter describes a parallel algorithm for computing incomplete factor (ILU) 
preconditioners. The algorithm attains a high degree of parallelism through graph 
partitioning and a two-level ordering strategy. Both the subdomains and the nodes 
within each subdomain are ordered to preserve concurrency. We show through an 
algorithmic analysis and through computational results that this algorithm is scal­
able. Experimental results include timings on three parallel platforms for problems 
with up to 20 million unknowns running on up to 216 processors. The resulting 
preconditioned Krylov solvers have the desirable property that the number of it­
erations required for convergence is insensitive to the number of processors for a 
given problem size, if the number of interior to boundary nodes is relatively large.

Material in this chapter has been published in the SIAM Journal of Scientific 
Computing [53]. This chapter provides and introduction to and overview of the re­
search with which the remainder of this dissertation is concerned. Follow on chap­
ters provide additional algorithmic and scalability details and results, and describe 
the model PILU implementation that was developed as part of this dissertation.

An outline of this chapter is as follows. Section 1 provides an overview and 
introduction to the PILU algorithm. Section 2 describes the steps in the parallel 
algorithm for computing the ILU preconditioner in detail and provides theoretical 
justification. The algorithm is based on the incomplete fill path theorem that was 
presented in Chapter 2. We also discuss the role that a subdomain graph con­
straint plays in the design of the algorithm, show that the preconditioners exist 
for special classes of matrices, and relate our work to earlier work on this problem. 
Section 3 contains an analysis that shows that the parallel algorithm is scalable for 
two-dimensional (2D-) and three-dimensional (3D-)model problems, when they are 
suitably ordered and partitioned. Section 4 contains computational results on Pois- 
son and convection-diffusion problems. The first subsection shows that the parallel 
ILU algorithm is scalable on three parallel platforms; the second subsection reports 
convergence studies. We tabulate how the number of Krylov solver iterations and 
the number of entries in the preconditioner vary as a function of the preconditioner 
level for three variations of the algorithm. The results show that fill levels higher
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than one are effective in reducing the number of iterations; the number of iterations 
is insensitive to the number of subdomains; and the subdomain graph constraint 
does not affect the number of iterations while it makes possible the design of a 
simpler parallel algorithm.

The background needed for ILU preconditioning may be found in several books; 
see, e.g., [1, 38, 45, 77]. A preliminary version of the material in this chapter was 
presented at Supercomputing ’99 and was published in the conference proceed­
ings [49], and as technical reports [51, 52].

4.1 INTRODUCTION

Incomplete factorization (ILU) preconditioning is currently among the most robust 
techniques employed to improve the convergence of Krylov space solvers for linear 
systems of equations. However, scalable parallel algorithms for computing ILU 
preconditioners have not been available until recently despite the fact that ILU 
has been heavily used in applications for more than twenty years [27]. We report 
the design, analysis, implementation, and computational evaluation of a parallel 
algorithm for computing ILU preconditioners.

Our parallel algorithm assumes that three requirements are satisfied.

•  The adjacency graph of the coefficient matrix (or the underlying finite element 
or finite difference mesh) must have good edge separators, i.e., it must be 
possible to remove a small set of edges to divide the problem into a collection 
of subproblems that have roughly equal computational work requirements.

•  The size of the problem must be sufficiently large relative to the number 
of processors so that the work required by the subgraph on each processor 
is suitably large to dominate the work and communications needed for the 
boundary nodes.

•  The subdomain intersection graph (to be defined later) should have a small 
chromatic number. This requirement will ensure that the dependencies in 
factoring the boundary rows do not result in undue losses in concurrency.
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4.2 ALGO RITHM S

In this section we discuss the Parallel ILU (PILU) algorithm and its underlying 
theoretical foundations.

4.2.1 T H E  PIL U  A LG O RITH M

Figure 19 describes the steps of the PILU algorithm at a high level; the algorithm 
is suited for implementation on both message-passing and shared-address space 
programming models.

The PILU algorithm consists of four major steps. In the first step, we create par­
allelism by dividing the problem into subproblems by means of graph partitioning. 
In the second step, we preserve the parallelism in the interior of the subproblems by 
locally scheduling the computations in each subgraph. In the third step, we preserve 
parallelism in the boundaries of the subproblems by globally ordering the subprob­
lems through coloring a suitably defined graph. In the final step, we compute the 
preconditioner in parallel.

Before discussing the four steps in greater detail, an example may prove illumi­
nating. Figure 20, top, shows a Matlab spy plot of a matrix arising from a five-point 
discretization on a 2D grid. The spy plot in the bottom half of the figure shows the 
same matrix, after it has been partitioned amongst nine processors (first step), and 
reordered (second and third steps). Figure 21 shows spy plots of the filled matrix, 
F  =  L +  U — / ,  following factorization (fourth step). The top spy plot shows fill 
for PILU(4), and the bottom spy plot show fill for PILU(IO).

Step 1: G raph  partitioning . In the first step of PILU, we partition the 
adjacency graph G{A) of the coefficient matrix A  into p subgraphs by removing a 
small set of edges that connects the subgraphs to each other. Each subgraph will 
be mapped to a distinct processor that will be responsible for the computations 
associated with the subgraph.

An example of a model five-point grid partitioned into four subgraphs is shown 
in Figure 22. For clarity, the edges corresponding to the coefficient matrix elements 
(within each subgraph or between subgraphs) are not shown. The edges drawn 
correspond to fill elements (elements that are zero in the coefficient matrix but are 
nonzero in the incomplete factors) that join the different subgraphs.
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Input: A coefficient matrix, its adjacency graph, and the number of processors 

P-
Output: The incomplete factors of the coefficient matrix.

1. Partition the adjacency graph of the matrix into p subgraphs (subdo­
mains), and map each subgraph to a processor. The objectives of the 
partitioning are that the subgraphs should have roughly equal work, and 
there should be few edges that join the different subgraphs.

2. On each subgraph, locally order interior nodes first, and then order 
boundary nodes.

3. Form the subdomain intersection graph corresponding to the partition, 
and compute an approximate minimum vertex coloring for it. Order 
subdomains according to color classes.

4. Compute the incomplete factors in parallel.
a. Factor interior rows of each subdomain.
b. Receive sparsity patterns and numerical values of the nonzeros of the 
boundary rows of lower-numbered subdomains adjacent to a subdomain 
(if any).
c. Factor boundary rows in each subdomain and send the sparsity pat­
terns and numerical values to higher-numbered neighboring subdomains 
(if any).

FlC. 19. High level description of the PILU algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70

100

200

300

400

500

600

700

600

900 100 200 300 400 500 600 700 600 900
nz-4036

100

200

300

400

500

600

700

800

900 900100 200 300 400 500 600 700 800
nz«4036

Fig. 20. PILU ordering pattern, level zero. Top: spy plot of a naturally ordered matrix 
arising from a five-point stencil on a 30 x 30 grid; Bottom: matrix has been partitioned into nine 

subdomains and ordered per the PILU algorithm.
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F ig . 21. PIL U  ordering patterns, levels Jour and ten. Top: level Jour Jill Jor m atrix Jrom 

Figure 20; Bottom : level ten Jill.
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F ig . 22. PILU  partitioning, mapping, and vertex ordering. An example that shows the 

partitioning, mapping, and vertex ordering used in the PILU  algorithm. The graph on the top is a 

regular 12 x  12 grid with a five-point stencil partitioned into four subdomains and then mapped on 

four processors. The subdomains are ordered by a coloring algorithm to reduce dependency path 

lengths. Only the level one and two fill edges that join  the different subdomains are shown; all other 

edges are omitted fo r  clarity. The figure on the bottom right shows the subdomain intersection 

graph when the subdomain graph constraint is enforced. (This prohibits fill between the boundary 

nodes of the subdomains S i and S2 , indicated by the broken edges in the top graph.) The graph 

on the bottom left shows the subdomain intersection graph when the subdomain graph constraint 

is no t enforced.
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To state the objective function of the graph partitioning problem, we need to 
introduce some terminology. An edge is a separator edge if its endpoints belong 
to different subgraphs. A vertex in a subgraph is an interior vertex if all of its 
neighbors belong to that subgraph; it is a boundary vertex if it is adjacent to one or 
more vertices belonging to another subgraph. By definition, an interior vertex in a 
subgraph is not adjacent to a vertex (boundary or interior) in another subgraph. In 
Figure 22, the first 25 vertices are interior vertices of the subgraph So, and vertices 
numbered 26 through 36 are its boundary vertices. The goal of the partitioning is 
to keep the amount of work associated with the incomplete factorization of each 
subgraph roughly equal, while keeping the communication costs needed to factor 
the boundary rows as small as possible.

There is a difficulty with modeling the communication costs associated with the 
boundary rows. In order to describe this difficulty, we need to relate this cost more 
precisely to the separators in the graph. Define the higher degree of a vertex v as 
the number of vertices numbered higher than v in a given ordering. We assume that 
upward-looking, row-oriented factorization is used. At each boundary between two 
subgraphs, elements need to be communicated from the lower numbered subgraph 
to the higher numbered subgraph. The number of these elements is proportional to 
the sum of the higher degrees (in the filled graph G(F)) of the boundary vertices 
in the lower numbered subgraph. But unfortunately, we do not know the fill edges 
at this point since we have neither computed an ordering of G(A) nor computed 
a symbolic factorization. We could approximate by considering higher degrees of 
the boundary vertices in the graph G(A) instead of the filled graph G(F), but even 
this requires us to order the subgraphs in the partition.

The union of the boundary vertices on all the subgraphs forms a wide vertex 
separator. This means that the shortest path from an interior vertex in any sub­
graph to an interior vertex in another subgraph consists of at least three edges; 
such a path has length at least three. The communication cost in the (forward and 
backward) triangular solution steps is proportional to the sum of the sizes of the 
wide vertex separators. None of the publicly available graph partitioning software 
has the minimization of wide separators as its objective function, but it is possible 
to modify existing software to optimize this objective.

The goal of the partitioning step is to keep the amount of work associated with
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each subgraph roughly equal (for load balance) while making the communication 
costs due to the boundaries as small as possible. As the previous two paragraphs 
show, modeling the communication costs accurately in terms of edge and vertex 
separators in the initial graph G(A) is difficult, but we could adopt the minimization 
of the wide separator sizes as a reasonable goal. This problem is NP-complete, but 
there exist efficient heuristic algorithms for partitioning the classes of graphs that 
occur in practical situations. (Among these graph classes are 2D-finite element 
meshes and 3D-meshes with good aspect ratios.)

S tep 2: Local reordering. In the second step, in each subgraph we order the 
interior vertices before the boundary vertices. This ordering ensures that during 
the incomplete factorization, an interior vertex in one subgraph cannot be joined 
by a fill edge to a vertex in another subgraph, as will be shown later. Fill edges 
between two subgraphs can join only their boundary vertices together. Thus inte­
rior vertices corresponding to the initial graph G(A) remain interior vertices in the 
graph of the factor G(F). The consequences of this are that the rows correspond­
ing to the interior vertices in each subdomain of the initial problem G{A) can be 
factored concurrently, and that communication is required only for factoring rows 
corresponding to the boundary rows. The reader can verify that in each subgraph 
in Figure 22 the interior nodes have been ordered before the boundary nodes.

The observation concerning fill edges in the preceding paragraph results from 
an application of the Theorems 2 and 4 from Chapter 2. Now consider the adja­
cency graph G{A) and a partition II =  {5o,. . .  ,Sp~i} of it into subgraphs (sub- 
domains). Any path joining two interior nodes in distinct subdomains must in­
clude at least two boundary nodes, one from each of the subgraphs; since each 
boundary node is numbered higher than (at least one of) the path’s end ver­
tices (since these are interior nodes in the subgraph), this path cannot be a fill 
path. If two interior nodes belonging to separate subgraphs were connected by a 
fill path and the corresponding fill entry were permitted in F, the interior nodes 
would be transformed into boundary nodes in G(F). This is undesirable for par­
allelism, since then there would be fewer interior nodes to be eliminated concur­
rently.

The local ordering step preserves interior and boundary nodes during the factor­
ization and ensures that a subdomain’s interior rows can be factored independently
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of row updates from any other subdomain. Therefore, when subdomains have 
relatively large interior/boundary node ratios, and contain approximately equal 
amounts of computational work, we expect PILU to exhibit a high degree of par­
allelism.

S tep 3: G lobal ordering. The global ordering phase is intended to preserve 
parallelism while factoring the rows corresponding to the boundary vertices. In 
order to explain the loss of concurrency that could occur during this phase of the 
algorithm, we need the concept of a subdomain intersection graph, which we shall 
call a subdomain graph for brevity.

The subdomain graph S{G, II) =  (V,, Es) is computed from a graph G and its 
partition II =  {So, • • •, Sp- 1 } into subgraphs. The vertex set Va contains a vertex 
corresponding to every subgraph in the partition; the edge set Es contains edge 
(Si,Sj) if there is an edge in G with one endpoint in Si and the other in Sj. We 
can compute a subdomain graph S(A ) corresponding to the initial graph G(A) and 
its partition. (This graph should be denoted S(G(A),  II), but we shall write S(A) 
for simplicity.) We could also compute a subdomain graph S(F) corresponding to 
the graph of the factor G{F). The subdomain graph S(A)  corresponding to the 
partition of the initial graph G{A) (the top graph) in Figure 22 is shown in the 
graph at the bottom right in that figure.

We impose a constraint on the fill, the subdomain graph constraint. The subdo­
main graph corresponding to G(F) is restricted to be identical to the subdomain 
graph corresponding to G(A). This prohibits some fill in the filled graph G(F): 
if two subdomains are not joined by an edge in the original graph G(A), any fill 
edge that joins those subdomains is not permitted in the graph of the incomplete 
factor G(F).  The description of the PILU algorithm in Figure 19 assumes that the 
subdomain graph constraint is satisfied. This constraint makes it possible to ob­
tain scalability in the parallel ILU algorithm. Later, we discuss how the algorithm 
should be modified if this constraint is relaxed.

Each subdomain’s nodes (in G{A)) are ordered contiguously. Consequently, 
saying “subdomain r  is ordered before subdomain s” is equivalent to saying “all 
nodes in subdomain r  are ordered, and then all nodes in subdomain s are ordered.” 
This permits S(A)  to be considered as a directed graph, with edges oriented from 
lower to higher numbered vertices.
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Edges in S(F) indicate data dependencies in factoring the boundary rows of the 
subdomains. If an edge in 5(F) joins r  and s and subdomain r  is ordered before 
subdomain s, then updates from the boundary rows of r  have to be applied to the 
boundary rows of s before the factorization of the latter rows can be completed. 
It follows that ordering S(F) so as to reduce directed path lengths reduces serial 
bottlenecks in factoring the boundary rows. If we impose the subdomain graph 
constraint, these observations apply to the subdomain graph 5(A) as well since 
then 5(A) is identical with 5(F).

We reduce directed path lengths in 5(A) by coloring the vertices of the sub- 
domain graph with few colors using a heuristic algorithm for graph coloring, and 
then by numbering the subdomains by color classes. The boundary rows of all 
subdomains corresponding to the first color can be factored concurrently without 
updates from any other subdomains. These subdomains update the boundary rows 
of higher numbered subdomains adjacent to them. After the updates, the subdo­
mains that correspond to the second color can factor their boundary rows. This 
process continues by color classes until all subdomains have factored their bound­
ary rows. The number of steps it takes to factor the boundary rows is equal to the 
number of colors it takes to color the subdomain graph.

In Figure 22, let Pi denote the processor that computes the subgraph 5,. Then 
Po computes the boundary rows of Sq and sends them to processors p\ and p?. 
Similarly, p3 computes the boundary rows of subgraph 53 and sends them to pi 
and p2 . The latter processors first apply these updates and then compute their 
boundary rows.

How much parallelism can be gained through subdomain graph reordering? We 
can gain some intuition through analysis of simplified model problems, although we 
cannot answer this question a priori for general problems and all possible partitions. 
Consider a matrix arising from a second order PDE that has been discretized on 
a regularly structured 2D grid using a standard five-point stencil. Assume that 
the grid is naturally ordered and that it has been partitioned into square subgrids 
and mapped into a square grid of p processors. In the worst case, the associated 
subdomain graph, which itself has the appearance of a regular 2D grid, can have 
a dependency path of length 2(v/p — 1). Similarly, a regularly structured 3D grid 
discretized with a seven-point stencil that is naturally ordered and then mapped
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on a cube containing p processors can have a dependency path length of 3(^/p— 1). 
However, regular 2D grids with the five-point stencil and regular 3D grids with 
the seven-point stencil are bipartite graphs and can be colored with two colors. If 
all subdomains of the first color class are numbered first, and then all subdomains 
of the second color class are numbered, the longest dependency path in 5  will be 
reduced to one. This discussion shows that coloring the subdomain graph is an 
important step in obtaining a scalable parallel algorithm.

Step 4: P reconditioner com putation. Now that the subdomains and the 
nodes in each subdomain have been ordered, the preconditioner can be computed. 
We employ an upward-looking, row oriented factorization algorithm. The interior of 
each subdomain can be computed concurrently by the processors, and the boundary 
nodes can be computed in increasing order of the color classes. Either a level-based 
ILU(f) or a numerical threshold based ILUT algorithm may be employed on each 
subdomain. Different incomplete factorization algorithms could be employed in 
different subdomains when appropriate, as in multiphysics problems. Different fill 
levels could be employed for the interior nodes in a subdomain and for the boundary 
nodes to reduce communication and synchronization costs.

4.2.2 RELA X IN G  TH E SUBDOM AIN G R A PH  CO N STRA IN T

Now we consider how the subdomain graph constraint might be relaxed. Given a 
graph G(A) and a partition of it into subgraphs, we color the subdomain graph 
5(A) and order its subdomains as before. Then we compute the graph G(F) of an 
incomplete factor and its subdomain graph S{F). To do this, we need to discover 
the dependencies in 5(F), but initially we have only the dependencies in S(A) 
available. This has to be done in several rounds, because fill edges could create 
additional dependencies between the boundary rows of subdomains, which in turn 
might lead to further dependences. The number of rounds needed is the length 
of a longest dependency path in the subdomain graph G(F), and this could be 
fi(p). This discussion applies when an ILU {I) algorithm is employed, with symbolic 
factorization preceding numerical factorization. If ILUT were to be employed, then 
symbolic factorization and numerical factorization must be interleaved, as would 
be done in a sequential algorithm.

We can then color the vertices of 5(F) to compute a schedule for factoring
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the boundary rows of the subdomains. For achieving concurrency in this step the 
subdomain graph 5(F) should have a small chromatic number (independent of the 
number of vertices in G(A)). Note that the description of the PILU algorithm in 
Figure 19 needs to be modified to reflect this discussion when the subdomain graph 
constraint is relaxed.

The graph G(F) in Figure 22 indicates the fill edges that join Si to S2 as broken 
lines. The corresponding subdomain intersection graph 5(F) is shown on the lower 
left. The edge between Si and S2 necessitates three colors to color 5(F): the 
subdomains So and S3 form one color class; 5 t by itself constitutes the second color 
class; and S2 by itself makes up the third color class. Thus three steps are needed for 
the computation of the boundary rows of the preconditioner when the subdomain 
graph constraint is relaxed. Note that the processor responsible for the subdomain 
52 can begin computing its boundary rows when it receives an update from either 
So or S3 , but that it cannot complete its computation until it has received the 
update from the subdomain Si.

Theorem 4 has an intuitively simple geometric interpretation. Given an initial 
node i in G(A), construct a topological “sphere” containing all nodes that are at a 
distance less than or equal to k +  1 edges. Then a fill entry fa  is admissible in an 
ILU(f) factor only if j  is within the sphere. Note that all such nodes j  do not cause 
fill edges since there needs to be a fill path joining i and j .  By applying Theorem 4, 
we can gain an intuitive understanding of the fill entries that may be discarded 
on account of the subdomain graph constraint. Referring again to Figure 22, we 
see that prohibited edges arise when two nonadjacent subdomains in G(A) have 
nodes that are joined by a fill path of length less than k + 1. No level zero edge is 
discarded by the constraint.

4.2.3 EXISTENCE OF PILU PRECONDITIONERS

The existence of preconditioners computed from the PILU algorithm can be proven 
for some classes of problems.

Meijerink and van der Vorst [65] proved that if A is an M-matrix, then ILU 
factors exist for any predetermined sparsity pattern, and Manteuffel [64] extended 
this result to H-matrices with positive diagonal elements. These results immediately 
show that PILU preconditioners with sparsity patterns based on level values exist
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for these classes of matrices. This is true even when different level values are used 
for the various subdomains and boundaries.

Incomplete Cholesky (IC) preconditioners for symmetric problems could be com­
puted with our parallel algorithmic framework using preconditioners proposed by 
Jones and Plassmann [54] and by Lin and More [58] on each subdomain and on 
the boundaries. The sparsity patterns of these preconditioners are determined by 
the numerical values in the matrix and by memory constraints. Lin and More have 
proved that these preconditioners exist for M- and H-matrices. Parallel IC precon­
ditioners also can be shown to exist for M- and H-matrices. If the subdomain graph 
constraint is not enforced, then the preconditioner computed in parallel corresponds 
to a preconditioner computed by the serial algorithm from a reordered matrix.

4.3 PERFORMANCE ANALYSIS

In this section we present simplified theoretical analyses of algorithmic behavior for 
matrices arising from PDEs discretized on 2D grids with five-point stencils and 3D 
grids with seven-point stencils. Since our arguments are structural in nature, we 
assume ILU(l) is the factorization method used.

We assume the grid has been block-partitioned, with each subdomain consisting 
of a square subgrid of dimension c x c. We also assume the subdomain grid has 
dimensions y/p x y/p, so there are p processors in total. There are thus N  = (?p 
nodes in the grid, and subdomains have at most 4c =  4 boundary nodes.

If subdomain interior nodes are locally numbered in natural order and t  c, 
each row in the factor F  asymptotically has 21 (strict) upper triangular and 21 
(strict) lower triangular nonzero entries. The justification for this statement arises 
from a consideration of the incomplete fill path theorem; the intuition is illustrated 
in Figure 23.

Assuming that the classical ILU(l) algorithm is used for symbolic factorization, 
both symbolic and numeric factorization of row j  entails 412 arithmetic operations. 
This is because for each lower triangular entry fa  in matrix row j ,  factorization 
requires an arithmetic operation with each upper triangular entry in row i.

A red-black ordering of the subdomain graph gives an optimal bipartite division. 
If red subdomains are numbered before black subdomains, our algorithm simplifies 
to the following three stages.
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F ig . 23. Counting lower triangular fill edges in a naturally ordered graph. We count the 

number of edges incident on vertex 9. Considering the graphs from top to bottom, we find that 

there are two level 0 edges; there is one level 1 edge, due to fill path 9 ,3 ,4 ;  there is one level 2 

edge due to fill path 9, 3, 4, 5; there are two level 3 edges, due to fill paths 9, 3, 4, 5, 6 and 9, 3, 

2, 1, 7. We can generalize that two additional fill edges are created for every level greater than 

three, except near the boundaries. We conclude that asymptotically there are 2k lower triangular 

edges incident on a vertex  in a level k factorization. Since the mesh corresponds to a structurally 

sym m etric problem, there are 2k upper triangular edges incident on a vertex as well.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



81

1. Red processors eliminate all nodes; black processors eliminate interior nodes.

2. Red processors send boundary-row structure and values to black processors.

3. Black processors eliminate boundary nodes.

If these stages are nonoverlapping, the cost of the first stage is bounded by the cost 
of eliminating all nodes in a subdomain. This cost is 4£2c2 =

The cost for the second stage is the cost of sending structural and numerical 
values from the upper-triangular portions of the boundary rows to neighboring 
processors. If t  c, the incomplete fill path theorem can be used to show that, 
asymptotically, a processor only needs to forward values from c rows to each neigh­
bor. We assume a standard, noncontentious communication model wherein a  and 
/3 represent message startup and per-word-transfer times, respectively. We measure 
these times in non-dimensional units of flops by dividing them by the time it takes 
to execute one flop. The time for an arithmetic operation is thus normalized to 
unity. Then the cost for the second step is 4(a +  2£(3c) =  4(a +  2

Since the cost of factoring a boundary row can be shown to be asymptotically 
identical to that for factoring an interior row, the cost for eliminating the 4c bound­
ary nodes is (4£2)(4c) =  Speedup can then be expressed as

4 F N
speedup = ------------------------y=------------ ?=.

seil + 4(a +  2<0v/ f )  +  16Pv/ f

The numerator represents the cost for sequential execution, and the three terms 
in the denominator represent the costs for the three stages (arithmetic for interior 
nodes, communication costs, and arithmetic for the boundary nodes) of the parallel 
algorithm.

Three implications from this equation are in order. First, for a fixed problem 
size and number of processors, the parallel computational cost (the first and third 
terms in the denominator) is proportional to I2, while the communication cost (the 
second term in the denominator) is proportional to £. This explains the increase 
in efficiency with level that we have observed. Second, if the ratio N /p  is large 
enough, the first term in the denominator will become preeminent, and efficiency 
will approach 100%. Third, if we wish to increase the number of processors p by 
some factor while maintaining a constant efficiency, we need only increase the size of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



82

the problem N  by the same factor. This shows that our algorithm is scalable. This 
observation is not true for a direct factorization of the coefficient matrix, where the 
dependencies created by the additional fill cause loss in concurrency.

For the 3D case we assume partitioning into cubic subgrids of dimension c x 
c x c and a subdomain grid of dimension p1̂ 3 x p1/3 x p1/3, which gives N  = c?p. 
Subdomains have at most 6c2 boundary nodes. A development similar to that above 
shows that, asymptotically, matrix rows in the factor F  have 2fP (strict) upper and 
lower triangular entries, so the cost for factoring a row is 4£4. Speedup for this case 
can then be expressed as

4 t*N
speedup -  4^ v +6(q  +  W ( ^ )1/3) +  2 4 ^ ( ^ ) 1 / 3

2 £4iV
^  +  3(a +  2£2/3(f )i/3) +  12£4(* ) 1/3'

4.4 RESULTS

Results in this section are based on the following model problems.
Problem 1. Poisson’s equation in two or three dimensions:

Au =  g.

Problem 2. Convection-diffusion equation with convection in the xy plane:
d  d

- e A u  + —exau + —e_xyu = g .  
ox oy

Homogeneous boundary conditions were used for both problems. Deriva­
tive terms were discretized on the unit square or cube, using 3-point cen­
tral differencing on regularly spaced nx x riy x nz grids (nz = 1 for 2D). 
The values for e in Problem 2 were set to 1/500 and 1/1000. The prob­
lem becomes increasingly unsymmetric, and more difficult to solve accurately 
as e  decreases. The right-hand sides of the resulting systems, Ax = 
6, were artificially generated as b =  Ae, where e is the all-ones vec­
tor.

In addition to demonstrating that our algorithm can provide high degrees of 
parallelism, we address several other issues. We study the influence of the sub- 
domain graph constraint on the fill permitted in the preconditioner and on the
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convergence of preconditioned Krylov space solvers. We also report convergence 
results as a function of the number of nonzeros in the preconditioner.

4.4.1 PARALLEL PERFORMANCE

We now report timing and scalability results for preconditioner factorization and 
application on three parallel platforms:

• an SGI 0rigin2000 at NASA Ames Research Center (AMES);

•  the Coral PC Beowulf cluster at ICASE, NASA Langley Research Center;

• a Sun HPC 10000 Starfire server at Old Dominion University (ODU).

Machine configuration information for these platforms appears in Appendix B. 
Both problems were solved using Krylov subspace methods as implemented in the 
PETSc [2] software library. Problem 1 was solved using the conjugate gradient 
method, and Problem 2 was solved using Bi-CGSTAB [82]. PETSc’s default con­
vergence criterion was used, which is five orders of magnitude (105) reduction in 
the residual of the preconditioned system. We used our own codes for problem 
generation, partitioning, ordering, and symbolic factorization.

Table 3 shows incomplete factorization timings for a 3D memory-scaled problem 
with approximately 91,125 unknowns per processor. As the number of processors 
increases, so does the size of the problem. The coefficient matrix of the problem fac­
tored on 216 processors has about 19.7 million rows. ILU(2) was employed for the 
interior nodes, and ILU(l) was employed for the boundary nodes. Reading down 
any of the columns shows that performance is highly scalable, e.g., for the SGI Ori- 
gin2000, factorization for 216 processors and 19.7 million unknowns required only 
62% longer than the serial case. Scanning horizontally indicates that performance 
was similar across all platforms, e.g., execution time differed by less than a factor 
of two between the fastest (0rigin2000) and slowest (Beowulf) platforms.

Table 4 shows similar data and trends for the triangular solves for the scaled 
problem. Scalability for the solves was not quite as good as for factorization; e.g., 
the solve with 216 processors took about 2.5 times longer than the serial case. 
This is expected due to the lower computation cost relative to communication and 
synchronization costs in triangular solution.
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Table 3

Factorization Timing, 3D problem (SGI, Beowulf, Starfire). Scaled problem, 91,125 unknowns 

per processor, seven-point stencil, ILU( 2) factorization on interior nodes, and ILU (l) factorization  

on boundary nodes. Dashes (-) for Beowulf and H PC  10000 indicate that the machines have 

insufficient cpus to perform the runs.

Procs Origin2000
AMES

Beowulf
(ICASE)

HPC 10000 
(ODU)

1 2.04 2.27 2.13
8 2.44 3.11 2.43

27 2.96 4.06 2.97
64 3.11 4.64 -

125 3.18 - -

216 3.32 - -

We observed that the timings for identical repeated runs on the HPC 10000 
and SGI typically varied by 50% or more, while repeated runs on the Beowulf were 
remarkably consistent.

Table 5 shows speedup for a constant-sized problem of 1.7 million unknowns. 
There is a clear correlation between performance and subdomain interior/boundary 
node ratios; this ratio needs to be reasonably large for good performance.

The performances reported in these tables are applicable to any PDE that has 
been discretized with a seven-point central difference stencil since the sparsity pat­
tern of the symbolic factor depends on the grid and the stencil only.

4.4.2 CONVERGENCE STUDIES

Our approach for designing parallel ELU algorithms reorders the coefficient matrices 
whose incomplete factorization is being computed. This reordering could have a 
significant influence on the effectiveness of the ILU preconditioners. Accordingly, 
in this section we report the number of iterations of a preconditioned Krylov space 
solver needed to reduce the residual by a factor of 10s.

We compare three different algorithms.
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T able 4

Triangular solve timing, 3D problem (SGI, Beowulf, Starfire). Scaled problem, 91,125 un­

knowns per processor, seven-point stencil, ILU(2) factorization on interior nodes, ILU( 1) factor­

ization on boundary nodes. Dashes (-) for Beowulf and H PC  10000 indicate that the machines 

have insufficient cpus to perform the runs.

Procs Origin2000
(AMES)

Beowulf
(ICASE)

HPC 10000 
(ODU)

1 .182 .187 .289
8 .431 .359 .515

27 .405 .508 .629
64 .472 .556 -

125 .610 - -

216 .646 - -

T able 5

Speedup fo r  3D constant-size problem (SGI), total of approximately 1.7 million unknowns; 

data is fo r  ILU{0) factorization performed on the SG I  On<7«n2000; “I /B  ra tio” is the ratio of 

interior to boundary nodes in each subdomain.

Procs Unknowns/
Processor

I/B
ratio

Time
(sec.)

Efficiency

(%)
8 216,000 9.3 2.000 100

27 64,000 6.0 0.846 70
64 27,000 4.3 .408 61

125 13,824 3.4 .307 42
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•  Constrained PILU(£) is the parallel ILU(£) algorithm with the subdomain 
graph constraint enforced.

•  In unconstrained PILU(£), the subdomain graph constraint is dropped, and 
all fill edges up to level £ between the boundary nodes of different subdomains 
are permitted, even when such edges join two nonadjacent subdomains of the 
initial subdomain graph S(A).

• In Block Jacobi ILU(£) (BJILU(£)), all fill edges joining two different subdo­
mains are excluded.

Intuitively, one expects, especially for diagonally dominant matrices, that larger 
amounts of fill in preconditioners will reduce the number of iterations required for 
convergence.

FILL COUNT COMPARISONS

For a given problem, the number of permitted fill edges is a function of three 
components: the factorization level, £; the subdomain size(s); and the discretization 
stencil. While the numerical values of the coefficients of a particular PDE influence 
convergence, they do not affect fill counts. Therefore, our first set of results consists 
of fill count comparisons for problems discretized on a 64 x 64 x 64 grid using a 
standard, seven-point stencil.

Table 6 shows fill count comparisons between unconstrained PILU(£), con­
strained PILU(£), and Block Jacobi ILU(£) for various partitionings and factor­
ization levels. The data shows that more fill is discarded as the factorization level 
increases, and as subdomain size (the number of nodes in each subdomain) de­
creases. These two effects hold for both constrained PILU(£) and Block Jacobi 
ILU(£) but are much more pronounced for the latter. For example, less than 5% 
of fill is discarded from unconstrained PILU(£) factors when subdomains contain 
at least 512 nodes (so that the subgraphs on each processor are not too small), 
but up to 42% is discarded from Block Jacobi factors. Thus, one might tentatively 
speculate that, for a given subdomain size and level, PILU(£) will provide more 
effective preconditioning than BJILU(£). We have observed similar behavior for 2D 
problems also. For both 2D and 3D problems, when there is a single subdomain the 
factors returned by the three algorithms are identical. For the single subdomain
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case, the ordering we have used corresponds to the natural ordering for these model 
problems.

An important observation to make in Table 6 is how the sizes (number of nonze­
ros) of the preconditioners depend on levels of fill. For the 3D problems considered 
here (cube with 64 points on each side, seven-point stencil), a level one precondi­
tioner typically requires twice as much storage as the coefficient matrix A; when 
the level is two, this ratio is about three; when the level is three, it is about six; 
and when the level is four, it is about ten. For 2D problems (square grid with 256 
points on a side, five-point stencil), the growth of fill with level is slower; the ratios 
are about 1.4 for level one, 1.8 for level two, 2.6 for level three, 3.5 for level four,
4.3 for level five, and 5.4 for level six.

In parallel computation fill levels higher than those employed in sequential com­
puting are feasible since modern multiprocessors are either clusters or have virtual 
shared memory, and these have memory sizes that increase with the number of 
processors. Another point to note is that the added memory requirement for these 
level values is not as prohibitive as it is for a complete factorization. Hence it is 
practical to trade-off increased storage in preconditioners for reducing the number 
of iterations in the solver.

CONVERGENCE OF PRECONDITIONED ITERATIVE SOLVERS

The fill results in the previous subsection are not influenced by the ac­
tual numerical values of the nonzero coefficients; however, the convergence 
of preconditioned Krylov space solvers is influenced by the numerical val­
ues. Accordingly, Table 7 shows iterations required for convergence for 
various partitionings and fill levels for the three variant algorithms that 
we consider. The data in these tables can be interpreted in various 
ways; we begin by discussing two ways that we think are primarily signifi­
cant.

First, by scanning vertically one can see how changing the number of subdo­
mains, and hence, matrix ordering, affects convergence. The basis for comparison 
is the iteration count when there is a single subdomain. The partitioning and or­
dering for these cases is identical to, and our data in close agreement with, that 
reported by Benzi, Joubert, and Mateescu [6] for natural ordering. (They report
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Table 6
Fill comparisons for the 64x64x64 grid. U denotes unconstrained, C  denotes constrained, and 

B denotes Block Jacobi ILU{k) preconditioners. The columns headed unzF/nzA " show the ratio of 
the number of nonzeros in the preconditioner to the number of nonzeros in the original problem and 

are indicative of storage requirements. The columns headed “constraint effects” present another 
view of the same data: here, the percentage of nonzeros in the constrained PILU{k) and Block 
Jacobi ILU{k) factors are shown relative to that for the unconstrained PILU(k). These columns 
show the amount of fill dropped due to the subdomain graph constraint.

Nodes per Subdom. nzF/nzA C onstrain t effects (% )

subdom. count Level U C B C B
262,144 1 0 1.00 1.00 1.00 100.00 100.00

1 1.84 1.84 1.84 100.00 100.00
2 3.22 3.22 3.22 100.00 100.00
3 5.96 5.96 5.96 100.00 100.00
4 9.73 9.73 9.73 100.00 100.00

32,768 8 0 1.00 1.00 0.99 100.00 98.64
1 1.87 1.87 1.80 99.99 96.53
2 3.36 3.35 3.12 99.96 92.91
3 6.32 6.32 5.70 99.92 90.13
4 10.50 10.49 9.19 99.89 87.56

4,096 64 0 1.00 1.00 0.96 100.00 95.93
1 1.89 1.89 1.72 99.90 91.24
2 3.45 3.44 2.91 99.62 84.36
3 6.51 6.47 5.19 99.34 79.72
4 10.81 10.70 8.17 99.06 75.61

512 512 0 1.00 1.00 0.90 100.00 90.50
1 1.92 1.91 1.57 99.46 81.62
2 3.59 3.52 2.53 98.05 70.35
3 6.72 6.50 4.27 96.62 63.47
4 10.96 10.43 6.32 95.20 57.69

64 4,096 0 1.00 1.00 0.80 100.00 79.64
1 1.97 1.92 1.29 97.58 65.15
2 3.73 3.42 1.86 91.67 49.79
3 6.60 5.64 2.71 85.37 41.04
4 10.01 7.76 3.35 77.56 33.45

8 32,768 0 1.00 1.00 0.58 100.00 57.92
1 2.05 1.85 0.80 90.07 38.81
2 3.98 2.55 0.87 64.14 21.84
3 6.15 2.89 0.90 46.95 14.72
4 7.40 2.90 0.90 39.26 12.23
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T able 7

Iteration comparisons for the 64 x 64 x 64 grid. U denotes unconstrained, C denotes con­
strained, and B denotes Block Jacobi ILU(k) preconditioners. The starred entries (*) indicate 
that, since there is a single subdomain, the factor is structurally and numerically identical to the 
unconstrained PILU(k). Dashed entries (-) indicate the solutions either diverged or faded to con­
verge after 200 iterations. For Problem 2, when e =  1/500 the level zero preconditioners did not 
reduce the relative error in the solution by a factor of 105 at termination; when e =  1/1000, the 
level one preconditioners did not do so either.

Problem 1 Problem 2
Nodes per Subdom. c = 1/500 e — 1/1000

subdom. count Level U C B U C B U c B
262,144 1 0 43 * * 19 * * - * *

1 29 * * 16 * * 30 * *

2 24 * * 8 * * 32 * *

3 19 * * 8 * * 14 « *

4 16 * * 6 * * 8 * *

32,768 8 0 45 45 53 32 32 26 - - -
1 32 33 41 14 14 19 38 39 41
2 27 29 37 11 11 17 38 38 66
3 22 24 33 8 8 13 16 15 21
4 19 21 29 7 7 13 10 11 18

4,096 64 0 43 43 55 33 33 49 - - -
1 31 32 45 15 15 21 42 41 46
2 25 27 41 12 11 22 24 28 78
3 20 23 39 9 9 16 18 17 28
4 17 20 36 8 8 19 11 12 27

512 512 0 41 41 56 28 28 67 - - -
1 29 31 48 18 16 29 39 40 I ll
2 25 26 46 11 12 36 21 21 106
3 21 23 44 11 11 31 20 21 no
4 18 21 43 9 12 34 13 14 70

64 4,096 0 43 43 64 28 28 - 63 63 -
1 30 33 60 17 18 124 55 56 -
2 26 30 58 13 15 115 25 28 -
3 21 28 58 12 17 127 24 36 -
4 17 28 58 10 17 132 11 27 -

8 32,768 0 46 46 83 43 43 - 83 83 -
1 32 41 82 24 46 - 152 - -
2 25 40 82 11 45 - 13 115 -
3 19 40 82 5 44 - 7 107 -
4 16 40 82 4 45 - 6 111 -
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results for Problem 2 with e =  1/500 but not for e =  1/1000.)
A pleasing property of both the constrained and unconstrained PILU algorithms 

is that the number of iterations increases only mildly when we increase the num­
ber of subdomains from one to 512 for these problems. This insensitivity to the 
number of subdomains when the number of nodes per subdomain is not too small 
confirms that the PILU algorithms enjoy the property of parallel algorithmic scal­
ability. For example, Poisson’s equation (Problem 1) preconditioned with a level 
two factorization and a single subdomain required 24 iterations. Preconditioning 
with the same level, constrained PILU(£) on 512 subdomains needed only two more 
iterations. Similar results are observed for the convection-diffusion problems also. 
This property is a consequence of the fill between the subdomains that is included 
in the PILU algorithm.

Similar results have been reported in [62, 63] and the first paper includes a 
condition number analysis supporting this observation.

Increasing the level of fill generally has the beneficial effect of reducing the 
number of iterations needed; this influence is largest for the worse-conditioned 
convection-diffusion problem with e =  1/1000. For this problem, level zero precon­
ditioners do not converge for reasonable subdomain sizes. Also, even though level 
one preconditioners require fewer iteration numbers than level two preconditioners 
in some cases, when the PETSc solvers terminate because the residual norms are 
reduced by 105, the relative errors are larger than 10-5 for the former precondi­
tioners. The relative errors are also large for the convection-diffusion problem with 
e = 1/500 when the level is set to zero.

Second, scanning the data in Table 7 horizontally permits evaluation of the 
subdomain graph constraint’s effects. Again, unless subdomains are small and the 
factorization level is high; constrained and unconstrained PILU(^) show very similar 
behavior. Consider, for example, Poisson’s equation (Problem 1) preconditioned 
with a level two factorization and 512 subdomains. The solution with unconstrained 
PILU(£) required 25 iterations while constrained PILU(£) required 26.

We also see that PILU(£) preconditioning is more effective than BJILU(£) for all 
3D trials. (Recall that the single apparent exception, Problem 2, e — 1/500, ILU(0) 
with 32,768 nodes per subdomain, has large relative errors at termination.) Again, 
the extremes of convergence behavior are seen for Problem 2 with e =  1/1000. Here,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



91

512 nadm pMtuOdomMn, 512 ( u b to r a n
70

Block JacofcULUlM —  
ConM PlUJtki —— 

UnconM PIUKk)SO

50

40

X
20

10

0
126 5 to0 2 4

nzF/nzA

4006 nodaa PM tubdorrwm. 54 subdomains
50

Block JacottlUKk) —  
Con»L PIUKk 

UnconM. PIUKk)45

40

X

X

25

20

IS

10

5 9 10« 7 5 112 3 4 50 1
m fin A

32785 nodM par luMomMn. 5 lubdonaim
35 Block Jaootk ILU(k) 

ConM PIUKk 
UnconM. PIUKk]

X

25

20

15

10

5
107 S 9 115 60 2 3 4

laFlraA

Fig. 24. Convergence comparison for convection-diffusion problem, e =  1/500 on the 64 x 
64 x 64 grid. Data points are for levels 0 through 4. Data points for constrained and unconstrained 
PILU(k) are indistinguishable in the third graph.
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with level one preconditioners, BJILU(£) suffers large relative errors at termination 
while the other two algorithms do not, when the number of subdomains is 64 or 
fewer.

On 2D domains, while PILU(£) is more effective than BJILU(£) for Poisson’s 
equation, BJILU(£) is sometimes more effective in the convection-diffusion prob­
lems.

We also examine iteration counts as a function of preconditioner size graphically. 
A plot of this data appears in Figure 24. In these figures the performance of the 
constrained and unconstrained PILU algorithms is often indistinguishable. We 
find again that PILU(£) preconditioning is more effective than BJILU(£) for 3D 
problems for a given preconditioner size; however, this conclusion does not always 
hold for 2D problems, especially for lower fill levels. As the number of vertices in 
the subdomains increases, higher fill levels become more effective in reducing the 
number of iterations needed for convergence. We find that fill levels as high as 
four to six can be the most effective when the subdomains are sufficiently large. 
Fill levels higher than these do not seem to be merited by these problems, even 
for the difficult convection-diffusion problems with e =  1/1000, where a level four 
preconditioner reduces the number of iterations below ten.
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CHAPTER 5 

PARALLEL DESIGN AND SCALABILITY

In this chapter we examine several aspects related to PILU preconditioner scalabil­
ity. First, we explain what we mean by our claim that PILU is scalable. Second, 
we discuss some details of the model PILU implementation (the Euclid library) 
that was developed as part of this dissertation. This discussion focuses on commu­
nication patterns and how they affect PILU’s scalability; algorithmic design and 
implementation issues; and how PILU might be altered to yield better performance, 
e.g., by taking advantage of known symmetry when it exists. Third, we present 
experimental scalability results and develop an analytic result that states a scala­
bility relationship between PILU and Block Jacobi ILU. The main thrust of this 
chapter is an examination of preconditioner setup costs, and per-iteration costs of 
applying the preconditioner.

Like many preconditioning techniques PILU consists of two distinct phases: 
preconditioner setup and preconditioner application. For Block Jacobi ILU precon­
ditioning, setup consists of symbolic and numeric factorization and no communi­
cation is required. For PILU, setup additionally entails formation, coloring, and 
ordering of the subdomain graph; local reordering to place boundary nodes last; ex­
change of boundary node permutations; and setting up persistent communications 
that are used in triangular solves. Some of these steps require global communica­
tion (e.g., identification of boundary nodes for structurally unsymmetric problems), 
while others require only nearest neighbor communication (e.g., exchange of per­
mutations and factorization). Communication costs can sometimes be lessened or 
dispensed with by taking advantage of special information, such as structural sym­
metry (with reference to the matrix), and regular structure (with reference to the 
processor grid).

In contrast to preconditioner setup, the application phase only requires nearest 
neighbor communication and is algorithmically much simpler. Unlike the setup 
phase, symmetry and processor grid structure do not help to lessen communication 
costs.

The scalability and communication costs examined in this chapter do not de­
pend on the numerical properties of any particular problem. Given for example
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a finite element grid, setup cost and application cost per iteration are identical 
whether one is solving a numerically well-behaved elliptic problem or a troublesome 
convection-diffusion problem. The costs involved derive entirely from combinatorial 
considerations.

In this chapter’s first section we discuss the meaning of scalability, and how it 
applies to the PILU technique. In the second section we discuss details of the pre­
conditioner setup phase. In the third section we discuss details of the preconditioner 
application (triangular solve) phase. The explanations and algorithms presented in 
the second and third sections expand on the high level description of PILU that 
was presented in Chapter 4. In the fourth section we summarize the influence of 
communication patterns on performance. In the fifth section we present experi­
mental results for preconditioner setup and application on a per-iteration basis. In 
the final section we develop an analytic formula that permits comparison of PILU 
and Block Jacobi ILU performance.

In the interest of concreteness we explicitly reference MPI calls in the discussions 
in this chapter. However, PILU can of course be implemented using other message 
passing libraries, or in shared memory. Additionally, some of the algorithms pre­
sented in this chapter reflect specific solutions we developed in the course of coding 
our model PILU implementation; other, perhaps more efficient solutions are possi­
ble.

5.1 SCALABILITY AND PILU

Scalability is a term that is thrown about so freely by researchers and has so many 
connotations that there is a single implication to which all parties are likely to 
agree: to be scalable is good; to be unscalable is bad. A discussion of the various 
meanings of scalability, with references to many authors can be found in Chapter 
4 of [56]. In this Chapter we are primarily interested in scalability with respect to 
scaled problem size. This is related to the concept of scaled speedup, whose origin 
is attributed to Gustafson [41, 42].

We claim that PILU has good scalability properties in that, if we hold prob­
lem size per processor constant while scaling the global problem size and processor

“When I  use a  word,” Humpty Dumpty said in rather a scornful tone, “it means just what I 

choose it to mean—neither more nor less” [14].
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count, (1) execution time for the preconditioner setup phase remains constant or 
grows very slowly, and (2) execution time for the preconditioner application phase 
remains constant or grows very slowly. By this definition, Block Jacobi ILU pre­
conditioning (which is identical to additive Schwarz ILU with zero overlap) also has 
good scalability properties. The distinguishing feature of PILU is that the required 
number of iterations, for many problems we have examined to date, is lower for 
PILU than for Block Jacobi ILU.

5.2 PRECONDITIONER SETUP

PILU preconditioner setup involves three primary tasks, the first of which is divided 
into several stages.

1. Subdomain graph setup.

(a) Exchange of row-ownership information.

(b) Identification of boundary nodes.

(c) Formation, coloring, and ordering of the subdomain graph.

(d) Local reordering to place boundary nodes last in each subdomain.

(e) Identification of nearest neighbors in the subdomain graph.

(f) Exchange of boundary node permutations with nearest neighbors.

2. Symbolic and numeric factorization.

3. Setup persistent communications for the triangular solves.

SUBDOMAIN GRAPH SETUP

When Euclid is initialized through its interface with a linear solver library, it takes as 
input a matrix that is assumed to have been been partitioned and distributed such 
that each processor owns a consecutively numbered chunk of matrix rows (referred 
to as a subdomain), with each subdomain having a “large” interior/boundary node 
ratio. These assumptions are in accordance with common practice in computational 
physics and with the solver libraries to which Euclid interfaces (as of this writing, 
PETSc and Hypre).
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Initially, each processor informs all others of the global numbering of its first 
locally owned row, and the number of locally owned rows. This is accomplished 
through calls to MPI-Alltoall, which result in each processor having an identical 
copy of the arrays beg .row \\ and rowxm nt\\, each of which has as many bins as 
there are processors. The global number of the first row owned by processor Pu 
is stored in begjrow[Pu], and the number of Pu's locally owned rows is stored in 
rowjcount[Pu\. Given an external (non-locally owned) row i, a processor uses these 
arrays to identify the processor that owns the row i.

For structurally symmetric matrices, processors can completely identify both 
their local boundary rows and their neighbors in the subdomain graph by scanning 
the adjacency list representation of their locally owned rows. Processors look for 
entries of of the form j  € adj(i), where i is a locally owned row and j  is an external 
row. Pu can discern, by consulting the beg.row\\ and rawjcount\\ arrays, that (1) 
row i is a boundary row; (2) row j  is owned by Pv and hence Pv is Ptt’s neighbor 
in the subdomain graph; (3) the factored matrix row i will need to be sent to Pv 
during factorization, if Pu is numbered less than Pu following subdomain graph 
coloring and ordering. By symmetry, P„’s adjacency lists must contain an entry of 
the form i 6 adj(j), which allows Pv to discern similar information concerning its 
boundary rows and subdomain graph neighbors.

For unsymmetric matrices identification of boundary rows requires a non-trivial 
communication step. Figure 25 illustrates why a processor Pu may not be able to 
identify all local boundary rows using purely local information. We have imple­
mented a Boundary Node Identification algorithm that permits all processors to 
completely identify their local boundary rows in structurally unsymmetric cases.

In the Boundary Node Identification algorithm each processor initially identifies 
as many internal and external boundary nodes as possible by scanning once through 
its adjacency lists. Note that if Ptt owns rows i and j  but not k, and its adjacency 
list contains the entries k € adj(i) and k 6 adj(j), then the external boundary row 
k  will be discovered twice. We implemented a SortedSet class to deal with this 
non-uniqueness problem. When an element (row index) is added by invoking this 
class’s insert method, the element is inserted into a sorted list, or discarded if an 
identical element was previously inserted. Ensuring that the set of external row 
indices is sorted lessens the complexity of determining which processor owns which
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F ig . 25. Identifying boundary nodes in unsymmetric graphs. The graph (top) o f an unsym­

m etric matrix (bottom) has been partitioned amongst two processors. Nodes 2, 3, 4, and 6 are 

boundary nodes. Processor Pi can discern, by scanning its load adjacency lists, that local node 4 

and external node 2  are boundary nodes, but cannot discover that local node 6 is also a boundary 

node. Processor Po can discern, by scanning its local adjacency lists, that nodes 2 and 3 are local 

boundary nodes, and nodes 4 and 6 are external boundary nodes.
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rows, a point upon which we will not comment further.
Each processor must now tell all other processors of any external boundary nodes 

of which it is aware. This involves a call to MPI-Alltoall, wherein each processor 
sends every other processor a scalar value. A processor Pu sends a value ‘x’ to every 
other processor Pv, indicating the number of boundary nodes that Pu has identified 
as belonging to Pv. Processors can then allocate buffer space for receiving the 
lists of nodes (if any) from other processors, after which lists are exchanged via 
asynchronous MPI-Isend and MPI_Irecv calls. Finally, each processor merges its 
list of locally-identified boundary nodes with the lists of boundary nodes received 
from other processors.

In addition to identifying all local boundary rows, the Boundary Node Identifi­
cation algorithm permits a processor to completely identify all its neighbors in the 
subdomain graph. Pv is Ptt’s neighbor if (1) Pu sent a nonzero datum to Pu during 
the all-to-all exchange, and/or (2) Pu received a nonzero value from Pv during the 
exchange.

The subdomain graph, which is the amalgamation of each processor’s list of 
neighbors, is always symmetric. Suppose Pu owns matrix row i and Pv owns matrix 
row j .  Then there will be an undirected edge {Pu, P„} in the subdomain graph if 
either or both of the matrix entries and o,i exist.

Once each processor has identified its neighbors in the subdomain graph the 
global subdomain graph must be assembled, colored, and ordered. Our implemen­
tation uses an algorithm wherein each processor sends the root processor P<j its 
subdomain neighbor adjacency list. Pq then assembles the global subdomain graph 
and broadcasts this graph to all processors. Finally, each processor employs an 
identical algorithm to color and order the nodes in the graph.

Subdomain graph formation involves both a reduction and fan-out operation 
and hence, like the all-to-all communication in the previous step, is not perfectly 
scalable. However, given a priori information about the processor grid and dis­
cretization technique, communication costs can sometimes be entirely eliminated. 
For example, given a structured grid and the number of processors in the x, y, and 
z directions, one can design simple algorithms to identify all neighbors and color 
the subdomain graph. Note here that knowledge of the discretization technique is 
essential. For example, in a 2D processor grid with a five-point stencil discretization
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of PDEs, each processor has (at most) four neighbors. For a nine-point discretiza­
tion, however, a processor has (at most) eight neighbors. In the former case two 
colors will suffice for coloring, while the latter case require four colors.

Once all local boundary rows have been identified, each processor locally com­
putes a permutation that orders its interior nodes first, then orders its boundary 
nodes. Our convention is that interior nodes maintain the same relative ordering 
before and after ordering, and similarly for boundary nodes; however, other options 
are possible. For example, one could apply an ROM or nested dissection ordering to 
the interior nodes, and/or unsymmetric row reorderings that may increase stability.

After local reordering processors must exchange the boundary node portion of 
their permutation with their neighbors in the subdomain graph. Our model imple­
mentation uses the following strategy. Pu sends to all its neighbors in the subdomain 
graph the total number of boundary nodes in its subdomain, and receives from all 
its neighbors the boundary node count in their subdomains. Processors can then 
allocate buffers of the proper length to receive the permutation lists from their 
neighbors. Finally, the actual permutation lists are exchanged via asynchronous 
send/receive pairs.

Common practice is to store permutation information in an array, for example, 
j  =  oldToNew[i] indicates that matrix row i is to be permuted to position j .  This 
approach would require all processors to maintain arrays of length m, where m  is 
the global number of rows in the matrix. Since this approach is not scalable, our 
implementation stores local permutation information in a lookup array and external 
permutation information (that received from other processors) in a hash table.

FACTORIZATION

Figure 26 contains a detailed description of the PILU factorization algorithm. This 
is an expanded version of the high level description presented in Chapter 4, Fig­
ure 19. The more comprehensive version presented here includes details such as 
buffer allocation, additional communication pattern details, and access to external 
rows during factorization. The factorization proper (steps 1 and 3) can potentially 
employ many variants of ILU(£) or ILUT.

For factoring interior rows our implementation uses algorithms that are essen­
tially unchanged from their sequential counterparts. Scalable factoring of boundary
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Input: Adjacency graph representation of a matrix A , and its corresponding 
subdomain graph object.
Output: The incomplete factors of the coefficient matrix.

1. Factor interior rows.

2. For all lower ordered neighbors in the subdomain graph: a. Receive 
nonzero counts for the upper triangular portion of the neighbor’s bound­
ary rows. b. Allocate buffer space to receive rows, and insert the buffer 
space addresses into a hash table, c. Wait for all external rows to arrive.

3. Factor boundary rows. a. Previously factored locally owned rows to be 
merged with the row being factored are referenced via standard sparse 
row storage scheme, b. Previously factored external rows to be merged 
with the row being factored are referenced via hash lookup.

4. For all higher ordered neighbors in the subdomain graph: a. Send 
the nonzero count for the upper triangular portion of this subdomain’s 
boundary rows. b. Send the upper triangular column indices and values 
for this subdomain’s boundary rows.

5. Wait for all sends to complete. 

  —  -------------------------

F ig . 26. PILU  factorization algorithm.
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rows, however, is a bit tricky. When factoring a matrix row i, common practice in 
the sequential world is to expand the row into a working vector of length n, where n 
is the number of global rows and columns in the matrix. However, this approach is 
inherently unscalable since we cannot expect processors to have sufficient resources 
to allocate arrays of length n. We therefore insert, retrieve, and update column 
elements in the row being factored through use of a SortedList object. This object 
only requires 0 (c) storage, where c is the number of nonzeros in the factored row. 
The tradeoff is that the cost of the insert, retrieve, and update operations is po­
tentially much more expensive than the 0(1) costs that would be incurred were we 
able to use an array.

Currently, our SortedList object uses a simple list traversal to locate column 
indices. This is arguably horrible, since it results in each lookup operation’s cost 
being bounded by 0(c2). This cost could be reduced by using a more complicated 
binary search, however, we believe our experimental results demonstrate that the 
cost in practice is unlikely to be excessive.

During factorization, matrix row indices and values are transmitted between 
processors. For simplicity, our implementation uses two send/receive pairs, one 
for the integer data and one for the floating point data. Packing the integer and 
floating point data into a single send/receive pair should reduce communication 
costs.

TRIANGULAR SOLVE SETUP

In the triangular solve setup phase each processor informs its neighboring processors 
in the subdomain graph of the vector indices it requires for completing its forward 
triangular solve (solving Lw =  x  for w) and its backward triangular solve (solving 
Uy =  x  for y). The lists of requested indices are exchanged a single time, in 
this setup phase; the corresponding values will be exchanged repeatedly, whenever 
preconditioner application is invoked by the Krylov solver. Figure 27 summarizes 
the triangular solve setup algorithm.

The triangular solve setup phase is similar to the subdomain graph setup phase 
in that, for structurally unsymmetric cases, a processor cannot necessarily identify 
which nodes it needs to receive or send to whom by scanning its adjacency list 
representation of the L and U factors. As before, if the filled matrix F — L+ U  — I
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Input: The incomplete L and U factors in adjacency list representation, the 
corresponding subdomain graph object, and the number of processors p. 
Output: On return, persistent communications have been initialized.

1. Initialize elements in arrays counts-L^ and counts JJ\\ of length p to 
zero.

2. Each processor Ptt scans its adjacency lists of L and U to determine the 
boundary nodes required from other processors. (At the completion of 
this step, count-L[PV] or count U[PV\ can be nonzero only if Pu and Pv 
are neighbors in the subdomain graph.) a. For each external node i, 
where i is required for a forward triangular solve involving L, and i is 
owned by Pv, increment count J j[Pv], and insert i in the list of nodes 
required from Pv. b. For each external node i, where i is required for a 
backward triangular solve involving U, and i is owned by P„, increment 
count.U[Pv], and insert i in the list of nodes required from Pv.

3. Processor Pu receives the number of nodes which its neighboring proces­
sors P„ require for their triangular solves. (These are the counts from 
the counts_L[] and counts .U^ arrays.)

4. Each Processor P„ allocates buffer space for receiving the lists of indices 
required by its neighboring processors Pv for their triangular solves.

5. Processors exchange their lists of requested indices via asynchronous 
send/receive pairs.

6. Each processor Pu allocates buffer space for receiving the values associ­
ated with the index lists it requested.

7. Start persistent communication for sending and receiving the values.

FIG. 27. PILU  triangular solve setup algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



103

is structurally symmetric, this information can be used to reduce communication 
costs. Note that F  may be structurally unsymmetric even when A  is both struc­
turally and numerically symmetric. F  may become unsymmetric for many reasons, 
e.g., due to roundoff error; when small values in A  are discarded during factoriza­
tion; when values in A  are row scaled; or when ILUT is the factorization algorithm 
of choice.

5.3 PRECONDITIONER APPLICATION

Figure 28 contains a description of the preconditioner application (triangular solve) 
algorithm. The solves are similar to those used during the sequential solution of 
LUy =  x  for y. The difference here is that values in the working vector w and 
the solution vector x  that are associated with boundary nodes must be sent to and 
received from neighboring processors in the subdomain graph. Indices in w will 
be received from lower ordered neighbors, and sent to higher ordered neighbors. 
Indices in y will be received from higher ordered neighbors, and sent to lower 
ordered neighbors.

This nearest-neighbor communication uses the persistent communications that 
were established during the triangular solve setup phase. Additionally, as in the 
factorization phase, we overlap computation and communication. Unlike the fac­
torization phase, where hash tables were used to access local copies of external 
data, in this phase we employ a global-to-local mapping strategy that permits the 
direct lookup of external values in an array. (This strategy is also used in the trian­
gular solve setup phase.) Our mapping strategies, and the algorithms employed to 
send, receive, and access external vector values, were adopted from code and ideas 
developed by Edmond Chow for the mat-vec multiply functions in his ParaSails 
code [17].

5.4 PERFORMANCE EXPECTATIONS

Table 8 summarizes the communication patterns discussed in this chapter’s pre­
ceding sections, and additional considerations discussed in this section. We have 
divided communication into four categories, and indicated which patterns our im­
plementation employs in the various setup and application stages. The patterns
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Input: The incomplete L and U factors, and a vector x  (the vector to which 
the preconditioner is to be applied).
Output: The preconditioned vector y, where LUy = x.

1. Permute local portions of the the vector x.

2. Start receives from higher and lower ordered neighbors in the subdomain 
graph as appropriate.

3. Perform forward triangular solve, Lw = x  for w, on interior nodes.

4. Wait for values from w from lower ordered neighbors.

5. Perform forward triangular solve, Lw =  x  for w, on boundary nodes.

6. Send values from w to higher ordered neighbors.

7. Wait for values in y from higher ordered neighbors.

8. Perform backward triangular solve, Uy — w for y, on boundary nodes.

9. Send values from y to lower ordered neighbors.

10. Perform backward triangular solve, Uy = w for y, on interior nodes.

11. Unpermute local portions of the preconditioned vector y.

12. Wait for all sends to complete.

FlC. 28. Preconditioner application (triangular solves).
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Table 8

Communication pattern and scalability summary. The four communication patterns are listed, 

from left to right, with reference to increasing globality; the more global the pattern, the poorer we 

expect will be the algorithmic scalability. In the rightmost column, larger comp/comm ratios are 

also indicative of better scalability.

Setup task
none

Communica
peer-to-peer

tion  P a tte
reduction

rn
all-to-all

C om p/com m
ratio

exchange ownership 
information X low

identify boundary 
nodes X med
form, color, order 
subdomain graph X high
local
reordering X infinite

identify neighbors 
in subdomain graph X infinite
exchange
permutations X medium

symbolic and numeric 
factorization X low

triangular solve 
setup X low
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are listed with reference to “increasing globality.” The more global the pattern, 
the poorer we expect will be the algorithmic scalability. The first pattern is none, 
or purely local operation. The second pattern is peer-to-peer, which we have also 
referred to as nearest-neighbor, and is accomplished through calls to MPI_Irecv and 
MPI_Isend. The third pattern is reduction, which is a global operation to which 
each processor contributes data, with the result transmitted to all processors. The 
contributed data may be scalar, as in the case of inner product computation, or 
multi-valued, as in the case of subdomain graph formation. Our implementation 
uses calls to MPI .Reduce for scalar data. For subdomain graph formation we employ 
calls to MPI.Irecv and MPI_Isend, with all MPI_Irecv calls at the root processor, 
followed by MPI_Bcast. The fourth pattern is all-to-all, wherein each processor 
sends every other processor a unique piece of information; this pattern makes use 
of the MPI_Alltoall call.

In addition to communication patterns, performance and scalability are influ­
enced by the computation/communication (comp/comm) ratio. In general, the 
larger the comp/comm ratio, the better the expected performance. Note that the 
concept of comp/comm ratio is orthogonal to the concept of granularity. Granu­
larity refers to the amount of independent work that can be performed before or 
between communication stages. The comp/comm ratio, on the other hand, refers 
to the total amount of computation and the total amount of communication; it says 
nothing about how the computation and communication are interspersed.

Comp/comm ratios reflect globality as well as the total amount of communica­
tion. For example, if a processor must perform some computation then transmit the 
result to all other processors, we say that section of code has a lower comp/comm 
ratio than it would were the processor only required to transmit the result to a 
subset of the other processors.

Comp/comm ratios are a feature of hardware as well as software. For exam­
ple, the Pentium chips in the Coral Beowulf cluster at ICASE are blazingly fast 
computationally, but are connected together by Fast Ethernet, which nowadays is 
considered somewhat slow . In contrast, the processors on ASCI Blue Pacific are 
computationally slower than the Pentiums, but the interconnect is faster. Hence we

Coral has a second interconnect network, Gigabit Ethernet, which is fast. However, our 
experiments and hence discussion only made use of the slower Fast Ethernet interconnect.
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categorize the comp/comm ratio of the Coral cluster as high, and the comp/comm 
ratio of the ASCI Blue Pacific platform as low.

Amortization of the preconditioner setup time also influences expected perfor­
mance. We amortize the setup time by dividing it over the total number of Krylov 
iterations. Linear systems whose solution requires a relatively small number of 
iterations—perhaps because we only wish to knock down their residuals by a cou­
ple of orders of magnitude—have poor amortization behavior. For these systems 
preconditioner setup time may become a performance limiter. On the other hand, 
applications involving nonlinear systems typically require the solution of a series of 
linear systems having similar structure. In these contexts subdomain graph setup, 
symbolic factorization, and triangular solve setup steps need only be performed 
when solving the first system. For subsequent systems this information can be 
reused, and we need only perform numeric factorization. This type of application 
has favorable amortization behavior. As previously noted, special symmetry and 
structural information can sometimes be used to strengthen amortization behavior.

An important caveat concerning our model implementation is here in order. 
Although we believe that our model PILU implementation is reasonably efficient, 
there are several places, some of which were pointed out in preceding sections, 
where, to ensure correctness and simplify the implementation, less than optimal 
algorithms and MPI communication patterns were employed. However, virtually 
all such shortcuts were taken during implementation of the preconditioner setup 
phase. In contrast, we believe that our implementation of the triangular solve 
(preconditioner application) phase is highly efficient.

5.5 EXPERIMENTAL RESULTS

Experimental scalability results for up to 400 processors on ASCI Blue Pacific 
appear in Figures 29 and 30 and in Tables 9 through 12 (machine configuration 
information for this platform appears in Appendix B). Results are for a PDE dis­
cretized with a five-point stencil (three-point central differencing) on a 2D grid. 
The problem was scaled from 65.5K unknowns to 26.2M unknowns; in all cases 
each processor was assigned a square 256 subgrid (65.5K unknowns per proces­
sor). Figures 29 and 30 are plots of the triangular solve timings that appear in 
the rightmost column of the tables, which are averages over 20 iterations of CG.
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Block Jacobi triangular solve scalability, ASCI Blue Pacific
0.3

bi ILU(V 
b ILU(3 
b ILU(6]
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FtG . 29. Block Jacobi triangular solve scalability (ASCI Blue).

PILU triangular solve scalability, ASCI Blue Pacific
0.45

PILU(1;
PILU(3
PILU(60.4
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F ig . 30. PIL U  triangular solve scalability (A SC I Blue).
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Each processor independently timed the various stages using MPI.Wtime; reported 
timings are the maximum over all processors.

Although these results are for structurally symmetric matrices arising from dis­
cretizations of PDEs on regularly structured grids with partitioning such that the 
subdomain graph itself was also structured and symmetric, none of this a pri­
ori “special” information was made visible during execution. In other words, for 
experimental purposes both the matrix and subdomain graph were assumed un- 
symmetric and unstructured. As discussed above, use of this special information 
would have resulted in a large diminution of the subdomain graph setup time and 
would also have reduced triangular solve setup times.

Figures 29 and 30 show that both PILU and Block Jacobi ILU triangular solves 
have nearly perfect scalability over a wide range of scaled problem sizes. The four- 
processor PILU case executed more quickly than the larger runs since in the four- 
processor case each subdomain had only two neighbors in the subdomain graph. 
For the larger runs most processors have four neighbors, and hence increased com­
munication costs.

Our experience on ASCI Blue Pacific is that timings for identical runs show 
considerable variance. For our reported results each run (each horizontal entry in 
the tables) was repeated on three separate occasions. The figures in the tables 
are for the fastest of the three timings, with selection based on the “application 
per iteration” entry. Timing variance is readily discernible in the “subdomain 
graph setup” column in the tables. For a given number of processors all entries 
in this column should be identical, since the factorization level does not influence 
subdomain graph setup time.

5.6 ANALYTIC COMPARISON OF PILU AND BLOCK JACOBI

Results and discussion in this and other chapters show that both Parallel ILU 
and Block Jacobi ILU are highly scalable and effective preconditioning techniques. 
PILU is more powerful than Block Jacobi in the sense that, for preconditioners 
of approximately the same size (having similar nonzero counts) and level, PILU 
preconditioned systems require fewer iterations to converge. In contrast, Block 
Jacobi is far easier to implement and has lower setup cost and application cost per 
iteration. In practice the choice between PILU or Block Jacobi preconditioning is
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T able 9

Scalability data, 400 processors (ASCI Blue). Timings in seconds. Local grid size is 256 x  256 

(65.5K  unknowns per processor, 26.6M globed unknowns). Application timings are averages over 

21 solves. The “Setup, solve ” column represents the one-time cost fo r  setting up communications 

fo r  transmitted of boundary nodes; this stage u  not applicable to Block Jacobi, hence the zero 

timings.

Setup A pplication
strategy level subdomain graph factorization solve per iteration

PILU 0 1.39 1.70 0.84 0.1547
1 1.59 2.04 1.03 0.1751
2 1.77 2.74 1.46 0.2049
3 1.53 3.68 1.91 0.2570
4 1.49 5.24 2.48 0.2898
5 1.64 7.23 3.54 0.3363
6 1.65 9.63 4.75 0.3627

Block 0 0.01 1.40 0 0.0973
Jacobi 1 0.03 1.47 0 0.1134

2 0.01 1.67 0 0.1305
3 0.02 1.80 0 0.1619
4 0.01 2.27 0 0.1887
5 0.01 2.58 0 0.2119
6 0.01 2.81 0 0.2343
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T able  10

Scalability data, 225 processors (ASCI Blue). Timings in seconds. Local grid size is 256 x 256 

(65 .5K  unknowns per processor, 14.7M global unknowns). Application timings are averages over 

21 solves. The “Setup, solve” column represents the one-time cost fo r setting up communications 

fo r transm ittal of boundary nodes; this stage is not applicable to Block Jacobi, hence the zero 

timings.

Setup Application
strategy level subdomain graph factorization solve per iteration

PILU 0 1.27 1.62 0.80 0.1487
1 1.27 2.00 1.02 0.1769
2 1.58 2.62 1.34 0.2012
3 2.14 3.62 1.81 0.2393
4 1.47 5.21 2.55 0.2886
5 1.35 7.23 3.64 0.3244
6 1.41 9.32 4.46 0.3605

Block 0 0.01 1.31 0 0.0960
Jacobi 1 0.01 1.45 0 0.1092

2 0.01 1.73 0 0.1294
3 0.01 1.77 0 0.1617
4 0.01 2.24 0 0.1861
5 0.01 2.48 0 0.2076
6 0.01 2.71 0 0.2299
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Table 11

Scalability data, 64 processors (A SC I Blue). Timings in seconds. Local grid size is 256 x  256 

(65.5K  unknowns per processor, 4-2M global unknowns). Application timings are averages over 21 

solves. The “Setup, solve” column represents the one-time cost fo r  setting up communications for 

transmitted of boundary nodes; this stage is not applicable to Block Jacobi, hence the zero timings.

Setup A pplication
strategy level subdomain graph factorization solve per iteration

PILU 0 1.20 1.49 0.44 0.1343
1 1.05 1.87 0.64 0.1611
2 1.37 2.45 1.16 0.1923
3 1.24 3.41 1.47 0.2330
4 1.23 5.11 2.17 0.2677
5 1.05 6.94 2.87 0.3062
6 1.35 9.47 4.27 0.3397

Block 0 0.01 1.22 0 0.0910
Jacobi 1 0.01 1.44 0 0.1091

2 0.01 1.61 0 0.1247
3 0.01 1.69 0 0.1605
4 0.01 2.22 0 0.1803
5 0.01 2.63 0 0.2089
6 0.01 2.94 0 0.2355
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Table 12

Scalability data, 4 processors (ASCI Blue). Timings in seconds. Locd grid size is 256 x 256 

(65 .5K  unknowns per processor, 262K global unknowns). Application timings are averages over 21 

solves. The “Setup, solve” column represents the one-time cost fo r setting up communications for  

transm ittal of boundary nodes; this stage is not applicable to Block Jacobi, hence the zero timings.

Setup A pplication
strategy level subdomain graph factorization solve per iteration

PILU 0 0.99 1.38 0.32 0.0986
1 0.99 1.66 0.42 0.1138
2 0.99 2.11 0.54 0.1307
3 0.99 2.76 0.80 0.1613
4 0.99 3.98 1.17 0.1902
5 1.00 5.33 1.75 0.2113
6 0.99 7.11 2.52 0.2389

Block 0 0.01 1.26 0 0.0913
Jacobi 1 0.01 1.34 0 0.1084

2 0.01 1.58 0 0.1234

3 0.01 1.81 0 0.1540
4 0.01 2.35 0 0.1788
5 0.01 2.59 0 0.2033
6 0.01 2.92 0 0.2270
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Level 3 PILU and Block Jacobi per iteration application time
0.3

PILU(3) 
Block Jacobi ILU(3)
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FlC. 31. Experimental a  computation (A SC I Blue). The upper line in the graph represents 

c +  a  values; the lower line represents c values; a  is the vertical distance between the two lines, 

here approximately 0.08.

likely to be determined experimentally. In this section, however, we formulate an 
analytic performance comparison expression.

Let ip represent the number of iterations required for convergence of some linear 
system when preconditioned with PILU, and let ib represent the number of itera­
tions required for convergence when the linear system is preconditioned with Block 
Jacobi ILU. We make the simplifying assumption that the time per iteration of an 
unpreconditioned Krylov method (such as CG) remains constant when problem size 
and processor number are scaled per our discussions throughout this chapter. Our 
experiments show that both Block Jacobi and PILU application time per iteration 
also remain (nearly) constant over a wide range of problem sizes. We therefore 
let c represent the cost per iteration of one iteration of a Krylov solve precondi­
tioned with Block Jacobi, and c +  a  the cost per iteration of a similar iteration 
preconditioned with PILU.
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T a ble  13

Experimental a  values for 2D five-point problems (A SC I Blue).

Level a
0 .0527
1 .0677
2 .0718
3 .0776
4 .1025
5 .1168
6 .1306

Experimental measurements of c and c + a  are graphed in Figure 31. The results 
are for a 2D, 5-point stencil problem run on ASCI Blue Pacific with local grid size 
of 256 (?s 65K unknowns per processor). Pictorially, a is the distance between the 
two plotted lines. Table 13 lists values for a  based on the experiments presented in 
the preceding section. Since the lines for preconditioner application timing for both 
PILU and Block Jacobi ILU were seen to remain nearly flat for processor counts 
ranging from 64 through 400, the values in the table were computed using data 
from the 225 processor runs.

Disregarding preconditioner setup time, total solution time for a scaled sys­
tem when Block Jacobi preconditioning is employed is db,and total solution time 
when PILU preconditioning is employed is (c +  a)ip. PILU should then be the 
preconditioning method of choice when

ip(c +  a) < ibC

which upon rearranging gives

Now let us assume we have a given grid and processor topology upon which 
a series of PDEs will be discretized using a five-point stencil. The right-hand 
side of Equation 11 is totally independent of any of the PDEs; it is a function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



116

of combinatorics only. Moreover, it remains constant as problem size is scaled 
upwards. It will only change if each processor’s local grid size changes, or if some 
different discretization method is employed.

In contrast, the ratio on the left-hand side is determined by the numerical 
properties of the particular PDE (along with its boundary conditions) being solved, 
when global grid and processor topology are held constant. If we solve a particular 
PDE repeatedly, while scaling the problem size, the ratio will also be influenced by 
the global grid size. In either case, however, the left-hand side remains constant.

Another interpretation of Equation 11 is that the smaller the a, the greater 
will be the advantage in employing PILU. The value of a  should shrink as subdo­
main/interior boundary node ratios increase.

5.7 END-USER SCALABILITY PERSPECTIVE

Much of the discussion in this chapter has centered around details that may remain 
opaque to end-users of the Euclid library. Faced with a multitude of preconditioning 
codes from which to choose, users need quick answers to questions such as “does 
the code scale for my problem?” and “is Euclid more effective than library X YZ  in 
reducing solution time for my problem?”

These are difficult questions to answer in an analytic sense, for any except the 
simplest of problems. Since preconditioner setup time can be amortized over a large 
number of Krylov iterations, the main determinant of solution time is the number 
of Krylov iterations multiplied by the time for each Krylov iteration. The number 
of iterations depends on mathematical properties of the system being solved and 
the preconditioner. Timing for a single Krylov iteration is dependent on many 
structural factors of the matrix, as discussed in this and the following chapter, and 
defies simple summarization. In the future we hope to develop software that will 
quickly analyze matrix structural properties, and use this as a guide in determining 
timing per Krylov iteration.

Therefore, an answer to the question, “should I use Euclid?” is likely to remain 
largely experimental. However, the following guidance is pertinent.

If ILU preconditioning is not effective for sequentially-solvable problems that 
are similar to the problem of interest, then PILU is unlikely to be effective for 
larger problems that can only be solved in parallel, and users should investigate
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other preconditioning approaches. If ILU preconditioning is effective for similar 
sequentially-solvable problems, and if it is known that the problem can be parti­
tioned in such a way that subdomains have large interior/boundary node ratios, 
then PILU preconditioning is likely to be effective.
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CHAPTER 6 

PARTITIONING AND INTERIOR/BOUNDARY NODE 
RATIOS

In this chapter we are concerned with two issues that affect PILU performance. 
The first issue is partitioning, by which we mean the manner in which a matrix and 
its incomplete factor are distributed amongst the processors (here, as elsewhere, we 
use “processors” synonymously with “subdomains”). The second issue is subdo­
main size (the number of matrix rows or unknowns in each subdomain). Subdomain 
size is a function of both processor number and global problem size. For our pur­
poses partitioning and subdomain size are similar in their performance effects since 
changes in either can modify subdomain interior/boundary node ratios.

For the scalability studies in this chapter, we are interested in examining what 
happens when we either (1) hold the problem size constant, while increasing the 
number of subodmains (processors); (2) hold the number of processors constant 
while increasing problem size; or (3) hold both problem size and subdomain count 
constant while varying the partitioning strategy. More fundamentally, we want to 
examine how performance is affected by varying interior/boundary node ratios.

6.1 PARTITIONING AND ORDERING BACKGROUND

In the purest sense, partitioning is the division of the elements in a set into two 
or more disjoint subsets (sometimes called blocks). In graph theory the set to be 
partitioned is frequently taken to be the set of vertices in a graph. Due to our 
construction wherein each vertex in a graph is associated with a unique row in a 
matrix, we speak of “partitioning a matrix,” by which we mean the division of 
matrix rows amongst two or more subsets, called subdomains.

Within this work we have implicitly assumed what we might call a domain 
decomposition constraint. This is a constraint on how the set of vertices in G(A) 
may be partitioned. Within each subdomain, every vertex is constrained to be edge- 
connected to at least one other vertex in the same subdomain, and subdomains are 
constrained to have large interior/boundary node ratios. The constraint is desirable 
since large interior/boundary node ratios are essential for getting good performance
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out of PILU, and the largest ratios can usually be attained when nodes within a 
partition block are connected. However, the assumption is not strictly necessary, 
either theoretically or in our model implementation.

In the interests of full disclosure we note that the concept of partitioning a 
graph or matrix is distinct from the concept of ordering (a.k.a, reordering) a graph 
or matrix, though we have sometimes blurred the lines of demarcation. For example, 
we have said that “each subdomain’s nodes (in G(A)) are ordered contiguously,” 
and “each processor is assigned a rectangular section of a matrix, i.e., a contiguously 
numbered set of rows.” In a more formal sense both these statements reflect the 
operations of (1) partitioning a graph or matrix, followed by (2) ordering the vertices 
or rows such that all members of each subset are numbered contiguously, and (3) 
mapping each subdomain to a processor. Note, however, that one can sometimes get 
good results by reversing steps (1) and (2), i.e., by performing a global ordering then 
partitioning. For example, for some matrices one can attain high interior/boundary 
node ratios by first computing an RCM ordering for G(A), then employing the 
partitioning strategy of assigning contiguously numbered sections of matrix rows 
to subsets.

6.2 DOES PILU PARTITION?

The high level PILU description presented in Chapter 4, Figure 19 states that PILU 
begins by partitioning a matrix into subdomains and then distributing (mapping) 
the subdomains amongst the processors. In Chapter 5, however, we said that our 
model implementation takes as input a matrix that is assumed to already have been 
partitioned and distributed. Since readers justifiably may find this confusing, some 
clarification is in order.

The presentation in Chapter 4 is concerned with what we would theoretically 
like to be able to do in order to get the best possible advantage from PILU pre­
conditioning. In contrast, the discussion in Chapter 5 is concerned with the model 
implementation, and is reflective of interface and memory limitations that must 
be dealt with during the software design process. Our model implementation was 
designed to conform to the following specifications.
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1. When Euclid’s services are invoked by a Krylov solver, the matrix A  in the lin­
ear system Ax = b may only be accessed by a generic interface abstraction of 
the form: getRov(rovIN, lenOUT, const colOUT[], const valsOUT[]).

2. Euclid should not make a duplicate copy of the matrix.

The getRovO abstraction implies that we are prohibited from directly access­
ing or manipulating the solver’s private data structures. Although this may result 
in some loss of efficiency during factorization, it greatly eases the burden of design­
ing interfaces between Euclid and solver libraries. For example, as of this writing 
PETSc’s petscm at.h header file identifies 17 matrix storage formats. Employ­
ing the getRovO abstraction isolates Euclid from the details of these structures, 
which PETSc considers private and subject to change. The second specification is 
intended to reduce memory requirements.

To perform partitioning services, Euclid would need to duplicate the matrix 
(which could be accomplished using the getRowO interface), partition, and redis­
tribute the copy. Unfortunately, this would give rise to added overhead during the 
triangular solves. Since we cannot partition and redistribute the matrix owned by 
the solver, the result would be that, whenever the solver calls Euclid with a vector to 
which the preconditioner is to be applied, the vector would have to be redistributed 
before the triangular solves could commence, and the preconditioned vector would 
have to be un-distributed before returning to the solver. These are details which, 
while in no way profound, raise complications that were judged beyond the purview 
of the model PILU implementation.

6.3 PARTITIONING AND INTERIOR/BOUNDARY NODE RATIO 
EFFECTS

Our finite difference matrix generator class produces matrices that are partitioned 
and distributed according to one of two strategies with respect to structured grids, 
as illustrated in Figure 32. A grid contains n nodes (unknowns) and is of dimension 
y/n x y/n for 2D problems, and n1/3 x n1/3 x n 1/3 for 3D problems. Matrices are 
distributed amongst p processors.

In blocked partitioning, subdomains consist of square (2D) or cubic (3D) sub­
grids. In this strategy the subdomain graph is itself regularly structured. For 2D
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P_2 P_3

P 0 P 1

P_3

P_2

P_1

P 0

PlG. 32. Block and striped partitioning strategy comparison. Block (left) and striped (right) 

partitioning strategies. A n n  x n  grid (individual grid points are not shown) has been partitioned 

into four blocks and mapped to four processors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



122

T able  14

Interior/boundary node ratios and subdomain graph dimensions for blocked and striped parti­

tioning.

Partitioning
Strategy

Subdomain
Dimensions

Interior/boundary 
Node Ratio

Subdomain Graph 
Dimensions

2D blocked v W f V j y/P* y/V

2D striped y/n x & y/n
2p 1 x p

3D blocked I a/2 
6 V P <w •tt

l
X <w •O
l

x <M 
i

3D striped $n
2p 1 X p

problems the subdomain graph has dimensions yfp x yfp, and each subdomain 
asymptotically contains 4 y ^  interior/boundary nodes. The interior/boundary

node ratio is thus asymptotically These statistics, along with figures for
3D problems, are summarized in Table 14. Blocked partitioning is reasonably op­
timal in terms of maximizing interior/boundary node ratios.

In striped partitioning, subdomains consist of “long skinny” rectangles. The 
processor grid is of dimension 1 x p for both 2D and 3D problems. For 2D, sub- 
domains have dimensions y/n x and contain 2y/n boundary nodes. The in­
terior/boundary node ratio is thus asymptotically The striped partitioning 
strategy is less optimal than the blocked strategy in terms of maximizing the inte­
rior/boundary node ratios.

We can reason that a problem that has been stripe-partitioned will likely re­
quire more iterations to converge than when it has been block partitioned as 
follows. For Block Jacobi ILU, inter-subdomain coupling information is “lost” 
at interior/boundary nodes. Since stripe-partitioned problems have larger inte­
rior/boundary node ratios than their block-partitioned counterparts, we expect 
there will be greater coupling information loss in the former. Therefore, at least for 
well-behaved elliptic problems, we expect that striped partitioning will mandate 
a greater number of iterations, thus increasing execution time. In contrast, the 
preconditioners will contain fewer nonzeros, so application time per iteration will
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shorten, which will decrease execution time.
PILU preconditioning preserves inter-subdomain coupling information, so it is 

less obvious whether changing from block to striped partitioning should affect itera­
tion counts. We suspect there is some effect, since the different partitionings result 
in different matrix orderings and filled matrix structures. However, based on the ev­
idence presented in chapter 4, we expect the reorderings to have scant effect when 
subdomains are relatively large. On the other hand, striped partitioning should 
definitely cause application time per iteration to increase, since the increased inte­
rior/boundary node count lessens parallelism and increases communication costs.

6.4 SUBDOMAIN SIZE AND INTERIOR/BOUNDARY NODE EF­
FECTS

Subdomain size (the number of unknowns per subdomain) is a function of both 
problem size and the number of subdomains into which the problem is partitioned. 
For a given partitioning strategy the “Interior/boundary Node Ratio” column in 
Table 14 shows this relationship.

Suppose we gradually decrease problem size while holding the partitioning strat­
egy and subdomain count constant. We are interested in the comparative perfor­
mance of PILU with Block Jacobi ILU on a per-iteration basis. Let t& represent 
execution time for a single application of a Block Jacobi ILU preconditioner, and let 
tp represent execution time for a single application of a PILU of the same level. We 
take as our metric the ratio tb/ tp. As problem size increases the interior/boundary 
node ratio for PILU also increases, hence the triangular solve phase for PILU be­
comes relatively less expensive in terms of communication. We thus expect that 
the tb/tp ratio should also increase. (This relationship is shown experimentally in 
Figure 35, which is presented in the next section.)

6.5 EXPERIMENTAL RESULTS

Experiments in this section were conducted on the ASCI Blue Pacific platform. 
Machine configuration information for this platform appears in Appendix B.
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(y = 1) heat source

(x = 0) 

insulated

BOX 1

BOX 3

BOX 2

(X = 1)
insulated

(y = 0) heat sink 

F ig . 33. Laplacian 3-box problem description.
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F ig . 34. Solutions for the simple and 3-box Laplacian problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



126

6.5.1 PROBLEM DESCRIPTION

Although PILU was originally designed as a preconditioner for unsymmetric prob­
lems, in real life a great many problems of interest are, and will continue to be, 
elliptical in nature, symmetric, and positive definite. Some of these problems are 
quite difficult to solve efficiently, so it is altogether fitting to inquire how PILU 
performs on some of these seemingly simple problems.

Results in this section are based on the equation

V • aVtt =  0,

discretized on the unit square with interior/boundary conditions

u{x, 0) =  0 

u{x, 1) =  1 

u*(0,y) =  0 

U x(l ,y )  =  0.

This equation characterizes heat diffusion in a square plate with a heat source 
along one side, a heat sink along the opposite side, and perfect insulation along 
the two remaining sides. We examined two problems that are distinguished by 
the function a(x, y). The diffusivity constant for the simple problem is a(x, y) =  1, 
which is Laplace’s equation. The diffusivity constant for the three-box problem varies 
with respect to the location of three inset “boxes,” and is illustrated in Figure 33. 
Figure 34 shows visualizations of the solutions of both problems.

It is instructive at the outset to get a feel for how difficult these problems 
are, compared to each other, and for varying ILU(£) factorization levels. Table 15 
shows comparative convergence data on a naturally ordered 100 x 100 grid (10K 
unknowns). The data shows that solving the 3-box problem is considerably more 
difficult than the simple problem, particularly with preconditioners with low fac­
torization level values.
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T a b l e  15

Convergence comparison, simple and three-box problem. Results for discretization on a 100 x 

100 grid; convergence criterion was le8  residual reduction o f preconditioned system; the Krylov 

method used was CG. The (*) indicates failure to converge after 5,000 iterations.

Problem
Level Simple Three-box

1 526 *

3 62 220
5 33 121
7 25 84
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6.5.2 EXPERIMENTAL RESULTS AND ANALYSIS

The simple and three-box problems were solved for two grid sizes, 350 x 350 (122.5K 
unknowns) and 700 x 700 (490K unknowns), on a 7 x 7 processor grid (49 proces­
sors) on the Coral cluster at ICASE. The problems were solved with both block 
and striped partitioning. Due to the nature of the problem—the placement and 
shape of the boxes for the three-box problem, and the boundary conditions for both 
problems—one expects that the orientation of the striped partitioning “skinny rect­
angles” should affect convergence behavior. We therefore used both x-striped and 
y-striped partitioning, where x- and y- indicate the orientation of the long dimen­
sion of the rectangular subdomains with respect to the standard labeling of the 
Cartesian coordinate axes.

Results appear in Tables 17 through 20. The problems were solved using 
PETSc’s CG Krylov solver with Euclid preconditioning. Convergence criterion 
was le8 residual reduction of preconditioned system.

As in the previous chapter, no advantage was taken of problem symmetry or 
structure. The implication—recalling also that our preconditioner setup implemen­
tation has known inefficiencies—is that the timing values in both the factorization 
and total timing columns are higher than would be expected for a more optimized 
code. The trends indicated by the data in these columns, however, are most in­
structive, and should be a valid indicator of expectations for other implementations.

Preconditioner setup timings for both x-striped and y-striped partitionings 
should be in agreement, since the interior/boundary node ratios, and hence CPU 
operation count and message traffic, is identical in both cases. Similarly, the time 
per iteration (which is not shown, but can be calculated from data in the tables) 
should be similar. The orientation of the rectangular subdomains should only affect 
the number of iterations required for convergence. For y-striped partitioning, the 
long dimension of the subdomains is aligned in the the direction of flow so, partic­
ularly for Block Jacobi ILU, we expect this partitioning to converge faster (require 
fewer iterations) than the x-striped partitioning.

Table 16 lists the interior/boundary node ratios for the partitioning strategies 
and grid sizes reported on in this section. The larger ratios for the blocked cases 
indicate that these partitionings have higher comp/comm ratios, and thus we expect 
better performance.
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T able  16

Interior/boundary node ratios fo r experimental problems.

Nodes per 
subdomain

Partitioning Strategy 
striped blocked

2.5K
10K

3.6 12.5 
7.1 25

Concerning x- and y-striped partitioning, from a physical viewpoint the most 
important coupling is parallel to the y-axis, that is, from the side where the source 
is located to the side where the sink is located. We therefore expect that y-striped 
partitioning should outperform x-striped partitioning in terms of iterations required 
for convergence, and this is in fact what the results show. (Since time per iteration 
for both x- and y-striped partitioning is identical, here the number of iterations 
directly reflects the comparative execution time.)

For nearly all cases block partitioning gave the fastest execution time. How­
ever, for a fill level of three, y-striped partitioning tended to outperform block 
partitioning; this was true for both PILU and Block Jacobi methods. For example, 
in Table 20, “BLOCKED PILU level 3” required 4282 iterations to resolve, while 
“y-STRIPED PILU level 3” only required 1318 iterations.

The higher level preconditioner conveyed greater benefit to the PILU runs than 
to the Block Jacobi ILU runs. For example, of the 12 combinations of partitioning 
(3 choices) and grid sizes (2 choices) and problem choice (2 choices), the fastest 
execution time for 11 of 12 cases for PILU was observed with level seven precon­
ditioning. In contrast, for Block Jacobi preconditioning only three out of the 12 
combinations was resolved fastest with level seven preconditioning.

Figure 35 shows relative performance of PILU and Block Jacobi ILU on a per- 
iteration basis for a block partitioned 2D problem on a 7 x 7 processor grid. As 
predicted, for small subdomain sizes (i.e., small interior/boundary node ratios) 
PILU performs poorly on a per-iteration basis compared to Block Jacobi ILU. As 
subdomain size increases we begin to see asymptotic behavior.
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Triangular solve comparison, (20,49 processors, Coral)

0.9

0.8

3 0.7 

1 “ 0.6

S 0.5 
0.4

5  0.3
0.2

0.1

unknowns per subdomain

F ig . 35. Relative performance of PILU  and Block Jacobi ILU  (A SC I Blue). Results are for 

a 7 x  7 processor grid on A SC I Blue Pacific. The plot shows t(,/tp as a function of the number of 

local unknowns. (Global problem size varies from 4-9K to 4-4M unknowns).
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Table 17

Simple Problem (small), partitioning convergence effects (ASCI Blue). 122.SK unknowns. (*)
indicates failure to converge after 5,000 iterations.

Partitioning paralielization Timing (seconds)
Strategy method level its setup solve total

1 4315 3.9 79.8 83.7
pilu 3 221 4.4 4.7 9.1

5 130 2.2 3.0 5.2
BLOCKED 7 93 3.7 2.4 6.1

1 *

bj 3 364 .05 5.6 5.6
5 239 .06 3.9 3.9
7 222 .07 4.0 4.0

1 *

pilu 3 306 2.7 6.1 8.9
5 203 6.2 4.8 11.0

x-STRIPED 7 164 15.7 4.7 20.4
1 *

bj 3 498 0.5 7.0 7.1
5 429 0.5 6.5 6.6
7 370 0.7 6.7 6.7

1 *

pilu 3 226 5.8 4.6 10.4
5 174 6.2 4.3 10.6

y-STRIPED 7 139 12.8 4.0 16.9
1 *

bj 3 420 .05 5.8 5.9
5 410 .06 6.5 6.5
7 408 .08 7.1 7.2
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T a b l e  18

Simple Problem (large), partitioning convergence effects (ASCI Blue). 490K unknowns. (*)
indicates failure to converge after 5,000 iterations.

Timing (seconds) 
level its setup solve total

Partitioning parallelization 
Strategy method

pilu 558
238
176BLOCKED

720
338
335

pilu 568
268
214x-STRIPED

1118
576
543

pilu 404
267
209y-STRIPED

564
512
500
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T able 19

Three-box problem (small), partitioning convergence effects (ASCI Blue). 122.5K unknowns.
(*) indicates failure to converge after 5,000 iterations.

Timing (seconds) 
level its setup solve total

Partitioning parallelization 
Strategy method

pilu 1618
556
399 3.8BLOCKED

2645
922
819

3099
845
629

pilu

x-STRIPED

3388
1550

pilu 801
724
494y-STRIPED

1401
1580
1312
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T a b l e  20

Three-box problem (large), partitioning convergence effects (ASCI Blue). 122.5K unknowns.
(*) indicates failure to converge after 5,000 iterations.

Timing (seconds) 
level its setup solve total

Partitioning parallelization 
Strategy method

pilu 1618
556
399BLOCKED 3.8

2645
922
819

pilu 3099
845
629x-STRIPED

3388
1550

pilu 801
724
494y-STRIPED

1401
1580
1312
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CHAPTER 7 

SOLVING LARGE SYSTEMS

In chapter 5 we presented results with the intent of demonstrating that PILU 
scales well on a per-iteration basis. In chapter 6 we presented results with the 
intent of examining how partitioning and subdomain size affect boundary node 
ratios and hence PILU’s performance. In this chapter we present results with the 
intent of answering the million dollar question, “does PILU perform really well at 
preconditioning large 2D and 3D systems?”

In chapters 5 and 6 our sample results were from the 2D realm. We chose to ex­
amine scalability and performance affects on 2D problems because one can perform 
meaningful scaling experiments with far fewer processors in much less time when 
using 2D as opposed to 3D grids. For example, for a 2D block partitioned problem 
one needs 9 processors in order to “fill the communication pipe,” as opposed to 
27 processors for 3D problems. (By “fill the pipe” we mean there is at least one 
processor that communicates with its neighbors to the maximum extent that any 
processor will ever have to do so as the problem is scaled upwards.)

The PC Coral cluster at ICASE tends to have much faster turnaround time and 
consistently delivers results with less variance than the ASCI Blue Pacific cluster 
at LLNL. For these reasons Coral is this author’s platform of choice for gathering 
the extensive experimental data needed to identify statistical performance trends. 
However, the Coral cluster has far fewer CPUs than ASCI Blue Pacific. There are 
enough processors to identify scaling trends for 2D problems, but doing so for 3D 
cases is problematical.

In this chapter’s first section we present complete solution results for a typical 
3D convection-diffusion problem. In the second section we present complete solu­
tion results for a nonlinear radiative transport problem and the three-box problem 
introduced in chapter 6. In both sections our interest is in holding problem size per 
processor constant while varying the number of processors.

7.1 3D SYSTEMS

Results in this section axe based on the convection diffusion equation:
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The diffusivity coefficient vector e was 0.01 in the x  and y directions and 1 
in the z direction. Homogeneous boundary conditions were used for all trials. 
Derivative terms were discretized on the unit cube using 3-point central differencing 
on regularly spaced nx XTiyXnz grids. The right-hand sides of the resulting systems, 
Ax = 6, were artificially generated as b =  Ae, where e is the all-ones vector. Systems 
were solved using PETSc’s BICGSTAB Krylov method with Euclid preconditioning, 
with convergence criterion of le-8 residual reduction.

The local grid size for all runs was 40x40x40, or 64,000 unknowns per processor. 
(We also experimented with local grid sizes of 30 x 30 x 30 and 50 x 50 x 50, and 
witnessed similar behavior.) As before, we made no use of known structural and 
symmetry information, and remind the reader that total execution time would be 
lower had we done so.

Tables 21 and 22 show iteration counts and timing results for PILU and Block 
Jacobi ILU for levels 0, 1, and 2. In all cases ILU(l) preconditioning gave the 
shortest execution time. Note that timings in the “per iteration” column are for 
one iteration of the preconditioned Krylov solve (i.e, the “solve” column divided by 
the “its” column). This differs from our usage in the tables in chapter 5, where we 
considered “per iteration” timing with respect to preconditioner application. Fig­
ure 36 illustrates scalability on a per-iteration basis for the preconditioned Krylov 
solve. The time per iteration does not scale as well as we would like (in which case 
we would see a flat line), however, the time required for one iteration only increases 
by approximately 50% when scaling from eight to 343 processors, (scaling global 
problem size from .5M to 22M). The line’s slope is attributable to the global nature 
of the inner product computations in the Krylov solver. The PILU preconditioned 
iterations, although more expensive than those for Block Jacobi ILU, scale equally 
well.

Figure 37 plots total solution time (preconditioner setup plus the complete 
Krylov solve) as a function of processor count (equivalently, global problem size). 
PILU outperforms Block Jacobi as the problem is scaled upward, and more impor­
tantly has an increasing advantage as problem size increases.
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Timing for one iteration of preconditioned Bicgstab, ASCI Blue Pacific
0.55

PILU —-  
Block Jacobi ILU — *

0.5

0.45

<0

0.4

0.35

0.3

0.25
350250 300150 2000 50 100

processor count

F ig . 36. Scalability of 3D convection-diffusion problem (A SC I Blue). Data is fo r a single 

iteration of the preconditioned Krylov solve.
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Total solution time, ASCI blue pacific
350

PILU
Block Jacobi ILU

300

250

200

150

100

50

0
300 350200 25015050 1000

processor count

F ig . 37. Convection-diffusion problem, total solution tim e (A SC I Blue).
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7.2 2D SYSTEMS

7.2.1 RADIATIVE TRANSPORT

Results in this section are for the nonlinear simplified 2D Radiative Transport 
problem

- V  • (aT^VT) =  0.

where (5 =  2.5 and a = 1.0. The problem was uniformly discretized in the unit 
square with a five-point stencil and the boundary conditions

u(x, 0) =  1.0 

u(x, 1) =  0.1 

Ux(0 ,y) = 0  

Uxihy) =  0.

This example, whose code is distributed with the PETSc source code [2], was 
executed on up to 400 processors. Each processor was assigned 10,000 grid points, 
so the largest instance solved contained 4 million unknowns. Solution in all cases 
required eight or nine Newton iterations and a linear system was solved each iter­
ation. Preliminary investigations on smaller numbers of processors indicated that 
the shortest execution time was generally obtained with ILU(6) preconditioning.

Figure 38 shows execution timing result comparison when the linear systems 
were preconditioned using PILU and Block Jacobi ILU. Due to the long execution 
times for the larger problem sizes (e.g., the 400 processor run with Block Jacobi ILU 
preconditioning requires approximately 25 minutes), only results for a factorization 
level of six are reported. The results indicate that PILU increasingly outperforms 
Block Jacobi PILU as global problem size increases, and that the linear solves 
comprise the time-dominating kernel in this nonlinear problem.
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2D radiative transfer
1600

Block Jacobi ILU(6] 
PILU(61400

1200CO
TJc
8 1000©<o

800
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©
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100 150  2 0 0  2 5 0  3 0 0  3 5 0  4 0 00 50
processor count

F ig . 38. Simplified 2D Radiative Transfer problem (A SC I Blue). Problem size is 10K  un­

knowns per processor. Results obtained from code distributed with PETSc. Solution for all problem 

sizes required eight or nine newton iterations, and a linear system  was solved each iteration. Pre­

conditioning used level four PILU or Block Jacobi ILU.
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7.2.2 THREE-BOX PROBLEM

Tables 23 and 24 show results for the three-box problem that was described in 
chapter 6, Figure 33. Convergence criteria was le-5 residual reduction of the pre­
conditioned system. Each processor was assigned a 100 x 100 subgrid, for a total 
of 10,000 unknowns. The number of processors was scaled from 9 (90K global un­
knowns) to 225 (2.3M global unknowns). The systems were solved with PILU and 
Block Jacobi preconditioning, levels three through seven.

Level three or four preconditioners were most effective for the smaller numbers 
of processors. For the larger runs the level six or seven preconditioners gave the 
fastest execution time. PILU preconditioning appears to derive greater benefit from 
the higher levels for large numbers of processors. For example, for the 225 proces­
sor runs a level six preconditioner gave the fastest solution time (78.55 seconds), 
compared to a level seven preconditioner for PILU (63.75 seconds).

Block Jacobi ILU(£) failed to converge after 2000 iterations for level three pre­
conditioning for the larger runs (64 or more processors), while PILU achieved con­
vergence in all cases.

7.2.3 OPTIMALITY

The condition of elliptically dominated problems scales like the inverse of the mesh 
spacing squared. For 2D problems on quasi uniform grids with N  unknowns, this is 
0 (N ); for 3D problems with N  unknowns this is 0 (N 2̂ 3). Incomplete factorization 
preconditioners generally improve the constants in these condition number scaling 
laws, but not the exponents. In contrast, multilevel methods such as geometric 
multigrid or algebraic multigrid can improve these condition numbers to 0(1). 
Therefore, ILU and its parallel forms cannot be expected to compete favorably with 
optimal multilevel preconditioners on arbitrarily large elliptical problems. However, 
PILU, being very general purpose, may be employed (recursively) as a “smoother” 
component in difficult multilevel problems, where simple multigrid smoothers like 
point Jacobi may be too weak. In this sense, an efficient parallel implementation 
of incomplete fatorization may be considered part of an optimal algorithm.
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T a ble  21

3D convection-diffusion problem, PILU (ASCI Blue).

np level its setup
Timing

solve
(seconds'

total perlt
global

unknowns

0
8 1 

2

219
99
89

4.94
8.58
19.08

56.74
32.79
37.88

61.68
41.37
56.96

0.2591
0.3312
0.4256

512K

0
27 1 

2

351
177
149

8.80
14.53
31.25

97.62
62.92
67.61

106.42
77.45
98.87

0.2781
0.3555
0.4538

l.mM

0
64 1 

2

481
249
219

8.61
15.26
33.90

144.88
94.15
106.65

153.49
109.41
140.55

0.3012
0.3781
0.4870

4M

0
125 1 

2

613
327
281

8.57
15.27
33.63

203.99
135.58
145.38

212.56
150.85
179.01

0.3328
0.4146
0.5174

8M

0
216 1 

2

769
417
351

9.28
16.27
34.92

303.41
187.35
195.19

312.69
203.62
230.11

0.3946
0.4493
0.5561

14M

0
343 1 

2

907
523
445

9.60
16.10
35.27

379.41
263.44
269.84

389.01
279.54
305.12

0.4183
0.5037
0.6064

2.2M
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T able  22
3D convection-diffusion problem, Block Jacobi ILU(l)(ASCI Blue).

Timing (seconds) global
np level its setup solve total perlt unknowns

8 0 275 1.42 57.05 58.48 0.2075 512K
1 161 1.88 40.69 42.57 0.2527
2 163 2.78 51.78 54.56 0.3176

27 0 411 1.39 89.17 90.55 0.2170 1.7M
1 267 1.88 71.92 73.80 0.2694
2 253 2.75 86.01 88.76 0.3400

64 0 617 1.31 144.92 146.23 0.2349 4M
1 369 1.79 106.07 107.86 0.2875
2 351 2.64 123.88 126.53 0.3529

125 0 751 1.33 206.21 207.54 0.2746 8M
1 505 1.72 160.01 161.73 0.3169
2 465 2.62 177.80 180.42 0.3824

216 0 913 1.32 268.52 269.84 0.2941 14M
1 641 1.72 223.15 224.87 0.3481
2 635 2.51 268.94 271.44 0.4235

343 0 1135 1.32 378.81 380.13 0.3338 22M
1 783 1.67 309.48 311.14 0.3952
2 749 2.51 391.45 393.96 0.5226
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T a b le  23

2D three-box problem, PILU (ASCI Blue).

Timing (seconds) global
np level its setup solve total unknowns

9 3 497 1.05 17.91 18.96 90K
4 165 1.50 6.64 8.15
5 126 2.09 5.55 7.64
6 113 2.86 5.45 8.31
7 105 3.89 5.48 9.37

36 3 544 1.15 24.37 25.52 360K
4 332 1.83 18.18 20.01
5 257 2.30 13.37 15.67
6 216 3.28 13.11 16.39
7 191 4.70 12.74 17.44

64 3 778 1.32 40.45 41.77 640K
4 460 2.67 26.80 29.47
5 325 2.34 21.02 23.35
6 275 3.66 19.55 23.21
7 244 4.40 18.45 22.85

100 3 1035 1.20 71.63 72.83 1M
4 591 1.69 50.14 51.84
5 418 2.37 35.29 37.66
6 349 3.51 31.01 34.51
7 313 4.43 29.93 34.36

144 3 1346 1.36 103.84 105.19 1.4M
4 639 1.84 54.74 56.57
5 473 2.54 48.14 50.68
6 392 3.38 39.35 42.74
7 341 4.54 35.90 40.43

225 3 1699 1.27 158.40 159.66 2.25M
4 842 1.79 80.57 82.36
5 617 2.63 68.95 71.59
6 539 3.52 64.68 68.20
7 473 4.47 59.28 63.75
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2D  three-box problem, Block Jacobi IL U (l)(A S C I Blue).

Timing (seconds) global
np level its setup solve total unknowns

9 3 430 0.27 14.33 14.60 90K
4 251 0.34 9.45 9.79
5 387 0.37 15.68 16.05
6 354 0.42 15.42 15.84
7 368 0.46 17.40 17.85

36 3 1591 0.26 73.71 73.97 360K
4 474 0.34 21.96 22.30
5 504 0.37 26.28 26.65
6 464 0.42 24.08 24.50
7 368 0.46 23.06 23.52

64 3 2001 0.26 95.95 96.21 640K
4 683 0.33 37.85 38.18
5 583 0.37 33.62 33.99
6 656 0.41 42.89 43.30
7 490 0.45 30.57 31.02

100 3 2001 0.25 111.96 112.21 1M
4 824 0.32 48.37 48.70
5 636 0.36 39.17 39.52
6 582 0.40 42.07 42.47
7 558 0.44 49.31 49.75

144 3 2001 0.25 138.56 138.81 1.4M
4 897 0.33 63.18 63.50
5 733 0.35 51.07 51.42
6 669 0.39 53.76 54.15
7 641 0.43 50.21 50.64

225 3 2001 0.25 147.82 148.07 2.25M
4 1267 0.31 98.27 98.58
5 1001 0.34 84.12 84.47
6 915 0.38 78.18 78.55
7 875 0.42 87.88 88.30
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CHAPTER 8 

CONCLUSION AND FUTURE WORK

This thesis has presented new algorithms for computing ILU(£) structure, predict­
ing ILU(l) storage requirements, and parallelizing preconditioner factorization and 
application for all ILU variants. The algorithms spring from a collection of lem­
mas and theorems, developed in Chapter 2, that elucidate the structure of ILU(£) 
factors. Although we were not directly concerned with matrix numerical proper­
ties, the experimental results presented indicate that the parallel algorithm can be 
highly effective in practice.

The PILU algorithm is primarily intended for the preconditioning of scaled 
problems on large numbers of processors. Results presented indicate it should be 
far less effective from that standpoint of speedup, i.e., “solving a given problem 
size faster.” The reason for this is that, as the number of processors increase, the 
boundary node ratio within each subdomain decreases, and we have shown that this 
degrades parallel performance. If one is only interested in obtaining speedup using 
a relatively small number of processors, however, a shared-memory implementation 
executed on an SMP node might give good results.

Our reported results are for a PILU implementation that uses MPI message 
passing for inter-processor communication. A shared-memory implementation in 
many respects would require far less software design effort. In such an implemen­
tation, for example, there could be a single global permutation vector, and the 
need for the explicit exchange of boundary node permutation information would be 
eliminated. Additionally, one could return to the sequential practice, discussed in 
Chapter 5, of performing the factorization by unpacking the row being factored in a 
working vector of length n. However, a shared memory implementation is unlikely 
to scale well to hundreds or thousands of processors.

It is possible that the concept of graph search algorithms could be extended to 
include numeric factorization. The goal would be to reduce factorization time by 
performing only those numerical updates that correspond to shortest path lengths. 
This would probably result in less effective preconditioners, in the sense that re­
quired iterations would increase, but this might be offset by a reduction in factor­
ization time. However, we do not at present know how to design such an algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



147

Although we have shown how to compute ILU(£) storage requirements in 0(ri) 
space, the method has the same run time complexity as actually performing the 
factorization. This stands in stark contrast to the e-tree storage prediction methods 
for complete factors of symmetric matrices, which operate in essentially O(n) time 
as well as 0(n)  space. It is an open question whether a similar result can be devised 
for incomplete factors.

The model PILU implementation has proven effective in practice; however, many 
improvements can be made. As discussed in Chapter 5, the factorization (setup) 
phase has known inefficiencies in communication and look-up of external bound­
ary rows. Additionally, support should be added for complex numbers (researchers 
from two different national labs have expressed interest in complex PILU). Some 
PDE systems, such as the Navier Stokes equations, have multiple degrees of free­
dom associated with each gridpoint. This results in a “small” block structure that 
could be exploited to reduce both communication and computation time. Finally, 
the model implementation supports only ILU(£) symbolic and numeric factoriza­
tion. Support should be added for ILUT and other ILU variants. Fortunately, 
due to Euclid’s object-oriented design, incorporating these additional factorization 
methods requires no alteration to Euclid’s communication classes.
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APPENDIX A 

PREVIOUSLY PUBLISHED MATERIAL

The bulk of the material in Chapter 4 has been published in the SIAM Journal 
of Scientific Computing [53]. Permission to use this material has been granted by 
SIAM, per the following email, dated November 27, 2001.

SIAM is pleased to grant you permission to include the article “A scal­
able parallel algorithm for incomplete factor preconditioning,” by David 
Hysom and Alex Pothen, SIAM Journal on Scientific Computing 22 
(2001), pp. 2194-2215, in your PhD thesis.

Please indicate that portions of your thesis were published in this article 
and include the complete citation.

The SIAM copyright transfer agreement you, or your coauthor on behalf 
of you, signed gives you the specific right to use the work in any other 
work also authored by you. This includes your thesis.

Please let me know if you have any questions or if you need a hardcopy 
letter.

Sincerely,

Mary Rose Muccie 
Journals Publisher 
muccieQsiam.org
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APPENDIX B 

EXPERIMENTAL PLATFORMS

Euclid, the model implementation of the PILU Algorithm, has been tested on a va­
riety of platforms; this appendix summarizes the hardware characteristics of these 
various machines. Readers should note, however, that Euclid’s development, and 
the experiments reported in this dissertation, spanned a period of over 2 1/2 years. 
As practitioners are aware, most large scale parallel platforms are in a continual 
state of flux. Both software (operating system, compilers, MPI implementations) 
and hardware are continually being modified, sometimes on a weekly basis. There­
fore, the reported machine configurations may not reflect precisely the configuration 
in place when experiments were conducted. However, the Euclid code has, for sev­
eral months, performed reliably and consistently on all platforms tested, and it is 
this author’s belief that the statistics presented below, coupled with the experimen­
tal evidence reported in previous chapters of this dissertation, provide an accurate 
reflective of what end users can reasonably expect in terms of performance.

B .l SGI ORIGIN2000

The SGI 0rigin2000 is located at NASA Ames Research Center (AMES). The 
cluster employs SGI’s cc-NUMA architecture. The compute cluster Steger has 
128 nodes, 256 CPUs and a total of 64GB system memory. Each processors is a 
MIPS RISC R10000 64-bit CPU, with a 32KB two-way set-associative instruction 
cache, a 32KB two-way set-associative data cache, and 4MB L2 cache. System bus 
bandwidth as measured by bisection bandwidth is reported at 40GB/sec sustained, 
50GB/sec peak.

B.2 CORAL PC BEOWULF CLUSTER

The Coral PC Beowulf cluster, located at ICASE, NASA Langley Research Center, 
Hampton, Virginia, is a heterogeneous cluster consisting of 32 single CPU and 32 
dual CPU compute nodes, built in four phases. The complete system has 54.5 
GB of RAM and 1.2 TB of raw disk space. The communication network consists 
of two fast ethernet switches trunked together via dual Gigabit Ethernet, with a
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Gigabit Ethernet uplink to a Gigabit Ethernet switch connecting the servers and 
one of the dual CPU 800 MHz Pentium III compute nodes. Coral’s 32 dual CPU 
compute nodes are also connected via a high performance cLAN network in a full 
bandwidth configuration, delivering up to 113 Mbyte/s with MVICH latency under 
14 microseconds. This cluster runs Red Hat Linux 7.1 updated to Linux kernel 
2.4.3-12 and tuned for high network performance.

Phase I started with the 32 single CPU nodes and the front-end server. Each 
single CPU node has a 400 MHz Pentium II processor, 384 MB of 100 MHz RAM, 
a fast 6.5 GB local disk, a floppy drive and a fast ethernet card.

Phase II added 16 dual CPU nodes, Gigabit Ethernet network and two file 
servers. Each Phase II dual CPU node has two 500MHz Pentium III processors, 
512 MB of 100 MHz RAM, a fast 14.4 GB local disk, a floppy drive and a fast 
ethernet card.

Phase III added another 16 dual CPU nodes and the 32-node cLAN network in 
a full bandwidth configuration. Each Phase III dual CPU node has two 800MHz 
Pentium III ’Coppermine’ processors, 1 GB of 133 MHz RAM, a cLAN adaptor on 
a 64-bit PCI bus, a fast 30 GB local disk, a floppy drive and dual fast ethernet. 
The cLAN adaptors were also added to Phase II dual CPU nodes, so that a total 
of 64 CPUs are connected to this high performance network fabric.

Phase IV replaced 24 of the old Phase I nodes with new 1.7 GHz Pentium 4 
nodes with 400 MHz memory (PC800 RDRAM). The new machines also have more 
memory (two have 2 GB each and the rest have 1 GB each). Initial uniprocessor 
tests confirm that these nodes are about four times faster than the Phase I nodes 
they replaced.

Experiments reported in this dissertation used the capabilities of phases I 
through III, and the MPICH library and fast ethernet for communication.

B.3 SUN HPC 10000 STARFIRE

The Sun HPC 10000 Starfire server is located at Old Dominion University, Norfolk, 
Virginia. The server contains 32 superscalar 64-bit RISC CMOS UltraSPARCTM- 
II processors. This shared-memory NUMA machine contains a total of 32 gigabytes 
of system memory. Each processor contains a 16KB direct mapped non-blocking LI 
data cache, a 16KB direct mapped non-blocking LI instruction cache, and a 4MB
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L2 direct mapped cache. Each CPU can execute 4 instructions/clock cycle (9-stage 
pipeline), and has 4 integer, 2 floating-point, and 2 graphics execution units. CPUs 
are rated at up to to 1.3 Gbytes/sec memory transfers.

The system has a Gigaplane-XB Interconnect that adheres to Sun Microsystems’ 
UltraSPARCTM Port Architecture (UPA) specification, which defines separate ad­
dress and data paths. The Gigaplane-XB-a 16-byte wide, 16x16 non-blocking, true 
crossbar connects the system boards via one global data router and four global 
address buses. Separating the buses allows the data and address topologies to be 
independently optimized for their respective purposes. In contrast, the four global 
address buses allow four simultaneous address transfers or broadcasts throughout 
the system.

B.4 ASCI BLUE PACIFIC

The ASCI Blue Pacific IBM-SP cluster is located at Lawrence Livermore National 
Laboratory, Livermore, California. The machine is composed of 332 Mhz 604e 
4-way SMP compute nodes. Each shared-memory node contains four CPUs, a 
single Network Interface, and a total of 1.5 GB main memory. Each CPU has one 
floating-point unit and one load/store unit; a 32KB LI 4 way associative cache 
with 32 byte cache lines and an LRU replacement scheme; and a 500KB L2 cache. 
Tests used IBM’s MPI library in user-space mode. Node to node bi-directional 
bandwidth is 150 Mbyte/s.
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