
Scalability analysis of parallel GMRES implementations

Donald C. S. Allison and
Maria Sosonkina Layne T. Watson

Department of Computer Science Department of Computer Science
University of Minnesota Virginia Polytechnic Institute and

320 Heller Hall, 10 University Drive, State University
Duluth, MN 55812 Blacksburg, VA 24061
masha@d.umn.edu {allison, ltw}@cs.vt.edu

Abstract
Applications involving large sparse nonsymmetric linear systems encourage parallel imple-

mentations of robust iterative solution methods, such as GMRES(k). Two parallel versions of

GMRES(k) based on different data distributions and using Householder reflections in the orthogo-

nalization phase, and variations of these which adapt the restart value k, are analyzed with respect

to scalability (their ability to maintain fixed efficiency with an increase in problem size and number

of processors). A theoretical algorithm-machine model for scalability is derived and validated by

experiments on three parallel computers, each with different machine characteristics.

1. Introduction

For large scale problems, the task of writing efficient parallel linear system solvers is particu-

larly important. These problems usually involve sparse linear systems and require general purpose

iterative methods. These methods preserve the sparsity of matrices and do not involve complete

matrix factorization. A variation of the popular linear system solution tool GMRES [13] is consid-

ered in this paper. This variation [17] uses an adaptive strategy to deal with varying difficulties of

linear systems which are to be solved by a nonlinear algorithm. For difficult structural mechanics

problems, the implementation of this version on a sequential machine is superior to other GMRES

variants that have no adaptive capabilities and use different orthogonalization schemes. Therefore,

this adaptive version of GMRES (precisely, its restarted version GMRES(k)) has been considered

for parallel implementation and parallel performance analysis.

Two variations of parallel GMRES(k) are considered here. Both adapt the restart value k and

use Householder reflections in the orthogonalization phase in order to achieve high accuracy. One

variation uses a fixed assignment of the rows of the coefficient matrix to the processors, while the

other uses a sophisticated graph partitioning algorithm to assign rows to processors.

The implementation of several restart cycles of these algorithms on a parallel computer is ana-

lyzed using the isoefficiency metric [7]. Despite being rather general, this metric provides valuable

insights into implementation scalability and its relationship with important machine parameters,

which are involved in the construction of an isoefficiency model. This paper presents the validation

of the constructed model by carrying out experiments on three parallel computers with differing

speed, memory organization, input/output capabilities, and network interconnections. The Intel

Paragon is a relatively slow machine with a small cache, a centralized I/O mechanism, and a 2-D

mesh interconnecting network. The IBM SP2 and the Cray T3E are both an order of magnitude

faster, have different memory configurations, and have interconnections with more uniform laten-

cies. The primary thrust of this paper is to execute a theoretical isoefficiency analysis for these

algorithm/machine combinations and then validate it by experiment.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computer Science Technical Reports @Virginia Tech

https://core.ac.uk/display/10675814?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Section 2 gives a brief description of the adaptive GMRES(k) algorithm and its parallel imple-

mentations using Householder reflections. A derivation of the isoefficiency function for restarted

GMRES is presented in §3 followed by numerical experiments in §4. Section 5 contains conclusions.

2. Adaptive GMRES algorithm

The numerical linear algebra terminology used here is standard; see, for example, the textbook

by Saad [12]. The GMRES algorithm is used to solve a linear system Ax = b with an n × n

nonsymmetric invertible coefficient matrix A. Similar to the classical conjugate gradient method,

GMRES produces approximate solutions xj which are characterized by a minimization property

over the Krylov subspaces K(j, A, r0) ≡ span{r0, Ar0, A2r0, · · ·, A(j−1)r0}, where r0 = b − Ax0
and j is the iteration number. However, unlike the conjugate gradient algorithm, the work and

memory required by GMRES grow proportionately to the iteration number since GMRES needs

all j vectors to construct an orthonormal basis for K(j, A, r0). In practice, a restarted version

GMRES(k) is used, where the algorithm is restarted every k iterations. GMRES(k) takes xk as

the initial guess for the next cycle of k iterations, and continues until the residual norm is small

enough.

The disadvantage of the restarted version is that it may stagnate and never reach the solution.

The essence of the adaptive GMRES strategy is to adapt the parameter k to the problem, in

the same way a variable order ODE algorithm tunes the order k. With modern programming

languages, which provide pointers and dynamic memory management, dealing with the variable

storage requirements implied by varying k is not difficult. A test of stagnation developed in [3]

detects an insufficient residual norm reduction in the restart number k of steps by estimating the

GMRES behavior on a particular linear system. Slow progress of GMRES(k), indicating that an

increase in the restart value k may be beneficial [18], can be detected with a similar test.

The convergence of GMRESmay also be seriously affected by roundoff error, which is especially

noticeable when a high accuracy solution is required. When the orthogonalization phase of GMRES

is performed by the modified Gram-Schmidt process, GMRES is susceptible to numerical instability.

In practice, the reorthogonalization phase often complements modified Gram-Schmidt to benefit

stability as shown in [4] and [10]. However, for difficult structural mechanics problems such as

those described in [17], the reorthogonalization produced no improvements. Therefore Householder

reflections were adopted in the orthogonalization phase. As shown in [1], the orthogonalization

with Householder reflections is more robust than the modified Gram-Schmidt process. In theory,

the implementation of GMRES using Householder reflections is about twice as expensive as when

modified Gram-Schmidt is used [19]. However, the Householder reflection method produces a more

accurate orthogonalization of the Krylov subspace basis when the basis vectors are nearly linearly

dependent and the modified Gram-Schmidt method fails to orthogonalize the basis vectors; this can

result in fewer GMRES iterations compensating for the higher cost per iteration using Householder

reflections. GMRES(k) may exceed an iteration limit when it is affected by roundoff errors in the

case of a (nearly) singular GMRES least-squares problem. The condition number of the GMRES

least-squares problem is monitored by the incremental condition estimate [2] as in [3]. GMRES(k)

aborts when the estimated condition number is greater than some large number, e.g., 1/(50u),

where u is the machine unit round off. Pseudocode for an adaptive version of GMRES(k) with

orthogonalization via Householder reflections (as in [19]) is given in [17].

In parallel environments, the choice of the orthogonalization process for the Krylov subspace

basis vectors depends not only on the accuracy of the process but also on the amount and type

of global communication it incurs. For some orthogonalization procedures, only one of the two

2

requirements is satisfied. For example, in serial implementations of the GMRES method, the

modified version of the Gram-Schmidt process is often used as being sufficiently accurate for a

number of problems. In parallel GMRES implementations, however, the modified Gram-Schmidt

process exhibits a large communication overhead. Because of this and the need for high accuracy,

here an implementation of the Householder reflection orthogonalization in GMRES(k) proposed in

[19] is adapted to work in parallel. The parallel version employs an algorithm developed in [14] for

generating and applying Householder reflections. This algorithm avoids dot-products and all-to-all

communications. Pseudocode for the algorithm generating Householder reflections (called HG) at

the jth GMRES(k) iteration on the processor proc (in a ring of p processors) is given in Figure 1

(top). It is followed by the pseudocode of the application of Householder reflections in Figure 1

(bottom).

if (proc = 1) then s : = j else s : = 0 end if

determine Hs+1 such that Hs+1vloc ≡ wloc has zeros

after the (s+ 1)st component;

if (proc = 1) then

send wloc(s+ 1) to right;

else

receive w from left;

determine G1 such that wloc(1) = 0; update w;

if (proc �= p) send w to right;

end if

for i : = j downto 1 step -1

if (proc = 1) then

send wloc(i) to p;

receive wloc(i) from right;

sc : = i;

else

receive w from right;

apply G1 to (w, wloc(1));

send w to left;

sc : = 1;

end if

apply Hsc to wloc(sc :);

end for

Figure 1. Parallel Householder reflection generation (top) and application (bottom).

In Figure 1, H and G denote the Householder transformation matrix and the Givens rotation

matrix (as given in [6]), respectively; vloc denotes a portion of the Krylov subspace vector Ajr0
located on a processor; p, left, right are the processors with the highest rank, with the proc− 1

rank, and the proc + 1 rank, respectively. It is also assumed that the first processor has the jth

row of the input matrix. However, the design presented in Figure 1 admits only a special case of

the matrix row distribution: assignment of a block of contiguous rows to each processor (called

block-striped distribution), which is rarely advantageous for an arbitrary unstructured matrix. For

unstructured matrices a graph partitioning is used to minimize the communication to computation

3

ratio. In the current implementation, a graph partitioning algorithm from the MeTiS package

[9] is used to partition the input matrix by rows, and the parallel version of the matrix-vector

multiply is performed as in [11]. The matrix-vector product requires that the components of all

vectors are distributed in accordance with the corresponding matrix rows and allows overlapping

of computation and communication.

if (j = 1) then

s : = 1;

else

if (proc has (j − 1)st row) then s : = s + 1;

end if

determine Hs such that Hsvloc ≡ wloc has zeros

after the sth component;

if (proc has jth row) then

ring end : = left;

send wloc(s+ 1) and ring end to right;

else

receive w and ring end from left;

determine Gs such that wloc(s) = 0; update w;

if (proc �= ring end) then send w to right;

end if

sc : = s;

for i : = j downto 1 step -1

if (proc has ith row) then

if (sc �= 1) then sc : = sc− 1;

send wloc(sc) to left;

receive wloc(sc) from right;

else

receive w from right;

if (Gsc exists) then

apply Gsc to (w, wloc(sc));

end if

send w to left;

end if

apply Hsc to wloc(sc :);

end for

Figure 2. Modified Householder reflection generation (top) and application (bottom).

To use the algorithms in Figure 1, the redistribution of a vector requires O(p2) communications

at each GMRES(k) iteration, which is highly impractical and reduces the efficiency gained by the

distributed matrix-vector product. Thus, it is beneficial to develop an extension (called MHG) of

the algorithms in Figure 1 which accepts an arbitrary row distribution among processors. Figure 2

(top) shows the pseudocode for MHG, where the row indexing refers to the original matrix before

graph partitioning. Usually, the subspace dimension is much smaller than the matrix dimension

4

and the graph partitioning algorithm produces a balanced workload by assigning an almost equal

number of rows to each processor.

Thus, the case when the index s within vloc becomes equal to the size of a local partition (size

of vloc) occurs rarely for large matrices, unless the number of processors is very large.

3. Comparative scalability analysis

An algorithm-architecture scalability analysis estimates, in a single expression, characteristics

of the algorithm as well as parameters of the architecture on which the algorithm is implemented.

Thus, testing an algorithm on a small number of processors allows one to predict its performance

on a larger number of processors. The following terminology is needed to support the proposed

scalability analysis. A parallel system is a parallel algorithm and machine combination. The useful

work W is the total number of basic floating point operations required to solve the problem. W

depends on the problem size N̄ , which is a vector of problem-specific parameters such as problem

dimensions and the number of nonzero entries in a matrix. For numerical linear algebra problems

solved by iterative methods, N̄ may also include an indication of problem difficulty, such as the

Krylov subspace dimension k used in GMRES(k) or the condition number. In general, choosing N̄

requires a detailed investigation of a given problem and of the way scaling of problem dimensions

affects the increase in W [15].

The sequential execution time T1 characterizes the time interval needed to solve a given problem

on a uniprocessor. If the time of executing an integer operation is negligible compared with the

time tc of performing a floating point operation and if T1 is spent in useful work only, then

T1 = tcW. An assumption here is that T1 is spent doing useful work only. The parallel execution

time Tp is the time taken by p processors to solve the problem. The total parallel overhead V is

the sum of all overheads incurred by all the processors during parallel execution of the algorithm.

For a given parallel system, V is a function of the useful work W and number of processors p:

V = pTp(W, p)−T1(W). The efficiency E is the ratio of the speedup S(p) to p, where the speedup

S(p) = T1/Tp. Hence, E = T1

pTp
= 1

(1+V/T1)
. A parallel system is called scalable if V = O(W)

and unscalable otherwise. For scalable systems, it is possible to keep the efficiency fixed and to

monitor the rate of increase in W and p with the isoefficiency function fE(p), as proposed in [7].

The isoefficiency function is defined implicitly by the following relation betweenW and the parallel

overhead V :

W (N̄) = eV (W (N̄), p, h̄), (1)

where e = E
tc(1−E)

is a constant and h̄ is a vector of machine-dependent parameters affecting

the amount of the parallel overhead. Usually, the communication cost of the total parallel over-

head incorporates these parameters, which are defined in accordance with a communication model

supported by a given architecture.

3.1. Operation count for the useful work

Let N be the scaled matrix dimension and Nz be the number of nonzeros in the scaled matrix.

To obtain an operation count for the useful work in GMRES(k) at the jth iteration the following

parts of the pseudocode for GMRES(k) can be distinguished: (a) matrix-vector product, which

takes Nz operations; (b) Householder reflection generation, which takes 2(N − j + 1) operations;

(c) Householder reflection application, which requires 4(N − i + 1) operations, i = 1, . . . , j. The

remaining work is accomplished in O(k) operations. For a single restart cycle, the useful work

W ≈ (k + 1)Nz +N (2k2 + 5k+ 3) + Ck, (2)

5

where Ck is a term depending only on k.

3.2. Description of the test problem

The scalability analysis is performed on a real-world problem representing a commercial circuit

design at AT&T Bell Laboratories. The dimension of this problem is n = 125 and the number

of nonzeros nz = 782. The matrix A = {aij}, i, j = 1, . . .n of the linear system is unsymmetric,

has no particular structure, and 88% of its rows are weakly diagonally dominant. (Weak diagonal

dominance is defined as aii ≥
∑

j aij .) Here scaling the problem K times means assembling K

replicas of the n×n matrix of coefficients in an N ×N matrix, where N = K ×n and the number

of nonzeros Nz = K × nz, as shown in Figure 3 for K = 5. Both the initial solution vector and

right-hand side are eN = (0, . . . , 0, 1)t.

The choice of the test problem affects only a part of the scalability analysis of GMRES(k),

namely, matrix-vector multiplication. The GMRES acceleration remains independent of the test

problem. Therefore the analysis presented in this paper can be easily extended to any test problem

as long as the parallel overhead for its matrix-vector multiply is known.

Figure 3. Scaling of problem size.

3.3. Derivation of the isoefficiency function

When GMRES(k) is used for solving the test problem, Equation (1) takes the following form:

W (Kn, k) = eV (W (Kn, k), p, h̄), (3)

where h̄ = (ts, tw)t is a vector of the hardware-dependent communication characteristics: start-

up time ts and transmission time tw. Parallel GMRES(k) with Householder reflection orthog-

onalization incurs an overhead in matrix-vector product, Householder reflection generation and

application, and in the residual norm update, which is performed on a single processor.

The isoefficiency function is derived under the following assumptions for the serial time cal-

culation, graph partitioning of a matrix, and communication handling: (a) all the work in the

sequential algorithm is considered useful; (b) graph partitioning algorithm produces balanced par-

titions; (c) for large scale problems, partitions produced by graph partitioning keep the computation

6

to communication ratio no smaller than block-striped partitioning; (d) each processor holds Kn/p

rows of the matrix (Figure 3), where p ≤ K; Kn/p ≥ n) (e) if p ≤ K, then each n × n matrix

block is partitioned between no more than two processors; (f) in matrix-vector product, commu-

nication is performed by asynchronous sends and synchronous receives; (g) the time complexity of

the MPI broadcast operation implemented on the Intel Paragon, IBM SP2, and Cray T3E does

not grow substantially as the number of processors increases. Note that, since for the majority of

realistic applications the amount of computation grows superlinearly in the number of processors,

assumption (d) is not very constraining and is satisfied using either block-striped partitioning or

an algorithm from MeTiS. Also, assumption (g) stems from wormhole routing schemes used in the

given parallel architectures.

The parallel overhead due to a matrix-vector product can be predicted by considering the

nonzero structure of a given coefficient matrix. For the type of matrices shown in Figure 3, a

processor receives at most n vector components from no more than p/K� processors and sends

its Kn/p vector components to at most p/K� processors. Let V MV
rj

and VMV
sj

be the total over-

heads incurred by the processors at data receiving and sending stages of a matrix-vector product,

respectively. Then the total parallel overhead of the matrix-vector product at the jth iteration is

VMV
j = VMV

rj
+ VMV

sj
with

VMV
rj

≈
(⌈ p
K

⌉
ts + ntw + C0

)
× p and VMV

sj
≈

(⌈ p
K

⌉
ts +

Kn

p
tw − C1

)
× p,

where the constants C0 and C1 describe the waiting and communication-computation overlap-

ping times for asynchronous communications, respectively. For the problem sizes considered here,

Kn/p ≥ n, and thus p/K� ts ≤ ts. Combining VMV
rj

and VMV
sj

yields

VMV
j ≈

(
2ts +

(
n+

Kn

p

)
tw +C0 − C1

)
× p. (4)

Observe that C0−C1 ≈ 0 since the waiting time of each processor during asynchronous matrix

vector product is compensated by the time gain in communication-computation overlapping while

sending the information. Thus, C0 − C1 will be dropped from the expression for VMV
j .

Householder reflection generation and application cause a noticeable communication and

nonessential work overhead. At the jth GMRES(k) iteration, the overhead V H
j due to Householder

reflection generation and application comprises the overheads V H
aj

and V H
cj

caused by applying and

generating Householder reflections, respectively, such that V H
j = 2V H

aj
+ V H

cj
with

V H
aj

≈
[
jp
(
2(ts + tw) + ga

)]
× p and V H

cj
≈

[
p
(
2(ts + tw) + gc

)]
× p, (5)

where gc is the number of operations needed to create a Givens rotation and ga is the number of op-

erations needed to perform a Givens rotation to zero out one vector component. Since Householder

reflections are applied twice per GMRES iteration, V H
aj

has a coefficient of two.

Another source of the parallel overhead appears in estimating the condition number of the

GMRES least squares problem, which is done on a single processor. For a typical case, when the

Krylov subspace dimension is j, j = 1, . . . , k, gathering O(j) vector components on a processor,

estimating the condition number incrementally, and updating the residual norm (via a broadcast

7

operation) are relatively inexpensive, since the subspace dimension is much smaller than the ma-

trix dimension N for large scale problems. Global all-to-all communication would be required to

perform the condition number estimation in parallel. The parallel overhead V IC
j = O(pj), which

is caused by the time spent to gather O(j) values, to update the residual norm, and to perform

(j−1) operations of the condition number estimation. At the jth GMRES(k) iteration, the parallel

overhead V IC
j is caused by the time spent to exchange O(j) values, to update the residual norm

by application of j previous Givens rotations and by generation of a new Givens rotation, and to

perform approximately (j − 1) operations of the incremental condition number estimation. Thus,

V IC
j ≈

[
2j(ts + tw) + jga + gc + (j − 1)

]
× p. (6)

The total parallel overhead Vj (Vj = VMV
j + V H

j + V IC
j) incurred at the jth iteration of the

GMRES(k) algorithm with Householder reflections in its orthogonalization stage is

Vj ≈
[
2ts +

(
n+

Kn

p

)
tw

]
p+

[
2jp

(
2(ts + tw) + ga

)
+ p

(
2(ts + tw) + gc

)]
p

+
[
2j(ts + tw) + jga + gc + (j − 1)

]
p.

When a restart cycle is finished, i.e., j = k, the GMRES(k) algorithm has performed k matrix-

vector products, k + 1 Householder reflection generations, k residual norm updates along with k

incremental condition number estimates, and 2k Householder reflection applications. At the end

of a restart, GMRES(k) calculates the true residual norm using one more matrix-vector product

and one more Householder reflection application to correct the current solution. Combining all the

overhead terms incurred during k iterations, the expression for the total overhead is

V =

k+1∑
j=1

(
VMV
j + V H

cj

)
+

k∑
j=1

(
2V H

aj
+ V IC

j

)
+ V H

ak
.

Substituting equations (4), (5), and (6) into this equation results in

V ≈ Cgp
2 + (h̄tc̄+C′

k)p+Kn(k + 1)tw,

where

Cg = k(k + 2)
(
2(ts + tw) + ga

)
+ (k+ 1)

(
2(ts + tw) + gc

)
,

C′
k = k

(
(k + 1)

2
ga +

(k − 1)

2
+ gc

)
,

and h̄ = (ts, tw)
t, c̄ = (c1, c2)

t with c1 = k2 + 3k + 2 and c2 = k2 + (n + 1)k + n. The expression

for V is a quadratic polynomial in p. Thus for a fixed k, the fastest growing term is the leading

term. The leading term in V comes from creating and applying Givens rotations on processors

logically connected in a ring. In the test problem considered here, Nz ≈ 6Kn. Thus W ≈
Kn(2k2 + 11k + 9) + Ck. By substituting the expressions for V and W into equation (3), the

relation can be derived for K:

K ≈ e×
[Cg

n (2k2 + 11k + 9− e(k + 1)tw)
p2 +

h̄tc̄+C′
k

n (2k2 + 11k + 9− e(k + 1)tw)
p
]
. (7)

8

Note that since the term containing Ck is small and has no dependence on either K or p, it does

not appear in equation (7).

If one considers the GMRES(k) solution process as consisting of l restart cycles and including

the computation of the initial residual r0 (which requires one matrix-vector product and one

subtraction), then equation (7) can be rewritten as [16]

l×Kn
[
(2k2 + 11k+ 9) + Ck − e(k + 1)tw

]
+Kn(7− etw) ≈ l× e×

[
Cgp

2 + (h̄tc̄+C′
k)p

]
.

4. Numerical Experiments

The behavior of six different parallel systems has been studied. An algorithm component of

each parallel system is either GMRES(k) with HG orthogonalization or GMRES(k) with MHG

orthogonalization, denoted by HG and MHG , respectively. An architecture component is one of

three parallel computers: IBM SP2, Cray T3E, or Intel Paragon, denoted by the characters S, T,

or P, respectively, appended to HG and MHG . To examine the isoefficiency scalability of these

parallel systems, the (processor number, problem size) pairs with the same efficiency were selected.

For the efficiency computation, the parallel time needed to perform two GMRES(k) restart cycles

and the initial residual r0 computation by a parallel system was recorded as well as the time for

executing the same algorithm on a uniprocessor.

4.1. Machine-dependent constants

To calibrate the expression of the isoefficiency function, the constants tc, ts, and tw are de-

termined for the target parallel computers. Their numerical values are obtained using simple

appropriate models, for which a sufficient amount of empirical data can be collected to estimate

accurately these values. The time tc needed to perform a floating point operation is obtained

as the parameter of a linear regression model T1 = tcW
′, where W ′ includes an operation count

for W and additional terms capturing the effects of memory hierarchy operations when solving

large scale problems by a sequential algorithm. Clearly, the value of W ′ differs from one parallel

architecture to another depending on such factors as the memory size and the interface mechanism

among memory layers and processor. The amount of time that accounts for the memory hierarchy

operations can often be modeled only by studying particular cases of a problem solved on a given

architecture. On supercomputers with small cache and memory sizes, such as the Intel Paragon

(16KB of level-one on-board data cache), memory access and paging operations affect the overall

computation time considerably. In a given sequential algorithm, this effect is already noticeable

for medium-size (N ≈ 5000) problems. Thus the cost of memory accesses (the cost of load/store

operations) to compute a floating point value is added to the overall number of operations per-

formed by the sequential algorithm. To perform a floating point operation, two loads from slow

memory and one store operation are needed in the worst case.

Observation of the performance of the sequential algorithm on the IBM SP2 also suggests

that a portion of its execution time is spent on fetching data from a slower memory. Although

an IBM SP2 processor has a significant amount of data cache (64KB and 256KB for Models 390

and 590, respectively), this cache is not placed on chip, thus the interface with the processor

presents a bandwidth bottleneck. Also, neither Model 390 nor Model 590 has level-two cache,

which plays an important role in floating point computations. Solution of large scientific problems

on the IBM SP2 causes a high cache miss rate and, subsequently, frequent references to main

memory, which can significantly affect the execution time. Such an effect is especially pronounced

9

0 10 20 30 40 50 60

p

0

50

100

150

200

250

K

Efficiency =.28

o
o o

o
o
o o

o

o

0 10 20 30 40 50 60

p

0

100

200

300

400

500

600

K

Efficiency =.46

o
o o o

o o
o o

o

o

0 10 20 30 40 50 60

p

0

50

100

150

200

250

K

Efficiency =.28

o o
o
o
o o

o
o
o

o

0 10 20 30 40 50 60

p

0

100

200

300

400

500

600

K

Efficiency =.46

o oo
o o o o o

o

o

Figure 4. Isoefficiency curves for HG P (k = 15, top) and MHG P (k = 15, bottom).

Dashed line — theoretical; solid line — fit to data. The vertical axis is the scaling factor

K; the horizontal axis is the number of processors p.

in architectures without a two-level cache such as the IBM SP2 Models 390 and 590. Similarly

to the Intel Paragon, the useful work W on the IBM SP2 was augmented by the cost of the load

and store operations. The total work of a sequential algorithm W ′ is approximately equal to

3
[
(k + 1)Nz +N (2k2 + 5k + 3) +Ck

]
on the Intel Paragon and IBM SP2.

On the other hand, each processor of the Cray T3E is coupled with 8KB of data cache and

96KB of level-two data cache. In addition, there are another 4MB of on-board data cache. This is

enough cache capacity to hold all the floating point data of the problem sizes considered here with

a high cache hit rate. Thus, W ′ ≈W is acceptable in this case.

The communication start-up time and the transmission time of a double precision number are

determined from a communication cost model Tcomm = ts + twL, where Tcomm is the response

variable and L is the predictor variable. This model estimates the communication time Tcomm

between two processors under the assumption that the time required to send a message from one

processor to another is independent of processor location and the number of other processors that

might be communicating at the same time. The experimental data were gathered from measuring

the time T ′
comm needed to exchange a message between two processors (T ′

comm = 2Tcomm).

For the IBM SP2, the linear regression T1 = 0.024W ′ models the uniprocessor CPU time

with the standard deviation of errors equal to 1.84. The regression explains 81% of the variation

in T1, because the coefficient of determination of this model is 0.81. For the linear regression

Tcomm = 69 + 0.45L, the standard deviation of errors is 9.6 and the coefficient of determination is

0.97.

10

0 10 20 30 40 50 60

p

0

50

100

150

200

250

300

350

K

Efficiency =.28

o
o
o
o o

o

o

o

0 10 20 30 40 50 60

p

0

100

200

300

400

500

600

700

K

Efficiency =.46

oo o
o o

o
o

o

Figure 5. Isoefficiency curves for HG P (k = 35). Dashed line — theoretical; solid line —

fit to data.

For the Intel Paragon, the linear model is T1 = 0.33W ′ with the standard deviation of errors

equal to 2.25. The regression explains 99% of the variation in T1. The standard deviation of values

Tcomm observed in each repetition of the experiment was very large, which is characteristic to the

Intel Paragon design. Nevertheless, if the message length is known or lies within a certain range,

some constant value of Tcomm can be estimated by the linear regression within that specific range.

In particular, if a small array of double precision constants is transmitted, the communication

latency can be approximated by the start-up time, i.e., Tcomm = 605µs.

For the Cray T3E, the linear model is T1 = 0.019W ′ with the standard deviation of errors

equal to 0.07. The regression explains 99% of the variation in T1. To estimate the communication

time Tcomm, the linear regression Tcomm = 50+0.16L is obtained. For this regression, the standard

deviation of errors is 6.3 and the coefficient of determination is 0.91.

As a result, the times spent for computing a million floating point operations are 0.024s, 0.33s,

and 0.019s for the IBM SP2, Intel Paragon, and Cray T3E, respectively. The reciprocal of tc defines

uniprocessor computing rates of 41.6 Mflop/s, 3.0 Mflop/s, and 53 Mflop/s, correspondingly. Start-

up–transmission time pairs (in microseconds) are (69, 0.45) and (50, 0.16) for the IBM SP2 and

Cray T3E, respectively.

The experimental results are presented as a series of graphs, Figures 4–9, where the dashed

line indicates the relationship between K (the scaling factor) and p (the number of processors) for

a fixed value of the efficiency E. The solid line is a least squares fit of the experimental data. In

all cases the vertical axis represents K and the horizontal axis p.

4.2. Isoefficiency on the Intel Paragon

Least squares fits to HG P data in Figure 4 (top) for efficiencies .28, and .46 with k =

15, respectively, are 0.03p2 + 1.98p and 0.13p2 + 0.05p. Least squares fits to MHG P data in

Figure 4 (bottom) for efficiencies .28, and .46 with k = 15, respectively, are 0.05p2 + 1.58p and

0.13p2+0.54p. Predicted isoefficiency functions for the same efficiences and value of k, respectively,

are 0.07p2 + 0.04p and 0.15p2 + 0.08p.

Least squares fits to HG P data in Figure 5 for efficiencies .28, and .46 with k = 35, respectively,

are 0.08p2+0.28p and 0.18p2−1.14p. Predicted isoefficiency functions for the same efficiences and

k = 35, respectively, are 0.08p2+0.04p and 0.18p2+0.09p. For the Intel Paragon parallel systems,

each least squares approximation grows similarly to the corresponding predicted isoefficiency. Thus,

the same function can be used to estimate the isoefficiency scalabilities of MHG P and HG P. As

11

0 10 20 30 40

p

0

100

200

300

400

500

600

700

K

Efficiency =.34

ooo o
o

o

o

0 10 20 30 40

p

0

200

400

600

800

1000

K

Efficiency =.42

oo o o

o

o

0 10 20 30 40

p

0

50

100

150

200

250

K

Efficiency =.14

o o o

o

o

o

o

0 10 20 30 40

p

0

100

200

300

400

K

Efficiency =.22

o o o oo
oo

o

o o

o

o

Figure 6. Isoefficiency curves for HG S (k = 15). Dashed line — theoretical; solid line —

fit to data.

reflected in the form of the isoefficiency function, the larger the efficiency to be maintained, the

larger the increase in the problem size required with scaling of an architecture component.

When the restart parameter k increases, the leading term coefficient also increases. This

variation in the isoefficiency function value is in agreement with consideration of the whole restart

cycle in the isoefficiency analysis of GMRES(k), which differs in this sense from the analysis of the

preconditioned conjugate gradient method conducted in [8] for a single iteration of the method.

4.3. Isoefficiency on the IBM SP2

Least squares fits fE(p) of a quadratic polynomial to HG S data in Figure 6 for efficiencies

.14, .22, .34, and .42 with k = 15, respectively, are 0.17p2 − 1.11p, 0.31p2 − 4.15p, 0.48p2 − 6.06p,

and 0.74p2− 7.42p. Least squares fits to MHG S Figure 7 data for efficiencies .14, .22, .34, and .42

with k = 15, respectively, are 0.10p2 + 5.15p, 0.17p2 + 3.14p, 0.40p2 − 1.17p, and 0.56p2 − 4.31p.

Predicted isoefficiency functions for the same efficiences and the same value of k, respectively, are

0.13p2 + 0.07p, 0.23p2 + 0.13p, 0.42p2 + 0.23p, 0.58p2 + 0.33p.

Least squares fits to MHG S data in Figure 8 for efficiencies .22 and .42 and k = 25, re-

spectively, are 0.24p2 + 2.03p and 0.75p2 − 5.06p. Predicted isoefficiency functions for efficiences

.22 and .42 with k = 25, respectively, are 0.26p2 + 0.14p and 0.66p2 + 0.36p. Each least squares

approximation grows in accordance with the corresponding predicted isoefficiency.

4.4. Isoefficiency on the Cray T3E

Least squares fits to HG T data in Figure 9 (top) for efficiencies .24 and .36, respectively, are

0.45p2 − 1.87p and 0.70p2 − 5.36p. Least squares fits to MHG T data in Figure 9 (bottom) for

12

0 10 20 30 40

p

0

100

200

300

400

500

600

700

K

Efficiency =.34

o o

o
o

o

o

0 10 20 30 40

p

0

200

400

600

800

1000

K

Efficiency =.42

o o o
o
o

o
o

0 10 20 30 40

p

0

50

100

150

200

250

K

Efficiency =.14

o o o

o

o

o
o

o

0 10 20 30 40

p

0

100

200

300

400

500

K

Efficiency =.22

o o
o

o
o

o

o

Figure 7. Isoefficiency curves for MHG S (k = 15). Dashed line — theoretical; solid line

— fit to data.

efficiencies .24 and .36, respectively, are 0.32p2 + 1.87p and 0.58p2 − 2.71p. Predicted isoefficiency

functions for the same efficiences, respectively, are 0.33p2 + 0.18p and 0.59p2 + 0.32p. For the

Cray T3E parallel systems, each least squares fit grows similarly to the corresponding predicted

isoefficiency. Since the architectures considered here have different values of machine-dependent

constants, the corresponding isoefficiency functions have different coefficients, even though they

include terms of the same order. For example, the isoefficiency function fET
on the Cray T3E

differs significantly from the isoefficiency function fES
on the IBM SP2. In particular, for E = 0.42,

fET
= 0.76p2+0.48p and fES

= 0.58p2+0.33p. The coefficient of the leading term of fET
is larger

than that of fES
since the computing rate 1/tc on the Cray T3E is faster than on the IBM SP2,

while the improvement in ts and tw is not sufficient to hide the communication latency. Hence,

the idling time on the Cray T3E is larger than on the IBM SP2. The isoefficiency function of

the Paragon architecture presents the case when moderate values for all the machine-dependent

constants involved result in good isoefficiency scalability characteristics. However, with scaling

of the problem size, less powerful architectures, such as the Intel Paragon, tend to exhaust their

resources faster than more powerful ones, such as the Cray T3E and IBM SP2.

4.5. Isoefficiency for adaptive GMRES(k)

Sections 4.2–4.4 and Figures 4–9 pertained to parallel restarted GMRES(k), where k did not

adapt during the linear system solution process. Results for parallel adaptive GMRES(k) are

summarized in this section; figures for parallel adaptive GMRES(k) analogous to Figures 4–9 are

in [16] and [5]. The scatter of the (p,K) data for parallel adaptive GMRES(k) is such that no

meaningful least squares fit (polynomial or otherwise) is possible. The details of the scalability

13

0 10 20 30 40

p

0

100

200

300

400

500

K

Efficiency =.22

o o

o
o

o

o

0 10 20 30 40

p

0

200

400

600

800

1000

K

Efficiency =.42

o o
o

o o

o

Figure 8. Isoefficiency curves for MHG S (k = 25). Dashed line — theoretical; solid line

— fit to data.

analysis for parallel adaptive GMRES(k) are similar to the derivation in §3, and can be found in

[16]; a brief discussion follows.

In the case of problem size scaling considered here, changing matrix dimensions (K times) can

lead to a variation in test problem difficulty as well as in its size. This often happens in practical

applications, such as postbuckling analysis of structures, with increase in problem size. The erratic

behavior of the efficiency values for adaptive GMRES(k) on the Paragon suggests that not only

the convergence for adaptive GMRES(k) differs from that for the restarted GMRES (see Section

2), but also their parallel algorithm-architecture performances differ.

By definition, adaptive GMRES(k) proceeds qualitatively differently on different problems.

Therefore, for adaptive GMRES(k), the operation count of the full convergence history (or of

the convergence history until the maximum subspace dimension is reached) represents the useful

work to be considered in the isoefficiency analysis. Otherwise, since it is not known in advance

when increases in k occur during the solution process, the isoefficiency characteristics of adaptive

GMRES(k) are unpredictable [16]. Variation in the Krylov subspace dimension makes the scal-

ability analysis of the adaptive GMRES(k) algorithm more complicated than the analysis of the

conjugate gradient method [8], where an operation count and parallel overhead per iteration are

sufficient to derive an isoefficiency function. Likewise, the definition of both useful work and par-

allel overhead differ from their expressions in the analysis of GMRES(k), which can be performed

for a particular subspace dimension k and a particular operation count of a GMRES iteration.

One approach to estimating the efficiency of the adaptive GMRES(k) algorithm on scaled

problems is to introduce a measure of problem difficulty into the problem size definition. Since it is

hard to predict convergence of the adaptive GMRES(k) method on an arbitrary problem, making

problems more uniform by preconditioning is another way of dealing with the issue of useful work

scaling for the purpose of an isoefficiency analysis.

5. Conclusions

In this paper, an isoefficiency analysis is carried out for parallel versions of GMRES(k) with

Householder reflection orthogonalization implemented on the Intel Paragon, IBM SP2, and Cray

T3E. The theoretical part of this analysis not only establishes an asymptotic relation between

the increase in problem size and number of processors, but also provides an analytic expression

for the isoefficiency function. Communication and nonessential work overheads are identified for

parallel GMRES(k) applied to solve a real-world circuit simulation problem distributed among

14

0 10 20 30

p

0

100

200

300

400

500

K

Efficiency =.24

o
o
o o

o
o

o

0 10 20 30

p

0

200

400

600

800

K

Efficiency =.36

o
o
o

o

o
o

o

0 10 20 30

p

0

100

200

300

400

500

K

Efficiency =.24

o o
o o

o o
o

o

0 10 20 30

p

0

200

400

600

800

K

Efficiency =.36

o o
o

o

o o

o

Figure 9. Isoefficiency curves for HG T (k = 15, top) and MHG T (k = 15, bottom).

Dashed line — theoretical; solid line — fit to data.

processors in a block-striped fashion. For vertex-based partitioning of the problem, the theoretical

overhead is claimed to be the same under certain assumptions on load balancing by a partitioning

algorithm. Thus, the same isoefficiency function (same structure, different coefficients) is derived

for the parallel GMRES(k) implementations used with each of these two partitioning schemes. On

target parallel architectures, experimental results support the claim and closely match predicted

isoefficiency functions.

Both theoretical and experimental results show that the isoefficiency function is a quadratic

polynomial with a small leading term coefficient, which implies that the given parallel GMRES(k)

implementations are reasonably scalable on the given parallel architectures, namely, on an IBM

SP2, Intel Paragon, and Cray T3E. In general, a parallel algorithm is considered scalable if the

isoefficiency function (in any form) exists; that is, given a parallel architecture and a fixed efficiency

value, the amount of useful work in a given algorithm can be determined such that a given parallel

system achieves the desired efficiency.

The results here strongly support the validity of isoefficiency as a tool for scalability analysis

of parallel restarted GMRES, but not for parallel adaptive GMRES(k). A battery of tests in [16],

corresponding to those represented here by Figures 4–9, show that isoefficiency functions can not

be computed for adaptive algorithms applied to problems whose difficulty varies. In particular, for

parallel adaptive GMRES(k), the results in [16] indicate a strong dependency of the efficiency of

a parallel version of the method on the variability in problem difficulty when problems are scaled.

Thus (1) a measure of the problem difficulty has to be a parameter of a scaling procedure, or

(2) scalable preconditioning has to be applied to normalize the problem difficulty with increasing

problem size, or (3) isoefficiency is not a meaningful concept for adaptive algorithms.

15

A final comment about empirical isoefficiency analysis is that because of resource saturation

with useful work scaling up, there is an upper bound on the problem size beyond which the

sequential execution time is affected by memory hierarchy operations. In this case, the time

measurement of solving large problems on a uniprocessor may impede the isoefficiency analysis.

The efficiency becomes greater than one and the relation (1) between the useful work and the

parallel overhead cannot be applied to study scalability of an algorithm-machine combination (this

does not apply to the data in this paper).

References

[1] Å. Björck. Solving linear least squares problems by Gram-Schmidt orthogonalization. BIT, 7:1–21,
1967.

[2] C. H. Bischof and P. T. P. Tang. Robust incremental condition estimation. Tech. Rep. CS-91-133,
LAPACK Working Note 33, Computer Sci. Dept., Univ. of Tennessee, May, 1991.

[3] P. N. Brown and H. F. Walker. GMRES on (nearly) singular systems. SIAM J. Matrix Anal. Appl.,
18(1):37–51, January 1997.

[4] J. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart. Reorthogonalization and stable algorithms
for updating the Gram-Schmidt QR factorization. Math. Comp., 30:772–795, 1976.

[5] M. S. Driver, D. C. S. Allison, and L. T. Watson. Scalability of adaptive GMRES algorithm. in Proc.
8th SIAM Conf. on Parallel Processing for Scientific Computing, CD-ROM, SIAM, Philadelphia, PA,
1997, 7 pages.

[6] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore
MD, 2nd ed., 1989.

[7] A. Y. Grama, A. Gupta, and V. Kumar. Isoefficiency: Measuring the scalability of parallel algorithms
and architectures. IEEE Parallel and Distrib. Technol., 1:12–21, 1993.

[8] A. Gupta, and V. Kumar. Performance and scalability of preconditioned conjugate methods on parallel
computers. IEEE Trans. Parallel and Distrib. Systems, 6:455–469, 1995.

[9] G. Karypis and V. Kumar. MeTiS: Unstructured graph partitioning and sparse matrix ordering system.
User’s Guide—Version 2.0, Dept. of Computer Sci., Univ. of Minnesota, Minneapolis MN 55455, 1995.

[10] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users’ Guide. SIAM, Philadelphia, PA, 1998.
[11] G.-C. Lo and Y. Saad. Iterative solution of general sparse linear systems on clusters of workstations.

Tech. Report, UMSI 96/117, Supercomputer Institute, Univ. of Minnesota, 1200 S. Washington Ave.,
Minneapolis MN 55415, August 1996.

[12] Y. Saad. Iterative methods for sparse linear systems. PWS Publishing Company, 1996.
[13] Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm for solving nonsym-

metric linear systems. SIAM J. Sci. Stat. Comput., 7:856–869, 1986.
[14] R. B. Sidje. Alternatives for parallel Krylov subspace basis computation. Numer. Linear Algebra Appl.,

4:305–331, 1997.
[15] J. P. Singh, J. L. Hennessy, and A. Gupta. Scaling parallel programs for multiprocessors: methodology

and examples. Computer, 7:42–50, 1993.
[16] M. Sosonkina. Parallel sparse linear algebra for homotopy methods. Ph.D. Thesis, Computer Sci.

Dept., Virginia Tech, Blacksburg VA 24061, September 1997.
[17] M. Sosonkina, L. T. Watson, R. K. Kapania, and H. F. Walker. A new adaptive GMRES algorithm

for achieving high accuracy. Numer. Linear Algebra Appl., 5:275–297, 1998.
[18] H. A. van der Vorst and C. Vuik. The superlinear convergence behaviour of GMRES. J. Comp. Appl.

Math., 48:327–341, 1993.
[19] H. F. Walker. Implementation of the GMRES method using Householder Transformations. SIAM J.

Sci. Stat. Comput., 9:152–163, 1988.

16

