Efficient ICCG on a

 Shared Memory MultiprocessorSteven W. Hammond
Robert Schreiber

May, 1989

Research Institute for Advanced Computer Science NASA Ames Research Center

RIACS Technical Report 89.24

NASA Cooperative Agreement Number NCC 2-387
(NASA-CR-188843) EFFICIENT ICCG ON A SHARED MEMORY MULTIPROCESSOR (RESEARCh Inst. for Advanced Computer Science) 33 p CSCL OMB

Research Institute for Advanced Computer Science

Efficient ICCG on a Shared Memory Multiprocessor

Steven W. Hammond
Robert Schreiber

May, 1989

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 89.24

Efficient ICCG on a Shared Memory Multiprocessor *

Steven W. Hammond ${ }^{\dagger} \quad$ Robert Schreiber ${ }^{\ddagger}$

May 1989

Abstract

In this paper we discuss different approaches for exploiting parallelism in the ICCC; method for solving large sparse symmetric positive lefinite systems of equations on a shared memory parallel computer. Techniques for efficiently solving triangular systems and computing sparse matrix-vector products are explored. Three methods for scheduling the tasks in solving triangular systems are implemented on the Sequent Balance 21000. Sample problems that are representative of a large class of problems solved using iterative methods are used. We show that a static analysis to determine data depemdences in the triangular solve can greatly improve its parallel efficiency. We also show that ignoring symmetry and storing the whole matrix can reduce solution time substantially.

[^0]
1 Introduction

We explore different schemes for exploiting the parallelism available in the ICCG method for solving large sparse systems of linear equations on a shared nemory computer. All of this work has been conducted on a 12 processor Sequent Balance 21000 . We have looked at the efficient implementation of methods for solving triangular systems and at sparse matrix vector multiplication.

An important difficulty in solving general sparse triangular systems is that the available parallelism depends on the zero structure of the matrix, and is therefore not known at compile time. The concurrency is data dependent and can be determined only at run time. We show that by performing a small amount of analysis to determine the data dependences one can drastically improve the parallel efficiency. We permute (reorder) the index set of the recurrence equation for the triangular solve and put the indices in a queue. The processors repeatedly take indices from the queue, perform the associated calculations, and then take another index until all unknowns have been computed. Data dependences are resolved by semaphores. I stmaphorf is a variable that can be operated upon only by synchronizing primitives. We check indices in a shared array that indicate whether each of the unknowns has been computed. If a calculation depends on a piece of data and an entry in the shared array indicates that it has not been computed then the processor performing the calculation must busy wait. Busy waiting is when a processor loops waiting for a flag to change value.

Also, we show that there is a tradeoff between storing the lower triangular part of a symmetric matrix and storing the entire matrix. Storing the lower part to save storage complicates the multiplication since both outer products (which require synchronization) and inner products must be performed. The synchronization overhead slows down this operation.

For our experiments we work with systems of equations in the form they are presented. We do not consider the problem of reordering the rows and columns to enhance parallelisn.

The rest of this paper is organized as follows. Section 2 reviews related research. Section 3 contains a brief discussion of the ICCG method. Section 4 discusses how the dependence graph is used to exploit the parallelism in solving sparse triangular systems. Section 5 contains numerical experiments that show it is more efficient to store the whole symmetric matrix than only the upper or lower triangular part. In Section 6 we compare solving a lower triangular system by inner products versus solving by outer products. Section 7 presents the efficiency of the ICCG method using the techniques described in the previous sections. Section $\&$ dicusses other scheduling methods not used in this paper. Section 9 contains remarks and conclu-
sions. Appendix A deacribes the i lest cases used in the experiments. . Appendix B discusses the architecture of the Sedmont Balanen 21000 and provides times for arib huetic operations and syuchronization primitives. In Appotudix (' we show how the time to acress array elements increases as a function of the array size on the Sequent Balance 21000 .

2 Related Work

Level whednling mellods are considerod in [2.12.27]. Anderson [2] compares two different scheduling mothods for solving iparse trangmlar sestems on the Alliant FX/a, a shared memory machine. Thes are forworl herl wheduling. in which earh unknown in the triangular solve is computed as early as possible, and backurard lf ef scheduling. in which wach unknown is computed at the latest ponsible time. I level scheduling approach partitions the loop of the remuremee rfuation into a sequener of fully paraflelized do lonps (levels) separated by ghobal ithehronizations. He showthat he nwerherd in wheduling tasks to be performed as hate as possible is not worth the time savings.

Baxter ϵ t. wl. [3] compare lect wheduling with a self whetuling method using a , hared memory computer. an Fncore Dultimax/320. The self wheduling method is a two step procedure to paralmize the recurence spation of the triangular solve. First. oun performs a topologiral sort of the dependener graph to permute the index loop. Sext, statically assign elements of the index set to the processors of the system. Cilobal synchrouizations are avoided by requiring processors to write into, specified locations of shared arrays when work on a particular index is completed. Before a variable can be used, a procesor makes sure that the appropriate values have been ralculated by buey urationg on a designated value in the , hared memors. They show that self weheduling performs better than fecel whectuting for all but one of heir test cases.

The work of Salt, 1 , wh. [enj is similar to the work of Baxter. They also compare If et 1 scheduling and wif whechulingon an Encore and reach imilar conclusions. Saltz also proposes a unu programming construct. doconsider which allows compilers to parallelize many problems in which substantial hoop fevel paralleliom is available but cannot be detected by wandard compile- time analysio.

The difference between the work presented here and prewious work on triangular astem, is that we hise dymmic scheduling to asign task to processors and the others nese static scheduling.

In this paper wo forus on wemeral patadnel procomor, hat ithers have studed implementations on parallel vector machinem [15.15;20.26]. Whitionally. saad [2 1
presents a survey of recent researcla in Kivhov subspace methods with an emphasin on parallel and vector implementations.

3 ICCG Background

Here we give a brief introduction to the Incompleto Cholesky Comjngate Gradient (ICCG) method. Fur terailed information of its derivation and properties see ref-
 Hestene, and Stiefel [13] for the solution of

$$
\begin{equation*}
1 x=b \text {. } \tag{1}
\end{equation*}
$$

 and x is an X-sector to be computed.
 imate olutions $r^{(k)}$. The convergnce rate is wery poor for ill-conditioned problems [11]. One way to improse the consergence is to precondition (1) premultiply it by a conditioning matris and thereby condense the eigenvalue spectrmm [4].

I popular preconditioner is the Incomplete Cholesky preconditioner proposed by Meijerink and Van der Vort [Lx]: they perform an approximate Choleskyfactorization $L L^{\Gamma}$ of 1 with zerof fill. Equation (1) now becomen:

$$
\begin{equation*}
\left[\left(L^{-T}\right) L^{-1} A\right] x=\left(L^{-\Gamma}\right) L^{-1} b . \tag{2}
\end{equation*}
$$

L^{-1} is not explicitly computed, instead triangular systems are solved. Each iteration of the IC'CG method requires the solution of two sparse triangular systems. a sparse matrix vector protuct, 3 saxpy's and 2 inner products.

We warn the reader that we use an inconsistent notation here from the rest of the paper. Here we subseript a vector to indicate that it is a member of a sertuence rather than referring to an individmal dement. The greek leters represent scalars. The ICCG method is holow:

$$
\begin{aligned}
& x_{0}:=0 \\
& r_{0}:=b \\
& \delta:=z\left\|r_{0}\right\| \text {, } \\
& \text { repeat Fork=1.2... }
\end{aligned}
$$

$$
\begin{aligned}
& x_{k}:=\frac{T}{2}-1 \because_{k-1} / T_{-2} \because_{k-2} \quad\left(3_{1} \equiv 0\right) \\
& \mu_{k}:=z_{k-1}+\gamma_{k} p_{k-1} \quad\left(p_{1} \equiv z_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{k}:=z_{k-1}^{T} r_{k-1} / p_{k}^{T} A p_{k} \\
& x_{k}:=x_{k-1}+\alpha_{k} p_{k} \\
& r_{k}:=r_{k-1}-\alpha_{k} A p_{k} \\
& \text { until }\left\|r_{k}\right\|_{\infty} \leq \delta \\
x:= & x_{k}
\end{aligned}
$$

For our codes we choose $\bar{E}=10^{-6}$ so our iteration stops when the infinity norm of the residual is reduced by 6 orders of magnitude.

4 Triangular Systems

At each ICCG iteration we solve the triangular systems

$$
\begin{equation*}
L q=r \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
L^{T} z=q . \tag{4}
\end{equation*}
$$

Together, these two operations consume between 30% and 41% of the total cpu time required to solve the system on a single processor for our test cases. The percentage depends on the sparsity of L - the more nonzero elements in L the higher the percentage. The remaining time is consumed by sparse matrix-vector products, inner products and saxpy's. These are relatively easy to compute in parallel. Efficient. parallel computation of the triangular solves is necessary to accelerate the entire computation.

The system (3) is solved by

$$
\begin{equation*}
q_{i}=\frac{r_{i}-\sum_{j=1}^{i-1} L_{i, j} q_{j}}{L_{i, i}} \quad i=1, \ldots, y \tag{.5}
\end{equation*}
$$

In the dense case, each q_{2} depends on all $q_{j}, j=1, \ldots, i-1$. When L is sparse. each q_{2} depends on a few other q_{j}. Another way to look at it is that once some q_{j} has been computed, several other q 's may be computed in parallel. It is possible to perform some simple analysis of the data dependences to determine which element, of q can be computed in parallel and determine which q_{j} s each q_{i} depends on. This information can be utilized to schedule tasks. For example, if q_{i} depends on q_{j} then q_{j} should be scheduled before q_{i}. Also, if q_{j} and q_{k} are independent tasks then we may schedule them to be computed in parallel.

Figure l: Sparsity Structure of L

4.1 Computing the Dependence Graph

The problem one faces when exploiting this type of parallelism is that it is data dependent and can only be recognized at run time, not at compile time. It depends entirely on the sparsity structure of $L . L$ is usually read in as input or computed at an earlier stage of the program. The focus in this section and the next one is on lower triangular systems. A similar analysis can be done on upper triangular matrices.

Consider solving (3) where L has the sparsity structure shown in Figure 1. Analysis of the structure of L enables us to construct a corresponding directed graph (digraph), the dependence graph $G(L)=(V, E)$. There are N vertices, $V=\{1, \ldots, V\}$, corresponding to the N rows of L (and V elements of q). A nonzero element at $l_{i, j}$ means that q_{i} depends on q_{j}; i.e., q_{j} must be calculated before q_{i}. Therefore. we define the edges of $G(L)$ as follows: $E=\left\{(j, i) \mid l_{i . j} \neq 0\right\}$. We ignore the loops corresponding to the diagonal elements of $L(C(L)$ is acyclic $)$. The depth of a vertex v_{i} is 0 if it has no predecessors otherwise the depth of c_{i} is the length of the longest directed path in $G(L)$ whose origin is a vertex of depth 0 and terminus is c_{t}.

The dependence graph of L is shown in Figure 2. All nodes at depth 0 can be computed immediately. They have no dependences. q_{1} and q_{3} can be solved directly. Once q_{3} is computed we can solve for q_{t}. After q_{1} is computed we can solve for q_{2} and q_{6} in parallel. The unknowns q_{2} and q_{6} depend only on q_{1}. Once q_{2}. q_{6} and q_{4} have been computed, we can solve for q_{5}, q_{7} in parallel. Vertices that have equal depth represent independent tasks. The fact that q_{2} and q_{6} can be computed as soon as q_{1} has been computed, even if 4_{3} has not been completed, illustrates the difference between lertl seherluling methods and self scheduling methods. If ef

Figure 2: Dependence Graph of L
scheduling computes tasks corresponding to vertices of equal depth in G in parallel. All tasks at a certain depth must be completed before tasks at the next level can be started. Global synchronizations are used to separate tasks at different depths. self scheduling allows tasks to start as soon as their associated dependences have been computed.

4.2 Permuting the Index Set

The index set for the sequential solution of equation (5) is $i=1, \ldots . N$. To exploit the parallelism in the forward solve we reorder the index set according to the depth of each index in the dependence graph. A vertex of a certain depth is put in the permuted set before all vertices of greater depth. We define postion(k) to be the number of elements in the premuted index set that precede k. If two vertices r_{i} and c_{j} have equal depth then we put v_{i} in the permuted index set before v_{j} if

$$
\max _{n}(\operatorname{position}(n))<\max _{m}(\operatorname{position}(m)) \text { such that }(n, i),(m, j) \in E \text {. }
$$

If

$$
\max _{n}(\text { position }(n))=\max _{m}(\text { position }(m)) \text { such that }(n, i) \cdot(m, j) \in E
$$

then $n=m$ and v_{i} is placed in the list before r_{3} if $i<j$. This is a side effect of the sequential traversal of the data structure for L.

We call this permuted index set fud_schedule. For example, the permuted index set from the dependence graph in Figure 2 is

$$
\text { fwd_schedule }=\{1,3,2,6,4,5,7,8\}
$$

Sote that 6 appears before 4.6 is a descendent of 1 and 4 is a descendent of 3 and position(1) < position(3).

One way to compute the fwd_schedule list is outlined here. First, as the matrix is assembled or read in, construct an array of length V. called the rendy array such that ready[i] is the number of nonzero elements in row i of L. We then scan the entries of the ready array looking for entries with a value of 1 . If $r e a d y(i)=1$ then q_{i} can be solved for directly. This entry is put in a queue, Q. When we have inserted all entries with value 1 in Q we start the following loop. We follow the notation used in [1] for operations on a queue. λ queuc is a special kind of a list. where items are inserted at one end (the rear) and deleted from the other end (the front).

```
fwd_schedule = nil
```

While (empty $(Q) \neq$ true)

1. $i:=$ from (Q)
2. dequafue Q)
3. append i to fwd_schedule list
4. for each nonzero element $I_{k i}$
(a) $\operatorname{r\epsilon ady}(k):=\operatorname{ready}(k)-1$
(b) if $(\operatorname{ready}(k)=1)$ then enqueue (Q, k)

The dependence graph is not explicitly computed but the information it represents is implicit in ready and the ordering of f wd_schedule. We require two integer arrays of length V to hold fwd_schedule and ready. This additional storage is small relative to the storage for $A . L$ and the other V-vectors needed for ICCG.

Equation (4) is also solved with a permuted index set. which we store in the array back_schedule[]. It is computed by analyzing the dependence graph of $L^{T}, G\left(L^{T}\right)$. in a manner similar to that used to compute fwd schedule. Let $G\left(L^{T}\right)=\left(V_{T}, E_{T}\right)$, $V_{T}=V$ and $E_{T}=\{(j, i) \mid(i, j) \in E\} . G\left(L^{T}\right)$ is the same as $G(L)$ with the direction of the edges reversed. For the example shown in Figure 1. the schedules for solving the upper and lower triangular systems are the reverse of each other. This is not true in general. Suppose that we have the same lower triangular matrix as in Figure 1 except $L_{8,1}$ and $L_{8,8}$ are the only nonzero elements in row Q of L. Then. c_{8} will

case	fwd_schedule	fwd solve	back_schedule	bck solve	Ix=b
1	.12	.13	.11	.16	1.89
2	.06	.06	.05	.06	2.45
3	.05	.05	.04	.04	3.07
4	.07	.08	.06	.08	3.21
5	.10	.11	.09	.10	8.8 .5
6	.25	.30	.23	.28	8.52
7	3.12	3.25	2.09	2.48	65.5 .39

Table 1: Time in seconds to compute task schedules vs. single sequential triangular solve and solving $A x=b$ in parallel
be depth 1 in $C(L)$ and 8 will be the $6^{\text {th }}$ element in fwdschedule[]. But, is will be at depth 0 in $G\left(L^{T}\right)$ and the first elenent in back_schedule[].

The time to compute the permuted index sets is a little less than the time to compute a single sequential triangular solve and a small fraction of the time to solve (2) in parallel. The time in seconds to compute the forward and barkward schedules for the test cases is shown in Table 1. We compare the time to compute the fwd_schedule and the back_schedule lists with the time to sequentially compute one forward and backward solve and with the time to solve $A x=b$ in parallel.

4.3 Forward Solve

We solve (3) as follows. L is stored by columns and the forward solve is computed as a set of outer products. fwd_schedule is the list of indices which correspond to elements of q to be computed. It is treated as a queue of tasks to be executed by the pool of processors. Let there by \mathcal{P} processors. Initially, the first P indices in the queue are assigned one to each processor. Let i be the index a processor gets from the queue. Before we compute each forward solve we set fwd_ready[] to be the number of nonzero elements in each row of L. If fwd_ready[i] $\neq 1$, then the processor must busy uait, else, compute $r_{i}=b_{i} / L_{i, i}$. . .ext, compute $r_{j}-=L_{j . i} \boldsymbol{q}_{i}$ and decrement f wd_ready [j] for all nonzeto elements j of column i of L. Finally, if the queue is not empty get the next task.

For the triangular solve, we experimentally compared three different techniques for parallelizing the code. We call the first method dynamic scheduling (DS). The elements of q are assigned to processors in order, from 1 to N. They are computed as soon as the data they depend on is ready to be used. The data illustrate that
poor performance may be expected if the index set is left in its original order.
The second technique is due to Baxter ϵ l. al. [3]. We call this technique reordered static scheduling (RSS). They use the reordering strategy above but employ a static assignment of tasks from the permuted index set to processors. Let P be the number of processors. Processor $i, 1 \leq i \leq P$. gets tasks $i+P \times j$ for $j=0, \ldots,\left\lfloor\frac{\vee-1}{p}\right\rfloor$. It has the advantage that for every iteration each processor will solve for the same values of q. This characteristic is esperially noticeable for small problems when the entire problem fits in the local memory (or cache) of the processors. But this may not be very good at load balancing. If there are wide variations in the number of nonzero elements in the rows/columns of the matrix then the static mapping may cause unnecessary busy waiting. This variation arises in many different situations: non-uniform discretizations, adaptively refined meshes, or mixed elemeut types (triangular and quadrilateral elements in the same grid) for instance.

The problem with rooderfd static srheduling is that the position of the task in the schedule is determined solely by its dupth in the dependence graph. The strategy does not consider the amount of time needed to perform the task. It is possible that a static assignment of tasks to processors could result in uneven distribution of work and lower or less throughput.

The third technique is called rfordered dynamic scheduling (RDS). We reorder the index set as above but we put the indices (tasks) in a queue rather than statically mapping them to processors. The first processor done with the work initially assigned to it takes the next job from the front of the queue. This is done to reduce the time spent busy waiting due to potential load imbalance. There is an additional expense of maintaining a global pointer (m_next() on the Sequent) to the first element in the queue.

The C cote for reodered dynamic scheduling is shown in Figure 3. m_next () is the system function which increments a global counter and returns its current value. fwd_schedule[] is our permuted index set for the forward solve. As suggested by Duff, ϵ t. al. [7], we store the columns as packed sparse vectors held contiguously in the array 1[]. The row numbers of the corresponding nonzero entries held in l[] are held in the integer array row_num[]. The integer array start[i] points to the start of column i in array 1[] containing the nonzero elements of matrix L. In fact 1 [start[i]] is the diagonal element $L_{i, i}$. The global variables unknowns and tot_nonzero hold the number of rows in L and the total nonzero elements in L respectively start[unknowns+1] \equiv tot_nonzero +1 .

Once we have gotten a task from the queue, we check whether all of the data it needs are rady. This is done by looking at the value of the fwd_ready[i] array containing the number of direct dependences for row i. If the value is greater than

```
parallel_fwdslv(l, q, row_num, my_id, num_proc)
double
    1[], \(\mathrm{q}[\mathrm{]}\); /*1[] - nonzero elements of L */
short int
    /* q[] vector to be computed */
    row_num []; /* row_num[i] - ron of element i */
int
    my_id, num_proc
\{
register double
    tmp;
register int
    column, row, pointer;
int
    task, m_next();
    task \(=m_{-}\)next (); /* get pointer into queue */
    while (task <= unknowns) \{
        column = fod_schedule[task]; /* get column for this task */
        bck_ready[column] \(=\) WAIT; \(\quad / *\) reset for back solve */
        pointer = start[column]; /* get pointer into DS */
        while (fad_ready[column] > 1) continue; /* busy wait until ready */
        q[column] \(/=1\) [pointer ++ ] \(\quad / *\) solve for our \(q[i] \quad * /\)
        \(\operatorname{tmp}=\mathrm{q}[\) column \(; \quad 1 *\) store it in a local var */
        while ( pointer < start[column+1]) \{
            rov = row_num [pointer];
            S_LOCK (1p[ror]); /* set lock */
            q[rov] -= 1 [pointer] * tmp; /* mult q[i] by column j */
            fad_ready[ror]--; /* decrement depend. vector */
            S_UNLOCK(lp[rou]); /* unlock lock */
            pointer++; /* move to next nonzero element */
            \}
        task \(=m_{\text {_next }}\) (); /* get next task */
        \}
    m_sync(); /* synchronize before returning */
    \}
```

Figure 3: Procedure for Parallel Forward Solve

Case	Type						
	Sequential	DS		RSS		RDS	
	t_{3}	t_{p}	effir.	t_{p}	effic.	t_{p}	effic.
1	2.97	1.61	.15	.73	.34	.79	.32
2	2.30	.78	.30	.35	.42	.17	.30
3	3.29	1.07	.26	.72	.38	.99	.28
4	3.84	1.54	.21	.90	.36	1.03	.31
.	11.32	3.48	.27	2.13	.44	.2 .92	.32
6	13.29	11.04	.10	2.73	.41	3.29	.34
7	665.21	$11 \times .21$.13	219.46	.25	206.81	.27

Table 2: Time in seconds and afficiency of parallel forward solve on 12 processors relative to sequential code

1 then we busy wait. When fwdready[i] is equal to 1 the dependences for q_{i} have been satisfied and we can compule q_{i}. We set $q_{i}=q_{i} / L_{i, i}$ and then loop over the nonzero elements in column i below the diagonal, computing $q_{j}=q_{j}-L_{j . i} \times q_{i}$. Then we decrement the value of the fwd_ready [j] array to indicate that one dependence for q_{i} has been satinfied. The array q and the fwd ready array are shared and access to individual clements must be synchronized using the system calls S_LOCK() and S_UNLOCK (). These synchronization procedures are called once for each nonzero off diagonal element in the lower triangular matrix each iteration. This locking and unlocking operation takes about half of the time in the forward solve routine when the matrix is stored by columns. We alio reset bck ready[] for the next back solve operation.

In Table 2 we show the results for the three methods explained above on seven test problems. This is the time spent during the iterative solution of $\mathrm{t} x=b$ doing forward solves. All times are measured in seconds. We also include the sequential time for for each problem. t_{s}. The sequential time given is the best sequential code we could write ruming on one processor; there are no parallel constructs or syuchronizations used. Parallel code running on 12 processors of the Sequent took time t_{2}. We measure efficiency as

$$
\text { effic. }=\frac{t_{\mathrm{s}}}{t_{p} \times \# \text { proc }}, \quad \# \text { proc }=12 .
$$

The DS timings are included for comparison to illustrate the benefit of computing the dependence graph and permuting the index set. We see that both RSS and

Case	$t_{R D S}-t_{R S S}$	Predicted	\# iterations
1	0.05	0.06	16
2	0.22	0.11	41
3	0.29	0.14	68
4	0.13	0.13	45
5	0.79	0.47	101
6	0.44	0.44	43

Table 3: Time Difference between RDS and RSS vs. Estimated time in seconds

RDS are significantly better than DS, sometimes more than twice as efficient. The RSS method performs better than RDS in all but the last problem. In the first Test Case, RSS and RDS the two took almost the same time, and half as long as dynamic scheduling. In the last case, RDS was more efficient than RSS despite the calls to the global counter. This has several possible explanations. First, the number of nonzero elements in each column was more in the first and last cases than in the second through sixth cases. Thus. the relative overhead associated with the global counter versus the amount of work to do per call is less. In the last case, the number of nonzero elements per column varied between 8 and 40 . Good load balancing is especially important in this case for increased throughput. Statically assigning tasks to processors by their depth in the dependence graph alone (as in RSS) cannot achieve this. There must be sone way to account for the amount of work to be done in each task, not just the dependences of the task. The RDS method performs better at this than the RSS method as shown in Test Case 7.

When the problems have a regular sparsity structure (most of the columns/rows have the same number of nonzero elements) the time to compute each q_{i} is roughly the same and the load is balanced as long as each processor gets roughly the same number of q_{i} 's to solve for. Test Cases $1-6$ have a regular sparsity structure and thus the RSS method performed slightly better. The main contribution to this difference is the fact that in the RDS technique a global counter is used to maintain the quene of tasks. It takes about 50μ-seconds for each call and this is done before each q_{i} is computed. A prediction for the time difference when there is a regular sparsity structure is

$$
\begin{equation*}
t_{R D S}-t_{R S S} \approx(50 \mu-\text { seconds })(\# \text { iterations })\left(\frac{\text { \#unknowns }}{\# \text { proc's }}\right) . \tag{6}
\end{equation*}
$$

In Table 3 we compare the actual difference with the prediction for the first 6 cases. The right most column shows the number of iterations for convergence for each test
case. This model gives an estimate of the size of the difference that is correct to within a factor of two.

4.4 Backward Solve

The backward solve is similar to the forward solve, but there are subtle differences in implementation. To solve (4) we carry out the computation as a series of inner products rather than outer products. L^{T} is accessed by rows since we store L by columns.

An outline of our back solve procedure follows. Just as in the forward solve. we have a list of permuted indices back_schedule[]. It is computed in a manner analogons to fwd_schedule[]. back_schedule[] is treated as a queue of tasks to be computed by the processors. bck_ready [] is initialized to the value "WAIT", For some j. if bckready $[j]=$ WAIT then this indicates that $z[j]$ has not been computed fet. Fach processor gots an indes from the queue as it begins the back solve. Let i be the index that sone processor gets. For each nonzero element j in row i of L^{T}. check bck_ready[j]. If bck_ready[j] = WAIT, then busy wait. Else. compute $z[\mathrm{i}]-=L_{\mathrm{i}, \mathrm{j}}^{\mathrm{T}} \mathrm{z}[\mathrm{j}]$. When all nonzero off-diagnoal elements in row $;$ have been used we calculare $z[i]=z[i] / L_{i, i}^{T}$ and set bck_ready[i] = "DONE"'. The value DONE indicates that the element of $z[]$ is computed. Finally, if the queue is not empty get the next index.

The C code for this techuifue is shown in Figure 4. As in the forward solve routine we compute the new vector in plare, overwriting the previous entries of $z[]$. 1[] is the array containing the nonzero elements of the rows of the upper triangular matrix. The beginning of row i is pointed to by the array start[i]. To move across the nonzern elements of row i, from right to left, we start at pointer $=$ start[i+1]-1. start[$i+1]$ points to $L_{i+1, i+1}$ in 1[] and start [$\left.i+1\right]-1$ points to the right-most nonzero element in row i. The bck-ready[] array is set to "BUSY" during the previous forward solve. Therefore. if bck_ready $[j]=$ BUSY. then $z[j]$ has not been computed yet in the back solve. To reset fwd_ready [j] for the next forward solve we set fwd ready $[j]=\mathrm{fwd}$ depend[j]. fwd_depend[j] is the number of nonzero elements in row j of L. To indicate that $z[j]$ has been computed in the back solve we set bck_ready [j] to "DONE". The back_schedule[] array contains the index set that has been pernuted appropriately for the back solve operation. Finally, we set a barrier m_synch() to synchronize all processors at the end of the procedure before returning.

There is no need to do the locking and unlocking as in the forward solve routine. This procedure only writes to three hared arrays fwd_ready[]. bck_ready[]. and $z[]$. Fach location is read by many proces.ors but only written to by one processor.

```
parallel_bckslv(l, z, rom_num, my_id, num_proc)
double
    1[], z[]; /* arrays for L and z */
short int
    row_num[]: /* row_num[i] is row of element 1[i] */
int
    my_id, num_proc; /* variables for processor # and # of processors */
{
register double
    tmp;
register int
    row, column, pointer;
int
    task, m_next();
    task =m_next(); /* get first task to do */
    while (task <= unknowns) {
        row = back_3chedule[task];
        pointer = start[row+1] - 1;
        column = row_num[pointer];
        tmp = z[rov]; /* copy z to local register variable */
        while ( column > row) {
            while (bck_ready[column] == SPIN) continue;/* busy wait until ready */
            tmp == 1[pointer] * z[column];
            column = row_num[--pointer]; /* get next column number */
            }
        z[row] = tmp / l[pointer];
        bck_ready[rov] = DONE; /* set flag that it is done */
        fwd_ready[rov] = fud_depend[rou]; /* reset for next forward solve */
        task = m_next();
        }
    m_sync(); /* get all proc's synched before returning */
    }
```

Figure 1: Procedure for Parallel Backward Golve

Case	Met hod						
	Sequential	DS		RSS		RDS	
	t_{s}	t_{p}	effic.	t_{p}	effic.	t_{p}	effic.
1	2.70	.95	.21	.38	.58	.15	.50
2	2.65	.67	.33	.42	.53	.62	.36
3	3.07	.83	.31	.49	.52	.78	.33
4	3.56	1.01	.29	.5.	.54	.81	.37
.5	10.75	2.63	.34	1.54	.58	2.56	.35
6	12.38	7.18	.14	1.72	.60	2.35	.44
7	.507 .90	103.92	.41	85.44	.50	8.5 .80	.49

Table 4: Time in seconds and efficiency of parallel backward solve on 12 processors relative to sequential code
. o o locking is required in this situation. The inner product form of the triangular solve therefore has much less overhead.

In Table 1 we compare the three methods for the backward solve. DS is clearly slower than the other two. It is only included for comparison. We see that the RSS method performs better than the other methods. Just as for the forward solve. the time difference is due to the fact that in RDS a global counter is required to maintain the queue of tasks. The difference is very pronounced for problems 1-6: since there is very little work to do to compute each z_{i}; i.e., there are only a few nonzero off-diagonal elements in each row/column. The efficiency of RSS and RDS are almost identical for Test Case 7. The load balancing that is provided in RDS makes up for the overhead of using the global counter. The amount of work to be done to compute some z_{i} is directly related to the number of nonzeros in row i of L. The amount of work per task affects the load balancing. Test Case 7 has the most variation in the number of nonzero elements in its rows (and columns). As the variation increases so does the need to account for this in the scheduling of tasks.

5 Matrix-Vector Product

In this section we discuss the implementation of sparse matrix-vector products on the Sequent. We show that it is more efficient to store the whole symmetric matrix by rows rather than trying to save storage and storing only the lower or upper triangular half. This is true for both the sparse matrix-vector product and the
triangular solves. To compute a general symmetric sparse matrix-vector product $A x=b$ on the Sequent it is more efficient to store all of A by rows than to store only the lower triangular part by rows (or columns).

When a sparse symmetric matrix is stored as a lower triangular matrix by columns or rows (or if the upper triangular matrix is stored by columns or rows) the multiplication must be carried by a combination of inner and outer products. The implementation becomes complicated and requires synchronization to protect elements of shared arrays from being modified by more than one processor at a time.

An implementation of a symmetric sparse matrix-vector product written in C is shown in Figure 5. For this example, only the nonzero elements of the lower triangular part of A are stored (by columns). First, each processor initializes a portion of the array $b[]$ to be zero. Next, each processor gets a column of the data structure. This is a column of the lower triangular part of the matrix and a row of the upper triangular part. A column in the lower part, say column i, is multiplied by element $x[i]$. The product is accumulated into the shared array $b[]: b[j]+=a[$ pointer $] \times x[i]$. To be sure that only one processor is writing to $\mathrm{b}[\mathrm{j}]$ at a time we must use the system synchronization routines SLOCK () and S_UNLOCK(). . Vext we multiply the element of column i by $\mathbf{x}[\mathrm{j}]$ and add the product to the local variable inner_prod. When we have exhausted all elements of the upper triangular row, we add the local inner product into the shared array b[] using the appropriate locks. In essence, we accumulate inner products locally and add outer products globally. This approach requires two system synchronization calls per nonzero element in the lower triangular part of A. Even though the probability of collision is small since we are dealing with a sparse matrix, this has to be done to insure that only one processor updates an element of $b[]$.

A procedure for computing a general sparse matrix-vector product where the full A is stored by rows is much simpler and is shown in Figure 6. Each processor computes a set of inner products. The processors dynamically get an element of $b[]$ to compute using the system global counter m_next() The array row_start [] is an array holding the starting point for each row as it is stored in the data structure. The inner product of each row with x is computed and stored in $b[]$. This algorithm requires no synchronization since the work is divided into non-overlapping groups of rows.

In Table; we compare two methods for parallel computation of the sparse matrix vector product with the time it takes to compute it sequentially. The first method, "Symmetric", is the symmetric code from Figure 5. It takes advantage of symmetry and stores only the lower triangular part of the matrix. The second method, "Vosynch", is the same algorithm but we have commented out all of the synchronization calls to S_LOCK() and S_UNLOCK(). The answer we get is incorrect

```
mult(a, x, b, ron_num, first, last, my_id, num_proc)
double
    a[], x[], b[];
short int
    row_num[];
int
    first, last, my_id, num_proc;
{
double
    x_elem, inner_prod;
register int
    pointer, k;
int
    ror, column, m_next();
    for (k=first; k<last; k++) b[k] = 0.0; /* zero array */
    m_sync();
    column = m_next(); /* get our 1st column to start on */
    pointer = start[column]; /* get position of ist element */
    Ghile (column <= unknomns) {
        x_elem = x[column];
            inner_prod = a[pointer++] * x_elem; /* compute a[i,i]*x[i] */
            while (pointer < start[column+1]) {
                row = rom_num[pointer];
                S_LOCK(lp[rom]);
                b[ron] +# a[pointer] * x_elem; /* this is part of the outer prod. */
                S_UNLOCK(lp[row]);
                inner_prod += a[pointer++]*x[row];/* this is part of the inner prod. */
                }
        S_LOCK(1p[column]);
        b[column] += inner_prod; /* store the inner product now */
        S_UNLOCK(lp[column]);
        column = m_next(); /* get next column to work on */
        pointer = start[column]; /* get pointer into array */
        }
    m_sync(); /* wait until everyone else is done */
    }
```

Figure i: Code for Symment Sparo Matrix-Vector Product

```
full_mult(a, x, b, col_num, first, last)
double
    a[], /* the nonzero entries of A */
    x[], /* the vector to mult by */
-b[]; /* the result gets put here */
short int
    col_num[]: /* array of column numbers */
int
    first, /* first row we work on */
    last; /* we do up to by not including this row */
{
double
    inner_prod;
register int
    pointer, /* pointer into global DS */
    rov,
    column;
    /* ron that we are working on */
    /* column number in row that we are using */
    ron=1;
    while(ror <= unknomns) {
        ron = m_next(); /* get ror to work on */
        inner_prod = 0.0;
/*
    compute a[row,*] * x[*] { inner product}
*/
        for (pointer = row_start[row]; pointer<row_start[row+1]; pointer++){
            inner_prod += a[pointer] * x[col_num[pointer]];
            }
        b[rov] = inner_prod;
        }
    m_sync();
    }
```

Figure 6: Code for Full sparse matrix-vector product

Cans	Method						
	$\begin{gathered} \text { Sequential } \\ \hline t_{s} \\ \hline \end{gathered}$	Symmetric		Vosynch		Full	
		t_{p}	-ffic.	t_{p}	effic.	t_{p}	effic.
1	5.86	. 91	. 51	. 5	. 8.	. 56	xi
2	5.29	. 99	4.5	. 59	.i5	. 63	. 70
3	6.03	1.06	15	. 71	.il	. 66	. 26
t	7.23	1.35	. 45	73	ix	. 76	. 79
;	21.20	3.64	. 49	2.41	.i3	2.27	加
${ }^{6}$	13.29	3.82	. $\%$	2.35	.91	2.55	. 84
7	1270.40	321.8.5	. 33	226.13	17	207. 16	. 51

Table 5: Time in seconds and efficiency of parallel Sparse Matrix- Vector product on 12 pronessor, relative to sequential code
bur we stop after the same number of iterations. This is to show the impact of the synchronization. It also gives us a lower bound on the time for this method of matrix-rector product. The last method, "Full", is the times from the code in Figure 6.

We see that storing the full matrix is best. Timing and efficiency is better than 70% except for large problems. We expect this. since matrix-vector products are very parallel computations. If we look at the difference between the parallel times of the Symmetric and Nosynch columns it is clear that to use the system syuchronization calls adds almost 50% to the cost of the computation. But, even without the synchronization. we see that the Full method is better than the Nosynch method. From this we conclute that there is no advantage in storing only half of a symmetric matrix for parallel computation of the sparse matrix-vector product on this marhine.

In alternative to sparse matrix vector multiplication computed as inner or outer products is proposed my. Melhem [19] where he suggests a general technique of using striped matrix storage.

6 Triangular Solve Revisited

The decision to store the full matrix 1 affects ot her part; of the code. We also stored the full preconditioner as two triangular matrices. L and L^{T}. both by rows. The new values for the timings of the triangular whes are compared with the old values in

Problem	Method			
	Symmetric		Full	
	fwd	bck	fwd	bck
1	.73	.38	.44	.12
2	.55	.42	.41	.42
3	.72	.49	.53	.18
4	.90	.5 .5	.60	.58
5	2.13	1.54	1.58	1.51
6	2.73	1.72	1.79	1.70
7	206.81	8.80	200.52	216.63

Table 6: Time in seconds for Triangular Solve on 12 processors

Table 6. The columns labeled "Symmetric" are for storing only the lower triangular half of the symmetric matrix. The columns under "Full" are the timings for storing both the upper and lower triangular matrices of the preconditioner by rows. The forward solve is faster because it uses inner products. There is no synchronization for every element of L, only one for each row. We cannot, however. explain the data from Case 7.

7 Parallel Efficiency of ICCG

In Table 7 we show the time required to solve (1) for each implementation. assuming the preconditioner has be previously computed. In the first six cases it is clear that storing the full matrix is better than storing only its lower triangle. The efficiency is near or above 60% for the entire code. This is a very reasonable level and what we expected. But, for the seventh case, the code was not efficient. In Appendix C we show how the time to access array elements increases as a function of thr array size and discuss the time for Test Case 7.

8 Scheduling

Other scheduling methods not considered here are discussed in [9.10.14.22]. The general problem is to schedule a set of partially ordered tasks onto a multiprocessor system so that the time required to complete the tasks is miminized. This problem is known to belong to the class of "strong" NP-hard problems. The work by $[9.10 .22]$

Case	Method						
	$\frac{\text { Sequential }}{t_{s}}$	Symmetric		Nosynch		Full	
		t_{p}	effic.	t_{p}	effic.	t_{p}	effic.
1	15.26	2.54	. 50	2.29	. 5.5	1.89	67
2	17.80	2.97	. 30	2.67	.5.5	2.45	. 60
3	21.00	3.89	45	3.48	. 50	3.07	. 51
4	22.92	4.16	. 1.5	3.43	. 54	3.21	. 58
5	-2.39	10.83	. 56	9.58	. 62	8.8 .5	. 68
6	78.09	11.01	.99	9.64	. 67	8.52	. 76
7	2811.14	6.59 .39	. 36	609.36	. 38	660.19	. 3.5

Table i: Time in seconds and efficiency of Total IC'C' code on 12 processors relative to saruential codo
presents bounds on the number of processors required to compute the tasks in a minimum amount of time and bounds the time to compute the tasks with a fixed number of processors. Also. in [10]. bounds on the ratio of times for two different feasible schedules are given.

Kasahara and Xarita [1t] present two different scheduling methods. CP/MISE and DF/IHS. (P/ MISF stands for critical path/most immediate successors first and DF/IHS , tands for depth first/implicit heuristic searrh. The primary difference between the two is that the former schedules tasks as soon as possible and the latter schedules tasks as late as possible. Both require sorting of tasks at the same level according to the number of predessors they have and both are $O\left(X^{2}\right)$ algorithms. where .1 is the number of vertices in the dependence graph.

We do not use either of these srheduling techniques. Sorting the tasks at each level is expensive. We choose a scheduling method that is not optimal but requires very low overhead.

9 Summary

We have discussed different approaches for exploiting parallelism in the ICCG method for solving large sparse semmet ric positive definite systems of equations on a shared memory parallel computer. Wh, showed that performing a small amount of analysis to determine the data dependences can drastically improve the parallel efficiency. tdditionally, when the sparsity structure of a triangular matrix was regular then
a reordered static scheduling method performed more efficimuly that a reordered dynamic scheduling method. Finally, we showed that for the Sefluent it was more efficient to store the whole symmetric matrix by rows rather than only the upper or lower triangular part. The code for a full matrix was simpler and required less synchronization overhead.

References

[1] A. Aho, J. Hopcroft. and J. Cllman. Data Structures and Algorithm.s. AddisonWesley, 1983.
[2] E. Anderson. Parallel Implementation of Preconditioned Conjugate Giradient Methods for Solving Sparse Systems of Linear Systems. Technical Report 805, Center for Supercomputing Research and Development, Cuiversity of Illinois at C'rbana-Champaign, Cirbana, Illinois, August 1988.
[3] D. Baxter. J. Saltz, M. Shultz, and S. Eisenstat. Preronditioned hryloc Solvers and Methods for Runtime Loop Parallelization. Technical Report TR-655. Department of Computer Science, Yale University, New Haven CT, October 1988.
[4] G. Bedrosian. FORTRA.V Subroutine Packaye for Solving Large. Sparse, Symmetric Linear Systems. Technical Report 84CRD284, General Electric Co., Corporate Research and Development Center, 1984.
[5] G. Bedrosian. Private communication. 1986.
[6] P. Concus, G. H. Golub, and D. P. O Leary. A generalized conjugate gradient method for the numerical solution of elliptic partial differential fquations. In Gene H. Golub, editor, Studies in Vumerical Analysis. pages 179-198. The Mathematical Association of America, 1984.
[7] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. Clarendon Press, Oxford, 1986.
[8] [. S. Duff. R. G. Grimes, and J. G. Lewis. Sparse Matrix Problem.s. Technical Report CSS 191. Harwell Laboratory, October 19xi.
[9] E. B. Fernandez and B. Bussell. Bonnds on the number of processors and time for multiprocessor optimal schedules. IEEE Trans. Comput., c-22(8):745-751, Aug 1973.
[10] M. R. Garey and R. L. Graham. Bounds for multiprocessor scheduling with resonre constraints. SLAM J. Comput.. $1(2): 187-200$. L975.
[11] G. H. Golub and C. F. VauLoan. Matrix Computations. Johns Hopkins C'niversity Press. Baltimore. Maryland, 1983. Second Printing.
[12] 1. Grembaum. Soluing Trinngular Linear Systems [sing FORTRA.Y with Parallel Extfensions on the WYC Cltrecomputer Prototype. Technical Report 99. Courant Instinte. New York C'uiversity, New York. NY, 1987.
[1.3] M. R. Hestenes and E. Stiefel. Merhods of conjugate gradients for solving linear systems. J. Res, Viatiourl Burefu of Standards, (49):409-436. 1952.
[14] H. Kasahara and Varita S. Practical multiprocessor scheduling algorithms for efficient parallel processing. IEEE Trans. Comput., c-33(11):1023-1029, Nov 1984.
[15] .1. Koniges. Parallel Processing of a Preconditioned Biconjugate Gradient A/gorithm in C'R.AY supercomputers. Technical Report. Lawrence Livermore National Lab. Livermore. ('A, 19кi.
[16] . . Lichnewhi. Some vector and parallel implementations for preconditioned gradient algorithms. In J. Kowalik, editor, Procedings of the VATO workshop on high spetd computing. pages 343-359. 1984.
[17] T. A. \anteuffel. The Shifted Incomplete Choleshy Factorization. Technical Report SANDis-8226. Sandia Laboratories, May 1978.
[18] J. A. Meijerink and H. A. Van der Vorst. An iterative solution method for linear equation systems of which the coefficient matrix is a symmetric M-Matrix. Math. Comp.. 31:1t9 162. 1977.
[19] R. G. Melhem. Solution of linear systems with striped sparse matrices. Parallel Computing. 6:165 18.4, 1988.
[20] G Meurant. Multitasking the conjugate gradient method on the CR.AY XSIP/18. Parallel Computing, 5:267-280, 1987.
[21] A. Osterhaug. Cinide to Paralla Programming on Sequent Computer Systenas. Sequent Computer Systems, Inc, 1986. Sequent Technical Publications.
[22] C. V. Ramamoorthy, K. M. Chandry. and M. J. Gonzales Jr. Optimal scheduling strategies in a multiprocessor system. IEEE Trans. Comput., c-21(2):137116 , Feb 1972.
[23] J. K. Reid. On the method of conjngate gradients for the solution of large sparse systems of linear equations. In J. K. Reid, editor, Large Sparse Sets of Linear Equations, pages 231-254, Academic Press. New York, 1971.
[24] Y. Saad. Krylov Subspace Methods on Supercomputers. Technical Report TR88.40, RIACS, NASA Imes Research Center. Moffett Field, C.I 940.3., September 1988. To appear SIAMI J. SCI. STAT COMPL'T.
[25] J. Saltz. R. Mirchandaney, and D. Baxter. Run-Time Parallelization and Scheduling of Loops. Technical Report ICASE Report No. 83-70, ICASE. N.ASA Langley Research Center, Hampton. VA 23665, December 1982.
[26] M. K. Seager. Parallelizing Conjugate Gradient Method for the C'R.AY X-MP. Technical Report, Lawrence Livermore National Lab, Livermore, CA, 1984.
[27] Omar Wing and John W. Huang. A computational model of parallel solution of linear equations. IEEE Trans, on Computers, 29(7):632-638, 1980.

A Test Problems

For this work we have chosen i test cases which are representative of the class of problems solved by iterative methods. All are from two-dimensional domains. The first five are from the Harwell-Boeing collection $[8]$ and the last two are from electro-magnetic analysis [日]. The test cases are described in Table 8.

Case	Ref.	Description	Order	Nonzeros
1	[8]	A nine point discretization of the Laplacian on a unit square with Dirichlet boundary conditions. LAP30	900	1.322
2	$[\mathrm{x}]$	Satrix nsed in modeling power system networks. PS.ADMITT	662	156\%
3	[s]	Matrix uned in modeling power system net. works. PS.ADMITT2	191	1080
t	[x]	Matix med in modeling power system networks. PSADMIT3	68. 5	1967
5	[8]	Watrix used in modeling power system networks. PSAD.MIT 4	11.38	2596
6	[3]	A first-order triangular finite element discretization of the Laplacian operator on a unit square.	$\underline{2.00}$	7251
7	[.]	Matrix from a nonlinear magnetostatic model of a permanent magnet motor, using an unstructured finite element, mesh with mixed triangular and quadrilateral thirdorder mements.	6.517	69.670

Table R: Test Case Descriptions

B Sequent Overview and Performance Figures

This section provides an orerview of the architecture of the Sequent Balance 21000 and the execution times for the operations that were used in the rimings, given in this paper. The architectural description is due to Osterhaug [21].

B. 1 The Sequent Architecture

The Sequent Balance 21000 is a shared memory multiprocessor. The processors are identical $10-\mathrm{MHz}$ National Semiconductor 32032 s. These are 32 -bit processors. They operate on a peer basis, executing a single copy of the operating srstems executive, or "kernel".

There is no designated "master" cpu. All processors. memory modules, and i/o controllers plug into a single high-speed bus. There is hardware support for mutual exclusion - to support exclusive access to shared data structures, the system includes up to 6.4 k user-accessible hardware spin-locks.

The system we used has 12 processors and 28 Mbytes of memory. In addition. each cpu has 8 Kbytes of local RAMI and 8 Kbytes of cache RAMI. The local RAMI holds a copy of certain frequently used kernel code and read-only kernel data structures. The cache RAM holds blocks of system memory most recently used by the cpu.

	Operand		
Operation	t-Byte Integer	t-Byte Real	3-Byte Real
Addition	4.4	32.4	18.9
Multiplication	12.7	28.1	20.8
Division	17.0	33.0	25.5

Table 9: Time in μ seconds for Arithmetic Operations

B. 2 System Timing

This section provides execution times in microseconds for a variely of operations that were used by the programs discussed in this paper. Times for arithmetic operations are shown in Table 9. These timings are computed by looping through a program segment 30.000 times. The time before the loop was executed was then subracted from the time at the end of the loop. Some time was subtracten for lonp overhead and then that time was divided by the number of iterations throngh the loop.

Locking and unlocking of locations in the hardware atomic lock memory was done by the in-line (' macros SLOCK() and S_UNLOCK(). If we assume there is no contentiou for the lock. locking and unlocking a lock takes a total of 35 microseconds. The system provided routines in the Parallel Programming Library were slower, taking 33 microseconds. A fruction. mnext(). is provided to increment a global counter and return the current value. This function takes an average of 49 microseconds per call.

C Memory Access Times on the Sequent

In the IC'C'G method every element of L, L^{T}, and . are read once each iteration. To explain the inefficiency of Test Case i we ran a simple tost that itrrates over different array sizes accessing each element once per iteration. We measured the average time to access an array element as a function of the size of the array. We created a program with a double-precision array, big_array[]. with 200.000 elements. Then, we timed the following two loops:

```
for (test_size =1000; test_size<10000; test_size += 1000) {
    timer(&start_time);
    for (i=0; i<200; i++) {
        for (j=0; j<test_size; j++) { /* first loop */
            local = big_array[j];
            }
        }
    sep_timer(kend_time);
    }
for (test_size =10000; test_size<200001; test_size += 10000) {
    timer(&start_time);
    for (i=0; i<200; i++) {
        for (j=0; j<test_size; j++) { /* second loop */
            local = big_array[j];
            }
        }
    sep_timer(&end_time);
    }
```

We copy the elements of the array one at a time to a scalar variable local. In the first loop, the number of array elements accessed, test_size. varies from 1.000 to 9.000 in increments of 1,000 . In the second loop, the number of array elements accessed. test_size, varies from 10,000 to 100.000 in increments of 10.000 . We loop 200 times for each test size and divide the time by the total nimber of array accesses. This was done 5 times for each test and the results wore areraged.

The timing routine returns both user time (utime) and sristem time (stime) separately rather than the sum of the two Wis used the sum in all previous timings. These quantities are defined as follows:
user time the total amount of time spent executing in user mode

Figure $\bar{i}:$ 「eser Time in μ secs for Memory tecess as a function of Array Size
system time the total amount of time spent in the system on behalf of the process.
The results of this test are shown in Figures 7 and 8. The times are measured in microseconds. There is approximately a 2% increase in user time per access as the array size is increased from 120 K to 130 K . But, there is a factor of 5 increase in system time per access as the number of array elements in the test case increases from 120 K to 130 K . Recall, the total storage for full A in Test Case \bar{i} is 132.523 double precision numbers. The Sequent takes longer to access each element for this large problem than for all the other test cases.

In Table 10 we show separate entries for the user time and the system time for the sequential. symmetric and full matrix implementations of Test Case i. The feature to notice is the drastic increase in system time for the forward and backward solve in the "Full" case as compared with the corresponding times of the "Symmetric" and the "Sequential" implementations. This is partially explained by the test loops above. We see that large problems such as Test case i are not efficient on the Sequent.

Figure 8: System Time in μ secs for Memory Access as a function of Array Size

Problem		Operation			
		fwd	bck	mult	total
sequential	utime	576.05	506.50	11.57 .10	257.5 .25
	stime	94.53	4.67	119.74	2.54 .36
	totals	670.58	.511 .17	1277.14	2529.61
	utime	117.97	6.5 .85	182.06	397.57
symmetric	stime	88.84	19.95	143.97	257.82
(parallel)	totals	206.81	8.5 .80	326.03	6.5 .3 .39
	utime	73.33	72.17	173.28	349.94
full	stime	127.19	144.46	34.18	310.2 .5
(parallel)	totals	200.52	216.63	207.46	660.19

Table 10: Detailed timing of Case 7 in seconds

[^0]: - submitted to: International Journal of High Speed Computing.
 ${ }^{\text {i Ph.D. Student at Rensselaer Polytechnic Institute. Troy, NY } 12180 \text { and Visiting Research }}$ Associate at Research Institute for Advanced Computer Science, VASA Ames Research Center. Moffett Field, CA 94035.
 ${ }^{1}$ Research Institute for Advanced Computer Science, NASA Ames Research Center. Moffett Field. CA 94035.
 ${ }^{0}$ Work reported herein was supported by Cooperative Agreement $\mathrm{SC}^{\prime} \mathrm{C}^{2}-38$ - between the National teronantics and Space Administration (N.ASA) and the Cniversities Space Research Association (USRA).

