3,678 research outputs found

    Multi-frequency image reconstruction for radio-interferometry with self-tuned regularization parameters

    Full text link
    As the world's largest radio telescope, the Square Kilometer Array (SKA) will provide radio interferometric data with unprecedented detail. Image reconstruction algorithms for radio interferometry are challenged to scale well with TeraByte image sizes never seen before. In this work, we investigate one such 3D image reconstruction algorithm known as MUFFIN (MUlti-Frequency image reconstruction For radio INterferometry). In particular, we focus on the challenging task of automatically finding the optimal regularization parameter values. In practice, finding the regularization parameters using classical grid search is computationally intensive and nontrivial due to the lack of ground- truth. We adopt a greedy strategy where, at each iteration, the optimal parameters are found by minimizing the predicted Stein unbiased risk estimate (PSURE). The proposed self-tuned version of MUFFIN involves parallel and computationally efficient steps, and scales well with large- scale data. Finally, numerical results on a 3D image are presented to showcase the performance of the proposed approach

    Astronomical Spectroscopy

    Full text link
    Spectroscopy is one of the most important tools that an astronomer has for studying the universe. This chapter begins by discussing the basics, including the different types of optical spectrographs, with extension to the ultraviolet and the near-infrared. Emphasis is given to the fundamentals of how spectrographs are used, and the trade-offs involved in designing an observational experiment. It then covers observing and reduction techniques, noting that some of the standard practices of flat-fielding often actually degrade the quality of the data rather than improve it. Although the focus is on point sources, spatially resolved spectroscopy of extended sources is also briefly discussed. Discussion of differential extinction, the impact of crowding, multi-object techniques, optimal extractions, flat-fielding considerations, and determining radial velocities and velocity dispersions provide the spectroscopist with the fundamentals needed to obtain the best data. Finally the chapter combines the previous material by providing some examples of real-life observing experiences with several typical instruments.Comment: An abridged version of a chapter to appear in Planets, Stars and Stellar Systems, to be published in 2011 by Springer. Slightly revise

    The non-coplanar baselines effect in radio interferometry: The W-Projection algorithm

    Full text link
    We consider a troublesome form of non-isoplanatism in synthesis radio telescopes: non-coplanar baselines. We present a novel interpretation of the non-coplanar baselines effect as being due to differential Fresnel diffraction in the neighborhood of the array antennas. We have developed a new algorithm to deal with this effect. Our new algorithm, which we call "W-projection", has markedly superior performance compared to existing algorithms. At roughly equivalent levels of accuracy, W-projection can be up to an order of magnitude faster than the corresponding facet-based algorithms. Furthermore, the precision of result is not tightly coupled to computing time. W-projection has important consequences for the design and operation of the new generation of radio telescopes operating at centimeter and longer wavelengths.Comment: Accepted for publication in "IEEE Journal of Selected Topics in Signal Processing

    Advances in Calibration and Imaging Techniques in Radio Interferometry

    Full text link
    This paper summarizes some of the major calibration and image reconstruction techniques used in radio interferometry and describes them in a common mathematical framework. The use of this framework has a number of benefits, ranging from clarification of the fundamentals, use of standard numerical optimization techniques, and generalization or specialization to new algorithms

    Circular polarization measurement in millimeter-wavelength spectral-line VLBI observations

    Full text link
    This paper considers the problem of accurate measurement of circular polarization in imaging spectral-line VLBI observations in the lambda=7 mm and lambda=3 mm wavelength bands. This capability is especially valuable for the full observational study of compact, polarized SiO maser components in the near-circumstellar environment of late-type, evolved stars. Circular VLBI polarimetry provides important constraints on SiO maser astrophysics, including the theory of polarized maser emission transport, and on the strength and distribution of the stellar magnetic field and its dynamical role in this critical circumstellar region. We perform an analysis here of the data model containing the instrumental factors that limit the accuracy of circular polarization measurements in such observations, and present a corresponding data reduction algorithm for their correction. The algorithm is an enhancement of existing spectral line VLBI polarimetry methods using autocorrelation data for calibration, but with innovations in bandpass determination, autocorrelation polarization self-calibration, and general optimizations for the case of low SNR, as applicable at these wavelengths. We present an example data reduction at λ=7\lambda=7 mm and derive an estimate of the predicted accuracy of the method of m_c < 0.5% or better at lambda=7 mm and m_c < 0.5-1% or better at lambda=3 mm. Both the strengths and weaknesses of the proposed algorithm are discussed, along with suggestions for future work.Comment: 23 pages, 13 figure
    • …
    corecore