As the world's largest radio telescope, the Square Kilometer Array (SKA) will
provide radio interferometric data with unprecedented detail. Image
reconstruction algorithms for radio interferometry are challenged to scale well
with TeraByte image sizes never seen before. In this work, we investigate one
such 3D image reconstruction algorithm known as MUFFIN (MUlti-Frequency image
reconstruction For radio INterferometry). In particular, we focus on the
challenging task of automatically finding the optimal regularization parameter
values. In practice, finding the regularization parameters using classical grid
search is computationally intensive and nontrivial due to the lack of ground-
truth. We adopt a greedy strategy where, at each iteration, the optimal
parameters are found by minimizing the predicted Stein unbiased risk estimate
(PSURE). The proposed self-tuned version of MUFFIN involves parallel and
computationally efficient steps, and scales well with large- scale data.
Finally, numerical results on a 3D image are presented to showcase the
performance of the proposed approach