38,895 research outputs found

    An efficient parallel method for mining frequent closed sequential patterns

    Get PDF
    Mining frequent closed sequential pattern (FCSPs) has attracted a great deal of research attention, because it is an important task in sequences mining. In recently, many studies have focused on mining frequent closed sequential patterns because, such patterns have proved to be more efficient and compact than frequent sequential patterns. Information can be fully extracted from frequent closed sequential patterns. In this paper, we propose an efficient parallel approach called parallel dynamic bit vector frequent closed sequential patterns (pDBV-FCSP) using multi-core processor architecture for mining FCSPs from large databases. The pDBV-FCSP divides the search space to reduce the required storage space and performs closure checking of prefix sequences early to reduce execution time for mining frequent closed sequential patterns. This approach overcomes the problems of parallel mining such as overhead of communication, synchronization, and data replication. It also solves the load balance issues of the workload between the processors with a dynamic mechanism that re-distributes the work, when some processes are out of work to minimize the idle CPU time.Web of Science5174021739

    Parallel Methods for Mining Frequent Sequential patterns

    Get PDF
    The explosive growth of data and the rapid progress of technology have led to a huge amount of data that is collected every day. In that data volume contains much valuable information. Data mining is the emerging field of applying statistical and artificial intelligence techniques to the problem of finding novel, useful and non-trivial patterns from large databases. It is the task of discovering interesting patterns from large amounts of data. This is achieved by determining both implicit and explicit unidentified patterns in data that can direct the process of decision making. There are many data mining tasks, such as classification, clustering, association rule mining and sequential pattern mining. In that, sequential pattern mining is an important problem in data mining. It provides an effective way to analyze the sequence data. The goal of sequential pattern mining is to discover interesting, unexpected and useful patterns from sequence databases. This task is used in many wide applications such as financial data analysis of banks, retail industry, customer shopping history, goods transportation, consumption and services, telecommunication industry, biological data analysis, scientific applications, network intrusion detection, scientific research, etc. Different types of sequential pattern mining can be performed, they are sequential patterns, maximal sequential patterns, closed sequences, constraint based and time interval based sequential patterns. Sequential pattern mining refers to the identification of frequent subsequences in sequence databases as patterns. In the last two decades, researchers have proposed many techniques and algorithms for extracting the frequent sequential patterns, in which the downward closure property plays a fundamental role. Sequential pattern is a sequence of itemsets that frequently occur in a specific order, where all items in the same itemsets are supposed to have the same transaction time value. One of the challenges for sequential pattern mining is the computational costs beside that is the potentially huge number of extracted patterns. In this thesis, we present an overview of the work done for sequential pattern mining and develop parallel methods for mining frequent sequential patterns in sequence databases that can tackle emerging data processing workloads while coping with larger and larger scales.The explosive growth of data and the rapid progress of technology have led to a huge amount of data that is collected every day. In that data volume contains much valuable information. Data mining is the emerging field of applying statistical and artificial intelligence techniques to the problem of finding novel, useful and non-trivial patterns from large databases. It is the task of discovering interesting patterns from large amounts of data. This is achieved by determining both implicit and explicit unidentified patterns in data that can direct the process of decision making. There are many data mining tasks, such as classification, clustering, association rule mining and sequential pattern mining. In that, sequential pattern mining is an important problem in data mining. It provides an effective way to analyze the sequence data. The goal of sequential pattern mining is to discover interesting, unexpected and useful patterns from sequence databases. This task is used in many wide applications such as financial data analysis of banks, retail industry, customer shopping history, goods transportation, consumption and services, telecommunication industry, biological data analysis, scientific applications, network intrusion detection, scientific research, etc. Different types of sequential pattern mining can be performed, they are sequential patterns, maximal sequential patterns, closed sequences, constraint based and time interval based sequential patterns. Sequential pattern mining refers to the identification of frequent subsequences in sequence databases as patterns. In the last two decades, researchers have proposed many techniques and algorithms for extracting the frequent sequential patterns, in which the downward closure property plays a fundamental role. Sequential pattern is a sequence of itemsets that frequently occur in a specific order, where all items in the same itemsets are supposed to have the same transaction time value. One of the challenges for sequential pattern mining is the computational costs beside that is the potentially huge number of extracted patterns. In this thesis, we present an overview of the work done for sequential pattern mining and develop parallel methods for mining frequent sequential patterns in sequence databases that can tackle emerging data processing workloads while coping with larger and larger scales.460 - Katedra informatikyvyhově

    Graph-based Modelling of Concurrent Sequential Patterns

    Get PDF
    Structural relation patterns have been introduced recently to extend the search for complex patterns often hidden behind large sequences of data. This has motivated a novel approach to sequential patterns post-processing and a corresponding data mining method was proposed for Concurrent Sequential Patterns (ConSP). This article refines the approach in the context of ConSP modelling, where a companion graph-based model is devised as an extension of previous work. Two new modelling methods are presented here together with a construction algorithm, to complete the transformation of concurrent sequential patterns to a ConSP-Graph representation. Customer orders data is used to demonstrate the effectiveness of ConSP mining while synthetic sample data highlights the strength of the modelling technique, illuminating the theories developed

    Efficient mining of discriminative molecular fragments

    Get PDF
    Frequent pattern discovery in structured data is receiving an increasing attention in many application areas of sciences. However, the computational complexity and the large amount of data to be explored often make the sequential algorithms unsuitable. In this context high performance distributed computing becomes a very interesting and promising approach. In this paper we present a parallel formulation of the frequent subgraph mining problem to discover interesting patterns in molecular compounds. The application is characterized by a highly irregular tree-structured computation. No estimation is available for task workloads, which show a power-law distribution in a wide range. The proposed approach allows dynamic resource aggregation and provides fault and latency tolerance. These features make the distributed application suitable for multi-domain heterogeneous environments, such as computational Grids. The distributed application has been evaluated on the well known National Cancer Institute’s HIV-screening dataset

    Discovering unbounded episodes in sequential data

    Get PDF
    One basic goal in the analysis of time-series data is to find frequent interesting episodes, i.e, collections of events occurring frequently together in the input sequence. Most widely-known work decide the interestingness of an episode from a fixed user-specified window width or interval, that bounds the subsequent sequential association rules. We present in this paper, a more intuitive definition that allows, in turn, interesting episodes to grow during the mining without any user-specified help. A convenient algorithm to efficiently discover the proposed unbounded episodes is also implemented. Experimental results confirm that our approach results useful and advantageous.Postprint (published version

    Dynamic load balancing for the distributed mining of molecular structures

    Get PDF
    In molecular biology, it is often desirable to find common properties in large numbers of drug candidates. One family of methods stems from the data mining community, where algorithms to find frequent graphs have received increasing attention over the past years. However, the computational complexity of the underlying problem and the large amount of data to be explored essentially render sequential algorithms useless. In this paper, we present a distributed approach to the frequent subgraph mining problem to discover interesting patterns in molecular compounds. This problem is characterized by a highly irregular search tree, whereby no reliable workload prediction is available. We describe the three main aspects of the proposed distributed algorithm, namely, a dynamic partitioning of the search space, a distribution process based on a peer-to-peer communication framework, and a novel receiverinitiated load balancing algorithm. The effectiveness of the distributed method has been evaluated on the well-known National Cancer Institute’s HIV-screening data set, where we were able to show close-to linear speedup in a network of workstations. The proposed approach also allows for dynamic resource aggregation in a non dedicated computational environment. These features make it suitable for large-scale, multi-domain, heterogeneous environments, such as computational grids
    corecore