14 research outputs found

    Algorithms for Extracting Frequent Episodes in the Process of Temporal Data Mining

    Get PDF
    An important aspect in the data mining process is the discovery of patterns having a great influence on the studied problem. The purpose of this paper is to study the frequent episodes data mining through the use of parallel pattern discovery algorithms. Parallel pattern discovery algorithms offer better performance and scalability, so they are of a great interest for the data mining research community. In the following, there will be highlighted some parallel and distributed frequent pattern mining algorithms on various platforms and it will also be presented a comparative study of their main features. The study takes into account the new possibilities that arise along with the emerging novel Compute Unified Device Architecture from the latest generation of graphics processing units. Based on their high performance, low cost and the increasing number of features offered, GPU processors are viable solutions for an optimal implementation of frequent pattern mining algorithmsFrequent Pattern Mining, Parallel Computing, Dynamic Load Balancing, Temporal Data Mining, CUDA, GPU, Fermi, Thread

    Directed Graph based Distributed Sequential Pattern Mining Using Hadoop MapReduce

    Get PDF
    Usual sequential pattern mining algorithms experiences the scalability problem when trade with very big data sets. In existing systems like PrefixSpan, UDDAG major time is needed to generate projected databases like prefix and suffix projected database from given sequential database. In DSPM (Distributed Sequential Pattern Mining) Directed Graph is introduced to generate prefix and suffix projected database which reduces the execution time for scanning large database. In UDDAG, for each unique id UDDAG is created to find next level sequential patterns. So it requires maximum storage for each UDDAG. In DSPM single directed graph is used to generate projected database and finding patterns. To improve the scanning time and scalability problem we introduce a distributed sequential pattern mining algorithm on Hadoop platform using MapReduce programming model. We use transformed database to reduce scanning time and directed graph to optimize the memory storage. Mapper is used to construct prefix and suffix projected databases for each length-1 frequent item parallel. The Reducer combines all intermediary outcomes to get final sequential patterns. Experiment results are compared against UDDAG, different values of minimum support, different massive data sets and with and without Hadoop platform which improves the scaling and speed performances. Experimental results show that DSPM using Hadoop MapReduce solves the scaling problem as well as storage problem of UDDAG. DOI: 10.17762/ijritcc2321-8169.15020

    Parallel and Distributed Closed Regular Pattern Mining in Large Databases

    Get PDF
    Abstract Due to huge increase in the records and dimensions of available databases pattern mining in large databases is a challenging problem. A good number of parallel and distributed FP mining algorithms have been proposed for large and distributed databases based on frequency of item set. Not only the frequency, regularity of item also can be considered as emerging factor in data mining research. Current days closed itemset mining has gained lot of attention in data mining research. So far some algorithms have been developed to mine regular patterns, there is no algorithm exists to mine closed regular patterns in parallel and distributed databases. In this paper we introduce a novel method called PDCRP-method (Parallel and Distributed closed regular pattern) to discover closed regular patterns using vertical data format on large databases. This method works at each local processor which reduces inter processor communication overhead and getting high degree of parallelism generates complete set of closed regular patterns. Our experimental results show that our PDCRP method is highly efficient in large databases

    Closing the gap: Sequence mining at scale

    Full text link
    Frequent sequence mining is one of the fundamental building blocks in data mining. While the problem has been extensively studied, few of the available techniques are sufficiently scalable to handle datasets with billions of sequences; such large-scale datasets arise, for instance, in text mining and session analysis. In this article, we propose MG-FSM, a scalable algorithm for frequent sequence mining on MapReduce. MG-FSM can handle so-called “gap constraints”, which can be used to limit the output to a controlled set of frequent sequences. Both positional and temporal gap constraints, as well as appropriate maximality and closedness constraints, are supported. At its heart, MG-FSM partitions the input database in a way that allows us to mine each partition independently using any existing frequent sequence mining algorithm. We introduce the notion of ω-equivalency, which is a generalization of the notion of a “projected database” used by many frequent pattern mining algorithms. We also present a number of optimization techniques that minimize partition size, and therefore computational and communication costs, while still maintaining correctness. Our experimental study in the contexts of text mining and session analysis suggests that MG-FSM is significantly more efficient and scalable than alternative approaches

    Suffix Structures and Circular Pattern Problems

    Get PDF
    The suffix tree is a data structure used to represent all the suffixes in a string. However, a major problem with the suffix tree is its practical space requirement. In this dissertation, we propose an efficient data structure -- the virtual suffix tree (VST) -- which requires less space than other recently proposed data structures for suffix trees and suffix arrays. On average, the space requirement (including that for suffix arrays and suffix links) is 13.8n bytes for the regular VST, and 12.05n bytes in its compact form, where n is the length of the sequence.;Markov models are very popular for modeling complex sequences. In this dissertation, we present the probabilistic suffix array (PSA), a space-efficient alternative to the probabilistic suffix tree (PST) used to represent Markov models. The PSA provides all the capabilities of the PST, such as learning and prediction, and maintains the same linear time construction (linearity with respect to sequence length). The PSA, however, has a significantly smaller memory requirement than the PST, for both the construction stage, and at the time of usage.;Using the proposed suffix data structures, we study the circular pattern matching (CPM) problem. We provide a linear time, linear space algorithm to solve the exact circular pattern matching problem. We then present four algorithms to address the approximate circular pattern matching (ACPM) problem. Our bidirectional ACPM algorithm provides the best time complexity when compared with other algorithms proposed in the literature. Further, we define the circular pattern discovery (CPD) problem and present algorithms to solve this problem. Using the proposed circular pattern matching algorithms, we perform experiments on computational analysis and function prediction for multidomain proteins

    New approaches to weighted frequent pattern mining

    Get PDF
    Researchers have proposed frequent pattern mining algorithms that are more efficient than previous algorithms and generate fewer but more important patterns. Many techniques such as depth first/breadth first search, use of tree/other data structures, top down/bottom up traversal and vertical/horizontal formats for frequent pattern mining have been developed. Most frequent pattern mining algorithms use a support measure to prune the combinatorial search space. However, support-based pruning is not enough when taking into consideration the characteristics of real datasets. Additionally, after mining datasets to obtain the frequent patterns, there is no way to adjust the number of frequent patterns through user feedback, except for changing the minimum support. Alternative measures for mining frequent patterns have been suggested to address these issues. One of the main limitations of the traditional approach for mining frequent patterns is that all items are treated uniformly when, in reality, items have different importance. For this reason, weighted frequent pattern mining algorithms have been suggested that give different weights to items according to their significance. The main focus in weighted frequent pattern mining concerns satisfying the downward closure property. In this research, frequent pattern mining approaches with weight constraints are suggested. Our main approach is to push weight constraints into the pattern growth algorithm while maintaining the downward closure property. We develop WFIM (Weighted Frequent Itemset Mining with a weight range and a minimum weight), WLPMiner (Weighted frequent Pattern Mining with length decreasing constraints), WIP (Weighted Interesting Pattern mining with a strong weight and/or support affinity), WSpan (Weighted Sequential pattern mining with a weight range and a minimum weight) and WIS (Weighted Interesting Sequential pattern mining with a similar level of support and/or weight affinity) The extensive performance analysis shows that suggested approaches are efficient and scalable in weighted frequent pattern mining
    corecore