
Discovering Unbounded Episodes in Sequential Data �

G� Casas�Garriga
Departament de LSI

Universitat Polit�ecnica de Catalunya

gcasas�lsi�upc�es

April ��� ����

Abstract

One basic goal in the analysis of time�series data is to �nd frequent interesting episodes�

i�e� collections of events occurring frequently together in the input sequence� Most widely�

known work decide the interestingness of an episode from a �xed user�speci�ed window width

or interval� that bounds the subsequent sequential association rules� We present in this paper�

a more intuitive de�nition that allows� in turn� interesting episodes to grow during the mining

without any user�speci�ed help� A convenient algorithm to e�ciently discover the proposed

unbounded episodes is also implemented� Experimental results con�rm that our approach

results useful and advantageous�

�� Introduction

A well�de�ned problem in Knowledge Discovery in Databases arises from the analysis of sequences
of data� where the main goal is the identi�cation of frequently�arising patterns or subsequences
of events� This extracted knowledge is expected to be of interest in several contexts� such as
the aminoacids of a protein� the banking operations of a client� DNA sequences� alarms in a
telecomunication network� occurrences of recurrent illnesses and so on�

There are at least two related but somewhat di�erent models of the sequential pattern mining�
In one of them each piece of data is a sequence �such as the aminoacids of a protein� the banking
operations of a client� or the occurences of recurrent illnesses	� and one desires to �nd patterns
common to several pieces of data �proteins with similar biological functions� clients of a similar
pro�le� or plausible consequences of medical decisions	� See
���

��
�� or
�� for an introduction
to this model of a sequential database� The second model of sequential pattern matching is the
slightly di�erent approach proposed in
��� where data come in a single� extremely long stream� e�g�
a sequence of alarms in a telecommunication network� in which some recurring patterns� called
episodes� are to be found�

Both problems seem similar enough� but we concentrate here on the second one of �nding
episodes in a single sequence� Abstractly� such ordered data can be viewed as a sequence of
events� where each event has an associated time of occurrence� An example of an event sequence
is represented in Figure �� Here A� B and C are the event types� such as the diferent types of user
actions marked on a time line�

�
� � �A C

�� ��

B

��

Figure �� A sequence of events�

�This work is supported in part by EU ESPRIT IST����������� �ALCOM�FT	
 and MCYT TIC �����������
C�
��� �MOISES	

�

The frequent episode mining goal consists of identifying collections of events occurring fre�
quently together in the event sequence� These frequent episodes are the interesting patterns in the
sequence� and they are expected to provide useful information about it� Such information can then
be used to better explain problems� to suppress redundant events or to predict severe faults� We
brie�y describe the approaches to interesting episodes in the classical
��� point out some disad�
vantages� and then propose� as our main contribution� an alternative approach for de�ning a new
kind of serial episodes� i�e unbounded episodes� which we consider more intuitive and informative
than previous ones� Our proposal for this new approach on unbounded episodes will be specially
useful in several �elds such as classi�cation of texts or the intrusion detection problem as we will
argue� We �nally explain how a previous algorithm for �nding frequent sets proposed in
��� can
be applied to this problem� and suggest an interpretation of parallel episodes as summaries of
serial episodes� with the corresponding algorithmic consequences� Finally� we describe the results
of a number of experiments with our proposals�

�� Framework Formalization

To formalize the framework of the time�series data we follow the terminology� notation� and
setting of
��� The input of the problem is a sequence of events� where each event has an associated
time of occurrence� Given a set E of event types� an event is a pair �A� t	 where A � E is an event
type and t is its occurrence time�

An event sequence is a triple �s� Ts� Te	� where Ts is called the starting time of the sequence�
Te is the ending time� and s has the form�

s � h�A�� t�	� �A�� t�	� � � � � �An� tn	i

where Ai is an event type� and ti is the associated occurrence time� with Ts � ti � ti�� � Te for
all i � �� � � � � n� �� The time ti can be measured in any time unit� since this is actually irrelevant
for our algorithms and proposals�

���� Episodes

Our desired output for each input sequence is a set of frequent episodes� An episode is a partially
ordered collection of events occurring together in the given sequence� Episodes can be described
as directed acyclic graphs� Consider� for instance episodes �� � and � in Figure �� Episode � is a
serial episode� event type B occurs before event type C in the sequence� Of course� there can be
other events occurring between these two in the sequence� The notation used for a serial episode
will be� B � C� Episode � is a parallel episode� events A and B occur frequently close in the
sequence� but there are no constraints about the order of their appearences� The notation used
for a parallel episode will be� fA�Bg� Finally� episode � is an example of hybrid episode� it occurs
in a sequence if there are occurences of A and B and these precede an occurrence of C� possibly�
again� with other intervening events�

�

�

�

�
B

�

�

�

�
C�

�

�

�

�

�
A

�

�

�

�
B

�

�

�

�

�
A

�

�

�

�
B

�

�

�

�
C

H
H
H
Hj

�
�
�
��

�

Figure �� Types of episodes

More formally� an episode can be de�ned as a triple �V��� g	 where�

� V is a set of nodes�

� � is a partial order relation on V� and

�

� g � V � E is a mapping associating each node with an event type�

We also de�ne the size of an episode as the number of events it contains� i�e� jV j� The inter�
pretation of an episode is that events in g�V 	 must occur in the order described by �� An episode
� is parallel if the partial order � is trivial �i�e�� x � y for all x� y � V such that x �� y	 and an
episode � is serial if the relation � is a total order �i�e�� x � y or y � x for all x� y � V 	� In this
paper we will only deal with serial and parallel episodes�

De	nition ��� An episode � � �V ����� g�	 is a subepisode of � � �V��� g	� noted by � � �� if

there exists an injective mapping f � V � � V such that g��v	 � g�f�v		 for all v � V �� and for all

v� w � V � with v �� w also f�v	 � f�w	�

For most of our work� we deal with injective episodes� where the function g is injective� this
means that events are not repeated within the episodes� However� we do treat recurring events �a
particular form of non�injective serial episodes	 since they show important in some applications�

�� Classical Approaches to De�ne Interesting Episodes

In the analysis of sequences we are interested in �nding all frequent episodes from a class of
episodes which can be interesting to the user� In this section we will mainly take the work of
��
as a reference� i�e� we state that to be considered interesting� the events of an episode must occur
close enough in time� of course this does not imply that they are fully adjacent� although for some
speci�c applications �such as protein function identi�cation	 it is usual to impose adjacency� Our
later approach will allow to implement this requirement but does not enforce it� In this section�
we also describe how the fundamental algorithms like Apriori
��� are appropriately adapted to
mine those episodes�

��� Winepi

In the �rst approach of
��� the user de�nes how close the events of an interesting episode should
be by giving the width of the time window within which the episode must occur� The number of
possible windows of a certain width win in the sequence �s� Ts� Te	 is exactly� Te � Ts � win� ��
Thereby� the frequency of an episode � in s is de�ned to be�

fr��� s� win	 �
windows in which � occurs

total windows of width win from s

So� an episode is frequent according to the number of windows where that episode has occured�
or to its ratio to the total number of possible such windows in the sequence� To be frequent� the
episode must appear an speci�c number of times in the sequence� i�e�� its number of appearences
must be over a minimum user�speci�ed value�

The approach consists in applying the Apriori algorithm in sequences as though a window
were a transaction with ordered events� The goal is �nding out which are the interesting frequent
episodes� so� in every processed window� the frequency of those episodes that �t in the window is in�
cremented whereas the frequency of those episodes that do not occur in the window is decremented�
The algorithm starts by computing the frequency of episodes of size �� which are candidates to be
frequent� After this stage� the frequent episodes from this set of candidates� are combined to form
candidates of size
� and so on� An episode � will be frequent when fr��� s� win	 � minfr�

Once the frequent interesting episodes are discovered from the sequence� the second goal of
the approach is to create the episode association rules that hold over a certain minimum
con�dence� For all episodes � � �� an episodal rule � 	 � holds with con	dence�

conf�� 	 �	 �
fr��� s� win	

fr��� s� win	

��� Minepi

Minepi is based on minimal occurrences of episodes in a sequence� For each frequent episode�
the algorithm �nds the location of its minimal occurrences� The minimal occurrences with their

time intervals are identi�ed in the following way� Given an episode � and an event sequence s� we
say that the interval w �
ts� te	 is a minimal occurrence of � in s� if�

��� � occurs in the window w�

��� � does not occur in any proper subwindow on w�

Basically� the applied algorithm is Apriori� it locates� for every episode going from the smaller
ones to larger ones� its minimal occurrences� In the candidate generation phase� the location of
minimal occurrences of a candidate episode � is computed as a temporal join of the minimal
occurrences of two subepisodes of ��

This approach di�ers from Winepi in the fact that it does not use a frequency ratio to decide
when an episode is frequent� Instead� an episode will be considered frequent when its number of
minimal occurrences is over an integer value given by the user� This is a consequence of the fact
that the lengths of the minimal occurrences vary� so that a uniform ratio could be misleading�

One advantage of this approach is that allows the user to �nd rules with two windows widths�
one for the left�hand side and one for the whole rule� such as �if A and B occur within ��
seconds� then C follows withing
� seconds�� In this approach an episode association rule is an
expression �
win�� 	 �
win��� where � and � are episodes such that � � �� and win� and win�
are integers� The informal interpretation of the rule is that if episode � has a minimal occurrence
at interval
ts� te	 with te � ts � win�� then episode � occurs at interval
ts� t�e	 for some t�e such
that t�e � ts � win��

The con	dence of an episode association rule �
win�� 	 �
win�� with � � � and two
user�speci�ed interval widths win� and win� is the following�

conf��
win��	 �
win��	 �
jf
ts� te	 � mo��	 s�t te � ts � win� and
ts� ts �win�	 � mo��	gj

jf
ts� te	 � mo��	 and ts � te � win�gj

where mo��	 are the set of minimal occurrences of the episode � in the original input sequence�
So� even if there is no �xed window size �as occurred in Winepi approach	� now the user needs
to specify the time bounds win� and win� for the generation of the subsequent episode rules and
their con�dences� These values force minimal occurrences to be bounded in a �xed interval size�
which restricts the the minimal occurrences of episodes to a �xed window of lenght win� during
the process�

�
� Some Disadvantages of these Previous Approaches

We summarize below some of the observed disadvantages in Winepi and Minepi�

� In Winepi the window width is �xed by the user and it remains �xed throughout the mining�
Consequently� the size of the discovered episodes is limited� For instance� if the window width
is �xed with a value of
 time units� the maximum size of the discovered episodes is of

events� which are exactly the number of events that can �t in the window�

� In Minepi the user speci�es two time bounds for the creation of the subsequent episodal
rules� These intervals make the �nal minimal occurrences to be bounded in size� since just
those occurrences contained within the bounds are counted�

� Both Minepi and Winepi require the end user to �x one parameter with not much guidance
on how to do it� Intervals or windows too wide can lead to misleading episodes where the
events are widely separated among them� so� the subsequent rules turn to be uninformative�

� Both Winepi and Minepi can give rise to overlapping episodes� If there exists an interesting
episode� �� whose size is larger than the �xed window width� then that episode will never �t in
any window and� consequently� �will be discovered just partially� For instance� if the window
is of width
 time units and a larger frequent episode in the sequence is A� B � C � D�
the result of the mining will be� A � B � C on the one hand� and B � C � D on the
other hand� These two episodes are actually overlapping parts of the same episode�

�

� Minepi does not use a frequency ratio to decide whether an episode is frequent� This makes
di�cult the application of sampling�

� In case the user decides to �nd the episodal rules for a di�erent time bound �a di�erent
window size in Winepi or a di�erent interval lenght for Minepi	� then the algorithm that
�nds the source of frequent episodes has to be run again� incurring in a inconvenient waste
of time�

� Both approaches do not seem truly compatible for those problems where the adjancency
of the events in the discovered episodes is a must �such as protein function identi�cation	�
Neither Winepi or Minepi allow to set this kind of restriction between the events of an
interesting episode�

�� Unbounded Episodes

In order to avoid all these drawbacks and be able to enlarge the window width automatically
throughout the mining process� we propose the following approach� We will consider a serial or
parallel episode interesting if it ful�lls the following two properties�

��� Its correlative events are separated at most tus time units between them �as in �gure
	�

A� B � C
tus tus

�

fA� B� Cg
tus tus

�

Figure
� Example of serial and parallel unbounded episodes

��� It is frequent�

So� in our proposal� the measure of interestingness is based on tus� the time�unit separation
between correlative events in the episode� This number of time units must be speci�ed by the
user� The above two episodes � and � are examples of the interpretation of our approach� In the
serial episode �� the distance between A and B is tus� and the distance between B and C is also
tus time units� Besides� despite not specifying the distance between events A and C� it can be
clearly seen that between A and C there are at most �
 tus time units away� More generally� an
episode of size e may span up to �e � �	
 tus time units�

In the parallel episode �� distance between correlative events A� B and C� regardless of the
order of their appearences in the sequence� must be of at most tus time units�

Now� every episode that is candidate to be frequent� will be searched in windows whose width
will be delimited by the episode size� an episode with e events will be searched in all windows in
the sequence of width �e��	
 tus time units� Thus� the window width is not bounded� nor is the
size of the episode� and both will grow automatically� if necessary� during the algorithms� This
explains the name chosen� we are mining unbounded episodes�

With this approach the frequency of an episode can be de�ned in the following way� Let us
denote by Wk�s� win	 � Ti � Tf � win� � the total number of windows in a sequence �s� Ti� Tf 	
of a �xed width win � k
 tus time units� Then�

De	nition ��� The frequency of an episode � of size k � � in a sequence �s� Ti� Tf 	 is�

fr��� s� tus	 �
jfw �Wk�s� win	j� occurs in wgj

Wk�s� win	

where win � �j�j � �	
 tus�

�

Note that the dependence on win� for �xed �� is here simply a more natural way to re�ect the
dependence on the user�supplied parameter tus� but both correspond to the same fact since win
and tus are linearly correlated�

To sum up� every episode � will be frequent if its frequency is over a minimum user�speci�ed
frequency� that is� according to the number of windows in which it occurs� however� the width
of that window depends on the number of events in �� So� the e�ect in the algorithm is that�
as an episode size becomes bigger and the number of its events increases� the proper window in
which that episode is searched also increases its width� and simultaneously the ratio that has to
be compared with the user�speci�ed desired frequency is appropriately adjusted�

���� Episode Association Rule with Unbounded Episodes

The approach of mining unbounded episodes will be �exible enough to allow the generation
of association rules according to two interval widths �one for the left hand side� and one for the
whole rule as occurred with Minepi	� So� the �nal association rules will be like �if A and B occur
within �� seconds� then C follows within
� seconds��

An unbounded episode rule will be an expresion �
nl� 	 �
nr�� where � and � are un�
bounded episodes such that � � �� and nl and nr are integers such that nl � j�j and nr � j�j�j�j�
The informal interpretation of these two new variables nl and nr is the number of events occurring
in the left hand side �nl	 and right hand side �nr	 of the rule respectively�

So� we can rewrite any unbounded episode rule �
nl� 	 �
nr� in terms of a rule with two
window widths �
w�� 	 �
w�� by considering w� � �nl � �	
 tus and w� � nr
 tus� This
transformation will lead to an easy interpretation of the rule� �if events in � occur within w� time
units� then� the rest of the events in � will follow within w� time units��

One of the advantages of this proposed approach is that focusing our episode search on the time�
unit separation between events� will allow to generate the best unbounded episode rule �
nl� 	
�
nr� �and so� the best rule �
w��	 �
w��	 without �xing any extra parameter� neither nl or nr
will be user�speci�ed for any rule� since these values will be chosen from the best antecedent and
consequent that maximizes the value of con�dence for that rule �or in other words� nl and nr will
be uniquely determined by the size of the episode being the antecedent and the size of the episode
being the consequent in the best rule according to con�dence	�

Since in our approach we have a ratio of frequency support� we can de�ne the con	dence of
a rule � 	 � for � � � as�

conf�� 	 �	 �
fr��� s� win	

fr��� s� win	

where the value of win� for �xed �� is linearly correlated with the user�speci�ed tus as we have
seen in the previous section� Note that since � is a subepisode of �� the rule right�hand side �

contains information about the relative location of each event in it� so the �new� events in the
rule right�hand can actually be required to be positioned between events in the left�hand side�
The rules de�ned here are also rules that point forward in time �rules that point backwards can
be de�ned in a similar way	�

As we see the values nl and nr do not a�ect the value of the con�dence� and they will be
determined after having chosen the best rule� We will chose the best unbounded episode rule in
terms of con�dence for each maximal frequent unbounded episode� The procedure is the following�

for each maximal episode ��
�
j�j�	 �
j�j � j�j�� � arg�maxfconf�� 	 �	 s�t � � �g

As we see� the �nal windows widths �w� � j�j
 tus and w� � �j�j� j�j	
 tus	 are determined
by the best rule in terms of con�dence� and this can vary from one rule to the other� adapting
always to the best combination�

Example in �gure � will serve to illustrate the advantatges of our unbounded episode approach�
The sequence of this �gure shows that we could consider frequent the episodes� � � fA�Bg and

�

A A AB B BC C C

Figure �� Example of an event sequence

� � fA�Bg � C �as they are represented as a graph in �gure �	� The best association rule we
can �nd in this example is the following� fA�Bg 	 C� that should have a con�dence of � for this
presented piece of sequence�

For Winepi� at least a �xed window of � time units of width should be speci�ed to �nd both
� and �� But this parameter depends on the user and it is not intuitive enough to chose the right
value� In this example� if the user decides a window width of
 time units� then the episode �

would never be discovered and the rule will never be generated�
With Minepi� the problem comes when specifying the two windows widths for the episode

association rule� In case the user speci�es win� �
 and win� � �� the association rule generated
would be �

� 	 �
��� that has a con�dence of just ��
 in this example� It is not the best
association rule� and it is due to the value of win� � �� that it is set too tight�

For the unbounded approach however� the algorithm would �nd both � and � by just speci�ng
a big enough value for tus �the minimum value would be � in this example	� This is an intuitive
parameter� and the best subsequent episode rule in terms of con�dence would be �
��	 �
��� with
a con�dence of �� This rule can be transformed in terms of two window widths and interpret �if
A and B occur within tus time units� then C will follow in next tus time units��

���� Advantages of Our Approach

Here we shortly summarize some advantages of our proposal for unbounded episodes�

� Since the window increases its width along with the episode size� the �nal frequent episodes
do not overlap unnecesarily� and their size is not limited�

� The association rules that can be mined from a sequence can contain more information
because the discovered episodes that form that rule can be longer�

� Unbounded episodes generalizes Minepi and Winepi in that episodes found with a window
width of x time units can be found with our approach using a distance of x� � time units
between correlative events�

� Once the unbounded episodes are mined� �nding the episode rules with two windows widths
�such as in Minepi	 can be easily done� What is more� the user can try di�erent windows
widths for the rules� and chose the best width for the antecedent and consequent according
to the rule� This does not a�ect the previous mining and the discovered unbounded episodes�
and they are always the same once we are in the generating rule phase �which did not happen
with Minepi or Winepi	�

� We can de�ne the frequency of an episode� easing the application of sampling techniques�

� Our proposal can be adapted to other types of sequential data� such as those in the approach
of
���

��
�� or
���

On the whole� we can say that unbounded episodes are more general and intuitive than Minepi
or Winepi approaches� In particular� these unbounded episodes can be very useful in contexts
such as the classi�cation of documents or the intrusion detection systems� As argued in
���� a
drawback of subsequence patterns is that they are not suitable for classifying long strings over
small alphabet� since a short subsequence pattern matches with almost all long strings� So� the
larger the episodes found in a text the better for the subsequent classi�cations� and our unbounded
episodes could be very useful in this task� Also for the intrusion detection problem
��� there is a
need to mine long sequences in order to get more informative patterns�

�

	� Algorithms to Mine Unbounded Episodes

The main aim of this section is to describe algorithms for mining interesting episodes from
sequences� based on our interestingness measure� Previously used algorithmswere based essentially
on the same intuitions as the Apriori algorithm
��� We adapt instead our strategy from
����
Best�First strategy� which is a nontrivial evolution of Dynamic Itemset Counting �DIC�
�
�	 and
provides better performance than both Apriori and DIC �that follows a Breadth�First approach	�
For better understanding� we give a brief account of how our strategy works�

Similarly to DIC� our algorithm keeps cycling through the data as many times as necessary�
counting the support of a number of candidate itemsets� Whenever one of them reaches the
threshold that declares it frequent� it immediately �noti�es� this fact to all itemsets one unit
larger than it� In this way� potential future candidates keep being informed of whether each of
their immediate predecessors is frequent� When all of them are� the potential candidate is promoted
to candidate and its support starts to be counted� DIC follows a similar pattern but only tries to
generate new candidates every M processed transactions� running it withM � � would be similar
to Best�First strategy� but would incur overheads that our algorithm avoids thanks to the previous
online information of which subsets of the potential candidates are frequent at each moment�

To follow the same structure� our new algorithm for mining episodes� called Episodal Best�First
�EpiBF	� will distiguish two sets of episodes�

� The candidate episodes� those episodes which form the set of current candidates and
whose frequency is being counted through the sequence�

� The potential candidates� those episodes which have some subepisodes which are candi�
dates�

The EpiBF algorithm� following the Best�First strategy� will incorporate the future candidates
to the counting as soon as they are ready� In case of mining unordered data� a future candidate
itemset was ready to be counted when all its subsets were frequent� Hovewer� in case of sequential
data� and given that we are using our approach to interesting episodes� we must rede�ne once
again the concept of �being ready�� We discuss separately the case of serial episodes �rst�

���� Discovering Serial Episodes

For serial episodes� the algorithm EpiBF goes in the following way� It starts by initializing the
set of candidate episodes with all episodes of size �� and the set of potential candidates with all
episodes of size
� Then� it goes on counting the frequency of all the candidate episodes until this
set becomes empty� When one of these candidate episodes of size k achieves the state of frequent�
it increments counters corresponding to all the potential candidates of size k � � that we can
obtain by adding one more event before it or after it� This growth leads to unbounded episodes�
On the other hand� when a potential candidate of size k� � �nds that both subepisodes of size k�
obtained by chopping o� either end� have been declared frequent� then it will be incorporated in
the set of candidate episodes�

Upon reaching the end of the sequence� the process starts over from its beginning like in the
case of DIC� We know that a candidate is not frequent when the wrapped�up search comes to the
point where counting started for that candidate�

It is important to highlight that� in this algorithm� the set of candidate episodes can be made
up of episodes of diferent sizes� and EpiBF must also be able to process windows of di�erent sizes
for every episode� Nevertheless� this problem is not too di�cult to solve� since an episode � of
size k must be searched and counted in all windows of width �k� �	
 tus time units� EpiBF will
take� at every step� the largest window for the longest episode in the set of candidate episodes�
The rest of episodes in the set of candidate episodes will be searched in the proper subwindows�

���� Discovering Serial and Parallel Episodes Simultaneously

In case of mining parallel episodes the problem can be reduced e�ciently to mining serial
episodes in the following way� Every parallel episode of size k lumps together up to k� serial

�

episodes� For instance� the parallel episode fA�Bg gathers the following two serial episodes�
A � B and B � A� In this case� a serial episode will be called participant of a parallel episode�
Clearly� any serial episode is participant of one� and only one� parallel episode�

Let us discuss what could be the meaning of parallel episode mining� Clearly� if a frequent
parallel episode has some �but not all	 participants already frequent� the desired output is the list
of such frequent serial episodes� the parallel one� given alone� provides less information� and given
with them becomes redundant� In such cases we should not move from the serial episodes to the
parallel one� unless actually all of them are frequent� in this last case� the parallel episode is an
e�ective way of representing this fact�

Thus� according to our proposal� in order to be considered interesting� a parallel episode �

must full�l one of the two following conditions� either

�� by adding up the frequency of the serial episodes that are participants of �� we reach the
user�speci�ed minimal frequency� but no serial episode participant of � is frequent alone� or

�� every serial episode participant of � is frequent�

Thus� condition � re�ects the case in which no serialized form of � is frequent� but the ag�
gregation of all those non�frequent episodes into a parallel one� makes a contribution of useful
information� Condition � is di�erent� here the parallel episode serves as a gathering of all the
di�erent forms in which the serial episodes are actually frequent�

Globally� this means that� from the point of view of the algorithm� EpiBF will mine serial
episodes� but these serial episodes can refer to parallel ones too� Thereby� the set of candidate
episodes will be made of serial ones� while the set of potential candidates will be composed of
parallel episodes�

Moving now into the algorithm� the parallel episodes� which are potential candidates� will sim�
ply wait for the noti�cation of all their serial participants� which are the candidate episodes� This
means that the algorithm will be counting the support of serial episodes� as in the previous case�
however� when declaring one of these serial episodes� �� frequent or non�frequent� the noti�cation
must go to that parallel episode which � is participant of�

So� once one of these potential candidates� which are parallel episodes� has received the nec�
essary noti�cations� it will be incorporated into the counting in the form of all its participating
serial episodes�

��
� Recurring Events

There is an important class of non�injective episodes worth consideration� serial episodes of the
form A � A� This is called �recurring events�� Of course such episodes� if frequent� can be of
interest� and there is no reason to avoid them� but in our approach of unbounded episodes they lead
to the following result� they will appear in the output in the recurrent formA� A� A� � � � � A

of size k such that the frequency threshold just separates the frequencies of the episode with the
analogous one of size k��� Usually� this would be an unintended e�ect of the frequency threshold�
For instance� a highly branching web page such as the entry point of a photo gallery is a place
likely to recurse in a web log sequence� and this fact is better expressed simply by A� A rather
than by the longest subsequence of A�s that �ts the frequency threshold�

This also illustrates the inherent di�culty of our approach with non�injective episodes� where a
similar but less understandable phenomenon may appear� Our current implementation of EpiBF
only �nds injective episodes and recurring events� Our feeling is that this encompasses most of
the really interesting episodes we want to �nd along the input sequence�

� Experiments and Conclusions

In this section we present the results of running �a probabilistic version of the	 EpiBF algorithm
on a variety of di�erent data collections� The goal of these experiments was mainly to prove the
usefulness and advantages of our presented framework for episodes against previous approaches
�Winepi and Minepi	�

�

First� we experimented� as in
��� with protein sequences� We used data in the PROSITE
database of the ExPASy WWW molecular biology server of the Geneva University Hospital and
University of Geneva
���� The purpose of this experiment is to identify speci�c patterns in
sequences so as to determine to which family of protein they belong� The sequences in the family
we selected ��DNA mismatch repair proteins I�� PROSITE entry PS������ the same one used
in
�� for comparison	� are known to contain the string GFRGEAL� This string represents a serial
episode of seven consecutive symbols separated by � unit of time among them� Parameter tus was
set to �� and the support threshold was set to ��� for the �� individual sequences in the original
data� Note that no previous knowledge of the pattern to be found is involved in this parameter
setting�

As expected� we found in the database the pattern GFRGEAL along with
���� more serial
episodes� most of them much shorter� When comparing our approach against previous ones� we
see that both Winepi and Minepi need to know in advance the length of the expected pattern in
the protein sequence� in order to �x the window width� However� it is usual that we don�t know
which pattern is to be found in a sequence� so� one must try the experiment with di�erent window
widths� We can avoid this problem using our approach� which sets the parameter tus to �� and
this serves to any protein family�

In order to see the �exibility of the unbounded episodes� we also run experiments with text
data collections� In particular� we used a part of a text extracted from �Animal Farm� by Orwell

���� Once again� setting tus close to �� we are able to �nd frequent prepositions� articles� su�xes
of words� and concatenations of words �such as �to�� �in�� �at�� �ofthe�� �was�� �her�� �ing�
� � � 	� We also experimented with WWW data collections extracted from the WWW server log
from the LSI Department at the Universitat Polit ecnica de Catalunya� a �Mb sequence� Our
approach seems more intuitive for this kind of data� the parameter tus represents here the units
of time spent from one page to the next� With support ���� and a value of � minutes for tus� the
algorithm invested about �h��� and found several dozens of correlated accesses� As an example�
it is frequent that� at most � minutes after accessing to ��rbaeza�handbook� the user moves to
��rbaeza�handbook�algs�� �from where source code for many algorithms can be downloaded
right away	�

When it comes to the general performance of the method� we found that� naturally� the larger
the value of the parameter tus� the more discovered episodes� Besides� discovering our serial
and paral�lel episodes simultaneously� allows the algorithm to discover paral�lel patterns when
hardly serial patterns are found in the database� For example� fed with the �rst ������ digits of
the Champernowne sequence ����
�������������
���������������� � � � 	� with a high frequency
threshold of ��! and digits far apart at most �� positions in the episodes �tus � ��	� only
 serial
episodes were found but we discovered �� other parallel episodes� This task took only a couple of
minutes�

�� Future Work

Hybrid episodes seem a natural extension� They do not present too high a di�culty for �xed
window width algorithms� as indicated in
��� but in our setting their handling is not fully obvious�

This is due to our mesure of interestingness� that is� �xing tus� the maximum time between
correlative events� Because of this measure� any episode � must take into account only those
subepisodes of � whose events were located in a correlative way in �� Those subepisodes are
called the parts of size k � � of �� An episode � of size k would be ready to become a candidate
episode� and so� begin the counting of its frequency in the sequence� when � has all its parts of
size k � � frequent instead of all its subepisodes� The parts of size k � � of an episode � are a
subset of all the subepisodes of size k�� of the same episode �� that subset depends on whether �
is serial� parallel� or hybrid� and reasons to output hybrid episodes must be related to their parts
in a similar way as parallel episodes correspond to the set of participating serial episodes�

A second open line is the careful and detailed study of non�injective episodes and their behavior
under the unbounded episode search� repeated events may lead to larger episodes whenever the
frequency threshold allows it� but this behavior may lead to inappropriate information for human
understanding�

��

Finally� there are several proposals in the association rules area to compute quantities like
correlations or deviations as ratios of frequencies� and some of them might suggest better choices
to select� or at least to rank� the mined serial� parallel� or hybrid episodes� Another approach to
reduce the number of mined episodes is to use the notion of closure for the sequential patterns
and adapt it to �nd the closed unbounded episodes �
����
����
���	�

References

�� R� Agrawal� H� Mannila� R� Srikant� H� Toivonen and I� Verkamo� �Fast Discovery of Asso�
ciation Rules�� Advances in Knowledge Discovery and Data Mining� p�
��"
��� AAAI Press�
�����

�� R� Agrawal and R� Srikant� �Mining Sequential Patterns�� Proc� of the Int�l Conf� on Data

Engineering� �����

� R� Srikant and R� Agrawal� � Mining Sequential Patterns� Generalizations And Performance
Improvements��Proc� �th Int� Conf� Extending Database Technology� �����

�� S� Parthasarathy� M�J� Zaki� M� Ogihara and S� Dwarkadas� �Incremental and Interactive
Sequence Mining�� Proc� of the �th International Conference on Information and Knowledge

Management� p����"���� �����

�� M�J� Zaki� �SPADE� An E�cient Algorithm for Mining Frequent Sequences�� Machine Learn�

ing Journal� p�
����� vol ��� �����

�� J� Pei� J� Han and W� Wang� �Mining Sequential Patterns with Constraints in Large Databas�
es�� ACM SIGKDD Explorations� �����

�� H� Kum� J� Pei� W� Wang and D�Duncan� �ApproxMAP� Approximate Mining of Consensus
Sequential Patterns�� Proc� The 	

� SIAM International Conf� on Data Mining� ���
�

�� J� Pei� J� Han� et al� �Pre�xSpan� Mining Sequential patterns e�ciently by pre�x�projected
pattern growth�� Int�l Conference on Data Engineering� pages �������� �����

�� H� Mannila� H� Toivonen and I� Verkamo� �Discovery of frequent episodes in event sequences��
Proc� of the First International Conference on Knowledge Discovery and Data Mining� �����

��� H� Mannila and D� Rusakov� �Decompositon of Event Sequences into Independent Compo�
nents�� International Conference on Data Mining� �����

��� H� Mannila and J�K� Sepp#anen� �Finding similar situations in sequences of events via random
projections�� International Conference on Data Mining� �����

��� J�Baixeries� G�Casas�Garriga� and J�L�Balc$azar� �A Best First Strategy for Finding Frequent
Sets�� Extraction et gestion des connaissances �EGC�����	� ���"���� �����

�
� S� Brin� R� Motwani� J� Ullman and S� Tsur� �Dynamic Itemset Counting and Implication
Rules for Market Basket Data�� Int� Conf� Management of Data� p� ���"���� �����

��� X�Yan� J�Han and R�Afshar� �CloSpan� Mining Closed Sequential Patterns in Large Databas�
es�� Int�l Conference on SIAM Data Mining� ���
�

��� G� Casas�Garriga� �Characterization of Concept Lattices for Ordered Contexts�� ���
�

��� S�Harms� J�Deogun� J�Saquer and T�Tadesse� �Discovering Representative Episodal Associa�
tion Rules fromEvent Sequences Using Frequent Closed Episode Sets and Event Constraints��
Int�l Conference on Data Miminig� �����

��� Data Analysis Challenge� http���centria�di�fct�unl�pt�ida���

��

��� Geneva University Hospital and University of Geneva� Switzerland� ExPASy Molecular Biol�
ogy Server� http���www�expasy�ch�

��� M� Hiaro� S� Inenaga� A� Shinohara� M� Takeda and S� Arikawa� �A Practical Algorithm to
Find the Best Episode Patterns�� Int�l Conference on Discovery Science� pages �
������ �����

��� W� Lee and S�J� Stolfo� �A Framework for Constructing Features and Models for Intrusion
Detection Systems�� Int�l Conf on Data Engineering� �����

��

