11 research outputs found

    Parallel load balancing strategy for Volume-of-Fluid methods on 3-D unstructured meshes

    Get PDF
    © 2016. This version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/l Volume-of-Fluid (VOF) is one of the methods of choice to reproduce the interface motion in the simulation of multi-fluid flows. One of its main strengths is its accuracy in capturing sharp interface geometries, although requiring for it a number of geometric calculations. Under these circumstances, achieving parallel performance on current supercomputers is a must. The main obstacle for the parallelization is that the computing costs are concentrated only in the discrete elements that lie on the interface between fluids. Consequently, if the interface is not homogeneously distributed throughout the domain, standard domain decomposition (DD) strategies lead to imbalanced workload distributions. In this paper, we present a new parallelization strategy for general unstructured VOF solvers, based on a dynamic load balancing process complementary to the underlying DD. Its parallel efficiency has been analyzed and compared to the DD one using up to 1024 CPU-cores on an Intel SandyBridge based supercomputer. The results obtained on the solution of several artificially generated test cases show a speedup of up to similar to 12x with respect to the standard DD, depending on the interface size, the initial distribution and the number of parallel processes engaged. Moreover, the new parallelization strategy presented is of general purpose, therefore, it could be used to parallelize any VOF solver without requiring changes on the coupled flow solver. Finally, note that although designed for the VOF method, our approach could be easily adapted to other interface-capturing methods, such as the Level-Set, which may present similar workload imbalances. (C) 2014 Elsevier Inc. Allrights reserved.Peer ReviewedPostprint (author's final draft

    A dynamic load balancing method for the evaluation of chemical reaction rates in parallel combustion simulations

    Get PDF
    The development and assessment of an efficient parallelization method for the evaluation of reaction rates in combustion simulations is presented. Combustion simulations where the finite-rate chemistry model is employed are computationally expensive. In such simulations, a transport equation for each species in the chemical reaction mechanism has to be solved, and the resulting system of equations is typically stiff. As a result, advanced implicit methods must be applied to obtain accurate solutions using reasonable time-steps at expenses of higher computational resources than explicit or classical implicit methods. In the present work, a new algorithm aimed to enhance the numerical performance of the time integration of stiffsystems of equations in parallel combustion simulations is presented. The algorithm is based on a runtime load balancing mechanism, increasing noteworthy the computational performance of the simulations, and consequently, reducing significantly the computer time required to perform the numerical combustion studies.Peer ReviewedPostprint (published version

    Inverse asymptotic treatment: capturing discontinuities in fluid flows via equation modification

    Full text link
    A major challenge in developing accurate and robust numerical solutions to multi-physics problems is to correctly model evolving discontinuities in field quantities, which manifest themselves as interfaces between different phases in multi-phase flows, or as shock and contact discontinuities in compressible flows. When a quick response is required to rapidly emerging challenges, the complexity of bespoke discretization schemes impedes a swift transition from problem formulation to computation, which is exacerbated by the need to compose multiple interacting physics. We introduce "inverse asymptotic treatment" (IAT) as a unified framework for capturing discontinuities in fluid flows that enables building directly computable models based on off-the-shelf numerics. By capturing discontinuities through modifications at the level of the governing equations, IAT can seamlessly handle additional physics and thus enable novice end users to quickly obtain numerical results for various multi-physics scenarios. We outline IAT in the context of phase-field modeling of two-phase incompressible flows, and then demonstrate its generality by showing how localized artificial diffusivity (LAD) methods for single-phase compressible flows can be viewed as instances of IAT. Through the real-world example of a laminar hypersonic compression corner, we illustrate IAT's ability to, within just a few months, generate a directly computable model whose wall metrics predictions for sufficiently small corner angles come close to that of NASA's VULKAN-CFD solver. Finally, we propose a novel LAD approach via "reverse-engineered" PDE modifications, inspired by total variation diminishing (TVD) flux limiters, to eliminate the problem-dependent parameter tuning that plagues traditional LAD. We demonstrate that, when combined with second-order central differencing, it can robustly and accurately model compressible flows

    Articles indexats publicats per investigadors del Campus de Terrassa: 2015

    Get PDF
    Aquest informe recull els 284 treballs publicats per 218 investigadors/es del Campus de Terrassa en revistes indexades al Journal Citation Report durant el 2015Postprint (published version

    Parallel load balancing strategy for Volume-of-Fluid methods on 3-D unstructured meshes

    No full text
    © 2016. This version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/l Volume-of-Fluid (VOF) is one of the methods of choice to reproduce the interface motion in the simulation of multi-fluid flows. One of its main strengths is its accuracy in capturing sharp interface geometries, although requiring for it a number of geometric calculations. Under these circumstances, achieving parallel performance on current supercomputers is a must. The main obstacle for the parallelization is that the computing costs are concentrated only in the discrete elements that lie on the interface between fluids. Consequently, if the interface is not homogeneously distributed throughout the domain, standard domain decomposition (DD) strategies lead to imbalanced workload distributions. In this paper, we present a new parallelization strategy for general unstructured VOF solvers, based on a dynamic load balancing process complementary to the underlying DD. Its parallel efficiency has been analyzed and compared to the DD one using up to 1024 CPU-cores on an Intel SandyBridge based supercomputer. The results obtained on the solution of several artificially generated test cases show a speedup of up to similar to 12x with respect to the standard DD, depending on the interface size, the initial distribution and the number of parallel processes engaged. Moreover, the new parallelization strategy presented is of general purpose, therefore, it could be used to parallelize any VOF solver without requiring changes on the coupled flow solver. Finally, note that although designed for the VOF method, our approach could be easily adapted to other interface-capturing methods, such as the Level-Set, which may present similar workload imbalances. (C) 2014 Elsevier Inc. Allrights reserved.Peer Reviewe

    Unstructured un-split geometrical Volume-of-Fluid methods -- A review

    Full text link
    Geometrical Volume-of-Fluid (VoF) methods mainly support structured meshes, and only a small number of contributions in the scientific literature report results with unstructured meshes and three spatial dimensions. Unstructured meshes are traditionally used for handling geometrically complex solution domains that are prevalent when simulating problems of industrial relevance. However, three-dimensional geometrical operations are significantly more complex than their two-dimensional counterparts, which is confirmed by the ratio of publications with three-dimensional results on unstructured meshes to publications with two-dimensional results or support for structured meshes. Additionally, unstructured meshes present challenges in serial and parallel computational efficiency, accuracy, implementation complexity, and robustness. Ongoing research is still very active, focusing on different issues: interface positioning in general polyhedra, estimation of interface normal vectors, advection accuracy, and parallel and serial computational efficiency. This survey tries to give a complete and critical overview of classical, as well as contemporary geometrical VOF methods with concise explanations of the underlying ideas and sub-algorithms, focusing primarily on unstructured meshes and three dimensional calculations. Reviewed methods are listed in historical order and compared in terms of accuracy and computational efficiency

    DNS of multiphase flows: study of atomization and free-surface phenomena

    Get PDF
    The present thesis focuses on the numerical analysis of some diverse physical set-up that involve the interaction of two -or three immiscible and incompressible phases. The simulations are carried out by means of finite-volume algorithms developed on the in-house Computational Fluid Dynamics platform TermoFluids, developed by the Heat and Mass Transfer Technological Center (CTTC). They are intended to give detailed insights on the physics of the analyzed phenomena by carrying out Direct Numerical Simulations (DNS). In the context of multiphase flows, namely, Computational Multi-Fluid Dynamics (CMFD) field, DNS means that all the interfacial and turbulent scales of the phenomenon must be fully resolved. In the Introduction, a general overview of the engineering applications and the computational methods related to multiphase flows is proposed. The various types of physics analyzed in this work and the numerical approaches applied here to carry out efficient simulations are introduced. In Chapter 2, a low-dissipation convection scheme for the stable discretization of multiphase flow by means of interface-capturing schemes is analyzed. The hybrid form of the convective operator proposed incorporates localized low-dispersion characteristics to limit the growth of spurious flow solutions. Moreover, in comparison to pure-dissipative schemes, the discretization aims at minimizing the differences in kinetic energy preservation with respect to the continuous governing equations. This property plays a fundamental role in the case of flows presenting significant levels of turbulence. The simulation of a turbulent 2D coaxial jet with the low-dissipation convection scheme demonstrates its capability of solving correctly the two-phase turbulent problems. In Chapter 3, all the work carried out on the simulation of two-phase flow with the aid of Adaptive Mesh Refinement (AMR) strategies is described. The model is globally addressed at improving the representation of interfacial and turbulent scales in general multiphase flows. It is first applied to the simulation of simple multiphase phenomena, as 2D and 3D rising bubbles, to demonstrate the convergence of the method and the important computational savings in comparison to static mesh computations. However, its adoption becames essential in the simulation of instability and break-up phenomena, where the necessity of representing accurately the complex structures that appear at the interface, as ligaments and droplets, make the simulation particularly expensive in terms of computational cost. In Chapter 4, we analyze in detail the simulations of 3-D atomizing phenomena, including the coaxial jet case, characterized by the parallel injection of high speed liquid and gas fluxes, and the liquid spray case, characterized by the injection of a high speed liquid inside a still air chamber. In Chapter 5, an original single-phase scheme for the DNS of free-surface problems on 3-D unstructured meshes is presented. The scheme is based on a novel treatment of the interface for the deactivation of the light-phase, allowing an optimization of the classic two-phase model for the cases in which the influence of the lighter phase is negligible. Consequently, the model is particularly addressed at analyzing problems involving the movement of free-surfaces, as the evolution of waves on the sea, and their interaction with fixed and moving obstacles. Some practical cases of application are proposed, as the evaluation of stresses on an object due to the action of a dam-break event, and the interaction of linear waves with an oscillating water column device. In the same Chapter we describe the procedure to couple the single-phase model to the Immersed Boundary Method. The method is aimed at representing the interaction of a solid moving with prescribed velocity and the two-phase flow. The most significant example consists in the simulation of a sliding wedge into a liquid basin.Esta tesis se focaliza en la simulación numérica de algunos set-up físicos que involucran la interacción entre dos o tres fluidos incompresibles y immiscibles. Las simulaciones se realizan por medio de algoritmos de volúmenes-finitos desarrollados en la plataforma propia de Fluido-Dinámica Computacional (CFD) denominada TermoFluids, desarrollada en el Centro Tecnologico de Trasferencia de Calor (CTTC). Las simulaciones quieren estudiar en detalle la física de los fenómenos analizados, realizando su Simulación Numérica Directa (DNS). En el contexto de los flujos multifase, DNS significa que todas las escalas interfaciales y turbulentas del fenómeno han de ser totalmente resueltas. En la Introducción, se propone una panorámica general de las aplicaciones de ingeniería y de los métodos computacionales relacionados con flujos multifases. Se introducen los varios tipos de física analizados en este trabajo y las estrategias numéricas aplicadas aquí para efectuar su simulación de manera eficiente. En el Capitulo 2 se analiza un esquema convectivo de baja-disipación para la discretization de flujo multifase por medio de métodos de interface-capturing. La forma híbrida del operador convectivo propuesto incorpora la característica de una baja dispersión localizada, focalizada en limitar el crecimiento de soluciones numéricas espurias. Además, en comparación con métodos disipativos puros, la discretización apunta a minimizar las diferencias en la conservación de energía cinética en respeto a las ecuaciones continuas que gobiernan el flujo. Esta propiedad juega un papel fundamental en el caso de flujo caracterizado por un alto nivel de turbulencia. La simulación de un jet 2D coaxial turbulento con el método convectivo de baja disipación demuestra su capacidad de resolver correctamente un flujo de dos fases turbulentos. En el Capitulo 3 se reporta todo el trabajo realizado sobre la simulación de flujo multifase con el auxilio de técnicas de refinamiento adaptativo de malla (AMR). El modelo es globalmente dirigido a la mejora de la representación de las escalas turbulentas y interfaciales en flujos multifases en general. Se aplica inicialmente a la simulación de flujos sencillos, como unos casos de burbujas flotantes 2D y 3D, demostrando la convergencia del método y los importantes ahorros computacional en comparación con los cálculos de mallas estáticas. La adopción de la técnica se hace esencial en la simulación de fenómenos de inestabilidad y de ruptura, donde la necesidad de representar sacramentalmente las estructuras complejas que aparecen en la interfaz, como ligamentos o pequeñas gotas, hacen que la simulación sea particularmente pesada en términos de coste computacional. En el Capitulo 4 se reportan en detalle las simulaciones de fenómenos de atomización 3D. Esas incluyen el caso del jet coaxial, caracterizado por la inyección paralela de flujos de aire y liquido de altas velocidades, y el caso del spray liquido, que consiste en la inyección de un liquido dentro de una cámara de aire. En el Capitulo 5 se presenta un esquema de single-phase original, para el DNS de problemas de superficie libre en mallas 3D no-estructuradas. El esquema se basa en un nuevo tratamiento de la interfase para la desactivación de la fase ligera, permitiendo la optimización del solver clásico de dos fases para los casos en que la influencia de la fase mas ligera sea despreciable. En consecuencia, el modelo es particularmente indicado para la análisis de problemas que involucran el movimiento de superficies libres, como la evolución de olas en la superficie marina y su interacción con obstáculos fijos o muebles. Se proponen algunos casos prácticos de aplicación, como la evaluación de las fuerzas sobre un objeto debidos a un episodio de dam-break, o el estudio de las olas generadas por el impacto de un solido deslizante (representado integrando la tecnica de Immersed Boundary con el presente metodo de single-phase) con un embalse de agua.Postprint (published version

    DNS of multiphase flows: study of atomization and free-surface phenomena

    Get PDF
    The present thesis focuses on the numerical analysis of some diverse physical set-up that involve the interaction of two -or three immiscible and incompressible phases. The simulations are carried out by means of finite-volume algorithms developed on the in-house Computational Fluid Dynamics platform TermoFluids, developed by the Heat and Mass Transfer Technological Center (CTTC). They are intended to give detailed insights on the physics of the analyzed phenomena by carrying out Direct Numerical Simulations (DNS). In the context of multiphase flows, namely, Computational Multi-Fluid Dynamics (CMFD) field, DNS means that all the interfacial and turbulent scales of the phenomenon must be fully resolved. In the Introduction, a general overview of the engineering applications and the computational methods related to multiphase flows is proposed. The various types of physics analyzed in this work and the numerical approaches applied here to carry out efficient simulations are introduced. In Chapter 2, a low-dissipation convection scheme for the stable discretization of multiphase flow by means of interface-capturing schemes is analyzed. The hybrid form of the convective operator proposed incorporates localized low-dispersion characteristics to limit the growth of spurious flow solutions. Moreover, in comparison to pure-dissipative schemes, the discretization aims at minimizing the differences in kinetic energy preservation with respect to the continuous governing equations. This property plays a fundamental role in the case of flows presenting significant levels of turbulence. The simulation of a turbulent 2D coaxial jet with the low-dissipation convection scheme demonstrates its capability of solving correctly the two-phase turbulent problems. In Chapter 3, all the work carried out on the simulation of two-phase flow with the aid of Adaptive Mesh Refinement (AMR) strategies is described. The model is globally addressed at improving the representation of interfacial and turbulent scales in general multiphase flows. It is first applied to the simulation of simple multiphase phenomena, as 2D and 3D rising bubbles, to demonstrate the convergence of the method and the important computational savings in comparison to static mesh computations. However, its adoption becames essential in the simulation of instability and break-up phenomena, where the necessity of representing accurately the complex structures that appear at the interface, as ligaments and droplets, make the simulation particularly expensive in terms of computational cost. In Chapter 4, we analyze in detail the simulations of 3-D atomizing phenomena, including the coaxial jet case, characterized by the parallel injection of high speed liquid and gas fluxes, and the liquid spray case, characterized by the injection of a high speed liquid inside a still air chamber. In Chapter 5, an original single-phase scheme for the DNS of free-surface problems on 3-D unstructured meshes is presented. The scheme is based on a novel treatment of the interface for the deactivation of the light-phase, allowing an optimization of the classic two-phase model for the cases in which the influence of the lighter phase is negligible. Consequently, the model is particularly addressed at analyzing problems involving the movement of free-surfaces, as the evolution of waves on the sea, and their interaction with fixed and moving obstacles. Some practical cases of application are proposed, as the evaluation of stresses on an object due to the action of a dam-break event, and the interaction of linear waves with an oscillating water column device. In the same Chapter we describe the procedure to couple the single-phase model to the Immersed Boundary Method. The method is aimed at representing the interaction of a solid moving with prescribed velocity and the two-phase flow. The most significant example consists in the simulation of a sliding wedge into a liquid basin.Esta tesis se focaliza en la simulación numérica de algunos set-up físicos que involucran la interacción entre dos o tres fluidos incompresibles y immiscibles. Las simulaciones se realizan por medio de algoritmos de volúmenes-finitos desarrollados en la plataforma propia de Fluido-Dinámica Computacional (CFD) denominada TermoFluids, desarrollada en el Centro Tecnologico de Trasferencia de Calor (CTTC). Las simulaciones quieren estudiar en detalle la física de los fenómenos analizados, realizando su Simulación Numérica Directa (DNS). En el contexto de los flujos multifase, DNS significa que todas las escalas interfaciales y turbulentas del fenómeno han de ser totalmente resueltas. En la Introducción, se propone una panorámica general de las aplicaciones de ingeniería y de los métodos computacionales relacionados con flujos multifases. Se introducen los varios tipos de física analizados en este trabajo y las estrategias numéricas aplicadas aquí para efectuar su simulación de manera eficiente. En el Capitulo 2 se analiza un esquema convectivo de baja-disipación para la discretization de flujo multifase por medio de métodos de interface-capturing. La forma híbrida del operador convectivo propuesto incorpora la característica de una baja dispersión localizada, focalizada en limitar el crecimiento de soluciones numéricas espurias. Además, en comparación con métodos disipativos puros, la discretización apunta a minimizar las diferencias en la conservación de energía cinética en respeto a las ecuaciones continuas que gobiernan el flujo. Esta propiedad juega un papel fundamental en el caso de flujo caracterizado por un alto nivel de turbulencia. La simulación de un jet 2D coaxial turbulento con el método convectivo de baja disipación demuestra su capacidad de resolver correctamente un flujo de dos fases turbulentos. En el Capitulo 3 se reporta todo el trabajo realizado sobre la simulación de flujo multifase con el auxilio de técnicas de refinamiento adaptativo de malla (AMR). El modelo es globalmente dirigido a la mejora de la representación de las escalas turbulentas y interfaciales en flujos multifases en general. Se aplica inicialmente a la simulación de flujos sencillos, como unos casos de burbujas flotantes 2D y 3D, demostrando la convergencia del método y los importantes ahorros computacional en comparación con los cálculos de mallas estáticas. La adopción de la técnica se hace esencial en la simulación de fenómenos de inestabilidad y de ruptura, donde la necesidad de representar sacramentalmente las estructuras complejas que aparecen en la interfaz, como ligamentos o pequeñas gotas, hacen que la simulación sea particularmente pesada en términos de coste computacional. En el Capitulo 4 se reportan en detalle las simulaciones de fenómenos de atomización 3D. Esas incluyen el caso del jet coaxial, caracterizado por la inyección paralela de flujos de aire y liquido de altas velocidades, y el caso del spray liquido, que consiste en la inyección de un liquido dentro de una cámara de aire. En el Capitulo 5 se presenta un esquema de single-phase original, para el DNS de problemas de superficie libre en mallas 3D no-estructuradas. El esquema se basa en un nuevo tratamiento de la interfase para la desactivación de la fase ligera, permitiendo la optimización del solver clásico de dos fases para los casos en que la influencia de la fase mas ligera sea despreciable. En consecuencia, el modelo es particularmente indicado para la análisis de problemas que involucran el movimiento de superficies libres, como la evolución de olas en la superficie marina y su interacción con obstáculos fijos o muebles. Se proponen algunos casos prácticos de aplicación, como la evaluación de las fuerzas sobre un objeto debidos a un episodio de dam-break, o el estudio de las olas generadas por el impacto de un solido deslizante (representado integrando la tecnica de Immersed Boundary con el presente metodo de single-phase) con un embalse de agua

    Developing numerical methods for fully-coupled nonlinear fluid-structure interaction problems

    Get PDF
    This thesis is dedicated to developing numerical methods to solve fluid-structure interaction (FSI) problems. FSI features in a vast range of physical systems and has a wide application in engineering. The work of this thesis is focused on the partitioned methods, mostly due to their features of modularity, robustness and reliability. In a partitioned approach, separate solvers are used for the fluid and structural sub-problem domains and a coupling method is devised to account for their mutual interaction. Moreover, the thesis is focused on FSI problems with strong added-mass effect, which are more challenging to solve numerically. For such FSI problems, normally an implicit partitioned method is used which enforces the coupling conditions on the interface through coupling iterations between the fluid and structural solvers. However, these methods are computationally expensive. In this work we follow a semi-implicit approach to develop stable, efficient and accurate numerical methods for FSI problems. In these methods, the fluid pressure term is segregated and strongly coupled to the structure via coupling iterations. However, the remaining fluid terms and the geometrical nonlinearities are treated explicitly. Strong coupling of the fluid pressure term provides for the stability of the method in FSI problems with strong added-mass effect, while loose coupling of the remaining terms reduces the computational cost of the simulations. The work of this thesis could be divided into three major parts. In the first part, we have developed a simple, efficient and robust semi-implicit coupling method for FSI problems with strong added-mass effect. The proposed method is simple and modular. An extensive set of numerical tests were carried out and the results were compared both to literature data (numerical and experimental), as well as domestic results obtained by using a fully-implicit coupling method. Results showed that the proposed method considerably reduces the computational cost of the simulations without degrading the stability or accuracy of the solution. Moreover, the robustness of the method is demonstrated through numerical tests. Furthermore, we have tried to further analyze the semi-implicit methods in order to gain a better understanding of several unaddressed issues concerning different aspects of these methods. The second major part of this thesis is focused on the temporal accuracy of the semi-implicit coupling methods for FSI problems. The semi-implicit methods in the literature appear to be only first-order in time. Most semi-implicit methods rely on using a projection method for the fluid equations, while extending the temporal accuracy of the projection methods is not straightforward. Moreover, mesh-conforming FSI solution methods require solving the ALE form of the Navier-Stokes equations on a moving mesh, which does not necessarily preserve the order of accuracy of the method on a fixed grid. Furthermore, if the FSI coupling technique is not properly designed, the second-order accuracy for the coupled problem is not guaranteed, even though each sub-problem possessed such accuracy. In this work, we have proposed a second-order time accurate semi-implicit method for FSI problems and demonstrated its second-order accuracy through rigorous numerical tests. The last major part of this thesis is concerned with computational efficiency and parallel scalability of the developed methods for numerical solution of complex FSI problems on massively-parallel supercomputers. We have presented a scalable parallel framework for partitioned solution of FSI problems through multi-code coupling. Two instances of our in-house software is used to solve the fluid and structural sub-problems. The communication between the single-physics solvers are carried out using an external coupling library. Parallel efficiency and scalability of the coupled framework is demonstrated in solving practical FSI test cases.Esta tesis está dedicada al desarrollo de métodos numéricos para resolver problemas de interacción de fluido-estructura (FSI). Esta fenomenología aparece en una amplia gama de sistemas físicos y aplicaciones en ingeniería. El trabajo se centra en los métodos de partición, principalmente debido a sus características de modularidad, robustez y fiabilidad. En estos métodos se utilizan solvers distintos para los dominios de fluido y estructura, siendo esencial la técnica de acoplamiento para tener en cuenta su interacción mutua. Además, la tesis se centra en los problemas del FSI con un fuerte efecto de "masa agregada", que son más complejos de resolver numéricamente. Normalmente se usa un método de partición implícito que impone las condiciones de acoplamiento en la interfaz a través de iteraciones entre los solucionadores de fluido y de estructura. Sin embargo, estos métodos son computacionalmente costosos. En esta tesis seguimos un enfoque semi-implícito que permite métodos numéricos estables, eficientes y precisos, en donde el término de presión del fluido está segregado y fuertemente acoplado a la estructura a través de iteraciones de acoplamiento. Sin embargo, los términos fluidos restantes y las no linealidades geométricas se tratan explícitamente. El fuerte acoplamiento del término de presión del fluido proporciona la estabilidad del método en problemas de FSI con un fuerte efecto de masa agregada, mientras que el acoplamiento de los términos restantes reduce el coste computacional. La tesis se divide en tres partes principales. En la primera se desarrolla un método de acoplamiento semi-implícito eficiente y robusto para problemas con un fuerte efecto de masa agregada. El método propuesto es simple y modular. Se llevó a cabo un extenso conjunto de pruebas numéricas. Los resultados se compararon con datos de la literatura (numéricos y experimentales), así como con resultados propios obtenidos mediante el uso métodos de acoplamiento totalmente implícitos. Las pruebas realizadas mostraron que el método propuesto reduce considerablemente el coste computacional de las simulaciones sin degradar su estabilidad y precisión. Además, se ha analizado más a fondo los métodos semi-implícitos con el fin de obtener una mejor comprensión de varias cuestiones no abordadas en relación con algunos aspectos de estos métodos. La segunda parte de esta tesis se centra en la precisión temporal de los métodos de acoplamiento semi-implícitos para problemas de FSI. La mayoría de los métodos semi-implícitos propuestos se basan en el uso de técnicas de proyección para las ecuaciones del fluido, con aproximaciones de primer orden temporal, no siendo sencilla su extensión a alto orden. Además, los métodos de malla-conforme requieren la resolución ALE de las ecuaciones de Navier-Stokes en mallas en movimiento, lo que no necesariamente conserva el orden de precisión del método en una cuadrícula fija. Si la técnica de acoplamiento FSI no está diseñada adecuadamente, no se puede garantizar la precisión de segundo orden para el problema acoplado, aunque cada sub-problema posea tal precisión. En este trabajo se propone un método semi-implícito de segundo orden temporal para este tipo de problemas, y se demuestra dicha precisión a través de rigurosas pruebas numéricas. La última parte de esta tesis se refiere a la eficiencia computacional y la escalabilidad paralela de los métodos desarrollados para la solución numérica de problemas complejos de FSI en supercomputadoras masivamente paralelas. Se presenta un marco paralelo escalable para la solución particionada a través del acoplamiento de múltiples códigos. Se utilizan dos instancias de nuestro software interno para resolver los sub-problemas de fluidos y estructurales. La comunicación entre los solucionadores de física simple se realiza mediante una biblioteca de acoplamiento externa...Postprint (published version
    corecore