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Fra il gruppetto ad un tratto si fece largo una giovane signora ...

Era lei, la creatura bramata da sempre che veniva a prenderlo: strano che cosi giovane
com’era si fosse arresa a lui; ’ora della partenza del treno doveva esser vicina.

Giunta faccia a faccia con lui sollevé il velo e cosi, pudica ma pronta ad esser posseduta,

gli apparve piii bella di come mai I’avesse intravista negli spazi stellari.
1l fragore del mare si placé del tutto.

Giuseppe Tomasi di Lampedusa, Il Gattopardo.
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Abstract

The present thesis focuses on the numerical analysis of some diverse physical set-up that
involve the interaction of two —or three immiscible and incompressible phases. The sim-
ulations are carried out by means of finite-volume algorithms developed on the in-house
Computational Fluid Dynamics platform TermoFluids, and they are intended to give detailed
insights on the physics of the analyzed phenomena by carrying out Direct Numerical Sim-
ulations (DNS). In the context of multiphase flows —Computational Multi-Fluid Dynamics
(CMFD) field—, DNS means that all the interfacial and turbulent scales of the phenomenon
must be fully resolved.

This work begins from acquiring the experience accumulated by former Phd students
within the Heat and Mass Transfer Technological Center (CTTC) research group on the nu-
merical simulation of two-phase flow, Lluis Jofre and Nestor Balcdzar. Their work consisted
in the development and implementation of an unstructured multiphase solver, based on the
the most versatile techniques for following the interface in multiphase flows. The methods
chosen were the Level-Set and the Volume-of-Fluid methods, whose advantages in compar-
ison to similar technique are listed in detail in Chapter 1. Consequently, such techniques
were developed and tested within the pre-existing unstructured code TermoFluids, leading to
early publications in important papers of the Computational Fluid Dynamics field. My work
consisted initially in the use of these codes to simulate engineering problems involving multi-
phase flows. At the same time, the integration of classic techniques with additional tools has
become necessary to improve the efficiency and the stability of the simulations, and the ba-
sic discretization algorithms have undergone modifications or additions to adapt to particular
situations, such as free-surface or atomizing flows. The five chapters in which this thesis has
been divided, which are following described briefly, resume the research activity carried out
in this framework. Chapter 1 is the introduction, while Chapters 2 to 5 reflect the content of
the three main research papers which resulted from this work. In particular, Chapters 3 and
4, reflect the content of a single research paper, but they have been separated and extended to
better expose the proposed concepts. Finally, in Chapter 6 the final conclusions are reported,
together with some considerations above future work.

In Chapter 1, a general overview of the engineering applications and the computational
methods related to multiphase flows is proposed. The various types of physics analyzed
in this work and the numerical approaches applied here to carry out efficient simulations
are introduced. After presenting the state-of-the-art on CMFD models, the text legitimizes
the choice of the interface-capturing methods, and, in particular, the level-set method for
the simulation of the applications analyzed here. Following, the differential equations that
regulate the physics of multiphase flow are introduced, together with their discrete form on
unstructured meshes.

In Chapter 2, a low-dissipation convection scheme for the stable discretization of mul-
tiphase flow by means of interface-capturing schemes is analyzed. The hybrid form of the
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convective operator proposed incorporates localized low-dispersion characteristics to limit
the growth of spurious flow solutions. Moreover, in comparison to pure-dissipative schemes,
the discretization aims at minimizing the differences in kinetic energy preservation with re-
spect to the continuous governing equations. This property plays a fundamental role in the
case of flows presenting significant levels of turbulence. The low-dissipation discrete frame-
work is analyzed in detail and, in order to expose the advantages with respect to commonly
used methodologies, its conservation properties and accuracy are extensively studied, both
theoretically and numerically. The simulation of a turbulent 2D coaxial jet with the low-
dissipation convection scheme demonstrates its capability of solving correctly the two-phase
turbulent problems, avoiding, at the same time, the disruptive phenomenon of the spurious
currents, which is detrimental when using pure conservative schemes.

In Chapter 3, all the work carried out on the simulation of two-phase flow with the aid
of Adaptive Mesh Refinement (AMR) strategies is described. In this framework, the multi-
phase solver is coupled to the AMR tool developed by Oscar Antepara, Phd student of CTTC.
The model is globally addressed at improving the representation of interfacial and turbulent
scales in general multiphase flows. It is first applied to the simulation of simple multiphase
phenomena, as 2D and 3D rising bubbles, to demonstrate the convergence of the method and
the important computational savings in comparison to static mesh computations. However, its
adoption becames essential in the simulation of instability and break-up phenomena, where
the necessity of representing accurately the complex structures that appear at the interface, as
ligaments and droplets, make the simulation particularly expensive in terms of computational
cost. Some remarkable examples are the simulation of 3D break-up phenomena, introduced
with some basic tests and then deepened in Chapter 4. In all the analyzed cases, the refine-
ment criteria are designed to ensure the proper representation of the characteristic lengths, by
achieving the required mesh definition in each part of the domain. The discretization, built
on a finite-volume basis, accounts for a divergence-free treatment of the refined/coarsened
cells, that ensures the correct transport of mass, momentum and Kinetic energy, which are
key factor in the correct resolution of turbulence, as explained in Chapter 2.

As introduced before, in Chapter 4, we analyze in detail the results obtained from the sim-
ulation of 3-D atomizing phenomena. They include the coaxial jet case, characterized by the
parallel injection of high speed liquid and gas fluxes, and the liquid spray case, characterized
by the injection of a liquid inside a still air chamber. On the one side, the simulation of the
coaxial jet set-up serves as a further validation of for the numerical framework introduced in
this work. On the other hand, in the analysis on the liquid spray set-up, we want to propose
some additional insights to the related literature, by studying numerically the atomization
regime as function of different jet inlet parameters.

In Chapter 5, an original single-phase scheme for the DNS of free-surface problems on
3-D unstructured meshes is presented. The scheme is based on a novel treatment of the inter-
face for the deactivation of the light-phase, allowing the optimization of the classic two-phase
model for the cases in which the influence of the lighter phase is negligible. Consequently,



Abstract vii

the model is particularly addressed at analyzing problems involving the movement of free-
surfaces, as the evolution of waves on the sea surface, and their interaction with fixed and
moving obstacles. The deactivation of the light phase is carried out by imposing the appro-
priate pressure at the surface boundary, and, unlike similar approaches, without the need to
treat near-interface velocities. The method is validated against various analytical and exper-
imental references, demonstrating its potential on both hexahedral and unstructured meshes.
Finally, some practical cases of application are proposed, as the evaluation of stresses on an
object due to the action of a dam-break event, and the interaction of linear waves with an
oscillating water column device. In the same Chapter we describe the procedure to couple
the single-phase model to the Immersed Boundary Method, developed on TermoFluids by
former Phd student Federico Favre. The method is aimed at representing the interaction of a
solid moving with prescribed velocity and the free-surface flow. The most significant exam-
ple consists in the simulation of a sliding wedge into a liquid basin, validated by measuring
the magnitude of the waves resulting from the solid-fluid impact.
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Introduction

The current chapter introduces the physical and engineering contexts covered by this the-
sis. In the first part, the work is placed in the background of the research center in which it has
been developed, the Heat and Mass Transfer Technological Center (CTTC) of the Polytech-
nic University of Catalonia (UPC), and it is related to the efforts made by other researchers
on the same investigation line. Next, the main themes covered by the following chapters are
briefly highlighted.

In the second part, we present the governing equations and the numerical models em-
ployed in this work, which constitute the basis on which the original contributions provided
here are built.

1.1 Background and Outline

A large number of complex engineering applications and physical phenomena require the
analysis of the interaction between immiscible phases, consisting of two or more phases
incapable of being mixed to form a homogeneous substance. Consequently, the flows con-
sidered exhibit phase separation at a scale well above the molecular level. The case of phases
separated by interfaces, also referred to as interfacial flow, is found in a large variety of phys-
ical and biological phenomena, ranging from the prediction of atmospheric conditions to the
study of blood flow, and in many engineering applications: some remarkable examples are
the movement of gaseous bubbles inside a liquid phase, the motion and break-up of waves,
as well as their interaction with solid boundaries, and the atomization of liquid jets.

The issues related to the direct numerical simulation (DNS) of multiphase flows —sub-
category of the biggest field of the Computational Multi-Fluid Dynamics (CMFD)— are a
topic of great interest and lively debate in the scientific community —a general overview can
be found in Tryggvason et al. [1]. Indeed, understanding the flow in these situations not only
involves the study of velocity and pressure in the different phases, i.e., resolution of mass and
momentum balances, but also of the dynamics of the interface separating them. Therefore,
its correct representation and coupling to the equations of fluid motion add several complex-
ities to the solution of the problem, as pointed out by Gorokhovski and Herrmann [2]. The

1



2 CHAPTER 1. INTRODUCTION

method for the representation of the interface represents the biggest deal and many possible
solutions have been proposed in the last decades. For instance, in the interface-tracking meth-
ods the interface is represented as a moving boundary or by means of particles, while in the
interface-capturing methods, chosen in this work due to their higher versatility, the interface
is represented by means of a scalar function advected by the velocity field. One of the earliest
and most complete classification of interface-tracking —and capturing schemes is provided
by Scardovelli and Zaleski [3].

When attempting to study numerically the physics of multiphase flow, different kinds of
numerical issues need to be tackled, depending on the kind of flow analyzed. To make a
general example, we can consider the case of the injection of a high-speed liquid into an
air chamber, attributable to the atomization process inside a fuel injection device or to a
pharmaceutical spray. After the injection, the liquid jet rapidly develops instabilities at the
interface, that lead to the liquid column collapse and the spreading of small structures in
the form of droplets and ligaments [4], as shown in the picture of Fig. 1.1 which reports an
experimental image of the phenomenon. A detailed numerical analysis of this phenomenon
would allow the measurement of the distribution of the droplets’ size after the pulverization
process is completed, and its control could serve to optimize the final use of the device.
However, a correct numerical simulation requires a significant computational effort, since
the mesh adopted must have a minimum local size that correctly represents all the interfacial
scales. In case of turbulent flow, all convective scales must also be represented in order to
avoid undesired numerical dissipation. Several thousands of CPUs may be needed to perform
such kinds of simulations [5]. Other kind of issues may rise when using interface-capturing
schemes to deal with the movement of the interface. For example, the properties of the
discrete operators influence the presence and the magnitude of unphysical currents that may
affect the proper representation of the considered flow [6]. The same operators must be built
in such a way to guarantee the conservation of discrete properties, including both primary
—as mass and momentum— and secondary ones —as kinetic energy and vorticity. In fact, their
proper representation is a key step if a correct resolution of turbulent phenomena is requested.

Another important challenging field of application of multiphase flows consists in the
simulation of sea-surface or similar free-surface phenomena. Some examples may be the
study of waves propagation on a sea-surface and their interaction with solid objects, which
can be constituted, for example, by fixed —or floating electric power generation units, as in the
case of the Oscillating Water Column (OWC) device —see Fig. 1.2. The efficient numerical
simulation of these set-up, which include the total Fluid-Structure Interaction coupling be-
tween fluids and solid, could allow the design and optimization of these devices for different
marine environments. Another example is the simulation of the impact of a solid body with
a free-surface, and the analysis of the tsunami waves generated by the event.



1.1. BACKGROUND AND OUTLINE

Figure 1.1: Breakup regimes of a slow dense liquid jet by a fast light coaxial stream. Picture
extracted from reference by Marmottant and Villermaux [4].

Figure 1.2: Picture of a floating Oscillating Water Column (OWC) device for the extraction
of mechanical energy from sea waves. Installation by Ocean Energy [7].
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1.1.1 CTTC Background

This work was carried out in the Heat and Mass Transfer Technological Center, Centre Tec-
nolégic de Transferéncia de Calor (CTTC), of the Universitat Politécnica de Catalunya —
BarcelonaTech (UPC), situated in Terrassa (Barcelona).

The research activities of the center are focused on two main lines. The first one, in which
this work can be placed, is dedicated to the mathematical formulation, numerical resolution
and experimental validation of fluid dynamics and heat and mass transfer phenomena. Some
issues in this line are: natural and forced convection, direct numerical simulations (DNS)
and turbulence modeling (LES, RANS) of single-phase flows, combustion, multiphase flows
(free surface flow, two-phase flow, solid-liquid phase change), radiation, porous media, nu-
merical algorithms and solvers, moving and unstructured grids, high performance computing
(parallelization). The second line is dedicated to thermal and fluid dynamic optimization of
thermal system and equipment. A further description of the work carried out in CTTC can be
found in the website [8].

The unstructured CFD algorithms described in this thesis are developed on the TermoFlu-
ids software [9]. That platform collects state-of-the-art numerical and physical models devel-
oped by current and former CTTC members to perform accurate scientific analysis of engi-
neering problems. TermoFluids has been designed to run on modern parallel supercomputers,
and it has demonstrated good scalability up to 100k cores. Parallelization of TermoFluids is
achieved via distributed memory model paradigm using standard MPI. The development of
the code has been a source of scientific publications in the most prominent scientific journals
of the field. An exhaustive list can be found in the website of TermoFluids [9].

This work begins from acquiring the experience accumulated by former Phd students
within the CTTC research group on the direct numerical simulation of two-phase flow, Lluis
Jofre and Nestor Balcazar. Their work, which is resumed in their Phd Thesis [10, 11], con-
sisted in the development and implementation of an unstructured multiphase solver based on
the most versatile techniques for following the interface in multiphase flows. The chosen
techniques where the Level-Set (LS) and the Volume-of-Fluid (VOF) ones, whose character-
istics and advantages in comparison to similar methods are detailed in the following sections.
Consequently, these models were implemented and tested on TermoFluids, leading to quality
publications in important papers of the CFD field [12, 13, 14, 15, 16]. Recently, the methods
developed by CTTC for the simulation of multiphase flow have demonstrated high reliability
on a wide range of applications as bubbly flows [15, 17, 18, 19], free-surface flows [20] and
break-up phenomena [21, 22]. In the development on this thesis, it was also fundamental the
collaboration with other current and former Phd students at CTTC, as Oscar Antepara and
Federico Favre.
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Figure 1.3: Main venue of the CTTC, situated in Terrassa (Barcelona). The new part of the
building, completed in 2012, expanded the usable area for academic research and technology
transfer. However, the building itself served for the testing and development of systems and
bioclimatic architecture criteria [8].

High Performance Computing

As previously explained, the direct numerical simulation of certain types of multiphase flow
may require the analysis of detailed phenomena that happen at several different length-scales.
Regardless of how efficient are the numerical techniques applied, the representation of such
domain by means of finite-volume methods requires the employment of heavy computational
resources. Consequently, the numerical algorithms used in this framework need to work ef-
ficiently on parallel computers, namely, supercomputers —or clusters. The TermoFluids code
developed by CTTC have been recently tested on up to 1024 CPUs when using VOF algo-
rithms [14]. In PRACE Project No. 2014112666, the Navier-Stokes equations regulating
the gravity driven bubbly flows were solved by means of the Conservative Level-Set method
by using up to 3072 CPUs [18, 23, 24]. In PRACE Project No. 2016153612, recently ob-
tained from our group, the Direct Numerical Simulation of Bubbly Flows with Interfacial
Heat and Mass Transfer will be carried out. Most of the numerical simulations reported in
this work, have been carried out on the the computer resources at CTTC own cluster, named
Joan Francesc Fernandez (JFF) after the recently disappeared professor of computer science
and numerical analysis that brought the first computer to the faculty. In its third generation
form, built in 2013, JFF includes 40 nodes; each node has 2 AMD Opteron with 16 Cores per
CPU linked with 64 Gigabytes of RAM memory and an infiniband QDR 4X network inter-
connection between nodes with latencies of 1.07 microseconds with a 40Gbits/s bandwith.
The most expensive simulations, regarding the physics of atomizing sprays and jets, have
been performed thanks to the funds provided by Red Espaiiola de Supercomputacion (RES),
to which we accessed towards participating in competitive projects. The simulations have
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Figure 1.4: Third generation form of the Joan Francesc Fernandez (JFF) cluster for HPC,
placed in CTTC [8].

been performed on the computer resources at MareNostrum III, with technical support pro-
vided by Barcelona Supercomputing Center (BSC, research project: RES-FI-2016-1-0023),
at the magnificent recently born MareNostrum IV (RES-FI-2017-2-0015), currently the most
powerful cluster in Spain —see Fig. 1.5(a)—, and at FinisTerrae IT —see Fig. 1.5(b)—, with
support by Centro de Supercomputacion de Galicia (CESGA, research projects: RES-FI-
2016-2-0028, RES-FI-2016-3-0015). Further details above the cited competitive projects are
given in Appendix C.

1.1.2 Outline of the Thesis

All the topics covered in this thesis concern the resolution of numerical issues related to
the DNS of multiphase flow phenomena. My experience consisted initially in the use of
TermoFluids code to simulate engineering problems involving two-phase set-up. However,
during the development of the work, I often found the necessity of integrating the original
techniques with additional tools to adapt the solver to particular types of physics. This led
to the addition of new features to TermoFluids and to the introduction of original contribu-
tions to the state-of-the-art of the interested research field. Some example are the application
of dynamic meshes to multiphase flows or the development of new discrete operators and
strategies.

The various results that have been obtained during my Phd are listed below, specifying
the contribution given in each chapter of the current thesis

* In Chapter 2, a hybrid convective operator for the discrete Navier-Stokes equations
is presented, applicable to general turbulent multiphase flow. The discrete operator
aims at minimizing the differences in kinetic energy preservation with respect to the
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(a) MareNostrum IV

L
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(b) FinisTerrae II

Figure 1.5: (a) Mare Nostrum IV (MN4) supercomputer, installed in Torre Girona chapel,
Barcelona. The general purpose element, provided by Lenovo, accounts for 48 racks with
more than 3,400 nodes with next generation Intel Xeon processors and a central memory of
390 Terabytes [25] (b) FinisTerrae Il is installed in Santiago da Compostela, Spain. Renewed
in 2016, it is composed of 306 computing nodes, each of these has two Haswell 2680v3

processors, 128 GB memory and a 2TB disc [26].
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continuous governing equations. This property plays a fundamental role in the case
of flows presenting significant levels of turbulence. At the same time, the hybrid form
of the convective operator proposed in this work incorporates localized low-dispersion
characteristics to limit the growth of spurious currents.

In Chapter 3, a strategy for the application of adaptive meshes to multiphase flow is
proposed, in order to concentrate dynamically the mesh density in the zones of the flow
where a small characteristic length is needed. In this way, the computational resources
are optimized in interfacial flows as rising bubbles —see Fig. 1.6— and atomization
cases. The discretization, built on a finite-volume basis, accounts for a divergence-
free treatment of the refined/coarsened cells, that ensures the correct transport of mass,
momentum and kinetic energy

The numerical framework described in this work is employed to carry out the simu-
lation of 3-D break-up phenomena, in order to obtain physical insights on these kinds
of flow. In particular, the two analyzed cases are the air-assisted atomization of liquid
jets and the injection of a high velocity liquid jet inside still air chambers, as the one
depicted in Fig. 1.7. Both cases are described in a dedicated section, correspondent to
Chapter 4.

In Chapter 5, free-surface flows are studied. A single-phase model is proposed, which
specifies and optimizes the two-phase solver for the free-surface case, and adds the
possibility to consider the interaction with fixed or mobile objects. The scheme is
applied to the numerical simulation of different set-up in the marine engineering field,
as the subaerial landslide inside a water basin reported in Fig. 1.8. A possible industrial
application of the model is shown in Appendix A, where we study the hydrodynamic
behavior of an Oscillating Water Column device.

In the final Conclusions, given in Chapter 6, I resume briefly the results obtained in the
various Chapters of this work. Finally, I will express my opinion above the additional ar-
rangements that need to be implemented in the future, in order to further extend the area of
applicability of the numerical framework presented in this work.

1.2 Governing equations

In this section, the differential equations that govern the movement of the fluid are intro-
duced, described by means of the renown Navier-Stokes equations. Next, the equation that
describe the tracking of the interface is presented, giving a general overview of the numerical
approaches adopted in the recent past to model its behavior.
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Figure 1.6: Simulation of the merging process between rising bubbles, carried out with
Adaptive Mesh refinement techniques. Details in Sec. 3.3.2

Figure 1.7: Simulation of a water jet inside a still air chamber, characterized by Reynolds
number, Re; = 3400, and Ohnesorge number, Oh= 0.01. Further details in Chapter 4
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Figure 1.8: Screenshots of the DNS simulation of a landslide event inside a water basin
performed in this work. Further details are reported in Sec. 5.4

1.2.1 Momentum equations

The movement of the Newtonian fluids analyzed in this work is described by means of classic
Navier-Stokes equations. In particular, interfacial flows are governed by the mass and mo-
mentum equations in the variable-density incompressibility limit, written in divergence form
as [12, 27]

Vou=0, (1.1)

d(pu
(5t ) +V-(puu) = —-Vp+V-[u(Vu+VTu)|+pg+ 75, (1.2)
where u and p represent velocity and pressure, pg accounts for the gravitational acceleration,
and Ty is the interfacial surface tension force evaluated as

Ts =oknrd(x —xr), (1.3)

with o the constant surface tension coefficient, k and nr the curvature and unit normal vector
of the interface, respectively, and 8 (x — xr) the Dirac delta function concentrating the force in
the interface region. The peculiarity of this system of equations is found in the evaluation of
density p, and dynamic viscosity U, since they are calculated according to the location of the
interface I', interpolating them from the properties of each phase k by means of phase-volume
fraction values C, written as

p=YCp and p=Y Cii. (1.4)
k k
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The scalar field Cy, indicating the presence of phase k, can be updated in time according to
different interface modelization approaches, introduced in detail in the following section.

1.2.2 Interface modelization

The location of the interface determines a discontinuity in density and viscosity, as well as
in other physical variables, and is considered to be, in three-dimensions (3-D), a smooth
surface that links the different phases by transferring momentum between them. In the case
of negligible phase change, an interface evolves according to the velocity field as

er

W :u(XF7t)a (15)

where xr refers to the points on the interface between phases. As introduced in the work
by Scardovelli and Zaleski [3], many different methods exist to numerically solve Eq. 1.5,
but they can be distributed into two main groups differing in the way in which the detection
of the interface is globally conceived. Each group appears to be particularly suitable for the
simulation of specific cases.

The first group collects the approaches in which the interface between fluids is tracked
as it moves (interface-tracking methods). For instance, in the Arbitrary Lagrangian Eulerian
(ALE) technique [28], the tracking is done by means of a moving (Lagrangian) grid that fol-
lows the interface, while the fluid evolves on a fixed stationary (Eulerian) mesh. Another
example is the Front Tracking (FT) method [29], in which the individual interfaces are rep-
resented by sets of connected marker points. Generally, these methodologies are not efficient
in the simulation of complex vortical flows, in which significant distortions of the interface
topology may occur [2].

The strategies corresponding to the second main group (interface-capturing methods) are
characterized by a scalar function that embeds the moving interface on a fixed grid. The
interface-capturing approaches, which are adopted in this work, employ only one set of equa-
tions to describe the different phases instead of utilizing one for each subdomain k. This
methodology allows the spatial discretization of the entire domain on a single static grid,
while the interface is captured by means of scalar functions. The main advantage is that large
interface distortions, e.g., interface breakage and reconnection due to strong swirling flows,
are properly handled, avoiding the necessity to continuously adapt the mesh to a varying in-
terface topology, as pointed out again by Gorokhovski and Herrmann [2] in the context of
multiphase jets.

The two main interface-capturing options are the Volume-of-Fluid (VOF) [13, 14, 30,
31] and Level-Set (LS) [12, 32, 33] methods. These two approaches mainly differ in the
choice of the scalar fields Cy, also referred to as indicator functions, used to capture the
motion of each phase k within the domain. The indicator function is advected by means of
a transport equation, which in the hypothesis of immiscibility of fluids and divergence-free
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velocity fields, i.e., V-u = 0, reads

%+v- (Ceu) =0, (1.6)

where a unique velocity field, i.e., u* = u, has been considered for all phases. In the VOF

method, the advected function is the phase-volume fraction Cy, defined as the portion of
volume filled by each phase &, and expressed as

1
Cr(x,1) = V—Q/QH(x—xr)dx, 1.7

where H is the Heaviside function. Due to the discontinuity of the color function, a method
must be found to maintain the sharpness of the interface when it is advected. The main op-
tion is to reconstruct the interface before the advection step by means of a Piecewise Linear
Interface Calculation (PLIC) scheme, on which many of the advanced modern algorithms are
based —in [13, 16] the method is extended to 3D unstructured meshes. The obtainment of
the Cy scalar values by means of solving Eq. 1.6 provides closure to the evaluation of the
varying density and dynamic viscosity properties, Eq. 1.4, across the whole domain, and at
the same time provides the interface topology required for the evaluation of capillary stresses.
As detailed in previous works by Jofre aet al. [13, 14], the VOF method provides an implicit
volume-preserving formulation, however, due to its geometrical nature, the process of ad-
vancing volume fraction values in time can be rather time-consuming when good accuracy
is required [16]. Moreover, despite ensuring mass conservation, the accurate evaluation of
interface properties, such as curvature, is complex due to the discontinuous nature of the
volume fraction scalar field advected by the VOF method [34].

In the LS method, Cy is a regularized level-set function where the interface is defined
as the set of points for which the function equals 0.5. Particularly, following the method
proposed by Balcdzar et al. [12], C;, is evaluated for each phase as

Ce(x,1) = % {tanh (d(z":)> + 1] , (1.8)

where d(x,?) is the signed distance function from the interface and € is a parameter con-
trolling the interface thickness. Due to the continuity of the level-set function, the values
of viscosity and density of the fluids in contact vary smoothly across the interface. This
enhances the numerical stability of the algorithm, albeit it is an artificial continuous repre-
sentation of the sharp interface separating the different phases.. Moreover, unlike VOF, LS
ensures the possibility of extracting interface characteristics without supplementary efforts.
In order to maintain the interface sharp, Cy is re-initialized after the advection step according
to the following equation

0
TC;‘+V-Ck(1—Ck)n:V-8VCk, (1.9)
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where 7 is the re-initialization pseudo-time. The main drawback of the standard LS method
[32] is that it is not strictly conservative, as the volume bounded by the interface contour is not
conserved exactly when advected and re-initialized. However, several strategies have been
proposed recently to minimize this drawback [12, 16, 33], under the name of Conservative
Level Set (CLS) methods, demonstrating high reliability on a wide range of applications as
bubbly flows [15, 17, 18, 19], free-surface flows [20] and break-up phenomena [21, 22, 35,
36].

In the tests performed in this thesis, the method mainly used for the tracking of the in-
terface was the CLS developed by [11, 12]. Indeed, CLS demonstrated higher stability for a
wide range of situations in comparison to VOF, even with coarse meshes. This is probably
due to the smoothing of properties at the interface which avoids the presence of steep den-
sity gradients, and the consequent appearance of detrimental spurious currents. However, the
numerical techniques presented in this work are thought to be coupled with other interface-
capturing methods. Indeed, in some of the numerical tests proposed in Chapter 2, the VOF
scheme is employed.

1.3 Numerical model

In this work, a finite-volume discretization of Navier-Stokes and CLS equations on collo-
cated unstructured meshes is used [11, 12]. Technical details on the discretization and imple-
mentation of the methods are detailed in Balcazar et al. [11, 12]. However, for the sake of
completeness, the schemes adopted in the context of the present methodology are reviewed
in next section. The most important geometric features, as well as the simplified explana-
tion of the level-set function are presented in Fig. 1.9(b) for the case of Cartesian meshes
—which constitutes the basis for the quad/octree hierarchical refinement process, described
in Chap. 3—, and in Fig. 1.9(c) for a general unstructured mesh. In the description of the
discretized equations, the following notation is used

c refers to a cell value
f refers to a face value
nb refers to a cell value of the neighbor cell that share a face with ¢
Af face surface
V. cell volume
A total cell surface
ny face normal vector
iy outward face normal vector

Finally, face normal mass flux, M, and velocity at cell face, uy, are related as follows

Mfzpfllf-anf. (1.10)
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Figure 1.9: (a) Level-set driven distribution of the physical properties; fluid 1 and fluid 2
are separated by a variable density —and viscosity region in which ¢ (x,7) ranges from 0 to
1. (b) Schematics of the collocated scheme geometrical features in a Cartesian mesh. (c)
Geometrical features on a general tetrahedral unstructured mesh.

1.3.1 Interface-capturing scheme

Following [11, 12], the advection of ¢(x,¢) is carried out by integrating Eq. 1.6 over the
control volume (CV) corresponding to cell ¢, and applying the divergence theorem to the
second term

99(x,1)

/CTdV—&-./aVU(P(X,t)u-nde:O. (1.11)

The equation is integrated in time according to a Total Variation Diminishing (TVD) third
order Runge-Kutta (RK3) explicit time scheme [37] —a first-order advancement scheme is
here shown for simplicity. The further discretization of the surface integral over cell faces
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yields the following expression [11, 12]
L}‘1+1 — ¢c"1 yn n
S Vet Y UrAs¢} =0, (1.12)
feF(c)

where UJ?A = M; /py is the face velocity per unit area. The advected value of the level
set function, (])}‘, is evaluated according to a TVD flux limiter scheme [38] —adapted to
the context of 3D unstructured meshes by [11, 12]—, in order to enhance the accuracy and
stability of the solution. Next, the level-set function is re-initialized in order to maintain its
thickness and to keep it as a signed distance function. As in the previous case, Eq. (1.9), is
integrated over cell CV, and the divergence theorem is applied to the convective and diffusive
terms [11, 12]

d9(x,1) o |
/Vc AV + aVC(iJ(x,t)(l—<l5(x,t)n7:0-nde—/avcqu)(x,t) neds.  (1.13)

Next, the equation is rewritten by advancing the solution in pseudo-time according to an
explicit scheme, and discretizing compressive and diffusive terms over cell faces as [11, 12]

n+1 n
cT‘f’cVC+ .Z OF(1—¢f)nr—g-nsA; = .Z eV msA;. (1.14)
feF(c) feF(c)

In the numerical implementation, the face value terms are evaluated by means of a central
difference (CD) scheme [11, 12]. The pseudo-time step, AT, is evaluated according to a
CFL-like criterion dominated by the diffusive effect, AT = C; min{Ah2/e} [11, 12]. The &
parameter, which controls the thickness of the interface, is evaluated as € = C¢Ah,, with Ah,
as the characteristic cell size [11, 12]. Both C¢ ~ 0.5 and C; ~ 0.05 are evaluated empirically
from preliminary tests and adjust to the particular type of flow. A small &, lead to a thin
interface that sharply defines the separation between the two phases. However, in order to
avoid numerical instabilities caused by the sudden jump of pressure, € cannot be too small in
comparison to the characteristic mesh length [11, 12].

1.3.2 Fluid motion equations

The discrete velocity field is obtained from the solution of continuity and momentum conser-
vation equations. Navier-Stokes equations for momentum conservation, Eqgs. 1.2, are solved
applying a classic fractional step projection method [39], along with an explicit time advance-
ment scheme. For the sake of simplicity a first order scheme is here shown, while a higher
order scheme [37] is used in simulations. The projection method introduces the predicted
velocity concept to avoid the direct relation between velocity and pressure

pn+lun+l _pn+lup

v/ n+1
Al 2

p"hu? = p"u" — At [V-(p"u"u") = V- [u"(Vu" + VTu")] - S"H1]. (1.16)

(1.15)
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In this work, a collocated scheme is adopted, whose main geometrical features are high-
lighted in Fig. 1.9(b) for a Cartesian mesh and in Fig. 1.9(c) for a generic unstructured one.
Consequently, velocity and pressure are evaluated at cell centers, while mass fluxes and other
face variables require specific interpolations. In the first step of the discretization process,
Egs. 1.16 are integrated over the cell CV, applying the divergence theorem and discretizing
over cell faces. The following discrete equation is obtained

nyht
u’ = pcu. At Sn+1

pett prt! i
At mAs " g '
M Z?) VM | (u, “c)df"'VT“f'“fAva

where M 't is the face normal mass flow, y'; is the convected face velocity and d is the normal-
projected distance between the centroids of cells ¢ and nb. Next, the divergence operator is
applied to Eq. 1.15 and the incompressibility constraint, Eq. 1.1, is introduced. Hence, the
equation is integrated over the CV, and the divergence theorem is applied. The discretization
over cell faces yields the following discrete Poisson equation,

M Ay

Y = At Z L A (1.18)
1 c 5
FeF(e )P?+ 7Rt P dy

where the unknown is the pressure field, p"*!, and Mp is the predicted face normal mass
flow. In its final form, this linear system is rearranged by introducing the cell coefficient a.,
the neighbor coefficients a,;, and the source term b as

pitlac="Y, pitaw+b, (1.19)
f€EF(c)

Ay My
Z anb7 anb—NW, b=-— Z SR (1.20)
feF(e Py feF(e) Py
The updated pressure field is obtained by solving the equation by means of an iterative Pre-

conditioned Conjugate Gradient (PCG) solver [40]. In the last step, the centered velocity is
calculated by discretizing again Eq. 1.15 over cell ¢ and introducing p"+1

't = — - M Y p"“anf (1.21)
cPc’ reF(c
As introduced before, face variables —1\;1}J ,u’ T ”H p}’“, p;',“— are evaluated by using

the interpolations from cell values suggested by [41] aimed at ensuring mass-conservation
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and minimizing the error in kinetic-energy discrete balance. Following this idea, density,
predictor velocity, pressure, and mass flux at face f are calculated as

1 F
E(up+u5b) p?+1 2( 1+1+pn+1), (]22)

p}'“u? fifAy. (1.23)

Pyt = (pé’+l +om ); uﬁf- =

Finally, evaluation of the mass flux at face f, MJ’Z+1 , needs to be studied in detail in order
to exactly conserve mass. Thus, taking again the divergence of Eq. 1.15 and discretizing over
acell c, gives

n n n A
Y mit - Y M =-n Z (Pt — pCH)df, (1.24)
JEeF(e) JEF(c) fEF(c f
which may be rearranged in the following form
N A
Y Mt w At - pit) =L | =0 (1.25)

fEF(e) ds

Different possibilities exist to solve this under-determined system of equations. For example,

the strategy chosen in this work is to set to zero each face summand — it is a more restrictive

condition, but at the same time provides an easier formulation. Then, the mass flux at face f

is expressed as

Ar

dy’
At this point, if the predictor mass flux is evaluated by means of Eq. 1.23 and wu? is

substituted using Eq. 1.21, Eq. 1.26 may be rewritten (similarly as [12]) as

! :M;—At(p;;‘ —prth=L (1.26)

. 1 A
it — o ) g A ) (1.27)
2 dy
n+1
P N n+1 o i
— ) P A+ —— Y PR | A
2 pc+ Ve fEF(c pn+ Vb fEF(nb)

Regardless of the 1nterface-captur1ng method adopted, the mass flux resulting from Eq. 1.27
is used to advect the phase volume fractions, Cy, through the transport equation, Eq. 1.6
—Eq. 1.12 in discrete form.

The low-dispersion convection scheme presented by Schillaci et al. [22], and extensively
described in Chapter 2, properly designed for turbulent two-phase flows, is used for the eval-
uation of convected face velocities, l//;..

Source terms, $"*!, are evaluated by using volumetric approaches. In particular, a model
based on the continuum surface force (CSF) method proposed by Brackbill et al. [42] is cho-
sen for the evaluation of surface tension. The discretization of this force on 3-D unstructured
meshes has been recently extended by [12, 16, 18].
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1.3.3 Time-step evaluation

The time step used for the advancement of the Navier-Stokes equations and the advection of
the volume fraction can be evaluated according to the two different criteria following listed.
The CFL method is used when the contribution of the source terms to the physics of the
problem is considered important (e.g. gravity driven bubbly-flows). Instead, the SAT method
is employed when the flow is dominated by convective and diffusive phenomena.

CFL method In most of the proposed tests, a CFL method is used for the determination
of the time step, where convective, diffusive and source terms contributions are taken into
account. The latter considers both gravity and surface tension forces, through, respectively,
Atgray and Atg,s. Hence, the complete expression for At reads as [12]

Ar < min{Atconv y Alyise, Atgrav y Atsurf}

2, 3 3 1.28
< min Ah’Ahpc,<Ah> 7(pg+pz> and L (1.28)
luel” pe "\ gl 4ro

where Atgr,y has a convective-like form, and Aty follows the scheme proposed by [42].

SAT method In the case of high-Reynolds-number flow, if the equations of fluid motion,
Egs. 1.1 and 1.2, are explicitly integrated in time — which is generally less expensive than
using implicit methods [43] —, the time step value is limited by the stability of the convec-
tive term. Therefore, applying stability theory to the matrix resulting from multiplying the
discrete convective operator by time step, Ar C(pu), the region of absolute stability can be
determined on the complex plane by imposing

AtAS| <1 Yi=1,..,m, (1.29)

with Aic € I the eigenvalues of the m x m convective operator matrix.

The solution of large eigenvalue problems is extraordinary time-consuming, particularly
in the case of Eq. 1.29, since C(pu) changes every time step. In fact, the calculation of the
eigenvalues requires an amount of computational resources similar to that of solving the dis-
crete system. Thus, this is not a real option. Instead, as proposed in Trias and Lehmkuhl [44],
a more practical approach is to bound them by means of the Gershgorin circle theorem [45],
written as

|)viC—Cii| §Z|C”| Vi:l7...,m, (130)

J#
where ¢; and ¢;; are, respectively, the diagonal and off-diagonal elements of the discrete
convective matrix defined in Egs. 2.20 and 2.21. Hence, the maximum time step within the
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stability region results from considering the largest eigenvalue in Eq. 1.30, defined as

| < max

c,-i|+2|ci,~|] Vi=1,...,m. (1.31)
J#i
1.3.4 Solution algorithm

In summary, the complete algorithm for the resolution of the equations of fluid motion and
advancement/re-initialization of the level-set function consists in the following steps:

1. Calculate the predicted , u?, from Eq. (1.17).

2. Update the pressure field, p"*!, by iteratively solving Eq. (1.18).

3. Evaluate the centered velocity, u?“, as given by Eq. (1.21).

4. Evaluate the new mass fluxes, Mj”fl, by applying Eq. (1.27).

5. Advect and re-initialize ¢ (x,7) according to Egs. (1.12) and (1.14).

1.3.5 Solid Interaction

In some of the cases analyzed in this work, and reported in Chapter 5, the interaction of the
flow with a third solid phase with prescribed velocity is taken into account. The interaction
between flow and solid is solved by means of a second-order direct forcing Immersed Bound-
ary Method (IBM), described in detail by Favre et al. [46]. The IBM method introduces a
specific treatment of the Navier-Stokes equations at the interface between solid and fluids. In
particular, we consider the following NS equation in discrete form

u’ —u"

=RHS"+ f (1.32)

where RHS includes convective, diffusive and source terms and f is an additional source term
used to consider the effects of the solid motion on the fluid. The forcing term is evaluated as

—RHS" (1.33)
where Uj is directly prescribed in the nodes interiors to the solid body or must follow a par-

ticular second-order interpolation [47] for the forcing points that coincide with the interface
between solid and fluids.
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A Low-Dissipation
Convection Scheme for the
Stable Discretization of
Turbulent Interfacial Flow

Main contents of this chapter have been published in:

E.Schillaci, L.Jofre, N. Balcdzar, O. Antepara, and A. Oliva. A Low-Dissipation Convection
Scheme for the Stable Discretization of Turbulent Interfacial Flow. Computers & Fluids,
153:102-117, 2017.

Abstract. This paper analyzes a low-dissipation discretization for the resolution of immiscible, in-
compressible multiphase flow by means of interface-capturing schemes. The discretization is built on
a three-dimensional, unstructured finite-volume framework and aims at minimizing the differences in
kinetic energy preservation with respect to the continuous governing equations. This property plays
a fundamental role in the case of flows presenting significant levels of turbulence. At the same time,
the hybrid form of the convective operator proposed in this work incorporates localized low-dispersion
characteristics to limit the growth of spurious flow solutions. The low-dissipation discrete framework
is presented in detail and, in order to expose the advantages with respect to commonly used method-
ologies, its conservation properties and accuracy are extensively studied, both theoretically and numer-
ically. Numerical tests are performed by considering a three-dimensional vortex, an exact sinusoidal
function, and a spherical drop subjected to surface tension forces in equilibrium and immersed in a
swirling velocity field. Finally, the turbulent atomization of a liquid-gas jet is numerically analyzed to
further assess the capabilities of the method.
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3, p. 032114). IOP Publishing.

2.1 Introduction

The necessity of introducing a particular form for the discrete convective operator in Navier-
Stokes equations governing two-phase flows, rises from two main numerical issues: to limit
the rise of spurious currents at the interface, and to assure the conservation properties of
secondary operators. These subjects are detailed in the following paragraphs. Next, the
current proposal to solve these issues is presented.

Spurious currents As introduced in Chapter 1, the full-domain modelization chosen in this
work to represent the movement of the interface embeds the different phases within a single
static mesh. This procedure may result, especially in problems presenting large density ra-
tios, in the appearance of parasitic flows (spurious currents) close to the interfaces. These
unphysical flows are produced by imbalances between the discrete representation of pressure
gradients and capillary forces in the variable density zone. As a consequence, fluids may be
artificially accelerated at the interface resulting in poor mass conservation, and consequently
failure to properly represent the interface topology. As concluded by Lafaurie et al. [1] and
by Renardy and Renardy [2], the magnitude of parasitic flows scales with the inverse of the
capillary number, and it may not decrease with mesh refinement. Zahedi et al. [3] compre-
hensively analyzed the effect of several factors on spurious currents, concluding that, when
using a regularized force method for the discretization of capillary forces, the most influen-
tial parameter is the numerical evaluation of interface curvature. Other authors managed to
reduce the presence of interfacial spurious currents by studying in detail the causes that origi-
nate them [4], and by proposing improved discretizations of the pressure gradient and surface
tension force [5, 6].

The appearance of spurious currents in the discrete solution of interfacial flows presenting
large density ratios is also related to the complexity of ensuring mass conservation at the
interface region. For instance, in the case of solving the velocity-pressure coupling of the
momentum equations by means of a projection method, e.g., fractional-step method [7], a
variable-coefficient Poisson’s pressure linear system must be solved at each time step. The ill-
posedness of the resulting linear system due to the discontinuity in density across the interface
complicates its resolution with high accuracy. As a result, the projection of the predicted
velocity field onto a divergence-free space, i.e., V -u, by means of the pressure gradient is
difficult to achieve to machine precision with a relatively low computational cost. This turns
out in the appearance of spurious velocities that propagate from the high- to the low-density
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phase. A solution often considered is to deactivate the light phase and impose a specific
pressure at the free surface. This methodology is known as single-phase model [8, 9, 10],
and leads to stabler behaviors since the spurious currents can be eliminated by construction.
However, although practical for a wide range of free-surface flows —e.g., sea waves or water
impact problems, as we will see in Chapter 5—, this simplification is not a general solution
for interfacial flow.

Conservation properties Consideration of secondary discrete conservation properties, such
as kinetic energy or vorticity, for the development of numerical schemes has barely been a
priority in the multiphase literature, and pure dissipative models have been widely used in
many reference works [11, 12, 13]. This is in contrast with the path taken by the single-phase
turbulent community [14, 15, 16], which has evolved to discretely preserve mass, momen-
tum and, specifically, kinetic energy by using skew-symmetric formulations at expenses of
increasing the local truncation error. To the best of the authors’ knowledge, only the recent
work by Fuster [17] explicitly proposes the use of kinetic-energy-preserving schemes for the
discretization of interfacial phenomena on 3-D Cartesian grids.

The absence of artificial numerical dissipation enhances the correct resolution of turbulent
flows by mimicking the conservation properties of the continuous governing equations, where
dissipation is restricted to the enstrophy term. However, as demonstrated in Sec. 2.4, potential
non-physical flows originated during the discrete advancement of the conservation equations
may grow unlimited due to the incapacity of the numerical framework to counteract them.
This is of paramount importance in the case of interfacial flows presenting large density
ratios between phases, in which full-domain modelizations usually propitiate the appearance
of spurious currents at the interfaces.

Current proposal The current work aims at developing a low-dissipation convective scheme
for interfacial turbulent flow that prioritizes the conservation of kinetic energy, while at the
same time presents low-dispersion characteristics at the interface regions. The numerical
framework analyzed is suitable for both unstructured and Cartesian 3-D meshes, with the
enhanced feature that the interface resolution of the latter can be improved with dynamic
refinement strategies.

Particular attention is given to the convection term in the Navier-Stokes equations due to
its role in the transfer of energy between turbulent scales. In detail, the work proposes the
utilization of a hybrid convection scheme: conservative in the bulk of the phases, whereas
stabilizing (and dispersive) at the interface regions. The conservative convection scheme
chosen is the symmetry-preserving [14], characterized by the conservative transport of kinetic
energy between turbulent scales — this property is fundamental for the correct resolution of
turbulence [15]. On the other hand, the dispersive convection scheme selected is the one
presented by Veldman and Lam [18], which guarantees that the resulting discrete convective
matrix operator is positive-definite, i.e., extracts energy out of the system.
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Alike strategies have been proposed for other types of physics. For example, it is commonly
used for capturing shock waves in compressible flows. In that context, different authors
have proposed hybridization of conservative and discontinuity-capturing convection schemes
that reduce numerical dissipation while maintain the ability to capture shocks —a general
overview of such methods is proposed by Pirozzoli [19]. A common feature of all these
hybrid frameworks is the role played by the position sensors. In compressible flow, their
purpose is to limit the activation of the low-dispersion scheme just to the shocked regions,
without affecting the rest of the flow field. Similarly, the position sensors in this work will be
utilized to stabilize only the interface regions.

Therefore, this Chapter presents and analyzes a low-dissipation and low-dispersion discrete
framework for the numerical simulation of interfacial turbulent flow on 3-D unstructured
meshes and it is organized as follows. In Sec. 2.2 an analysis of the discrete conservation
properties of the governing equations presented in Chapter 1 is given. Sec. 2.3 presents and
analyzes the hybrid convection scheme proposed. Finally, numerical tests are performed in
Sec. 2.4 and conclusions are drawn in Sec. 2.5.

2.2 Conservation properties

The continuity and Navier-Stokes equations are derived specifically for the conservation of
mass and momentum. Thus, finite-volume based discretizations inherently preserve these
properties. On the contrary, conservation of secondary derived quantities, such as kinetic
energy, entropy or vorticity — which cannot be directly imposed during the construction of
the numerical methods — is not always considered.

In this section, discrete conservation properties of the collocated scheme for two-phase flow
without surface tension (introduced by Jofre et al. [20]) are theoretically analyzed. Discussion
of kinetic energy preservation, partitioned between this section and Sec. 2.3, is presented for
a generic treatment of the convective operator. For this purpose, it is useful to introduce the
matrix-vector notation of the governing equations, Eqs. 1.1 and 1.2, written as

Mu =0, 2.1)

Q@—FC(pu)u—i—Gp—&-D(u)u—i—QS:O, (2.2)
where u, p and S are the vectors of velocities, pressures and source terms. The diagonal
matrix Q describes the volume of cells, matrices C(pu) and D(u) are the convective and
diffusive operators, and matrices G and M represent the gradient and divergence operators,
respectively.

As proposed by Verstappen and Veldman [14], discrete conservation properties are easily
analyzed by considering the symmetries of these matrices. On the one hand, kinetic energy is
conserved if and only if the discrete convective operator is skew-symmetric, i.e., the transpose
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of the matrix is also its negative, C(pu) = —C(pu)*, and if the negative conjugate transpose
of the discrete gradient operator is equal to the divergence operator, i.e., M = —G*. On
the other hand, the diffusive operator must be symmetric and positive-definite in order to be
dissipative, i.e., the matrix is equal to its transpose D(u) = D(u)*, and z*D(u)z > 0 for all
nonzero vector z.

2.2.1 Mass conservation

Global mass conservation invokes the integral of Eq. 1.1 over the whole domain, Q. Thus,
if the entire integral is transformed to a summation of integrals for each control volume that
form the domain, ¢ € Q, the following expression is obtained

/QVudV: Z/ch-udv: Y Y 0 2.3)

ceQ c€Q feF(c)

Defining the normal face velocity Uy, as the mass flux at a face My, divided by face density
Py, and area Az, rewrites Eq. 2.3 as

/Qv.udvzz Y UmAr=) ), My (2.4)

ceQ feF(c) ceQ feF(c) pf

For the collocated scheme, a special definition for mass fluxes at faces, Eq. 1.27, has been
developed in order to exactly conserve mass on each cell c. Thus, the local conservation
of mass for the collocated scheme is demonstrated by dividing Eq. 1.24 by face density,
rearranging terms and making use of Eq. 1.18, giving

1 Vi4
Z Mf — Z l Mf _ At ( n;—l _ I1+1)A7f =0 (2 5)
1 1 1 ¢ ' '
eFo P plRe P P od;

Therefore, total mass preservation results directly from local conservation at each cell, which
is expressed as

/QV-udV:Z/Q Vvuav=Y Y UA;=) ) My _o. (2.6)

cEQ ceQ feF(c) c€Q feF(c) pr

2.2.2 Momentum conservation

Conservation of momentum is intrinsically guaranteed by writing the equations in divergence
form. It is obtained by integrating Eq. 1.2 over the entire domain, which is transformed to a
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summation of integrals for each control volume that form the domain and converted to surface
integrals by applying the divergence theorem, resulting in

d(pcuc) Y A
c f€EF(c) ceQ feF(c)
A .
+ Z Z Hr (unb—uc)ﬁ —‘rVTUf-IlfAf + ZSch-
cEQ feF(c) f ceQ

Notice that M r, iy and (u,, —u.) are quantities that present equal values but with different
sign when evaluating them at a face f from two adjacent interior cells. In this way, interior
fluxes cancel out and Eq. 2.7 is evaluated as the summation over boundary faces f € F(dQ)
written as

d(p-u, ~ N
Z (Zl‘ )VC—I— Z (bef: — Z pfllfAf (2.8)
ceQ fEF(0Q) fEF(0Q)

A N
+ Z Hr (“f_ua)ﬁ +VTus-fifAr| + Z ScVe,
feF(0Q) f ceQ

where u, is the boundary-neighbor cell velocity. This equation states that the change in
momentum is due to the fluxes through the boundary of the domain and the source terms.

2.2.3 Kinetic energy conservation

The transport equation for kinetic energy, % pu-u, is derived from the momentum equation,
Eq. 1.2, by taking the velocity dot product and assuming incompressible fluid. Its mathemat-
ical expression takes the form

d(iou-
erV- {u(;pwu)} =—V.(pu) (2.9)

+V-[u(Va+VTu)]-u+S-u,

where, from left to right, quantities correspond to time derivative, convection, pressure, diffu-
sion and source terms, respectively. In order to investigate the conservation of kinetic energy
for the collocated scheme, Eq. 2.9 is discretized over the whole domain and transformed to a
summation of surface integrals for each cell ¢ as

d(pcu, - N
) ue (Z,u Wer Yue ¥ ooly=—Tue ¥ s 210)

ceQ ceQ  feF(c) ceQ  feF(c)

A R
+Y ue Y p|(u —uc)gfl +VTupfAs| + Y ueScVe.
ceQ  feF(c) Y ceQ
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The detailed analysis of the pressure term in Eq. 2.10 is simplified by introducing an identity
involving combinations of interpolation and differentiation operators. The relation, first pre-
sented by Morinishi et al. [21] and restated in finite-volume form by Felten and Lund [22],
reads

P Y, UQrtve Y, @50r= ), @VQrt(ov) Y Qf, (2.11)

feF( ) JeF(c) JEF(c) JeF(c

where ¢ and y are two general variables, O is a general quantity known on the cell face,
i.e., no interpolation is needed, the overbars refer to interpolated values, and Qy = %((pc Wb+
.V, ) is a special interpolator operator for products.
Specifying the above identity to the pressure term by taking ¢ =u, ¥ = p and Oy = fifAy,
and using Eq. 1.27 to simplify the expression, results in the following relation

. At Ar
Zuc Z anfAf* Z Z up-fgAy— ch Z — {(Pnbpc)&;f}

ceQ  feF(c c€Q feF(c) ceQ  fer(c) Pr
1
+ X pe Z EX Y prfAs o~ ) anfAf] fiAy. (2.12)
c€Q  feF(c peVe JEF(0) PrbYnb e up)

Finally, noticing that interior fluxes in Eq. 2.12 cancel out, Eq. 2.10 can be rewritten as

1 .
y APty vy = (2.13)

fr=re) dt ccQ  feFr(c)

1 At Ar
- Z D) (llanJF“fPa) ’ﬁfAf‘i’ Z Pc Z - |:(pnb Pc)&;f}

FEF(0Q) Q. fer(e) Pr
- Y pe Z L opiyAs o ) PfﬁfAf] Ay
c€Q  feF(c) pﬁ € feF(c) Prb¥nb. & np)

Af
+ Z .- Z Uy { u,, — uc)ﬁ+VTqu anf] Z ue- S Ve,
ceQ feF(c) ceQ

which states that in the absence of viscosity (4 = 0) and source terms, the change in kinetic
energy is due to the fluxes through the boundary of the domain plus a kinetic energy error
related to the pressure term. This error is intrinsic to the collocated formulation, and results
from the different pressure gradient evaluations in Eqs. 1.21 and 1.24 necessary to evaluate
velocities at centers of cells and mass fluxes at time n + 1, respectively. This result is related
to the symmetries of discrete operators by noticing that the different pressure gradient eval-
uations do not respect the relation M = —G*. Moreover, as further discussed in Sec. 2.3, an
additional error appears if the convection scheme ¢  is not skew-symmetric.

In order to complete the analysis, it is important to evaluate the scaling order of the kinetic
energy pressure error, since it can not be eliminated. In this regard, the error is easily analyzed
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when simplifying it for each individual face f as

—p. 1 firA - AA,
(P —pe) m—( y PASr, oy PR f)-ﬁf], (2.14)

AtA ¢
T psddy 2 rerte) PVe i) PrbVib

showing that the total term depends on the density ratio between the two cells adjacent to
the face, p./pup. and is multiplied by time step Az, and face surface Ay. Hence, the pressure
error is proportional to Ap, while spatially scaled as ¢ (Ah?) and temporally scaled as &'(At),
although it can be reduced through the use of different temporal integration schemes, &'(A™),
as proposed by Felten and Lund [22] and studied by Fishpool and Leschziner [23].

2.3 Low-dissipation convection scheme

The finite-volume discretization of the convective operator is carried out by isolating the
convection term in Eq. 1.2 and integrating it over the volume of a cell ¢, Q.. Next, divergence
theorem is applied to the bordering faces of the cell f € F(c), and the expression is reduced
by identifying the part corresponding to the mass flux as

/V'(Puu) dav="Y pruso;hAr= Y oMy, (2.15)
Qe FEF(c) feF(0)

where fif, Ay and M r are the normal outward unit vector, the surface and the mass flow
corresponding to face f, respectively, whereas ¢, is the value of u at face f evaluated by
a convective numerical scheme. A graphical representation of these parameters is shown in
Fig. 2.1.

Many different strategies are available in the literature for the evaluation of ¢ ,. Among
them, the symmetry-preserving scheme presents discrete conservation of kinetic energy, al-
though it may result unstable in variable-density regions. Alternatively, the upwind scheme
improves numerical stability, however, at expenses of adding artificial dissipation into the
discrete system. The solution proposed in this work consists in the hybridization of these two
approaches to construct a low-dissipation and low-dispersion convection scheme suitable for
turbulent interfacial flow.

In this section, the description of the hybrid convection scheme is detailed in three steps.
First, the symmetry-preserving and upwind schemes are presented. Second, the hybridization
process is formulated. Finally, the discrete kinetic energy conservation properties of the
scheme are theoretically analyzed.

2.3.1 Symmetry-preserving

The symmetry-preserving scheme [14] discretizes the convection term by means of a skew-
symmetric discrete operator; i.e., the discrete convective operator satisfies C(pu) = —C(pu)*.
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Figure 2.1: Arrangement of variables and notation for the collocated framework and convec-
tion scheme on a 2-D unstructured mesh. The schematic representation shows the collocated
position of velocity u and pressure p. The cell ¢ where the discretization is analyzed is shown
in dark gray, while the face-neighboring cells nb are depicted in light gray, with an exam-
ple of normal outward unit vector fiy and distance 8dy between cenAtroids. An example of a
face f where the ¢ , is evaluated, together with the corresponding My, ¢ p and @ values, is
illustrated.

This particular construction of the convective operator ensures that no artificial dissipation is
introduced into the discrete system of equations by the convection term. This property is fun-
damental if turbulence dominates the physics of the problems under consideration. Indeed,
in the absence of source terms, kinetic energy should only be dissipated by viscous forces.
Therefore, discretization strategies with excessive numerical dissipation can significantly al-
ter the physics of the flow.

In order to construct a discrete skew-symmetric convective operator, ¢ » must be evaluated as

_9pt+9r

7 (2.16)

Oy
where ¢ p and ¢, correspond to the values of u at the neighboring cells of face f; see Fig. 2.1.
As demonstrated in Sec. 2.4.2, this convection scheme is first-order accurate on 3-D unstruc-
tured meshes, while it increases its accuracy to second-order on Cartesian grids. Higher-order
versions of this scheme are available [14]. However, for the ease of exposition, the hybrid
scheme will be presented in terms of the first-order version.
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2.3.2 Upwind

The upwind scheme [18] approximates the convection term by a diagonally-dominant pos-
itive real discrete operator; i.e., the entries in the i’th row and j’th column, ¢;;, of matrix
C(pu) are |cji| > ¥ ;4i|cij| for all i, and zTC(pu)z > 0 for all nonzero real vector z. This type
of convective operator has a slowing-down effect on the discrete flow solutions by adding
artificial dissipation, irrespective of grid irregularity, into the problems. This property is not
desirable for the correct resolution of turbulence, but may be of key importance to mitigate
the growth of spurious currents near interfaces, and therefore stabilize the calculation.

In particular, the upwind scheme considered is constructed by adding a dissipative term into
the previous symmetry-preserving expression. This is mathematically formulated as

_9pt+or My ¢ —9p
2w 2

o : (2.17)

where M r is the outward-oriented mass flow at face f; see Fig. 2.1. The accuracy of this
upwind scheme is also first-order on 3-D unstructured meshes and second-order on Cartesian
grids.

2.3.3 Hybridization

The final step is the formulation of the schemes hybridization. Briefly, ¢ ; is evaluated ac-
cording to the symmetry-preserving scheme, Eq. 2.16, for all the faces of the mesh, except
for those adjoining at least one cell containing an interface, where the stabilizing scheme,
Eq. 2.17, is activated. This hybrid operator can be expressed in a single equation as

¢, = Pp+9F 7af|Mf| Or—9¢p
/ 2 My 2

(2.18)

where a is a coefficient that takes value 1 for the set of faces belonging at least to one cell
containing an interface, and takes value 0 otherwise; see Fig. 2.2.

At this point is where the interface-capturing method is utilized since it is a natural interface
sensor. Remember that Eq. 1.6 locates the transient position of the interface by means of
scalar values corresponding to the phase k volume fraction within each cell. Therefore, the
C}, scalar field itself can be directly used to identify the faces that belong to cells containing
an interface. In a mathematical form, this is expressed as

1 if0<CGle,t] < 1,

OfeF(c) = { 0 otherwise, (2.19)

where tscp () corresponds to the values of o for the faces of cell ¢, and Cilc,t] is the
volume-fraction value of phase k within cell ¢ at time instant . Depending on the interface-
capturing method chosen, the hybridization will be activated on a smaller or larger band. For



2.3. LOW-DISSIPATION CONVECTION SCHEME 35

Figure 2.2: Example of the values taken by a; at different faces according to the interface
position when using the VOF method as interface capturer.

instance, if using the VOF method, only the faces of the cells containing an interface will
assume oy = 1, as in the example shown in Fig. 2.2. Differently, when using the LS method,
the hybridized region will be wider, coinciding with the variable-density zone around I'" with
thickness controlled by parameter € in Eq. 1.9.

2.3.4 Convective Kinetic energy conservation

The diagonal elements of the discrete convective matrix, C(pu) of dimension m x m, corre-
sponding to the hybrid symmetry-preserving upwind scheme are

1 . . .
ci = Z‘ 5 My toglMyl)  Vi=1,.m, (2.20)
fer(

whereas the off-diagonal elements equal

1, . N
CijZE(Mij_aiﬂMijD, (2.21)
in the case of existing face-connectivity between cells i and j, while are null otherwise. The
distribution of the matrix C(pu) eigenvalues on the real-imaginary plot is based on the fol-

lowing proposition.

Proposition 1. The eigenvalues of a symmetric positive matrix (with real entries) are positive
real, and the eigenvalues of a skew-symmetric matrix are pure imaginary.

As exemplified in Fig. 2.3, three different situations may be encountered, corresponding to
the cells labeled as a, b and ¢ in Fig. 2.2. First, in the case of a cell i located far from
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an interface, e.g., cell a, oy equals O for all its faces and p is constant. Consequently, the
following result is obtained from the finite-volume discretization of the continuity equation
on the cell

1
/ V-udVv = Z llf~ﬁfAf:E Z pus-fifAr=
Qi fofa, : :

! Y, m;=o. (2.22)
FEF) FEF) P rerG)

Therefore, Egs. 2.20 and 2.21 reduce to
1.
Cij = 0 and Cij = EMl'j. (223)

The resulting submatrix is skew-symmetric, in consequence, it follows from Prop. 1 that
its eigenvalue lies on the imaginary axis: AS € I. Second, considering the case of a cell i
containing an interface, e.g., cell b, it is straightforward from Fig. 2.2 that a is 1 for all its
faces, and consequently Eqs. 2.20 and 2.21 are rewritten as

(M;; — M), (2.24)

N =

1,. n
cii = Z E(Mer‘MfD and ¢;;=
JeF(D)

which is a diagonally-dominant positive submatrix. Thus, under the hypothesis of Prop. 1,
the eigenvalue of the submatrix is positive real: lic € RT. Third, in a situation where the
faces of a cell i take different values of oy, e.g., cell ¢, it is direct from the two previous
cases that the eigenvalue of the corresponding submatrix lives on the positive real part of the
complex numbers: AE € C | R(AF) e RT.
The location of the eigenvalues on the real-imaginary diagram has direct relation with the dis-
crete conservation of kinetic energy. In particular, the transport equation for kinetic energy,
% pu-u, is derived from the momentum equation, Eq. 1.2, by taking the velocity dot product.
Hence, multiplying the convection term, expressed in discrete matrix operators, by the veloc-
ity vector u and taking into account the definition of eigenvalue, i.e., C(pu)u = ACu, results
in

[Clpu)u] u=[Afu;] Vi=1,..,m. (2.25)

Then, depending on the value taken by AS, the vector ACu; is: (1) if AC € I, just a rotation of

vector u; around its axis; (2) if QLZ»C € R™, a deformation of vector u; without direction change;
or (3)if AC € C | R(AF) € RT, a combination of the two previous cases. Consequently, the
variation of kinetic energy due to the convection term, written as

u;-u; — [)yicll,'] -, (2.26)

is zero for case (1), nonzero for case (2) and between zero and a nonzero value for case (3).
Therefore, there is no dissipation of kinetic energy by the convection term if an eigenvalue lies
on the imaginary axis, while, if it lives on the positive real part of the complex numbers and
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Figure 2.3: Distribution on the real-imaginary diagram of the eigenvalues corresponding to
the discrete convective matrix. Three different cases are depicted depending on the values
taken by o.

7Lic < 1, the convection term adds dissipation into the discrete system and, more important,
is of positive sign, i.e., acts as a kinetic energy reliever. In conclusion, the use of the hybrid
scheme confines kinetic energy dissipation to the subgroup of cells close to the interfaces.
It is worth stressing that this dissipation depends on the interface-capturing method chosen.
For instance, given the wider extension of the interface region, the LS method presents larger
dissipation than the VOF approach.

2.4 Numerical tests

Four different tests are considered for analyzing the properties of the low-dissipation and
low-dispersion method proposed. First, kinetic energy conservation properties are assessed
by numerically resolving the evolution of a 3-D vortex. Second, an accuracy assessment is
presented using an exact sinusoidal function. Next, the scheme is tested for cases in which the
interface-capturing method is coupled to the equations of fluid motion. Initially, a spherical
drop first in equilibrium and later submerged in a swirling velocity field is considered as a
case to test the capacity of the model to diminish spurious velocities. Finally, its robustness
and accuracy are demonstrated by numerically calculating a two-phase turbulent coaxial jet.
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2.4.1 Three-dimensional vortex

The conservation of kinetic energy related to the convection term is analyzed numerically by
solving a 3-D vortex with zero net mass flux at the boundaries and no interface advection.
The set of 3-D vortices shown in Fig. 2.4 are initially described by

u = Acos(kx)sin(ky)sin(kz),
v = —Asin(kx)cos(ky)sin(kz), (2.27)

w=0,

where A = 1.0 x 1073 m/s is the velocity amplitude and k = 1 is the wave number. The
vortex is solved in a box of side 27t x 27t x 27t meshed by means of 6.6 x 10* triangular prisms
that correspond to a mesh size of 4 = 0.2. In detail, the 3-D mesh is generated by extruding
a 2-D grid — composed of 2.2 x 103 triangles — 30 times with a constant length step. The
box is filled with two different fluids. One with density p; = 1 kg/m> occupying the entire
cube except for a sphere of diameter D = 7 located in the center of the box. This sphere
is filled with a different fluid of density p,. In order to study the properties of the different
convection schemes, four different cases are analyzed in which progressively larger density
ratios between inner and outer fluids, rp = p2/p1, are considered. In particular, p; is set to
1, 10, 100 and 1000 kg/m>. A constant time step of Ar = 1.0 x 1073 s is used, and slip-wall
conditions are applied to all boundaries.

In the absence of body and interfacial forces, and considering incompressible inviscid flow,
i.e., V-u=0 and u = 0, the kinetic energy conservation equation, Eq. 2.9, reduces to

d(Lpu- 1
w+V~ [u(zpwu)] =—V.(pu). (2.28)

It is important to note that this equation is intrinsically conservative, as kinetic energy is just
redistributed, not created neither dissipated. Therefore, the rate of change of kinetic energy
by the convection term is zero. Similarly, discrete systems will be kinetic energy conservative
if the convective and pressure operators are shown to be conservative.

Focusing on the convection term, the test proposed here is appropriate to study its kinetic
energy conservation since there is no net mass flux across boundaries. This enables a proper
characterization, in terms of rate of change of kinetic energy, of the symmetry-preserving (sp),
upwind (u#w) and hybrid symmetry-preserving upwind (hspu) convection schemes. In this
regard, the norm of the kinetic energy rate of change by the convection term, |V - u(% pu-u)l,
is calculated at every time step by integrating the convection term in Eq. 2.28 over the entire
domain, Q, transforming it to a summation of integrals for each control volume that form the
domain ¢ € Q, and using the divergence theorem to simplify the expression as

1 1 .
/ Vou(zpu-w)dV ==Y u- Y oM. (2.29)
Q 2 2ceQ fEF(c)
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Results are reported in Tab. 2.1 for each scheme, and for increasing values of density ratio
between fluids. In all cases, the total rate of change of kinetic energy, d(3pu-u)/dt, is de-
termined mainly by the convection term with the pressure contribution, |V - (pu)|, negligible.
The case of uniform density between fluids shows that the sp scheme produces zero variation
of kinetic energy. On the contrary, the uw scheme introduces dissipation of value ¢’(1073%)
into the discrete system, while Zspu consistently reduces the dissipation to ¢(10~%) by re-
stricting the stabilization to the interface region. Similar trends are observed when assigning
different densities to the fluids. In the case of rp = 10, sp results in zero variation (machine
precision) of kinetic energy. Conversely, the dissipation introduced is of order ¢(10~7) for
uw and €(1073) for hspu, and increases with larger density differences. It is important to
notice that, despite its small magnitude, the errors in sp slightly increase with the density
ratio due to the difficulty of the Poisson solver to reach machine precision.

Results in Tab. 2.1 account for the accumulated variation of kinetic energy by the convection
term over the entire domain. However, it is interesting to analyze the particular value for each
individual cell. The convection term of the kinetic energy transport equation, Eq. 2.9, can be
written in discrete matrix-vector notation by left-multiplying C(pu) by u* and summing the
resulting expression with its conjugate transpose, resulting in

u*[C(pu)+ C*(pu)]u. (2.30)

Next, considering the general expression of the Aspu convection scheme given by Egs. 2.20
and 2.21, and accounting for the contribution of each cell ¢ —diagonal elements of the
C(pu) + C*(pu) matrix—, the above equation can be reduced to

u Y (My+ o Myl) . (2.31)
fEF(c)

Notice that if oy is O the expression collapses to the sp convection scheme, whereas oy = 1
corresponds to the uw case.

The mathematical expression introduced is evaluated for the three schemes, and the results
are presented in terms of relative error with respect to the values obtained with sp as

[ [0(zpu-w)/d1] — [0(3pu-w)/or] |
[[0(zpu-w)/0t] | ’

with x representing the uw or hspu convection schemes. Results for rp = 100 are plotted in
Fig. 2.5 for the cells laying along a radial direction of the sphere with dimensionless coor-
dinate 7 = r/R. The figure corroborate that the uw scheme dissipates kinetic energy for all
cells with a peak in the variable density region, whereas the hspu scheme is conservative, i.e.,
Econv,hspu = 0, except for the cells close to the interface (7 = 1) where o is activated to 1, and
therefore the uw-dissipation is introduced. In this region, €cony hspu tends to the Econy . value.

(2.32)

Econvx =
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Figure 2.4: 3-D vortex: frontal (xy-plane) view of the flow field and interface location.
Velocity vectors are displayed in gray while the high-density sphere is shown in orange.

rp sp O(-) uw O(-) hspu O(-)

1 10714 1078 10~°
10 10°13 1077 10°8
100 1072 1079 1077
1000 10~ 1073 1079

Table 2.1: 3-D vortex: order of magnitude of kinetic energy variation by the convection term,
V- u(% pu-u)| obtained by using the sp, uw and hspu schemes. The quantity is evaluated for
increasingly larger density ratios.
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Figure 2.5: 3-D vortex: relative error of convection kinetic energy variation &y along the
cells that lay on the line from the sphere’s center to a corner of the domain as a function of
dimensionless radius 7. The interface location is indicated by I'.

2.4.2 Exact sinusoidal function

The spatial accuracy of the hybrid symmetry-preserving upwind (hspu) scheme, together with
the ones of the symmetry-preserving (sp) and upwind (uw) schemes, is studied by means of
comparing numerical results to the analytical solution of an exact sinusoidal function. On the
one hand, for each convection scheme, the numerical values of the convection term on each
cell are calculated from the right-hand side of Eq. 2.15, with the corresponding ¢ ; definition,
Eqgs. 2.16-2.18, by assigning a sinusoidal function to the input variables: (1) velocities at
centers of cells u,, and (2) face mass fluxes at faces M r. On the other hand, analytical values
are obtained by directly evaluating the left-hand side of Eq. 2.15. Finally, analytical and
numerical results are compared by means of the root-square-mean error (rms) X, given by

1
Xrms = \/n(x12+"'+x112)a (2.33)
where x; corresponds to each of the n individual errors.
A stream function, determined by y = 51 sin(2Nx)cos(27Ny)k is utilized in order to en-

sure that the resulting analytical velocity field is divergence-free. In this way, the derivation
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Scheme Cartesian  Unstructured
sp, hspu 2.69 1.53
uw 1.88 1.43

Table 2.2: Order of accuracy of the different convection schemes (sp, uw and hspu) on both
mesh types (Cartesian and unstructured).

of y, defined as u = V X y, gives the following periodic velocity field

u = —sin(2nNx)sin(2nNy),
v = —cos(2xNx)cos(2TNy), (2.34)

w=20,

which is solved in the three spatial directions and presents a maximum velocity magnitude
of one. The test is performed on a cube of side 1.0x1.0x 1.0 meshed by means of 9.2 x
10? hexahedral cells (Cartesian mesh) or 9.7 x 103 tetrahedral cells (unstructured mesh).
Similarly to the previous test, Sec. 2.4.1, fluid with density p; = 1 kg/m> occupies the entire
cube except for a sphere of radius R = 0.15, which is fixed in the center of the domain and
filled with a fluid of density pr = 1000 kg/m?.

In addition, instead of using meshes with different resolutions, the convergence study is per-
formed by enlarging or reducing the wavelength of the input sine functions, and consequently
the radius of the centered sphere. In this way, the average mesh volume for both Carte-
sian and unstructured grids is calculated as V,,, = %):c V., giving an average mesh spacing
equal to AXye = /3Vae = 0.068, whereas the effective length of the domain is defined as
Lesr=1/N, being N a variable integer value that is increased or decreased in order to enlarge
or refine the effective mesh, respectively. In consequence, the relative mesh size is defined as
h = AXayg/Lery = 0.068N.

Convection accuracy errors are obtained for relative mesh sizes ranging from ~ 0.1 to =~ 0.5
and depicted in Fig. 2.6 — notice that results for the sp and hspu convection schemes are
plotted with a single line since they are practically identical. The figure shows that, first,
given a particular type of grid, uw errors are larger than sp and hspu ones for all relative
mesh sizes, and second, for each convection scheme, errors are smaller on the Cartesian grid
than on the unstructured one. Moreover, the order of accuracy of the different convection
schemes have been calculated and collected in Tab. 2.2. These show that the three schemes
are second-order accurate on Cartesian grids, while first- to second-order on unstructured
meshes.

2.4.3 Spurious velocities around a spherical drop

In order to analyze the capability of the numerical framework to prevent, or diminish, spu-
rious velocities, the test case of a drop first in equilibrium and later submerged in a swirling
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Figure 2.6: Exact sinusoidal function: convection scheme error x;,,s versus relative mesh
size h for the different convection schemes (sp, uw and Aspu) and mesh types (Cartesian and
unstructured). First- and second-order slopes are also indicated.

velocity field is considered. The drop is subjected to surface tension forces while gravity
effects are neglected.

The set-up of the test is similar to the one proposed in Sec. 2.4.1. However, in this case
the interface separating the two fluids is set free by coupling the VOF solver [24, 25] to
the Navier-Stokes equations. In particular, a spherical drop of diameter D = 7 is fixed in
the center of a cubic domain of side 2. Four different cases are analyzed corresponding
to increasingly larger density ratio values r,. The surrounding fluid is of constant density
p1 = 1 kg/m?, while the density of the drop p5 is set to 1, 10, 100 and 1000 kg/m?>. Dynamic
viscosity 4 and gravity g are set to zero. Contrarily, the surface tension force, as introduced
in Eq. 1.3, is characterized by a surface tension coefficient ¢ = 7.3 N/m, and by a curvature
K equal to 2/R in the case of a 3-D sphere. For the discretization of surface tension, a model
based on the continuum surface force approach [26] is chosen. Therefore, for each cell ¢
located at the interface, the surface tension is approximated as

VC
TS = ok <> Ve, (2.35)
? VGl /¢

where VCyi./||VCy|| is the normalized gradient of the volume fraction scalar field C; — in this
case of the scalar field defining the surrounding fluid —, and V, is the volume of the cell.
A detailed description of the discretization of this force on 3-D unstructured meshes can be
found in [27, 28, 29].
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The domain is meshed exactly as in the 3-D vortex case: 6.6 x 10* triangular prisms, gener-
ated by extruding 30 times a 2-D grid discretized in 2.2 x 10 triangles. Once more, the time
step is chosen to be Ar = 1.0 x 1073 s and velocity free-slip conditions are imposed at X, ¥
and Z boundaries.

The test is initialized with a zero velocity field for each of the three convection schemes
analyzed: symmetry-preserving (sp), upwind (uw) and hybrid symmetry-preserving upwind
(hspu). Under these conditions, the velocity field along time should remain undisturbed, i.e.,
u = 0. However, due to the appearance of spurious velocities at the cells located close to the
interface, this is not the numerical solution obtained. Therefore, in order to measure the error
in velocity, the following L error norm is utilized

1
L) = (]| ++ ], 2.36)

where @; corresponds to each of the n cell dimensionless velocities, evaluated as @t; = u;y/p2D/ 0.
The velocity L; errors for each convection scheme and density ratio are plotted in Fig. 2.7
versus dimensionless time 7 = 11/0/(p2D3). As expected, for all cases, spurious velocities
originate at cells located at the interface between fluids, and continuously propagate to the
neighboring elements as time advances. Independently of the magnitudes, errors start at a
zero value and increase with time for the three convection schemes. However, there is a
clear difference between sp and uw and hspu errors. In the case of uniform density, rp = 1,
the error for sp rapidly increases for 7 < 0.4 first, and then continues smoothly increasing
since no dissipation is introduced into the discrete solution to limit the spurious velocities.
On the contrary, for the uw and hspu schemes, the magnitude of the spurious currents stalls
at 7 ~ 0.2 due to their low-dispersion characteristics. The contrast in behavior among the
convection schemes significantly differs as the density ratio between fluids is increased. For
example, for r, = 1000, the error magnitude for uw and hspu schemes is 17 (10’4), while it
diverges for sp.

In order to assess the stabilization in a more realistic scenario, the spherical drop is introduced
into the 3-D vortex velocity field described in Sec. 2.4.1. To impose a fast shape deformation,
p2 and A are set to 100 kg/m> and 1.0 x 10~! m/s, respectively. In addition, the grid is
refined to size h = 0.1. Results for the three convective schemes are shown in Fig. 2.8, and
correspond to the evolution of the initial drop as dimensionless time 7 = tA/D advances. The
figure clearly demonstrates the inability of the sp scheme to retain the shape of the deforming
sphere due to the appearance of large spurious velocities at the surface. Differently, the
solutions obtained with the uw and hspu are stable and qualitatively very similar —therefore,
the transient evolution of the drop is shown by a unique sequence of snapshots. This result
highlights the capability of the hybrid scheme to diminish spurious velocities around the
interface, and therefore properly advect the surface separating the fluids. Particularly for this
test, given the absence of turbulent motions, the two schemes provide a similar solution.
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Figure 2.7: Spherical drop in equilibrium: velocity errors L versus dimensionless time 7 for
the three convection schemes analyzed (sp, uw and hspu) and for increasingly larger density
ratios rp.
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Figure 2.8: Spherical drop under swirling action: time evolution (top to bottom) of the sphere
for the sp (left), uw and hspu (right) convection schemes. The interface is colored according
to the velocity magnitude.
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Ui[m/s] p,-[kg/m3] Ui [Pa-m] o [N/m] Re; We;

liquid 20 1000 5x107% 0.03 16000 5332
gas 100 100 1.7x1073 ' 235000 13000

Table 2.3: Atomization of a two-phase jet: liquid and gas physical properties and dimension-
less parameters.

2.4.4 Atomization of a turbulent two-phase jet

In order to assess the capability of the hspu scheme to numerically simulate interfacial turbu-
lent flow, the atomization of a two-phase jet is studied. The computational set-up is validated
first by comparing against results reported by Fuster et al. [13]. Next, the advantages led by
the adoption of the Aspu scheme over the uw and sp are discussed.

Description of the case

The problem consists in the injection of two parallel high-speed streams of liquid / and gas
g into an initially quiescent domain. A schematic representation of the jet evolution and
geometrical dimensions are depicted in Fig. 2.9. Two dimensionless parameters characterize
the problem. The Weber (We) number quantifies the ratio between fluid inertia and surface
tension forces, while the Reynolds (Re) number accounts for the ratio of fluid inertia over
viscous forces. For each fluid i, these are defined as
2
We, = PUID - e, PIUD. (2.37)
o Hi

where U; is the inlet streamwise velocity, D is the liquid jet diameter, and o is the surface
tension coefficient. The physical properties of the fluids, namely p;, y; and o, as well as
the resulting dimensionless parameters are reported in Tab. 2.3. Both fluids are injected with
constant streamwise velocities starting from the left domain boundary. In addition, triggering
of the instabilities responsible for transitioning from laminar to turbulent regime is forced
by assigning a random cross-stream velocity to the liquid phase at the inlet, with magnitude
V; = [-0.1U; : 0.1U;]. Finally, pressure is imposed at outlet such that appropriate outflow
boundary conditions are obtained.

The first stages of the jet atomization are shown in Fig. 2.10 as function of dimensionless
time tU;/D. Zoomed figures (a) and (b) show the initial injection stages of the liquid jet. Fig-
ures (c) and (d) exhibit the appearance of interface instabilities that cause the formation and
rupture of ligaments and the early spreading of droplets. Finally, jet swirling oscillation be-
havior is depicted in figures (e) and (f). These concatenated phenomena are comprehensively
analyzed in the following subsections.
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Figure 2.9: Atomization of a two-phase jet: schematic representation of the liquid jet test
indicating the flow configuration and geometrical parameters.
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Figure 2.10: Atomization of a two-phase jet: initial stages of the liquid atomization process.
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Numerical method

As indicated in the introduction, the low-dissipation convective scheme presented can be
coupled to different interface-capturing methods. In order to demonstrate this capability, and
motivated by a significant reduction in computational cost, the interface motion in this test
is solved by means of the LS method. Additionally, in order to reduce the computational
requirements, the adaptive mesh refinement (AMR) strategy presented in Chapter 3 is em-
ployed. As shown in Fig. 2.12 (Zoom B), the strategy consists in a dynamic refinement of
the baseline mesh at the interfacial region. This refinement is essential for capturing physi-
cal phenomena occurring at scales smaller than the initial mesh size, such as thin filaments
or small drops. The base mesh is a uniform Cartesian grid with ~ 5.0 x 10* cells. For this
test, two levels of mesh refinement are utilized, i.e., the parent cell is divided at most into
16 sub-cells. Thus, at statistical steady-state conditions, the mesh reaches an average size of
~ 2.3 x 10° elements, instead of the ~ 8.2 x 10° elements that would be needed on a static
mesh to obtain the same resolution. The refinement level is chosen after carrying out prelimi-
nary tests to determine the minimum mesh size necessary to obtain an acceptable convergence
of the solution to the benchmark. Further details on the application of the AMR strategy to
the jet atomization problem can be found in previous works [30, 31].

Validation and results

The case is discretely solved by utilizing the three convection schemes considered in this
work: sp, uw and hspu. The first important outcome is that the sp scheme is not able to
complete the calculation. Indeed, as previously demonstrated in Sec. 2.4.3, the inability of
the scheme to contain spurious currents originated at the interface, results in the divergence
of the numerical simulation in few time steps. On the other hand, calculations performed
with the uw and Aspu schemes are stable and their results are discussed below.

First, the use of the hspu convection scheme is validated by comparing the discrete results to
the numerical data reported in [13]. For instance, Fig. 2.11 shows the comparison of the time-
averaged energy of the cross-stream normal velocity fluctuations E,» = (v')? normalized by
its inlet value Eg = (U;)?. In particular, the figure shows the E,s / Ey profiles for three different
inlet distances x/D. Due to the symmetry in geometry, only the profiles corresponding to the
top-half part of the domain are represented. The results are compared to the same magnitudes
measured in [13]. Regarding the first two distances, x/D = 1.25 and x/D = 1.9, present
solution and benchmark match closely, thus, demonstrating a similar mechanism in the early
growth of perturbations. At x/D = 3.1, where the process of disruption of the interface has
taken place, despite showing an overall good agreement, the solutions result more distant.
This is probably due to the different local definition of the mesh used in the representation
of interface phenomena, that leads to a slightly different phenomenology of the unstable
structure appearing after the core break-up.

The appearance of Kelvin-Helmholtz (KH) instabilities at the interface is due to the competi-
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tion between shear forces, caused by the velocity difference of the two streams, and capillary
stresses. This is in agreement with the reference work [13] and other studies regarding two-
phase coaxial jets [32, 33, 34]. The KH instabilities are responsible for triggering the jet
transition from laminar to turbulent regime. This phenomenon is captured by the intact jet
profiles, x/D = 1.25 and 1.9, shown in Fig. 2.11, since E; progressively rises in the interface
proximity. In this zone, the fluctuations cause the appearance of waves at the interface that
quickly grow, amplify and roll-up, breaking the interface and spreading droplets downstream,
as shown in Fig. 2.12 (Zoom A). The increase of the instability continues downstream, as the
fluctuations are gradually transferred to the bulk of the fluids. Finally, perturbations cause the
complete break-up of the liquid core, that fragments into droplets of several different sizes.
The evolution of these physical mechanisms is depicted in Fig. 2.12.

The results obtained with the uw convection scheme are depicted in Fig. 2.13 where they
are compared to Aspu data. In detail, the figures compare the cross-stream kinetic energy of
velocity fluctuations at entrance lengths x/D = 1.25 and 1.9. E,/ evaluated with uw is slightly
lower than Aspu, due to the dissipative nature of the method, which causes a partial attenuation
of kinetic energy also in the core of the liquid phase. However, results are comprehensibly
similar, demonstrating an equivalent representation of the KH instability mechanism for the
two schemes. As it will be demonstrated in the next subsection, Sec 2.4.4, this similarity in
behavior is not encountered for the energy spectra of the downstream turbulent region.

Energy spectra

Following the complete breakdown of the liquid-phase core, a downstream turbulent dis-
persion of droplets is observed. After ~ 60 dimensionless time units tU; /D, the two-phase
dispersed system reaches a statistical steady state regime with the overall wake fluctuating
under a constant vortex shedding frequency fys. In this context, the analysis of the flow
energy spectrum allows a more complete knowledge of its turbulent behavior and a further
verification of the hspu scheme. The spectra have been calculated from the time series of the
vertical velocity v over a large exhibition period of ~ 25 shedding cycles.

The velocity probes are located at different inlet distances x/D, and at a vertical position
equal to the inlet interface y-axis value y;,,. This vertical position of the probes ensures a
better capturing of the interface fluctuations. A satisfactory description of the jet turbulent
behavior can be drawn from the analysis of the results obtained on two probes. The first, S1,
is placed in the zone of the earliest interface instabilities (x/D = 2), where the disturbances
have not yet broken the liquid core, whereas the second, S2, is located at x/D = 6, where the
core is partially broken and the vortex shedding has begun to drag the structures downstream
— see position of the probes in Fig. 2.12.

Segments of the velocity signals collected by the probes at statistical steady state conditions
are plotted in Fig. 2.14. The hspu velocity signal of probe S1, reported in Fig. 2.14(a), shows
much more regular oscillations than the uw signal, and a notably higher value of root-mean-
square velocity. In the case of probe S2 — see Fig. 2.14(b) —, the uw signal fluctuates more
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Figure 2.11: Atomization of a two-phase jet: energy of the cross-stream normal velocity
fluctuations E,» = (v/)? normalized by its inlet value Fq and evaluated at different distances
from the inlet x/D. Present results are compared to reference data reported in [13]. The hspu
convection scheme is used to discretize the convection term. Parameter y;,; corresponds to
the value of the interface vertical position at inlet.

strongly, but oscillations are still less regular and energetic than the Aspu ones.

The described velocity signals are post-processed by using the Lomb periodogram technique
[35] to yield the turbulent energy spectra, reported in Fig. 2.15. The plots depict the dimen-
sionless energy of cross-stream velocity fluctuations, E,//Ep, as function of fD/U;. All the
curves are compared to the (—3)-slope, characteristic of the direct energy cascade in 2-D tur-
bulence [36]. Regarding the hspu scheme, the spectra show the same dominant peak for both
S1 and S2 probes, Figs. 2.15(a) and 2.15(c), corresponding to the vortex shedding Strouhal
number Stys = fysD/U; = 0.27. The existence of a strong dominant frequency is confirmed
by the appearance of harmonic peaks —up to the third in probe S1, and up to the fourth in
probe S2. In probe S1, a peak associated to the KH instability is visible at fxyD/U; =~ 1.0.
Despite being responsible for the laminar to turbulent transition, KH remains embedded in
the vortex shedding frequency, and becomes barely distinguishable. The slope of the energy
cascade is well represented in both probes.

On the other hand, referring to the uw scheme, two energy peaks are detected by both probes,
at Styg; = 0.24 and Stysy = 0.31, as shown in Figs. 2.15(b) and 2.15(d). These are responsi-
ble for an irregular fluid shedding, previously suggested by the uneven velocity signal shown
in Fig. 2.14. Indeed, the dissipative nature of the scheme makes the wake more fragmented
and driven by different fluctuation frequencies. Conversely, the foot print of KH instabilities
at the interface is well captured by probe S1, at fxyD/U; = 0.9, due to the absence of a strong
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Figure 2.12: Atomization of a two-phase jet: visualization of the primary and secondary
stages of the atomization process obtained from the numerical simulation. The position of
velocity probes (S1,52) is indicated. In Zoom A, a detail of the waves evolution at the
interface is shown. Zoom B is an example of the refined mesh achieved with the AMR
strategy at the interface.
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Figure 2.13: Atomization of a two-phase jet: energy of the cross-stream normal velocity
fluctuations E,s /Ey measured at different distances from the inlet x/D using the uw and hspu
convection schemes. Results are compared to numerical data reported in reference [13].
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Figure 2.15: Atomization of a two-phase jet: energy spectra E,/ /Ey measured at probes S1
and S2 using the uw and hspu convection schemes.

dominant shedding frequency.

In conclusion, the hspu scheme proves to be effective in the simulation of turbulent jet at-
omization, as it is able to properly resolve the energy cascade and to reproduce the vortex
shedding effect. Moreover, its adoption has many advantages in comparison to other existing
schemes. For instance, hspu solves the poor numerical stability shown by sp at liquid-gas
interfaces. On the other hand, it provides a proper transport of kinetic energy in the vor-
tex shedding mechanism, thus, overcoming the inability of uw to accurately solve turbulent
flows. Indeed, the utilization of the sp scheme for the cells located in the bulk of the fluids
guarantees the discrete convective operator to be locally skew-symmetric and, therefore, the
correct conservation of mass, momentum and kinetic energy [15].
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2.5 Conclusions

In this work, a low-dissipation and low-dispersion discretization for the numerical simulation
of turbulent interfacial flow is analyzed. The scheme is designed to minimize the amount of
artificial dissipation introduced into the discrete system, while manages to limit the growth
of spurious currents. In addition, as demonstrated in the series of tests performed, the hybrid
convection scheme proposed can be coupled to different interface-capturing methods.

The theoretical analysis presented in Secs. 2.2 and 2.3 demonstrates that the scheme is con-
servative except for the subgroup of cells found in the vicinity of the interface, where a
controlled amount of dissipation is introduced to diminish spurious flows. This feature is
confirmed by the numerical results of a 3-D vortex presented in Sec. 2.4.1. The same test
shows that the overall kinetic-energy dissipation is kept to a level well lower than classic dis-
sipative schemes. The spatial accuracy of the method is numerically analyzed in Sec. 2.4.2,
where it is shown to be second-order accurate on Cartesian grids and first-order on unstruc-
tured 3-D meshes.

The localized injection of dissipation allows an effective control of the spurious currents
growth, which provides enhanced stability to the numerical method. Indeed, as demonstrated
in the spherical drop test in Sec. 2.4.3, spurious flows grow unbounded when using purely
conservative discretizations, whereas remain contained to small values in the case of utilizing
the hybrid convection scheme. This behavior is further corroborated by obtaining a proper
interface advection when the sphere is placed in a swirling velocity field.

The performance of the numerical framework in a complete multiphase turbulent scenario has
been tested by solving a liquid-gas atomizing jet. On the one hand, the test demonstrates that
the controlled dissipation added to the interfacial region is sufficient to stabilize the numerical
simulation. On the other hand, the results expose that, unlike pure dissipative schemes, the
hybrid convection approach presented in this work is able to properly represent the underlying
physics of turbulent flow. Consequently, the inability of a pure dissipative method to properly
transport swirling structures is overcome.
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Adoption of AMR for
resource optimization in
two-phase flow

Main contents of this chapter are currently Under Review in:

E.Schillaci, O. Antepara, N. Balcazar, and A. Oliva. A dynamic mesh refinement strategy for
the simulation of break-up phenomena in two-phase jets International Journal of Heat and
Fluid Flow, Under Review.

Abstract. In this work we adopt an Adaptive Mesh Refinement (AMR) strategy to carry out the direct
numerical simulation of complex multiphase flows by means of interface-capturing schemes. The model
is globally addressed at improving the representation of interfacial and turbulent scales in the simulation
of instability and break-up phenomena, while simultaneously reducing the computational requirements
in comparison to static mesh computations. The refinement criteria are designed to ensure the proper
representation of the characteristic lengths, by achieving the required mesh definition in each part of the
domain. The discretization, built on a finite-volume basis, accounts for a divergence-free treatment of
the refined/coarsened cells, that ensures the correct transport of mass, momentum and kinetic energy.
Initially, we demonstrate the accuracy of the method and the benefits brought in contrast with static
mesh for general multiphase cases, as vortex flow and rising bubbles. Next, we propose the analysis of
various basic instability phenomena, including the capillary break-up of a liquid column, the injection
of a liquid jet at different speeds, and the validation of a 2-D coaxial turbulent jet. In the last section,
the simulation of a 3-D coaxial jet is presented and the physical features that we observed are validated
by comparison to semi-empirical laws.
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Additional contents have been published in:

E.Schillaci, O.Lehmkuhl, O.Antepara, and A.Oliva. Direct numerical simulation of multi-
phase flows with unstable interfaces. Journal of Physics: Conference Series, (Vol. 745, No.
3, p. 032114). IOP Publishing.

E.Schillaci, O.Antepara, O.Lehmkuhl, N. Balcdzar, and A. Oliva. Effectiveness of adaptive
mesh refinement strategies in the DNS of multiphase flows. In: Proceedings of international
symposium turbulent heat and mass transfer VIII; 2015 .

3.1 Introduction

In this section we first want to explain the various reasons that make the direct numerical
simulation of multiphase flow particularly costly from the computational point of view. Fol-
lowing, we introduce the Adaptive Mesh Refinement technique as a tool to improve the ef-
ficiency of simulations. Finally, we present the numerical framework analyzed in this work
and the proposed numerical tests.

Mesh limitations in two-phase flow The Direct Numerical Simulation (DNS) of multi-
phase flow can result particularly challenging and expensive in terms of computational cost
in the case of complex interfacial phenomena and high Reynolds numbers —a complete
overview is given by Tryggvason et al. [1]. Indeed, in each part of the domain, different
characteristic length requirements have to be ensured. In the first place, the mesh must be
sufficiently fine to correctly model the Kolmogorov length scales that appear in turbulent
flow. Second, the phenomena involving the instability and rupture of the interface must be
correctly represented. That include the growth of waves and filaments, as well as the gen-
eration of drops of varying size in primary and secondary atomization processes, with the
smallest size equal or smaller than Kolmogorov length scales [2]. As a further requirement,
the grid spacing at the interface has to be fine enough to properly evaluate interface prop-
erties, as gradients and curvature. Due to these conditions, the same concept of DNS may
be considered inappropriate for some kinds of turbulent multiphase flow, as the minimum
mesh size that properly represent the interface phenomena cannot be defined apriori. In the
practice, it is assumed that structures smaller than the minimum mesh size have no practical
effect on the global behavior of the flow [3]. The engineering problems that better highlight
these complex numerical issues and strong mesh limitations are constituted by atomizing
two-phase flow, including injection sprays and coaxial jets, with important applications in
the field of combustion injector and pharmaceutical sprays. Another notable example is the
case of rising bubbles, where the leading forces are due to surface tension stresses that de-
velop in proximity of the interface. Consequently, fine mesh resolutions are needed in the
proximity of the interface to evaluate accurately these forces.
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Adoption of dynamic meshes An effective strategy to improve the feasibility of DNS in
multiphase flow consists in the adoption of the Adaptive Mesh Refinement (AMR) tech-
nique. The tool performs a dynamic refinement of the mesh, depending on the local defini-
tion requirement, with a global consistent reduction of the allocated computational resources.
The robustness of AMR on 2D structured meshes was firstly demonstrated by Berger and
Oliger [4] and by Berger and Colella [5]. More recently, AMR strategies have also ap-
peared in unstructured hexahedral [6] and tetrahedral [7] meshes. The combined utiliza-
tion of interface-capturing methods and AMR techniques was firstly introduced by Sussman
et al. [8]. In Sussman [9], a parallelized algorithm to achieve mesh refinement in a cou-
pled level-set/volume-of-fluid Navier-Stokes solver is described. More recently, Popinet et
al. [10] combined the adaptive octree spatial discretization to Volume of Fluid (VOF) in-
terface representation, by focusing on the correct balancing of surface tension forces and
pressure gradients at the interface, while Zuzio and Estivalezes [11] coupled Level-Set and
AMR, by applying particular procedures at the fine/coarse mesh interfaces to preserve the
accuracy. Both authors were focusing on the simulation of laminar phenomena, as rising
bubbles and Rayleigh-Taylor instabilities. Fuster et al. [3] also coupled octree AMR and
VOF, and applied the method to atomization phenomena. One of the main issues connected
to AMR discretizations, when dealing with incompressible problems, consists in the exten-
sion of the divergence-free constraint to child cells. One of the most common strategies has
been proposed by Balsara [12] and applied to two-phase simulations by [11]. An alternative
scheme to deal with the incompressibility constraint can be found in Vanella et al. [13].

Current proposal In this work, we analyze a CLS-AMR framework that allows the sim-
ulation of turbulent multiphase flow in a wide range of situations, particularly, focusing on
instability and atomization phenomena. In the presented method, the CLS scheme proposed
and implemented by Balcazar et al. [14] for interface-capturing of two-phase flows on 3D
unstructured domains is adopted, due to its proven reliability on this class of phenomena
—details above the scheme are reviewed in Chapter 1. It is coupled to an adaptive mesh
refinement algorithm, whose implementation follows the work of Antepara et al. [15]. The
algorithm carries out a quad/octree (2D/3D) hierarchical decomposition of the existing struc-
tured mesh. In addition, a simple and low-cost reconstruction scheme for the face fluxes
and cell-centered values has been introduced. Unlike similar approaches, this strategy is de-
signed to exactly preserve mass, momentum and kinetic-energy in the sub-cells during the
refinement/ coarsening procedures. This treatment allows to maintain the discrete conserva-
tion properties of the adopted collocated scheme, demonstrated in [15, 16] for single-phase
flows and analyzed in the context of multiphase flow by Schillaci et al. [17], thus, creating
the basis for the correct resolution of turbulence. As demonstrated in the following sections,
the analyzed scheme permits a considerable reduction of computational costs, both in terms
of memory requirement and calculation time in comparison to fixed mesh schemes. At the
same time, the method allows to obtain the required mesh size in each area of the domain,
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without significantly affecting the stability and the accuracy of the simulation.

This Chapter is organized as follows. In Sec. 3.2, the general features of the AMR methods
are explained. Then, in Sec. 3.3, the advantages led by the adoption of this strategy in contrast
with static mesh schemes are highlighted by numerical tests. We consider the tests of a vortex
flow and different set-up of rising bubbles, including the case of 3D merging bubbles in
different configurations. In Sec. 3.4, the capability of the method to correctly simulate basic
instability phenomena is shown, including the atomization of a 2-D coaxial jet.

3.2 Adaptive mesh refinement

The adaptive mesh refinement (AMR) strategy consists of a dynamic treatment of the mesh
aimed at improving the resolution in the regions in which a particularly small characteristic
length is needed. A simple example of a 2D mesh refinement is shown in Fig. 3.1(a). The
treatment used in this work is based on the quad/octree algorithm presented by Antepara et
al. [15] for single-phase turbulent flow. The refinement is performed over the initial static
mesh by dividing progressively a parent cell into four, in the 2D case, or eight, in the 3D
one, child cells. The progressive refinement stages are referred to as level 2, 3, 4 and so on,
as depicted in Fig. 3.1(b). As an example, Fig. 3.1(c) shows the inner section of a refined
domain, referring to the mesh of the coaxial 3-D jet described in Sec. 4.2.2. In this work, the
AMR strategy is extended to the multiphase flow case by choosing the appropriate refinement
criteria and by applying a particular discretization procedure to treat refined/coarsened face
and cells. This procedure is aimed at conserving discrete magnitudes —mass, momentum and
kinetic energy— despite the dynamic transformation of the grid. In some previous works, the
method demonstrated to apply efficiently also to general multiphase [18] and unstable two-
phase phenomena [19]. In this section, the refinement criteria used in this work and the
proposed discretization procedure are presented in detail. Finally, some validation tests are
proposed to show the reliability of the AMR on basic multiphase phenomena, and to highlight
the computational advantages led by its adoption.

3.2.1 Refinement criteria

The refinement step is carried out when certain refinement criteria are met over a list of cells.
These cells are marked with the corresponding level of refinement during a checking process,
performed every certain number of iterations. The refinement criteria used in this work or in
previous experiences from our group [15, 18, 19] are listed below.

Interface-capturing criterion It follows the behavior of the level-set function to assign
the highest level of refinement in the proximity of the interface, I. The refining process
is triggered when a minimum number of interfacial control volumes approximates the non-
refined domain area. Some additional rings of cells are added to the refined zone, so as to
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Figure 3.1: (a) Progressive quad refinement of a Cartesian mesh around the surface of a 2D
ellipsoidal body. (b) Octree decomposition of a uniform 3D Cartesian mesh. (3) Inner section
of a 3-D domain refined with AMR in this work.
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forestall the movement of the fluid and avoid the process of mesh renewal at each iteration.
The number of additional rings ranges from 1-2 in the case of slowly rising bubbly flows, to
5-6 in the case of rapid movements of the interface —e.g. high velocity injection jets. Finally,
departing from I, a decreasing level of refinement is assigned, to obtain a smooth transition
between highly refined and coarse mesh regions.

Vorticity-based criterion It is intended to refine the mesh in the zones in which a high
vorticity is measured, thus, guaranteeing that the smallest scales of the vortices generated by
turbulence are well captured. In particular, a specific cell is refined if

ARV X u|

max{u] > Qlim 3.1

where Ah is cubic root of the cell volume, and €, is a threshold parameter between 0.01
and 0.02.

Residual velocity criterion This method, proposed by [15] and further used in [20], is
applicable to turbulent flows resolved with LES models, and consists in refining the cells in
which a limit value of the residual velocity, u’ = u — 1, is exceeded. u’ depends on the filter
chosen to obtain the filtered velocity, u, in LES simulations. This criterion is alternative to
the vorticity-based one; however, differently from the latter, the threshold value for triggering
the refinement can be established in a general way to resolve basic turbulent problems.

3.2.2 Refined/Coarsened cells discretization

The proposed quad/octree AMR algorithm works on a hexagonal based mesh and operates in
the regions of the domain marked for refinement. The original centered scalar— and face fields
owned by the parent mesh are redistributed over the new cells— and faces according to an ap-
propriate scheme. The same happens during the coarsening step, consisting in the recovery of
the original parent cell from the child ones. In this work, the aim is that of re-distributing the
initial scalar fields as to maintain the conservation of discrete properties —mass, momentum
and kinetic energy— unaltered. In Fig. 3.2 the relation between parent/child cells in a 2D
case is represented. In the distribution process, the normal mass fluxes, M ', are considered
uniform along the faces and the normal mass flow through the parent face can be expressed
as

i=N
Myr= Y My, (3.2)
i€F(pf)

where pf indicates the parent face, and N is the total number of child faces, cf, in which the
original one has been divided (N = 2 in the 2D case, N = 4 in the 3D one). In a 2D Cartesian
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mesh —as the one depicted in Fig.3.2—, the following relation apply
My =My1q0+My 1. 3.3)

Moreover, in the case of a uniformly refined mesh, where the proportions of the child cells
respect the parent’s one, the fluxes on child cells are equal to

. My, . My,
Mpia==3%  Mpaa=—". (34)
The normal mass fluxes passing through the new internal faces are evaluated by means of a
weighted average of the mass fluxes of the neighbor cells. For instance, the mass fluxes of
the new faces in the child cell underlined in the picture, are evaluated as

o Myia+Mpa, It :Mf,2a+Mf,4a

Mps= 3.5
1.5 5 1.6 > (3.5)

During the coarsening step, mass fluxes on parent faces are recovered by summing the chil-
dren ones, according to Eq. 3.2. Centered velocities, u., are reconstructed by interpolat-
ing the surrounding face normal velocities, both in refined and coarsened cells. A centered
divergence-free velocity field is obtained by extending the scheme proposed in [21] to the
variable-density case. Considering a uniform momentum field (pu) over the cell volume,
the cell centered velocity is evaluated as the weighted average of the surrounding face mass
fluxes, expressed as

Y M, (3.6)

where r;} is the weight of the components, as it expresses the distance between cell circum-
center and face centroids. Finally, scalar field variables, as pressure, p, and volume fraction,
¢, are simply inherited by refined cells, while in the coarsening step, the parent value is ob-
tained by means of a weighted average (on volume) of the child cells values. For a generic
variable £ in the 2D uniform case, it simply yields

é _ gcﬁl + 50,2 + 60,3 + 5074
f = :

i (3.7)

Besides its simplicity, this process allows the conservation of mass, momentum and kinetic
energy in incompressible flows. In Appendix 1, the global mass conservation of the AMR
method in demonstrated. Moreover, providing that mass fluxes on refined/coarsened faces are
built to respect flux conservation, the considerations made by [16] and [15] —and analyzed in
the context of multiphase flows by [17]— over conservation properties of discrete quantities
apply. This guarantees the discrete conservation of momentum and kinetic energy in the
frame of collocated discretization, which is of key importance for the correct resolution of
turbulent phenomena.
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3.3 AMR Validation tests

The impact led by the adoption of AMR on simulations can be assessed in a systematic
way by comparing the solution obtained with adaptive and static meshes in some selected
validation cases. In the vortex flow test we analyze the advection of the level-set function
subjected to a given velocity field. Next, in the simulation of 3D rising bubbles, the interface-
capturing method is coupled to complete fluid motion equations. Some parameters can be
used for the assessment of AMR effectiveness. As defined in Fuster et al. [3], the efficiency
of an AMR scheme can be evaluated as

Tstatic CVamr
)
IAMR CVstatic

NAMR = (3.8)
where fyqc and taMr are the total computational times of static and AMR simulations, re-
spectively, CVamr is the average number of control volumes in the AMR simulation and
CVaiic 1s the number of control volumes of a static mesh with a characteristic length equal
to the smallest one achieved with AMR. Other characteristic values are the time ratio, 7, =
1 — fAMR /Tstatic> and the control volumes reduction ratio, cy = 1 — CVamr/CVistatic- In all
the tests proposed in this work, D/A#h is the relative definition of the mesh, being D the char-
acteristic dimension of the problem and A# the grid spacing. In AMR cases Ah is the grid
spacing set at the interface.

3.3.1 Vortex flow

In this test, a level-set distribution which initially describes a circle of diameter D = 0.2 —as
depicted in Fig. 3.3(a)—, is advected under the effect of a given flow field, u(x), described
by the following equations

u(x) = —sin®(7x)sin(27y),
3.9
v(x) = sin?(my)sin(27x). G2

At the inversion time, t;,,, the velocities are inverted and the simulation is continued until
fend = 2tiny, When the level-set function should recover its initial circular shape. The inversion
time, t;,,, is fixed at 1.

Two series of simulations are carried out. First, the test is performed on static regular Carte-
sian meshes with increasing definition (Tests 1 to 4). Next, an increasing AMR level (from
2 to 4) is imposed to Mesh 1, in order to obtain a grid spacing at the interface correspondent
to the previous tests (Tests 5 to 7)). A resume is reported in Tab. 3.1. The accuracy of the
results is evaluated by calculating the error over mass, ||€y||, and the error over the norm of
the mass center vector position, ||€p||, defined as

|[M(t0) — M (tena) ||
M(to) ’

|[xp(t0) — Xp(fend) ||
|[xp(t0)]

|lem|l = ler[| = 7 (3.10)
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Test Mesh AMR (D/Ah)

1 1 no 10
2 2 no 20
3 3 no 40
4 4 no 80
5 1 Iv.2 20
6 1 Iv.3 40
7 1 Iv.4 80

Table 3.1: Vortex flow: list of meshes used for the numerical experiments. D/Ah is relative
definition of the mesh.

Static test AMR test CVtatic CVaMR T NAMR

2 5 98x10° 3.6x10° 56% 83%
3 6 3.9x 107 6.8x10° 76% 69%
4 7 1.6x10° 15x10% 85% 61%

Table 3.2: Vortex flow: comparison between static and AMR cases. In the compared tests
Ah is equivalent in the interface region.

where M(t) indicates the mass of €, and xp(¢) is its vector center position. Both are evalu-
ated at the beginning of the simulation, fy, and at the end, fpq.

As shown in Fig. 3.4(a), ||ey|| reduces similarly in AMR and static tests, showing an order
of convergence between first and second for both cases. ||€p|| is slightly lower in static cases,
however, still showing an order of convergence between first and second. In Fig. 3.4(b), it is
possible to appreciate the difference in computational time between AMR and static cases.
In particular, this difference increases when reducing Ah, as remarked by the reduction of
the time ratio, 7,, reported in Tab. 3.2. Finally, despite its slight reduction with the decrease
of Ah, Namr keeps a value that exceeds 60%, thus, indicating an overall good effectiveness
of the AMR strategy. Some screenshots of flow evolution (referred to test 6) are reported in
Fig. 3.3.

3.3.2 Rising bubbles

According to the classification by Clift et al. [22], rising bubbles are characterized by E6tvos,
Eo —ratio between buoyant forces and surface tension—, Reynolds, Re —ratio between
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Test pl ul p ry o g Eo
small r, 1000 10 10 10 245 098 10
highr, 1000 10 1000 100 1.96 0.98 125

Table 3.3: Physical parameters used for the single bubble tests.

inertial and viscous forces—, and Morton number, Mo, defined as
_ D2 D 4 _
Eo— (p1—p2)g . Re= P1Vp Mo — SMi (p1—p2)

3.11
c W ’ p12(73 ’ ( )

respectively, where D is the bubble diameter, p; and y; characterize the surrounding medium,
P2 and U represent the bubble fluid, o is the surface tension coefficient and vy, is the bubble
rising velocity. The Clift’s diagram, reported in Fig. 3.8, relates Eo and Mo with Re and
the bubble shape. Other characteristic values are the bubble sphericity, S —ratio between
surface of the initial bubble and surface at time #— and its dimensionless mass center position,
x;, = x;/D. Time is represented in dimensionless form, as t = t+/g/D. In the 2D case, the
sphericity is substituted by the circularity, C, consisting in the ratio between the perimeter of
the initial bubble and the perimeter of the bubble at time ¢.

Some of the cases proposed in this section, as the small r, case (originally introduced by
Hysing et al. [23]), the 3D rising bubble case and the merging bubble cases (originally intro-
duced by Van Sint Annaland et al. [24]) were used by Balcazar et al. [14] to validate the CLS
methodology on fixed meshes. In this work, they are reproposed, together with additionals
tests, to demonstrate the computational advantages led by the adoption of the current AMR
methodology to the proposed physics, as well as its spatial convergence.

2D bubbles

This test case consists in the simulation of the two dimensional movement of a circular bubble
of diameter D. The fluids are assigned properties as to reproduce the benchmark results
reported by Hysing et al. [23, 25]. The domain, depicted in Fig. 3.5(a), is bounded by solid
walls —no-slip boundary conditions— on the x— and y—axis and the fluids are initially at
rest. Hence, the rise of velocity fields is due to the density difference between the involved
phases. Two physical situations are studied, as resumed in Tab. 3.3, where the physical
parameters of the fluids and the Eo number are reported. The cases are also defined in terms
of density ratio, rp = p1/p2, and viscosity ratio, ry, = 1 /ls.

Small rp, Three simulations are carried out, as resumed in Tab. 3.4. In the first two, static
meshes are used: a coarse one, characterized by a number of characteristic lengths per bubble
diameter, (D/Ah)y,.1 = 25, and fine one, (D/Ah)},; = 50. In addition, an AMR simulation is
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Test clock time [min] CVs  D/Ah
coarse 10 5000 25
fine 96 20000 50
coarse + AMR 1v.2 13 6300 50

Table 3.4: Mesh data and computational times measured in the 2D bubble low rp simula-
tions. performed on 4CPUs of the JFF cluster. D/Ah is the number of characteristic lengths
per bubble diameter (referred to the interface zone in the AMR cases).

performed, with the coarse static mesh as basic grid. A 1v.2 refinement is used, thus, achieving
the resolution of the fine grid, (D/Ah)}y2 = 50.

The advancement in time of y,, (vertical value of x;), v;, and C for the different cases are shown
in Figs. 3.6(a), 3.6(c), 3.6(e), where the experimental data extracted by [25] are also reported.
It is possible to notice that the AMR simulation accurately reproduces the results obtained
with the fine mesh —while an overall good agreement is found with the experimental data.
On the other hand, the data obtained with coarse mesh, do not differ excessively from the
experimental data, but the solution is generally worse than the other cases, especially with
regard to C. Finally, The computational time of the AMR case is very similar to the coarse
mesh one, as reported in Tab. 3.4, leading to a very high performance of the method, as
NamMr = 2.3, and 1, = 0.86.

In the simulation, the buoyancy forces produce the rising of the bubble, that quickly reaches
a stable rising velocity. At the same time, the bubble is deformed, and, helped by strong
surface tension forces, it assumes a stable ellipsoidal shape. In Fig. 3.5(b), some snapshots
of the rising bubble evolution are shown, reflecting the same behavior reproduced by other
authors as [23], and by Balcazar et al. [14, 26] when using the CLS method on fixed meshes.

Highr, Alsoin this case, the simulation is carried out with the fine and the coarse meshes,
where the fine mesh has (D/Ah)y,; = 100. Next, the case is simulated with a 1v.3 AMR
on the coarse mesh, in order to reach the resolution of the fine mesh —resume in Tab. 3.5.
The results are contrasted with data reported in [23], where the experiments performed by
different authors are compared. However, these solutions do not have the same identical
behavior, so the series of data that the more coincide between them are used as benchmarks.
Concerning the vertical position of the bubble, y;, and the rising velocity, vj, the solution
obtained on the coarse mesh is very poor —as shown in the graphs, Figs. 3.6(b), 3.6(d). Both
improve considerably when using the fine mesh and get closer to the benchmark values. The
AMR test gives good results for both y, and v;, approaching the fine mesh results with small
variances.

In Fig. 3.5(c), some snapshots of the rising bubble evolution, simulated with AMR, are shown.
The predominance of the buoyancy forces and the low surface tension, firstly promote the
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Test clock time [min] CVs  D/Ah
coarse 169 5000 25
fine 5877 80000 100
coarse + AMR 1v.3 455 ~9500 100

Table 3.5: Mesh data and computational times measured in the 2D bubble high r, simula-
tions. The computations are performed by using 16 CPUs on JFF cluster.

appearance of a concavity at the bottom of the bubble. Hence, thin filaments develop in
the extremities, leading to the detachment of small secondary bubbles around fyreax = 2.1 s.
The appearance of such secondary structures (filaments, satellite bubbles), and therefore, the
breaking of the original bubble structure, make the measurement of the bubble circularity of
little significance after fyeqx. C data reported in Fig. 3.6(f), show that the solution continues
to be poor on the coarse mesh. On the other hand, the ones obtained on the fine mesh and
with AMR, reflect well the behavior of the reference, up to fyeqx. After, both depart from the
benchmark, but follow the same path maintaining a stable gap.

In conclusion, the adoption of AMR, despite some low difference in the results —probably
due to the different mesh resolution in the bulk of the phases—, approximates well the solu-
tion obtained on the fine mesh, with a substantial lower computational time. Performances of
AMR strategy are still very good, being Namr = 1.52 and 1, = 0.92.

3D bubble

In this part, the vertical motion of 3D bubbles in a cylinder tube is analyzed. The domain
used for the simulations consists of a cylinder with diameter D, = 6D, large enough not
to affect the shape of the bubble, and a variable height, H. = [8 : 10] D, that should allow
the bubbles to reach the terminal velocity before encountering the top. The basic mesh,
depicted in Fig. 3.7(a), has a characteristic length per bubble diameter (D/Ah);,; = 8. The
tests are carried out by using three progressive mesh refinement levels around the interface,
thus, achieving the maximum definition of (D/Ah),4 = 64. No-slip boundary conditions are
applied to the top and bottom part of the domain, while slip condition is used on the external
walls. First, the analysis of single rising bubbles is performed; next, a further verification is
given by the study of the merging process between bubbles.

Single bubbles In this case, the rising of a single bubble inside the domain depicted in
Fig. 3.7(b) is analyzed. The validity of the results is assessed by comparing the shape and
the terminal rising velocity of the bubble with the experimental benchmark proposed by [22]
—see Fig.3.8. The terminal rising velocity is related to the rising Re number of the diagram
by means of the Reynolds number.
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Figure 3.7: (a) Mesh used for the simulation of the 3D bubbles. Set-up used for the various
cases: (b) single bubbles, (c) oblique merging bubbles.

The cases listed in Tab. 3.6 are analyzed. The same table reports the Re numbers evaluated
at steady state in the AMR simulations, when using the highest level of refinement (1v.4). In
the first example (case A), the bubble assumes a spherical shape due to the low Eo number,
that means a predominance of the surface tension forces. Once the steady rising velocity is
reached, the simulated value of the Reynolds number, Reg,, = 1.83, is close to the one re-
ported in the Clift’s diagram (Recyis ~ 2). In case B, where a higher Eo is set, the bubble
undergoes a progressive deformation and assumes an ellipsoidal shape. The final rising ve-
locity is sustained (Regim = 23, Reciire =~ 25). In the last example (case C), characterized by
the highest Eo number, the predominance of buoyant forces produces the ellipsoidal/skirted
shape of the bubble. However, the final Re number (Regim = 18.5, Reqiife ~ 20) is limited by
the high Mo number. As shown in the graphical comparison depicted in Fig.3.8, the expected
bubble shape is correctly reproduced in all the proposed cases.

A quantification of the benefits led by the adoption of the AMR strategy can be done by
comparing the results with the ones obtained by Balcazar et al. [14], that performed similar
simulations on static meshes. The number of control volumes is dramatically reduced in the
current work, as reported in Tab. 3.7, where the static CVs [14] and the AMR 1v.4 CVs are
compared. The obtained results are in good agreement with the numerical reference for the
whole evolution of the flow, for both Re and S measurements, as shown in Fig. 3.9. The
accuracy of the solution is improved by increasing the AMR level, reaching an acceptable
mesh convergence with a 1v.3 (case B) or a 1v.4 (case A and C) refinement. Concluding, this
test demonstrates that despite the strong reduction of mesh requirements, no practical loss of
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case Eo Mo Re[22] reproduced Re  predicted shape

A 1.0 le-3 2 1.83 spherical
B 10.0  1le-3 25 23 ellipsoidal
C 100.0 1 20 18.5 ellipsoidal/skirted

Table 3.6: 3D bubbles: solitary bubbles reproduced and analyzed in this work.

case  CVgyuic[14] CVamr[lv4] nev
A 2.3 % 10° 32%x10° 86%
B 2.3 % 10° 34%x10° 85%
C 3.4 % 10° 3.5x 100 90%

Table 3.7: 3D bubbles: number of control volumes needed for dynamic and static mesh
simulations [14] in the single bubble case. The percentage reduction of control volumes,
Ncv, is also indicated.

accuracy is found between AMR and static mesh computations for the analyzed flow regimes.

Merging bubbles In the following test, the merging process of two rising bubbles is re-
produced. This test, already proposed by Balcdzar at al. [14] to validate the CLS method on
fixed meshes, is here reproposed to show the capability of the AMR methodology to yield a
convergent solution when studying the complex phenomenon of merging between bubbles.
In particular, the coalescence is considered to happen when the interfaces of two bubbles fall
inside the same cells, hence, without taking into account any other effect related to surface
tension. In this sense, the CLS accuracy is improved by reducing the mesh size in the prox-
imity of the contact zone by means of AMR. The single bubbles are defined by the following
dimensionless numbers, Eo = 16 and Mo = 2 x 10~%, in order to reproduce the simulation
realized by van Sint Annaland et al. [24] on the OBLIQUE configuration.

The initial configuration of the bubbles is depicted in Fig. 3.7(c). A slightly higher compu-
tational domain is used in this case, to allow the achievement of a more stable final rising
velocity. The two bubbles assume different shapes during the rising. The leading bubble rises
without suffering any disturbance and assuming its typical ellipsoidal shape, hence, respect-
ing the Clift’s diagram behaviour. On the other side, the second bubble deforms, assuming
a slug-like shape, and directing its top towards the wake of the first bubble. This rises more
quickly, due to the suction effect caused by the leading bubble. The merging happens at
t' ~ 6.0 5. The resulting bubble has an elliptical shape and rises with Regy, ~ 47.5, close
to the one indicated in the Clift’s diagram, Recyig ~ 52. It is slightly inclined on one side,
probably because the domain is not large enough to allow the achievement of a full rising
symmetry. Finally, the bubble reduces its velocity due to the vicinity of the upper boundary.



3.3. AMR VALIDATION TESTS 79

[ LA AL B R R L B B o o S AL A RMLL B
F LoG M
F -14 —,)
h

13—
oE -12
B
idg; & : E E
ES i A
F 2 s : ;
-8 : / /
-] i
E Chapter 5 i Chapter 7 p Chapter 8 /
o = i 4 =
1 A
i 3 ]
2

T

case B: Eo=10, Mo=1 x 107°

g
35

9 ‘ E
oiMPLED A
LLIP%I}AI:CAP ]
SPHERICAL
1k o e
Chapter 3 Ay A ]
s
(L Lt T2 LTI A A ‘
10 10" 1 10 1 10 IS
EOTVOS. NUMBER, o case C: Eo=100, Mo=1

Figure 3.8: 3D bubbles: on the left, bubble regime diagram proposed by [22]. On the right,
the single bubbles at steady state simulated in this work are depicted. A zoom over the refined
area is also proposed. For clarity of representation, 1v.3 refinement pictures are plotted.



80

CHAPTER 3. AMR STRATEGY

25 11
20 1.0
15 0.9
& / »

1.0 08

f v .

W3 -- V.3 - -
05 AMR v.4 07 AMR .4
static o static [}

0.0 0.6

0 1 2 3 4 5 6 ] 1 2 3 4 5 6

t ¢
(a) case A -Re (b) case A -S
30 1.1
= 1.0
NP BEESS See o b oS : e
5T T \k

20 T T 2
/ o 2o __a 2
15 @

(]
o
08
10
AMRIv.2 -----
5 'Z AMRNS TIIIT 07 AN VG -
0 0.6
0 1 2 3 4 5 6 ] 1 2 3 4 5 6
t v
(c) case B -Re (d) case B-S
25 1.1
AMRIv.2 ----—
1.0 AMR Iv.3 --
. B AMR Iv.4
2 S S NS D N e o
15
Q
o ‘f » 08
10

static o

0 05
0 1 2 3 4 5 6 1 2 3 4 5 6
t ¢
(e) case C - Re (f) case C-S

Figure 3.9: 3D bubbles: Re number and sphericity, S, obtained in single bubble simulations
with increasing levels of refinement, and comparison with static mesh reference by [14].



3.4. INSTABILITY PHENOMENA 81

8.0

AMRIV.2 - - - - -
AMRIV.3 - - - - - 7
AMR Iv.4 ~

7.

o

6.0

5.0 AL

Yo
\'

4.0

3.0 A7

2.0

Figure 3.10: Joint centre of mass position evolution in the bubbles merging test calculated
for increasing levels of refinement.

Some snapshots of the flow evolution are depicted in Fig. 3.11, where they are compared to
the equivalent pictures proposed in [24]. The strong similarity with the reference pictures
confirms the reliability of the results. The solution showed to be convergent when increas-
ing the AMR level, as shown in Fig. 3.10, where the behaviour of joint bubbles mass centre
position is plotted.

3.4 Instability phenomena

The break-up process of a two-phase jet embraces a wide scale of turbulent and interfacial
characteristics lengths. Therefore, if we intend to study a complete atomization process, we
must firstly ensure the capability of the numerical scheme to simulate the phenomena that oc-
cur at the smaller scales. In this section, we present some basic tests aimed at demonstrating
the correct capture of such phenomena. First, we analyze the breakage of a liquid column
subjected to capillary instability. Finally, in the turbulent 2-D Jet case, the appearance of
Kelvin-Helmoltz instabilities due to the shear stress between two co-flowing high speed flu-
ids is shown and the mesh convergence achieved by means of the AMR strategy is further
demonstrated.

3.4.1 Plateau-Rayleigh Instability

A column of liquid stressed by a surface disturbance tends to minimize its surface under the
action of capillary forces, and finally degenerates into droplets. This phenomenon is com-
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monly called Plateau-Rayleigh instability. In this test, the disintegration of a liquid column
is studied, and the growth rate of the surface instabilities, @, measured in numerical experi-
ments, is compared to the linear capillary instability theory of viscous jets, studied by Weber
[27]. The domain, a rectangular box of sizes 1.0 x 0.5 x 0.5, is occupied by a water col-
umn of diameter D = 0.2, surrounded by air at ambient temperature. The surface tension is
set to ¢ = 0.07, and Oh ~ ¢(10~#) indicates a low influence of viscous dissipating forces.
The surface is perturbed by a sinusoidal instability, described by y(x) = asin(27x/A ), where
a = 0.02 is the amplitude and A is the wavelength. Simulations are performed by using a 1v.3
refinement over the basic mesh to achieve a grid spacing at the interface of (D/Ah)yy3 ~ 26
and slip boundary conditions are applied to the boundaries. Several experiments are carried
out by varying the input value for A, and evaluating the maximum growth rate at each time
step as
Omax max{In(y(x,t+ 1)) —In(x,y(¢))}

o = A (3.12)

where @y = 4/ p,rg /o is the characteristic time scale of break-up and y(x,7) is the liquid
column profile at time . Numerical results for wmax are compared to the curve obtained
from the solution of the equation reported by Ashgriz [28] for the perturbation spectrum. The
relation, valid for sufficiently long waves (ka << 1), reads as

3uk?
0+ M6 T 1Rl =0 (3.13)
p 2pas

where k =27 /A is the wave number. Fig. 3.12 shows numerical and theoretical results versus
dimensionless wave number, ka, demonstrating the validity of our results. The snapshots of
Fig. 3.13 describe the evolution of the flow when A is set to 1, as a function of ' =/ @y. In the
first stages of the simulation, the filament undergoes a slow deformation, up to approximately
' = 5.5, when it tapers quickly near the edges up to point at which breakage occurs, between
t'=5.5 and ¢ = 5.8. The large central drop, initially deformed, is subjected to a series of
oscillations, until it reaches a fully spherical and stable shape, at ¢’ ~ 8.5. The same behavior
was observed by other authors [10, 29].

3.4.2 Turbulent 2-D Coaxial Jet

In this section, we re-propose the test presented in Chapter 2 regarding the atomization of a
2-D multiphase jet. In this case, we want to demonstrate the ability of the AMR method to
yield a convergent solution when increasing the refinement level in instability phenomena.
The test is validated by comparison to numerical results presented by Fuster et al. [3]. All the
details about the set-up and the validation process are given in Sec. 2.4.4.

The original results proposed in the current Chapter are reported in Figs. 3.14(a), 3.14(c)
and 3.14(e), where the evolution of the time-averaged energy of velocity fluctuations E,, /Ep,
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Figure 3.13: Plateau-Rayleigh Instability test: deformation of a liquid column under the
effect of capillary forces. Case of A = 1.
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along the jet profile is depicted, being E,; = (v/)?, and Eo = (u;)?. The profiles are taken
at three different distances from the inlet, x/D, and due to the symmetry of the geometry,
only the sectors corresponding to the top half part of the domain are represented. In parallel,
Figs. 3.14(b), 3.14(d) and 3.14(f) report the time-averaged relative horizontal velocity of
the fluid, (u — u;)/u, for different x/D. The results are compared to the same magnitudes
measured by [3], showing an overall good agreement while the solution gets closer to the
reference by increasing the degree of AMR. The measurements show that a 1v.3 refinement
is needed to obtain a sufficient convergence of the solution in all the profiles analyzed.

The presented plots for E,/, taken from the intact part of the jet, show how the energy of
fluctuations progressively rises in the proximity of the interface. At the same time, E,» grows
inside the liquid and air bulks, indicating the transfer of energy to the inside of the jet. Next,
the internal stresses cause the complete breakdown of the fluid core, which happens at L/D ~
10. After a transition phase, the jet reaches a statistical steady-state condition, in which the
dispersion of the atomized flow occurs according to a constant frequency of shedding. In
[17], we analyze and comment the power energy spectrum of the coaxial 2-D flow, which
permits a characterization of its turbulent behavior.

3.5 Conclusions

In this work a CLS-AMR strategy for the finite-volume discretization of multiphase flow,
mainly intended for the simulation of break-up and atomization phenomena, is analyzed. As
numerically demonstrated in the various tests, the method is able to dramatically reduce the
computational resources involved if compared to static mesh methods, without at the same
time losing accuracy in the solution. The model accounts for a divergence-free treatment
of the refined and coarsened cells, which is analytically demonstrated to ensure the correct
transport of mass, momentum and kinetic energy.

In a first series of tests, accounting for a vortex flow and different rising bubble cases, the
convergence of the results obtained in two-phase flows is demonstrated. The sharp decline in
computational resources required in comparison to static mesh cases is also highlighted.

In the instability phenomena section, we have presented some basic tests aimed at demon-
strating the correct capture of instability and break-up phenomena at small scales. First, the
Plateau-Rayleigh instability growth ratio was correctly measured on unstable liquid columns.
Hence, in the 2-D coaxial jet case the capability of the CLS-AMR method to yield a conver-
gent solution when increasing the refinement level in two-phase phenomena with interface
break-up and turbulent fluctuations is demonstrated.
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Figure 3.14: 2-D Turbulent Jet: kinetic energy of velocity fluctuations E,/ / Ey and horizontal
velocity of the fluid (1 — u;)/u; measured with different levels of refinement. Comparison to
reference data by [3] for different distances from the inlet, x/D.
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Numerical simulation of
two-phase 3-D jets

Part of the contents of this chapter are currently Under Review in:

E.Schillaci, O. Antepara, N. Balcdzar, and A. Oliva. A dynamic mesh refinement strategy for
the simulation of break-up phenomena in two-phase jets International Journal of Heat and
Fluid Flow, Under Review.

4.1 Introduction

The study of the liquid atomization process is currently a problem not totally understood in
the engineering field, due to the high complexity of the phenomena that lead to the generation
and amplification of instabilities at the interface, and, next, to the complete pulverization of
the liquid core —an introduction to the physical processes involved is available in Tryggvason
at al. [1]. A correct numerical representation of such processes would bring great advances
in the simulation of important applications, such as automotive engines and propulsion sys-
tems. In this Section, we will present the numerical methods recently used in the scientific
community to study atomization processes. Hence, we introduce the numerical simulations
of atomization phenomena carried out in the mark of this thesis, and described in detail in the
following of this Chapter. Finally, the dimensionless numbers used to characterize this kind
of flows are presented.

Simulation of two-phase jets in literature In the last decades, several numerical methods
have been proposed to solve atomization problems, spacing between the three main classes
of computational fluid dynamics (CFD) models: in Reynolds-averaged Navier-Stokes equa-
tions (RANS) [2], the approach is based on a homogeneous formulation of the two-phase
medium, and the transport of mean interface density is modeled by diffusion-like hypothesis,
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therefore neglecting the effect of the interaction between liquid structures [3]; on the other
side, large eddy simulations (LES) approaches [4] still suffer the complexity of coupling tur-
bulence modeling and interface-capturing methods. In particular, many LES models are not
able to take into account surface tension forces, that play a key role in atomization processes
[5]. Finally, direct numerical simulation (DNS) approaches involve strict requirements in
terms of computational resources, because of the numerous length scales involved in the phe-
nomenon. That include the correct representation of surface phenomena, such as the growth
of waves and filaments, as well as the generation of drops of varying size in primary and
secondary atomization processes. Indeed, as demonstrated by Shinjo and Umemura [6], the
use of huge computational resources is needed to carry out the DNS of complete atomization
phenomena. Nevertheless, the quality of the results is excellent, as also demonstrated by other
authors. While an early overview above authors that worked on the DNS of atomizing flow
is given by Gorokhovski and Herrmann [3], some of the latest works in this field are listed
below. Between the others, Desjardins et al. [7] proposed a robust and mass conservative nu-
merical method for the study of the turbulent atomization of a liquid Diesel jet, consisting in
the injection of a high-velocity liquid into a still air chamber. In Desjardins et al. [8] the same
method is used to perform further simulations of Diesel injectors. Moreover, they applied
it to the simulation of coaxial jets —where the atomization of the liquid is assisted by the
coaxial injection of a high-speed gas— obtaining a good agreement between experimental
and numerical data in a wide range of situations. An example of the flow evolution, which is
analyzed also in this work, is proposed in Fig. 4.1, where both experimental and numerical
results are shown. Menard et al. [9] and Lebas et al. [10] contributed to the understanding
of primary break-up in Diesel spray by means of simulations, e.g. correctly representing the
influence of gas temperature. Fuster et al. [11] studied the influence of the injector and the ef-
fect of vortices generation and swirling in high Reynolds number simulations of coaxial jets.
Again, Shinjo and Umemura [6] performed detailed simulations of liquid injection in still
air, obtaining detailed insights on the formation of ligaments and drops during the primary
atomization process. Delteil et al. [12] analyzed in detail the break-up of a water jet in the
wind-induced regime. More recently, Salvador et al. [13] studied the influence of mesh size
in Diesel spray simulations. Grosshans et al. [14] analyzed the influence of various parame-
ters as nozzle turbulence, cavitation bubbles, density and viscosity liquid-gas ratio in the final
size of droplets. Finally, Shao et al. [15] performed detailed simulations of the swirling lig-
uid primary atomization process. In most of the cited works, up to several hundreds millions
control volumes are used to carry out detailed simulations of the jet behavior, demonstrating
that the accurate DNS of complete atomization phenomena can lead to quality results. How-
ever, the huge computational cost of such simulations makes them unfeasible for common
resources, as indicated by the huge numbers reported in Tab. 4.1. As explained in Chapter. 3,
our strategy to improve the feasibility of multiphase flow simulations, in particular, regarding
atomization phenomena, consists in the adoption of the Adaptive Mesh Refinement (AMR)
technique.



4.1. INTRODUCTION

Author type of simulations  Re; CVs
Desjardins et al. [8] coaxial jet 1336 3.4 x107
Desjardins et al. [8] diesel injection 5000 upto4 x 108

Shinjo and Umemura [6] liquid injection 1470 6 x 107

Table 4.1: Size of computational domains reached by some authors when performing detailed
numerical simulations of high-speed liquid injection phenomena.

(b)

Figure 4.1: Comparison of flow evolution obtained in coaxial jet experiments by Desjardins
etal. [8], Re; = 1336, We, = 321.
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Present work In this Chapter, we report the numerical results which were obtained in
the analysis of various break-up and atomization phenomena. In particular, in Sec. 4.2,
we demonstrate the capability of the numerical framework described in Chapters 1 to 3 to
correctly achieve the complete simulation of coaxial jets, from the initial instability to the
complete rupture of the liquid core. The proposed contents have been included in [16] and
in [17]. In the analyzed cases the Reynolds number of the liquid jet varies between 600 and
~ 1 x 10*, while the Weber number, which indicates the aerodynamic pressure exerted by
the gas on the liquid, ranges between ~ 2 x 10 and ~ 5 x 10°. The numerical results are
compared with the empirical relation obtained in experimental works by [18] and by [19] in
the context of round-water jet break-up.

In Sec. 4.3, the injection of a liquid flux in a quiescent air environment is studied. The basic
set-up is simulated for a wide range of physical parameters as the inlet velocity of the liquid,
the density of the gas, and the surface tension coefficient. Our aim is to propose some addi-
tional insights to the atomization literature, by studying numerically the atomization regime
as function of these input parameters. Hence, the various tests are placed on break-up regime
maps as function of dimensionless parameters, as Re;, We, and Oh, to be compared with the
correlations found in literature.

Dimensionless numbers in two phase jets The nature of break-up instability of liquid-gas
systems depends on the dimensionless parameters of the fluids, i.e. the Weber number, We
—fluid inertia over surface tension ratio—, the Reynolds number, Re —fluid inertia over
viscous forces ratio—, and the momentum flux ratio, M, defined as

2 2

iu; D iuiD u
We; = UL pe, = PID -y Pes 4.1

c W pii?

where i refers to liquid, /, or gas, g, respectively, and D is the characteristic diameter of
the liquid. In the case of liquid flows dispersed into quiescent non-dense environments, an
important parameter is the Ohnesorge number

Hy
Vpi6D’

defined as the ratio between viscous forces, that tend to keep the flow stable, and the product
of inertia and surface tension that tend to break the liquid surface.

Oh =

4.2)

4.2 Coaxial Jet

The 3-D coaxial jet physics, consisting in the coaxial injection of two liquid and gas streams,
embraces a large range of industrial operations. Some examples are the generation of phar-
maceutical sprays or the atomization of liquid propellants in combustion engines. The DNS
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Figure 4.2: Break-up regime diagram of coaxial jets extracted from [18], function of Re;
and We, parameters. M= pgu§ / plul2 is the momentum flux ratio. On the right, a graphical
resume of the cases analyzed in this work is depicted.

of such phenomena would allow a precise knowledge of the liquid dispersed structures, as
well as the diameter of droplets resulting from the atomization process. In this section, we
first present a review of the information available from experimental literature above coaxial
jets. Hence, we show the results obtained in two different numerical simulations and their
comparison with semi-empirical relations. In the first case, the objective is pointed on the
analysis of the initial destabilization of the jet and its primary break-up. In the second test,
the secondary atomization process is analyzed more in detail, focusing on the measurement
of the final droplet diameter. Simulations are verified by comparing the characteristic ampli-
tudes with reference value found in literature, i.e. the wavelength of the KH instability, Axy,
the Rayleigh-Taylor wavelength, Agr, and the Sauter mean diameter of droplets, d3;. As for
the other instability phenomena presented in Sec. 3.4, this kind of flow is characterized by
the parameters presented in Eq. 4.1, while dimensionless time is ¢’ = tu; /D.

4.2.1 A review of the experimental literature.

The atomization of a liquid jet by means of a fast parallel gas stream has been analyzed
experimentally by several authors. Their works provide semi-empirical relations for the
calculation of characteristic amplitudes, as the wavelength of the KH instability, Axy, the
Rayleigh-Taylor wavelength, Ary, and the intact jet length, L/D. Each relation presented in
this paragraph has to be applied to a specific range of physical conditions and set-up features
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of the coaxial jet. In the case of an axial liquid injection, perturbed by a thin parallel laminar
gas flow (D > h), Axp can be evaluated by using the formulation proposed by Marmottant and
Villermaux [19]. They state that, in case of high We number, the wavelength is proportional
to the vorticity layer thickness, 8, and it may be evaluated as

Acitmar = C, | 218, 43)
4

with constant C ~ 1.2 for the coaxial axisymmetric configuration. In the case of laminar flow
inlet, the vorticity layer thickness can be evaluated as 6 = 5.6h1/Re, where h is the air-gap
inlet length. Similarly, the situation of a small-diameter liquid jet exposed to a large diameter
high-speed gas (h>>D) is analyzed by Varga et al. [20]. In this case, the liquid atomization
is completed within a few liquid-jet diameters of the nozzle exit. Again, the wavelength is
proportional to the vorticity layer thickness, & o< (L, /(ugp,))%, and it reads as

AH.var = 0.055 \/ﬁ e @.4)
Pg V Pglte

Following the primary destabilization, ligaments appear on wave crests. [19] proposes a
relation for the evaluation of Agr, expressed as as

o -1/3
ART’margz.saw%l“(;) , 4.5)

where Weg is the Weber number of the vorticity layer, evaluated as Wegs = pgu§5 /o. In the
case analyzed by [20], Agr is evaluated as

- kS
ART var & [ug (1 N %) —Ml] u;/4’ (4.6)

where K and & are a constant factor and a fluid properties factor, respectively, specified in the
reference. Once ligaments are generated by the transverse instability, they quickly degener-
ate into droplets and their size is demonstrated to be proportional to the wavelength of the
transverse instability [19, 20, 21]. The latter is much smaller than the axisymmetric (Kelvin-
Helmbholtz) wavelength. Hence, some proportionality relation between the mean droplet size
in the atomized region and Agr are found in literature, e.g. [19] states that the Droplet Mean
Diameter, d3;, can be found as

d32,mar =~ 0~28)~RT,maro (47)

Instead, the relation proposed by [20] is

crlKH,var

d ~0.68) ——————.
32,var pg (ug — u[)z

(4.8)
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Re;  Wey Re, We, CVs
near-field 600 800 1400 4667 2.5x 10°
far-field 9980 137 23400 203 6.6x 10°

Table 4.2: 3D Coaxial Jet: dimensionless numbers and CVs at steady state.

Test SPC CPUs CVs time [hx CPU]
near-field JFF 128 ~2.5M ~720
far-field Finisterrae 512 ~6.5M ~500

Table 4.3: Coaxial Jets: computational details of the simulations. SPC is the employed
supercomputer, with the related number of CPUs; CVs is the averaged number of dynamic
cells involved in the simulations while the time indicates the number of hour (per CPU) for
which the case was run. More details above SPC resources are reported in Sec. 1.1.1.

Following the generation of ligaments and droplets, and the increasing destabilization of the
liquid structure, a complete break-up of the liquid core occurs at some liquid-jet diameters
from the injection. Some authors have analyzed the mean liquid-core intact length, L/D, e.g.
Lasheras and Hopfinger [18] provide a general expression that reads as

L 6 u; -

S (1) 4.9

D VM ( "‘g) 49
4.2.2 Near-field analysis

In this paragraph, we propose the simulation of a coaxial jet with Re; = 600 and We, ~
5 x 10°. These properties are appropriate to show in detail the phases of the destabilization
process that lead to primary break-up. The numerical set-up, depicted in Fig. 4.3, consists
of a rectangular box, in which a high-speed round liquid jet, with diameter D, is injected at
constant horizontal velocity. The coaxial gas flux flows from the outer gap of amplitude A.
Dimensionless numbers are reported in Tab. 4.4 (near-field case). At the other boundaries an
outflow pressure based condition is applied. A 1v.3 AMR is used on a basic mesh of ~ 3.5 x
10° cells. At statistical steady state, the mesh counts ~ 2.5 X 10° elements, and (D/Ah)yy 3 =
60. Alternatively, the achievement of the same resolution on a static Cartesian mesh would
require the employment of ~ 2.1 x 107 elements. More details above computational data are
given in Tab. 4.3.

According to the break-up regime diagram proposed by [18], and reproduced in Fig. 4.2,
the flow properties indicate a fiber type atomization regime. In Fig. 4.3, a screenshot of
the completely developed coaxial jet is also reported. In the zoom one can observe in detail
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KH instability, Ax g

RT instability, Arp

Figure 4.3: 3-D Coaxial Jet: near-field analysis of the jet (Re; = 600, We, ~ 5 X 10%). On
the top-left, the numerical set-up is depicted. In the top-right screenshot (¢ = 6.3), the jet
surface is first unstabilized by waves, that successively roll-up causing primary atomization.
In the zoom, the instability wavelengths Axy /D and Agr /D and the intact length of the jet,
L/D, are indicated.

the Kelvin-Helmholtz mechanism —characterized by the Kelvin-Helmholtz instability wave-
length, Axy— already described in the case of the 2D jet, which leads to destabilization of
the surface with the consequent breakage of the liquid core. Numerical values for Axy/D,
are evaluated from a graphical analysis of the jet pictures and compared to the semi-empirical
relationships, being (Akp/D)num == 0.37. Good agreement is found with the reference value,
(AkH/D)ref =~ 0.43, evaluated according to Eq. 4.3 [19]. Results are reported in Tab. 4.4.
The acceleration of the liquid surface due to the KH instability is the triggering for the fur-
ther destabilization of the flow. Indeed, the accelerated crest of the waves generated by the
first instability, developing on a direction perpendicular to the main flow, are subjected to a
Rayleigh-Taylor (transverse) type instability. This consists in the action of the light phase
pushing on the heavier one, causing the appearance of ligaments on the top of the wave
crests. This phenomenon, characterized by ArT wavelength, is also highlighted in the zoom of
Fig. 4.3. Again, good agreement is found between the numerical value, (ArT/D)num = 0.14,
and the experimental one, (Agr/D)er > 0.11, evaluated from Eq. 4.5 [19].
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Axu/D Art/D L/D d3[um]
num. ref. num. ref. num. ref. num. ref.
. 0.43 [19] 0.11 [19]
near-field  0.37 0.04 [20] 0.14 0.014 [20] 4.66 4.75[18] - )
. 1.26 [19] 0.49 [19] 1377 [19]
far-field 0.1 [20] ooyt SH8L 118057 o)

Table 4.4: 3D Coaxial Jet: characteristic lengths measured in simulations (num.) and com-
parison to experimental data (exp.) by [19], [20] and [18].

Altogether, the two instability mechanisms described form the primary break-up process.
Following, the amplification of the disturbances downstream leads to the fragmentation of
the liquid core and the spreading of droplets downstream. The numerical value for the intact-
length of the jet, L/D, is well captured, as (L/D)nym ~ 4.66 acceptably matches the experi-
mental data, (L/D)..s ~ 4.75, expressed by Eq. 4.9 [18]. The droplet size is not analyzed in
this case as the test was focused on the near-field of the jet and the path traveled by particles
is not long enough to show a complete spray atomization. Generally, as shown in Tab. 4.4, the
relationships presented by [19] (case of an axial liquid injection perturbed by a thin parallel
laminar gas flow), agree with present set-up. On the other side, the data obtained from [20]
expressions (case of a small-diameter liquid jet exposed to a large diameter high-speed gas)
are different, highlighting a poor compatibility between the models.

4.2.3 Far-field analysis

In the second test, a longer domain is adopted. It allows the analysis of the far-field, where the
liquid core is totally broken and the structures resulting from primary break-up have mostly
degraded into droplets. The numerical set-up reflects the one used in the near-field analysis,
while the new properties are highlighted by dimensionless numbers in Tab. 4.2. Re; ~ 1 x 10*
and We, ~ 200, indicate a fiber type atomization regime closer to the turbulent zone. At
statistical steady state, the mesh is characterized by a dynamic definition of (D/Ah)y3 = 72.
The minimum definition is set as a result of preliminary tests and it is aimed at guaranteeing
the maximum reduction of numerical coalescence between the particles generated by the
primary break-up. Further details above computational resources are given in Tab. 4.3.

An overview of the flow evolution is presented in Fig. 4.4. The increase of turbulence with
respect to the previous case makes it difficult the graphical identification of the initial in-
stabilities that lead to the core breakdown, Axy and Agr. Indeed, the instabilities present a
large temporal variability and appear partially overlapped. Furthermore, the low Weber num-
ber, We,, indicates a decrease in the efficiency of the aerodynamic forces in the generation
of surface waves. Due to the fact that the instabilities are not clearly distinguished (as in
the near-field analysis), their wavelengths are not measured in this case. On the other side,
the liquid core intact-length, (L/D)num =~ 4, despite being slightly sub-estimated, is in good
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Figure 4.4: 3-D Coaxial Jet: snapshots of the jet simulated in the far-field analysis (Re; ~
1 x 10%, We, ~ 200).

agreement with the reference value by [18], (L/D)es =~ 5, expressed by Eq. 4.9.

After the core break-up, the release of secondary structure occurs by following a constant
pulsation. The characteristics of the droplets cloud is studied by analyzing the zone of the
domain where, after a few diameter lengths, x/D, the presence of droplets is stable. The
analysis is carried out by means of an image treatment that allows the recognition of the
diameter of the droplets that pass through a given section —see example in Fig. 4.5(a). The
distribution of the drops presents a fairly regular normal distribution after a certain distance
from the origin, x/D ~ 6. An example is shown in Fig. 4.5(b). A statistical analysis allows
the identification of the Sauter Mean Diameter, d3;, to be compared with reference data.
The measured value for (d33)num =~ 1180 um agrees well with reference value, (d32)num =~
1377 pm, evaluated with Eq. 4.7 [19]. The number of cells per average droplet diameter,
(ds2/Ah)1y3 ~ 8.5, results appropriate to represent correctly the small interfacial scales.
Also in this case, the relations proposed by [19] prove to be better suited to the representation
of the set-up compared to those of [20].
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Figure 4.5: Coaxial Jet: (a) example of a section in which the droplets are marked and their
diameter is collected for statistical analysis. (b) Normal distribution of droplet size in the 3-D
Jet evaluated at x/D = 7 for the far-field analysis.

4.3 Liquid injection

The injection of a liquid flux in a quiescent air environment is a recurrent set-up in industrial
applications. Some remarkable examples are the fuel injectors in Diesel engines or some
kinds of pharmaceutical sprays. In this section we firstly propose an overview of the physical
behavior of this kind of flow, mainly proceeding from theoretical and experimental works.
Hence, we will perform a series of simulations aimed at studying the variability of the jet
characteristics as function of selected input parameters. In particular, the analyzed variables
are Re;, Oh and We,. We will compare the pattern obtained in simulations with the one
expected from bibliographic study, situating each case on a break-up regime map. All the
simulations were carried out on Mare Nostrum IV supercomputer (more details are given
in Sec. 1.1.1), by employing up to 288 CPUs during 10-15 days of simulation to reach a
statistical steady-state.

4.3.1 Atomization Regimes

As reported by various authors [22, 23, 24], the dispersion pattern of a liquid jet mainly
depends on Re; and Oh parameters. By maintaining the fluids properties fixed, the most uni-
versally recognized regimes can be obtained by progressively increasing the fluid intake rate,
as described below. In the dripping regime, the liquid drops are directly emitted at the nozzle
exit. This regime is characterized by a very low value of #;. When a laminar liquid is injected
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at low velocity (Rayleigh regime), it forms a ligament that degenerates into droplets. The
break-up length, or intact-length of the jet, L, is defined as the length at which the rupture
of the ligament occurs, or, alternatively, as the length of the intact jet attached to the nozzle.
These drops have a characteristic diameter, dgrop, in the order of magnitude of the inlet jet
diameter, D. This phenomenon, similar to the dripping of water from a tap, is due to the
axisymmetric propagation of Rayleigh waves and is it driven by surface tension forces. For
higher Reynolds number (wind-Induced regime), the inertial forces assume greater impor-
tance. The jet develops asymmetric instabilities, and releases small droplets, dgrop < D. The
intact length of the jet initially increases with the velocity, but it starts to recede once a limit
Re number has been reached [25]. Some authors as Dumouchel [24] distinguish between first
and second wind-induced regime. In the first wind-induced regime there is a dominant pertur-
bation evolving on the jet interface, which, although showing axisymmetric characteristics,
does not produce organized drops as in the Rayleigh regime. The drop-size distribution may
become wider, but the diameters are still in the order of magnitude of the jet diameter. On the
other side, in the second wind-induced regime the jet column shows a more disturbed shape
and different length scales of the growing perturbations. Droplets are generated firstly by a
peeling-off of the interface, and, secondly, from the rupture of the liquid core. The large struc-
ture that may results from the core break-up may still undergo secondary atomization. For
stronger flow rates (Atomization regime), the aerodynamic effects become dominant and the
jet undergoes a total atomization close to the inlet. The final size of the droplets —generated
by both primary and secondary break-up processes—, span over a wide range of scales, and
is defined by means of a statistical value (dsmp drop << D).

A common way used to characterize the disintegration mechanism consists in the study of
the break-up length as function of the inlet velocity. A typical L versus u; plot is shown
in Fig. 4.6(a), extracted from Reitz and Bracco [26]. This plot shows how —as explained
before—, L initially increases with the velocity, but it reaches a peak and starts to diminish
when aerodynamic forces increase their importance. When entering in the second wind-
induced regime, there still remain some confusion over the true shape of the curve: some
authors state that the break length remains constant [23], while others as [24, 27] suggest that
it may initially increase again. It should be noted that the definition and measurement of the
intact length in the most chaotic regimes become more difficult. For these cases, it is helpful
to define two different break-up length: the intact-surface length, Ly, indicates the minimum
distance at which particles begin to be disrupted from the jet surface; the intact-core length, L
or L., indicates the length for the complete disintegration of the liquid core. The two lengths
coincide in Rayleigh and first wind-induced regime, but become different in the second wind-
induced, as the disruption of the jet-surface starts to generate primary droplets. According to
[26], the atomization regime is characterized by the fact the L; is always zero, while being L.
still different to zero.

Several authors have tried to delimit the various regions by means of dimensionless value
correlations, usually involving We;, We,, Re; and Oh numbers. For this class of phenomena,



4.3. LIQUID INJECTION 103

characterized by u, = 0, We, is defined differently than Eq. 4.1, as

_ Pg”lzD.

We, (4.10)

The most commonly used relations to delimit the various regimes are following listed.

* From dripping to Rayleigh regime: as stated by Ranz [28], the dripping from the nozzle
no longer occurs if the liquid inertia overcomes surface tension constraining forces.
This happens when

We; > 8 (4.11)

» From Rayleigh to first wind-induced regime: the limit comes from linear stability the-
orem considerations, and, as expressed by Sterling and Sleicher [29], it can be written
as

We, > 1.243.410n%? (4.12)

* From first to second wind-induced regime: the same Ranz [28] argued that this transi-
tion occurs when gas inertia forces reach the magnitude of surface tension forces. This
is expressed by

We, > 13 (4.13)

e From wind-induced to atomization regime: the criterion, provided by Miesse [30],
comes from empirical considerations, stating that transition occurs when

We, >40.3 (4.14)

The relation expressed are plotted on the spray break-up regimes (function of We, and Oh)
provided by Faeth [22], and shown in Fig. 4.6(b). However, these relations are not taking into
account the role of liquid viscosity. In Reitz and Bracco [26], the jet break-up regimes are
represented as function of Re; and Oh parameters, but, as pointed out by the same authors,
the plot does not take into account the effect of gas density or the initial turbulence of the
jet. This demonstrates that satisfactory correlations for the regime boundaries are not still
available, and that more results from experimental, and, maybe, numerical works are needed
to obtain a complete knowledge of the considered phenomena.

4.3.2 Study of inlet velocity variation

In this work we performed simulations of jets with increasing inlet velocity, #;. The first tests
are intended to reproduce some of the laboratory experiments carried out by [23]. However,
further simulations were carried out to further investigate the physics of the jet. In the tests
described in this section. the physical properties of the fluids correspond to the ones of water
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Figure 4.6: (a) Jet break-up length as function of the inlet liquid velocity, extracted from
Reitz and Bracco [26]. (b) Break-up regime map as function of We, and Oh dimensionless
numbers, extracted from Faeth [22].
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dispersed into carbon dioxide at 308 K and 6 MPa, hence, the Oh number is kept constant in
the experiments, while constantly increasing Re; and We,. A summary of the dimensionless
numbers used in the simulations is reported in Tab. 4.5. The domain consists of a rectangular
box, of sides 42D x 9D x 9D, in which a round liquid jet is injected at constant horizontal
velocity, while a pressure based condition is applied at the outflow boundaries. The mesh
definition at the interface is dynamically achieved by means of a 1v.3 refinement and reaches
(D/Ah)yy3 ~ 30. The approximate number of cells at steady-state is indicated in Tab. 4.5.
Figs. 4.7 to 4.13 are intended to show the behavior of the different jets during the initial
transition phase and at steady-state. The single tests are following described.

* InFig. 4.7 some screenshots of the flow simulated in Test 1 —characterized by Re;=227—
are reported, as function of dimensionless time ¢’ = fu; /D. As a characteristic feature
of the Rayleigh regime, the jet releases droplets with the order of magnitude of its
diameter. The average break-up length, that varies in the range of L/D = 1542, is
similar to that reported by [23]. Following, some droplets merge downstream, creating
bigger leading drops.

* In Test 2, in which the input speed of the liquid is higher (Re;=321), L/D is longer
than in the previous case, ranging between L/D = 21 + 3. This is consistent with the
behavior of jets in the Rayleigh regime [22], whose pinch-off length become longer
with the increase of jet velocity. We also noticed a smaller diameter of the released
droplets, and a less relevant downstream merging process, as shown in Fig. 4.8.

* In Test 3, characterized by Re;=852, one can observe how the growth of instability
is no longer axisymmetrical, highlighting an increasing influence of shear stresses as
responsible for the jet break-up. This indicates the passage of the jet to the Wind-
Induced regime mentioned above. Also the release of droplets from the tip of the jet
becomes irregular, as shown in the screenshots of Fig. 4.9. The intact length of the jet
results increased also in this case, L/D ~ 40.

In Test 4 (Fig. 4.10), we can observe a path similar to the one shown in Test 3, charac-
terized by the growth of non-symmetrical instabilities and the irregular rupture of the
ligament, which occurs at L/D ~ 54, very far from the inlet. We can observe a higher
peeling off of droplets from the jet surface, in comparison to Test 3, characteristics of
the second wind-induced regime.

In Test 5, the scenario changes again, as demonstrated by screenshots of Fig. 4.11. The
liquid column is quickly made unstable by asymmetrical perturbations, that lead to the
rapid and violent breakage of the core. The liquid then disperses in a myriad of small
particles, whose diameter distribution can be studied through a statistical study and ex-
pressed as a function of a mean diameter and a variance. The intact length is subjected
to a strong retreat, as it fluctuates around L/D ~ 26. The same pattern is observed in
Tests 6 and 7 (Figs. 4.12 and 4.13), where the intact length results stabilized around
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Re, We, Oh L/D CVs
Test1(T1) 227 08 001 ~15 3.6x10°
Test2(T2) 321 1.7 001 ~21 4.0x10°
Test3(T3) 852 12 001 ~40 4.3x10°
Test4 (T4) 1700 47 001 ~54 4.5x10°
Test 5 (T5) 2500 102 001 ~27 7.2x10°
Test 6 (T6) 3400 189 001 ~21 1.1x10’
Test 7 (T7) 5100 426 001 ~24 1.5x10’

Table 4.5: Water Jet: dimensionless numbers of the injected liquid and intact length of the
jet. The approximate number of CVs is also indicated.

Rel dmean/D
Test5 2500  0.125
Test6 3400 0.12
Test7 5100 0.11

Table 4.6: Water Jet: mean size of the particles measured in the cases identifiable as belong-
ing to the Atomization regime.

L/D ~ 21 :24. In these cases, clearly identifiable as belonging to the Atomization
regime, we measured the size of the small droplets resulting from the disruption of the
core using the method proposed in Sec. 4.2.3. As expected, their size decreases with
the increase in the number of Reynolds, reaching the lowest value of dpean/D = 0.11
in Test 7. Tab. 4.6 shows the mean particle size measured in sections x/D = 27 : 29,
immediately after the core break-up zone in all the analyzed cases.

As explained in the previous section, the analysis of the variation of the break-up length
with the inlet liquid speed, constitutes a qualitative verification of the jet study. As shown
in Fig. 4.14, which represents the trend of the dimensionless value of L as a function of Rey,
L/D increments initially, passing from the Rayleigh regime to the first-wind induced one.
Subsequently, it undergoes a reduction in the transition from wind-induced to atomization;
then, it stabilizes to a nearly constant value. The graph shows the trend of the same magni-
tude measured in the experimental work of Badens et al. [23]. We can observe that, despite
following the same pattern, this function has a significantly lower scale. We are not sure of
the explanation of this fact, but probably, the real jet of Badens presents an inlet turbulence
coming from the injection mechanism —not present in our inlet numerical model—, which
may accelerate the transition between the different regimes.
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Figure 4.7: Water Jet (test 1): screenshots of the flow characterized by Re; = 227. Drip-
ping/Rayleigh Regime.
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Figure 4.8: Water Jet (test 2): screenshots of the flow characterized by Re; = 321. Rayleigh
Regime.
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Figure 4.9: Water Jet (test 3): screenshots of the flow characterized by Re; = 852. First
Wind-Induced Regime.
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Figure 4.10: Water Jet (test 4): screenshots of the flow characterized by Re; = 1700. Second
Wind-Induced Regime.
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Figure 4.11: Water Jet (test 5): screenshots of the flow characterized by Re; = 2500. Atom-

ization Regime.
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Figure 4.12: Water Jet (test 6): screenshots of the flow characterized by Re; = 3400. Atom-
ization Regime.
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Figure 4.13: Water Jet (test 7): screenshots of the flow characterized by Re; = 5100. Atom-
ization Regime.
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Figure 4.14: Variation of the dimensionless break-up length of the jet as a function of the
inlet Reynolds number, Re;. The behavior obtained in our simulations is plotted together with
the one obtained by Badens et al. [23] in their experimental work.

4.3.3 Other parametric studies

The study of the coaxial jet physics is extended by analyzing the effect of physical parameters
as the gas density/pressure and the surface tension.

Effect of gas density

In this section we comment the observations obtained from the study the effect of the increase
of the gas pressure on the jet dynamics. Some of the cases listed in the past section (Tests 3, 4
and 6) have been repeated by increasing the density of the gas and, consequently, its pressure.
This is reflected in the increase of We,, indicating the action of the aerodynamic forces on
the liquid jet. The cases analyzed are resumed in Tab. 4.7 and following commented.

* In Test 3—b, we can notice a higher frequency of the perturbations, leading to an earlier
ligament rupture than in Test 3 —as depicted in Fig. 4.15—, namely, a reduction of
the break-up length. However, the structures released from the break-up have similar
dimensions and no particular regime change is observed.

* Similarly, in Test 4-b, a breakthrough in the core break-up length is observed, due to
the increased frequency of excitation. However, despite a noticeable increment in the
fragmentation of structures, we can not observe a closer proximity to the atomization
regime —see comparison reported in Fig. 4.16.
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Re; p[MPa] We, Oh L/D dmean/D CVs

Test 3 852 60 12 001 ~40 - 4.3 % 10°
Test 3-b (T3-b) 852 80 42 001 ~25 - 3.8 x 10°
Test 4 1700 60 47 001 ~54 - 4.5 % 10°
Test 4-b (T4-b) 1700 80 166 0.01 ~26 - 6.5 x 10°
Test 6 3400 60 189 0.01 ~2I 0.12 1.1 x 107

Test 6-b (T6-b) 3400 80 667 0.01 ~20 0.13 1.2 x 107

Table 4.7: Water Jet: parameters of the simulations in the series of variable We, number.
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Figure 4.15: Water Jet: Re; = 852, effect of the gas density increase (Test 3 and Test 3-b).
The pictures refer to the same 1*, approximately.

* In graphical comparison between Test 6-b and Test 6 —Fig. 4.17—, we can notice
again an increased frequency of excitation of the perturbations. However, the final size
of particles does not result smaller than Test 6, being both close t0 dpean/D~ 0.12
after the rupture of the liquid core. A particular feature of the lower pressure case,
is the presence of a fine droplet cloud which surrounds the jet in the proximity of the
break-up length zone.

* In general, in the high pressure cases, the generation of droplets seems more connected
to the stripping of long ligaments than to the instantaneous peeling-off from the jet
structures.

Effect of surface tension coefficient

Some of the cases previously analyzed (Tests 2, 3 and 4) are repeated using a lower surface
tension value. This effect causes an increase in the Ohnesorge number (and in We, ), and, con-
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Figure 4.16: Water Jet: Re; = 1700, effect of the gas density increase (Test 4 and Test 4-b)

The pictures refer to the same ¢*, approximately.

(b) We, = 667

Figure 4.17: Water Jet: Re; = 3400, effect of the gas density increase (Test 6 and Test 6-b)

The pictures refer to the same ¢*, approximately.
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Re, We, Oh L/D CVs

Test 2 321 1.7 001 ~21 4.0x10°
Test 2—c (T2—¢) 321 52 0.017 ~54 4.0x10°
Test 3 852 12 0.0l ~40 43x10°
Test 3—c (T3—¢) 852 36 0.017 ~70 4.0x10°
Test 4 1700 47 001 ~54 45x10°

Test 4— (Td—c) 1700 146 0.017 ~39 8.6x 10°

Table 4.8: Water Jet: parameters of the simulations in the series of variable Oh number.
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Figure 4.18: Water Jet: Re; = 321, effect of the surface tension increase (Test 2 and Test
2—c). The pictures refer to the same t*, approximately.

sequently, a stronger tendency of the structure to break under the effect of perturbations. The
cases analyzed are resumed in Tab. 4.8. Respectively, we can notice the following transitions.

* In Test 2—c, the regime has passed from a Rayleigh to a wind-induced one (between
first and second), as indicated by the rise of non-symmetrical instabilities (Fig. 4.18)
and the longer break-up length.

* In Test 3—c, depicted in Fig. 4.19, we can see a stronger peeling-off of droplets, indi-
cating the passage from first to second wind-induced regime.

* In Test 4—c, the regime has clearly passed from wind-induced to atomization, as shown
in Fig. 4.20. The break-up length is substantially reduced.

4.3.4 Atomization Map

In this paragraph, all the simulations performed in this work are collected and classified as
function of dimensionless parameters; in particular, Re; versus Oh, and We, versus Oh. The
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Figure 4.19: Water Jet: Re; = 852, effect of the surface tension increase (Test 3 and Test

3—c). The pictures refer to the same ¢*, approximately.
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Figure 4.20: Water Jet: Re; = 1700, effect of the surface tension increase (Test 4 and Test

4—c). The pictures refer to the same 7*, approximately.
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scope is to compare the pattern found in numerical experiments with the one dictated by the
empirical relationships found in literature for the identification of the disintegration regimes.
As explained in Sec. 4.3.1, the limit between the regimes is usually described as a function
of the Weber number. Given the characteristics of the fluids used in our simulations, we can
however plot the lines on a Re; vs. Oh chart, as shown in Fig. 4.21. In the analysis of the tests
proposed in Sec. 4.3.2, we can observe the following features: Test 1 lies in its proper range,
being a pure Rayleigh break-up case. Instead, Test 2, while also being a Rayleigh case, lies
slightly inside the first wind-induced. Test 3 is at the limit between 1°W.I. and 2°W.I., while
Test 4, which we identified as belonging to 2°W.L, lies slightly inside the atomization regime
region. Tests 5 and 6 are clearly within the atomization regime, as previously observed. The
tests resumed in the variable surface tension series proposed in Sec. 4.3.3 can be plotted on
the same chart as well. Test 2—c lies correctly in 1°W.I., while Test 3—c lies at the limit
between 2°W.I. and Atomization, despite being closer to the wind-induced regime. Finally,
Test 4—c fully falls inside the Atomization range. In Fig. 4.21 we have plotted, together with
the black lines indicating the correlations taken from literature, two red lines representing
the approximate transition zones observed in our simulations. The two lines represent the
transition between Rayleigh to 1°W.I., and from 2°W.I. to Atomization, approximately. We
have not plotted the transition line between 1°W.I. and 2°W.I., because we believe that the
information available is not complete enough to allow for a clear distinction between these
two regimes. As you can see, the red lines lie slightly to the right of the black ones. Such
delay in transitions may be due to the fact that we does not consider the effect of the initial
jet turbulence in numerical simulations, which would favor a higher jet instability for lower
inlet velocities. The same correlations, e.g. that of Miesse [30] —limit between 2°W.I. and
Atomization regimes—, come from empirical considerations that may take into account the
initial turbulence of the jet.

As indicated before, the effect of the gas density—pressure is not considered in the Re; vs.
Oh chart (for this reason, Tests 3-b, 4-b and 6-b does not appear in this plot). Hence, to
depict this effect on a graphical way, we also propose a We, vs. Oh plot —see Fig. 4.22—
, reporting the regime limits extracted from literature and obtained from our experiments.
By placing the points corresponding to our simulations on the chart, we can get the same
information extracted from the previous analysis (Re; vs. Oh). Additional considerations can
be made on tests proposed in the variable density series proposed in Sec. 4.3.3. Test 3-b lies
at the limit between 2°W.I. and Atomization, although it is still a pure W.I.. Test 4-b, lies
incorrectly inside atomization, not having the characteristics, while T6-b is within its proper
range. Our conclusions is that the effect of gas density is not correctly caught on this plot.

4.4 Conclusions

In the first part of this chapter, we describe the results obtained when performing the complete
simulation of 3-D coaxial jets at Re;=600 and Re; ~ 1.0 x 10%, respectively. The simulations
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Figure 4.21: Atomization regime map as a funtion of Re; and Oh. Black points represent the
cases analyzed by means of numerical simulations in the present work. Black lines are the
regime transition lines obtained from literature and exposed in Sec. 4.3.1. Red lines represent
the approximate transition zones observed in our simulations.
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Figure 4.22: Atomization regime map as a funtion of We, and Oh. Black points represent
the cases analyzed by means of numerical simulations in the present work. Black lines are the
regime transition lines obtained from literature and exposed in Sec. 4.3.1. Red lines represent
the approximate transition zones observed in our simulations.
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are validated by observing the physical features of the flow, and comparing them with exper-
imental sources. In particular, in the near-field test, where the primary instabilities lead to the
core break-up, we have measured the wavelengths connected to both Kelvin-Helmholtz and
Rayleigh-Taylor instabilities, finding good agreement with the semi-empirical relations pro-
posed by Marmottant and Villermaux [19]. Hence, in a second test, we focused on the study
of the far-field region, where the secondary structures have mostly degraded into droplets.
Here we have evaluated the statistical distribution of droplets, obtaining a Sauter Mean Di-
ameter close to that indicated by [19].

In the second part, after introducing some theoretical and experimental studies concerning
the physics of liquid sprays, we conducted a series of simulations to analyze their physi-
cal behavior as function of different input parameters. The set-up in question has the same
characteristics as that proposed by Badens et al. [23], and some of the tests performed are
equivalent. In a first study (Tests 1-7) we analyzed the variation of the break-up regime
according to the input speed, and therefore the Reynolds number (Re; = 227 : 5400). The
characteristics of the various regimes encountered when increasing Re; are consistent with
the observations made in various studies [22, 24, 26], allowing to qualitatively recognize the
four stages of instability of a jet: Rayleigh, 1°and 2°Wind-Induced and Atomization. The in-
tervals in which these transitions occur are not in line with those observed by Badens et al. in
their experiments, probably because our simulations do not take into account the initial state
of the jet. This is laminar in current numerical simulations and probably already turbulent
due to the effect of the injector in laboratory experiments. Further simulations were per-
formed by varying the magnitude of other parameters such as gas density (Tests 3-b, 4—b and
6-b) and surface tension (Tests 2—c, 3—c, 4—), allowing additional observations. The various
simulations have been placed inside the regime maps, such as Re; vs. Oh, and We, vs. Oh.
We noted that, despite finding a good agreement in most of the analyzed cases, the transition
zones observed in the simulations are slightly shifted to the right compared to those found in
the literature. Once again, the interpretation we give to this effect is the absence of an initial
jet turbulence in the numerical set-up. Finally, we observed that the effect of increasing gas
density, which can be viewed on the We, vs. Oh chart, is not properly represented in the
simulations. We ignore the reasons for such mismatch.
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A single-phase model for
the numerical simulation
of free-surface flow

Main contents of this chapter have been published in:

E.Schillaci, L.Jofre, N.Balcdzar, O.Lehmkuhl and A. Oliva. A level-set aided single-phase
model for the numerical simulation of free-surface flow on unstructured meshes. Computers
& Fluids, 140:97-110, 2016.

Abstract. A new single-phase scheme for the numerical simulation of free-surface problems on 3-D
unstructured meshes is presented. The flow field is obtained from the discrete solution of the incom-
pressible Navier-Stokes equations, whereas a conservative level-set method is employed to capture fluid
interfaces on an Eulerian approach. The scheme is based on a novel treatment of the interface for the
deactivation of the light phase, allowing an optimization of the classic two-phase model for the cases in
which the influence of the lighter phase is negligible. The deactivation is performed by directly impos-
ing the appropriate pressure at the surface boundary, and, unlike similar approaches, without the need
to treat near-interface velocities. The method is validated against various analytical and experimental
references, demonstrating its potential on both hexahedral and unstructured meshes. Moreover, it shows
higher numerical stability in comparison to two-phase solvers, as well as significant advantages in terms
of computational performance.
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Additional content has been published in: E.Schillaci, F.Favre, O.Antepara, N.Balcdzar and
A. Oliva. Numerical study of an impulse wave generated by a sliding mass. International
Journal of Computational Methods and Experimental Measurements, 6:98—109, 2018.

5.1 Introduction

In this Chapter we will introduce the possibility of specifying the multiphase solver for the
cases that involve a free-surface flow. In the next paragraphs, we will explain in detail what
is meant for free-surface flow, and which are the necessary conditions for adopting such
simplification. Hence, after listing the works dealing with this subject in literature, we will
provide our proposal for solving the problem.

Single-phase approximation In the past sections of this Thesis, the interface-capturing
strategies are coupled to the discrete solution of the Navier-Stokes equations to provide a nu-
merical framework for the simulation of all the phases involved in a multiphase flow. In this
Chapter, we will refer to this scheme as full-domain model. However, in some engineering
applications involving the interaction of two fluids, usually a liquid and a gas, the classic
two-phase simulation can be simplified by limiting the calculations to the single liquid phase.
This occurs when the interface between the two phases behaves as a free-surface, i.e. it is sub-
jected to constant perpendicular normal stress and it is free from parallel shear solicitations.
In such cases, the pressure at the free-surface can be approximated to the free-stream value,
e.g. atmospheric pressure. This simplification applies only to the cases in which the gaseous
phase has no effect on the physics of the problem. Hence, it should not be expected the for-
mation of gaseous bubbles, nor the presence of stresses in the liquid phase generated by the
gas, due for example to its pressurization in a section of the domain. These assumptions are
usually fulfilled in ocean engineering problems, such as the simulation of wave motion and
its interaction with submerged or semi-submerged obstacles. The adoption of this strategy,
to which we will refer to as single-phase model, can lead to consistent savings in computa-
tional time as a result of the deactivation of the light phase. Moreover, the transition from
a full-domain model to a single-phase one simplifies the problem, resulting in more stable
numerical schemes due to the disappearance of high density ratios along the interface. In
the deactivation process, the additional resources spent for the individuation of the transition
region, as well as for the enforcement of pressure and velocity conditions at the interface,
are counterbalanced by the computational memory saved to update numerical operators in
the light phase. Therefore, as demonstrated in this work, the single-phase scheme reduces
significantly the time-to-solution and memory requirements with respect to the full-domain
approach, while not appreciably affecting the physics of the problem.
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State-of-the-art In the past years, researchers have developed various types of single-phase
models, mainly differing in the way in which the process of deactivating the light phase is
carried out. To mention some, in Lohner et al. [1], VOF and LS techniques are used to
advect the interface, and the scalar fields are deactivated for the light phase. Then, in order
to ensure the correct advection of the volume fractions, pressure and velocity are evaluated
at the interface by extrapolation from the values of the points inside the liquid region. Lv
et al. [2] employed a similar scheme for the pressure-velocity extension, but the interface
capturing was accomplished by means of a hybrid LS/VOF strategy. Kleefsman et al. [3]
utilized a VOF method and interpolated both pressure and velocities at the interface. Carrica
et al. [4] and Di Mascio et al. [5] used Standard Level-Set approaches, imposed the pressure
value at the free-surface to enforce the jump conditions by directly intervening on the pressure
equation, and extended the velocity field in order to correctly transport the level-set function.
Finally, Enright et al. [6] applied hybrid particle/Level-Set methodologies to impose internal
pressure boundary conditions, and extrapolated velocity across the interface.

Current proposal In this Chapter, which reflects the work published in Schillaci et al. [7],
we propose a novel strategy to solve the liquid phase on an Eulerian grid by explicitly impos-
ing the pressure at the free-surface and deactivating the light phase. The interface is trans-
ported by means of the CLS method proposed and implemented by Balcédzar et al. [8, 9] and
reviewed in Sec.l. At the same time, the CLS method facilitates the deactivation process, as
the same level-set function provides a convenient tool to identify the interface. The resolution
of the Navier-Stokes equations on the interfacial region avoids the requirement to extrapolate
the velocity field. Consequently, the costly process of evaluating interpolation stencils at ev-
ery iteration is spared, thus, making the algorithm easier to implement and resulting in faster
computations. In order to check the convergence of the numerical method, the verification
process begins with the analysis of the spurious currents on the interface of a static liquid
column. Next, the method is tested on a series of problems in which the assumptions of
free-surface and the physical independence from the light phase —no bubble formation, no
gas pressurization— are fulfilled. These correspond to the sloshing of a linear wave inside a
fixed basin, the viscous damping of a solitary wave in shallow water, and the dam-breaking
problem; first for the classic 2-D case, and second, in a more complex 3-D configuration.
The results are compared to the ones obtained by means of the full-domain model and to the
available experimental data, focusing on the discrepancy between the results and the savings
in computational time. A possible industrial application of the free-surface model, partially
presented in Schillaci et al. [10], is discussed in Appendix A, where we study numerically
the hydrodynamic behavior of an Oscillating Water Column (OWC) device for the extraction
of mechanical energy from ocean waves. A similar set-up was analyzed in [9].

In addition to the content that reflect the work presented in [7, 10], we propose an extension of
the free-surface model, including the possibility of considering the interaction with a moving
object by means of the Immersed Boundary Method —details on the numerical model are
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given in Sec. 1.3.5. The model is firstly validated by analyzing the case of the cylinder
entry in water. Hence, a possible practical application is presented, consisting in the study of
impulse waves generated by a sliding mass. This problem, presented in Schillaci et al. [11],
include several numerical complexities and a further validation of the numerical framework
by comparison to experimental data.

This Chapter is organized as follows. The advantages of the single-phase approach in com-
parison to the full-model are comprehensively discussed in Sec. 5.2, together with the light
phase deactivation process. In Sec. 5.3 the results obtained from the test simulations, and
their comparison to the benchmark solutions are discussed. In Sec. 5.4, validation and results
of the free-surface model with solid interaction are presented. The final conclusions of the
chapter are given in Sec. 5.5.

5.2 Single-phase discretization

As introduced in Sec. 5.1, when the solution of the light phase does not affect the global
behavior of the flow, and its analysis can be considered not essential for the scope of the
simulation, it may be convenient to specialize the full-domain solver in order to improve its
performance. For this purpose, the adoption of a single-phase model is presented.

In this model, the interface is still advected, but it is treated as a moving internal boundary
with the scalar and vector fields of the light density phase deactivated. This method can lead
to several advantages. For instance, in multiphase flows with high density ratios —as in the
air-water case—, spurious currents may appear at the interface. They are due to the improper
propagation of pressure gradients from the high-density phase to the low-density one, ex-
cessively accelerating it and, consequently, making it lose its divergence [2]. Conversely,
single-phase solvers usually show more stable behaviors, due to the light-phase deactivation,
and consequent reduction of density jumps. Additionally, the consideration of just one phase
facilitates the iterative solution of the Poisson linear system, Eq. (1.19), leading to a reduction
in computational costs.

Another advantage is related to the evaluation of the time step. In air-water flows, the time
step is mainly limited by the maximum velocity of the air, which can be orders of magni-
tude larger than the velocity of the water. This is usually consequence of spurious currents
advected from the water phase, or excessive acceleration due to geometrical or physical fea-
tures of the problem configuration. Consequently, deactivating the light phase leads to an
overall decrease of the maximum velocity, and to a consequent increase of the time step.
The deactivation is carried out modifying the Poisson linear system, Eq. (1.19), and the face
normal mass flux expression, Eq. (1.27), i.e. steps 2 and 3 of the solution algorithm proposed
in Sec. 1.3.4. The level-set function, ¢ (x,¢), is used as a tool to identify the interface region,
since it directly indicates the volume fraction of one of the phases —in this work, the heavy
phase one. The process starts by choosing a value of ¢ between 0 and 1 (e.g. @i, = 0.5)
that identifies the limit at which the solution of the two-phase flow has to be cut. Hence, as
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shown in the example of Fig. 5.1, the cells located in the interface region are individuated and
tagged as state cells (SC) according to the following scheme:

- SC1: cells in heavy phase located just below the interface. They are identified as the
cells with ¢ > ¢, presenting at least one neighbor cell with ¢ <= @i,

- SC2: after completely defining SC1 cells, SC2 cells correspond to the ones with ¢ <=
im and at least a SC1 neighbor cell.

The Poisson linear system, is modified according to the jump condition proposed by Kang [12],
written as
[p] —2[¢](Va-n) -n= ok, (5.1

where the [-] notation defines the jump of that quantity across the interface. In the case of
smeared out viscosity —guaranteed by the smooth distribution of properties at the interface—
, the pressure difference reduces to [p] = ok. Further setting the air pressure to the atmo-
spheric value, pam, results in the following expression for free-surface pressure

Dfs = Patm + OK. (5.2)

Thus, the imposition of a given pressure at the free-surface is achieved modifying the coeffi-
cients of Eq. (1.19) for the SC2 cells; the neighbor coefficients, a,;, are set to 0, the central
coefficient, a., is changed to 1, while the source term, b, is modified such that it is equal to
the free-surface pressure value. In the same way, the pressure is set to pam everywhere in the
light phase. The strategy is summarized as

" {ZfeF(c) anp  if ¢ > Plim,

1 if ¢ <= Plim,
Ap .

Atifn if @ > im,

Ay = Wfpr m
0 if ¢ <= Plim, (5.3)

w
=Y rer(c) p]y% if ¢ > Prim,
b= pum+0K if ¢ = P (SC2 cells),

Patm it ¢ < @im-

Furthermore, assuming the surface tension negligible for the class of problems considered
—mainly marine applications—, the free-surface pressure can be directly set to pagm.

The next step is to consider all the cell pairs, @ and b, that lie on the two sides of a face
f. Then, the face normal mass flux is evaluated according to Eq. (1.27) in the heavy phase,
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Figure 5.1: Example of the cells tagging required for the deactivation of the light phase as
function of the interface position. The interface is indicated by the fine dashed line.

whereas it is deactivated in the light one, as described below

0 ¢ ¢(a) <= dim and
M;“ = o(b) <= Pim . (5.4)

Af ,
Mp — Ar(pp ™t — pith wotwy  otherwise

Thus, cell center velocities assume non-zero values only for the heavy phase.

Interface advection

In terms of the level-set advection and re-initialization equations, Eqs. 1.6 and 1.9, no partic-
ular intervention is required. However, the volume fraction value of the heavy phase that
identifies the deactivation limit, ¢y, plays an important role in the correct advection of
the fluid interface. As explained in Sec. 1.2.1, the level-set function is used to evaluate the
transport properties on the entire domain, even in the interfacial region. Therefore, recalling
that ¢(x,7) = 1 in the heavy phase region, and evaluating Eq. (1.4) for ¢(x,7) = 1 and @i,
the higher and lower possible density values are obtained, which respectively correspond to
Pmax = P1 and Pyin = P2 + Pim (1 — p2). Consequently, the larger attainable density differ-
ence at the interface is

AP = Pmax — Pmin = (1 - ¢1im)(p1 —Pz)- (55)

Therefore, as the ¢y, value gets closer to 1, the range of densities involved in the numerical
solution is reduced. This overall reduction leads to a minimization of the spurious currents,
resulting in faster and more stable numerical calculations. On the other hand, as grid points



5.3. NUMERICAL TESTS 129

on the interface zone are deactivated, part of the heavy phase inertia is also neglected. Conse-
quently, a correct velocity field extrapolation is needed to ensure a proper interface advection.
The accuracy of the extrapolation becomes increasingly important as the value @i, tends to
1, since it is necessary to extract, and approximate, more and more information of the in-
terface movement from the heavy phase [1, 2]. Nevertheless, from previous work [10], this
extrapolation is only effective if the velocity presents a stable and predictable profile, as for
example, in the case of progressive waves. In other more complex scenarios, such as the
collapse of water columns, this approach is not accurate due to the strong variations in the
velocity profile.

On the contrary, as the value @iy, is shifted towards 0, a smaller amount of inertia is neglected.
It has been found that above a certain lower limit, which depends on the particular case, a
velocity field extrapolation does not lead to any change in the solution of the heavy phase
flow. Indeed, all the information necessary for its proper advection is obtained from the flow
motion algorithm. This procedure avoids the extrapolation of the velocity field across the
interface, thus, limiting the error on the final solution that can be caused by any erroneous or
not accurate velocity extension.

Generally, the adoption of ¢, < 0.01 makes the method effective for all the cases analyzed.
However, the numerical tests reported in this work are carried out by choosing the highest
possible @iy, value such that velocity extrapolations are not required to obtain a correct solu-
tion. This helps to maximize the benefits obtained from the single-phase approach in terms
of stability and velocity. In the next Section, the adopted value of ¢y, is specified case by
case.

5.3 Numerical tests

This section presents numerical results corresponding to the verification and validation of
the proposed single-phase scheme. First, the appearance of spurious currents for the full-
domain and single-phase approaches is analyzed for a static liquid column in Sec. 5.3.1. A
first comparison between numerical results and analytical data is performed in Sec. 5.3.2 by
solving the wave sloshing problem. The possibility of integrating the single-phase strategy
with a wave maker is assessed in Sec. 5.3.3, where the evolution of a solitary wave is studied.
This topic is further explored in Appendix B, where the generation of generic progressive
waves and their dissipation on a numerical beach is analyzed. Finally, the well-established
dam break problem is numerically simulated, first for a 2-D configuration, Sec. 5.3.4, and
later for a more complex 3-D geometry, Sec. 5.3.5. In both cases, the numerical results are
compared to experimental data.
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5.3.1 Static liquid column

Large density differences between fluids may result in interfacial spurious currents. This first
test analyzes the appearance of such currents and their intensity in the case of utilizing the
full-domain (2-P) or the single-phase (1-P) approach. For 1-P cases, the deactivation limit,
®lim, 18 set to 0.1. The UP scheme is used for the discretization of the convective operator in
the Navier-Stokes equations. The set-up consists of a unit square of side L, occupied in its
lower half by the liquid phase, and subjected to the action of gravity with negligible surface
tension. No-slip boundary conditions are imposed on the walls. Given the static nature of
this case, the rise of any velocity at the interface corresponds to a non-physical solution. The
intensity of the spurious currents is measured by means of the Froude number, Fr, evaluated
as

_ vl
=
where |u] is the average velocity norm of the fluid at the interface. Since the analytical
solution of the problem is a zero velocity field, the Froude number at steady state constitutes
itself the norm of the error.

In a first test, performed on a Cartesian coarse mesh with 1.6 x 103 cells, the same density
value is assigned to the two fluids. For this case, the spurious currents intensity turn out
to be negligible (of the order of 107!%) for both 1-P and 2-P solvers. As a second test, a
large density difference is imposed between the two phases (Ap = 1000), therefore, a larger
magnitude of spurious currents is expected. In order to evaluate the accuracy of the method,
a mesh convergence analysis is performed on progressively finer Cartesian meshes.

In order to compare the collocated (Coll.) and staggered (Stagg.) mesh schemes, the same
tests are performed using the Coll. discretization described in Chapter 1, and the Stagg.
discretization described in [7]. The results presented in Fig. 5.2 for the Staggered (Stagg.)
discretization show that the error is larger for the 2-P scheme. This demonstrates the effec-
tiveness of the 1-P method in reducing spurious velocities due to the decrease of the density
differences, as explained in Sec. 5.2. Moreover, results show that the Stagg. formulation
maintains a lower Fr than Coll. both for 1-P and 2-P models, thus, confirming its higher
stability. On the other side, the Coll. scheme demonstrates to be more accurate, as the order
of accuracy, p, measured in the proposed series of tests is higher. A summary of the orders
of accuracy of the analyzed methods is reported in Tab. 5.1.

Fr (5.6)

5.3.2 Wave sloshing

The first validation test consists in the analysis of the oscillating movement of a viscous liquid
within a stationary 2-D rectangular vessel closed on all its sides. At time ¢ = 0, the wave
elevation over the calm liquid column, 4y, is described by the following sinusoidal function

7(x,0) = nocos [K<x+ ’p} , 5.7)
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Mesh  Model p

Stagg. 1-P 1.45
Stagg. 2-p 1.55
Coll. 1-P 1.68
Coll. 2-pP 1.8

Table 5.1: Order of accuracy of the single-phase (1-P) and full-domain (2-P) models used in
this work, in combination with both staggered (Stagg.) and collocated (Coll.) mesh schemes.
p is evaluated from a mesh convergence analysis performed on the static liquid column case.

T
107" F ]
102 F E

[ing
108 F E

P Stagg. —e—
104 b P Stagg. ---#---
1-P Coll. ———
2-P Coll. -+
1st order
2nd order -------
5 L
10
10° 102 107

Figure 5.2: Froude number as function of mesh size for the static liquid column problem.
The numerical tests are performed by means of the single-phase (1-P) and full-domain (2-P)
models, and according to staggered (Stagg.) and collocated (Coll.) discretizations.
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where k¥ =271 /A is the wave period, A is the wavelength and 7 is the wave amplitude. The
results obtained from the analysis of the temporal evolution of the wave height are compared
to the analytical function proposed by Wu et al. [13]. If assuming sufficiently high Reynolds
number and supposing a negligible influence of the finite depth of the tank, the wave evolution
in time and space is described by the following expression

Nref (X,1) 1 [ vt ( ,sin /Kgt ﬂ
=1- 1—e % cos/Kgt+2vik-——— | |, (5.8)
1(x,0) 1+4vPE VKg

where v; = 1;/p; is the kinematic viscosity of the liquid and g is the norm of the gravity
acceleration. The analytical solution allows the validation of the model for different values
of density and viscosity of the liquid phase. These features are taken into account by means
of the Reynolds number, that in free-surface problems can be defined as

hi/hig

Re= ———. .
e v (5.9)

In the simulations, A is set to 1 in order to obtain a wave with period ¥ = 27, while the
rectangular vessel is w = 24 in width. The initial wave amplitude, 1o, is 0.02 m, and the calm
liquid depth is set to I m. The simulations are performed on a Cartesian mesh with 1.7 x 10°
cells, distributed more densely in the zone of the interface. No-slip boundary conditions are
applied to all the non-periodic boundaries of the domain. From preliminary observations, the
deactivation limit ¢y, value is set to 0.1 —valid for all the cases involving the undulating
movement of a liquid reservoir. A pure SP convection scheme is used for the discretization
of ¥, in Eq. (1.17), since the high density of cells in the interface region reduces the amount
of spurious currents.

In the first test (High Re), fluid density and viscosity are set to the values of water at room
temperature —p; = 998 kg/ m3, y; = 1.003 x 1073 Pa-s. The resulting Reynolds number is
Re ~ 1 x 10°. In Fig. 5.3(a), the time evolution of the relative wave height at the center of
the domain, x., is shown. Time is indicated in dimensionless form as t* =t/g/h;. Due to
the predominance of inertia forces, the wave oscillates almost undisturbed for a large number
of time periods. As shown in the figure, the numerical solution, 1 (x,,#) /1o, agrees with the
analytical data, 1. (xc,7)/Mo. In the next case (Low Re), density and viscosity of the liquid
are chosen such that Re ~ 1 x 10°. The plot in Fig. 5.3(b) shows a marked reduction of the
wave height as the simulation is advanced in time, since viscous forces dominate the physics.
In this scenario, the numerical results obtained from the 1-P scheme also agree with analytical
data.

5.3.3 Solitary wave

In the following problem, the capability of the single-phase approach to correctly reproduce
the viscous damping of water in intermediate or low depth basins is analyzed. Moreover, this
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Figure 5.3: Evolution of the wave height at the center of the domain for the wave sloshing
experiment: (a) High Re number, (b) Low Re number. Comparison between analytical values
and numerical results obtained on a 2-D Cartesian mesh.

test examines the potential of the single-phase scheme in incorporating a wave maker into
the simulation. A wave maker consists in analytically forcing the solution of the level-set
function and/or the scalar fields on a small part of the domain, such that a specific free-
surface profile is numerically obtained. In order to ensure numerical stability in the wave
maker zone, the forcing (analytical) function, & f,),(x, 1), is coupled to the numerical solution,
Enum(X,1), by means of a relaxation parameter, y/(x, ), written as

E(x,t) = éfor(xvt)(l —y(x,1)) + Eum(x,1), (5.10)

where y(x,7) varies smoothly in the x—axis from 0 at x = 0 to 1 at the end of the wave
maker zone. The free-surface flow simulated in this test corresponds to a solitary wave trav-
eling from the left to the right part of the domain. It consists in an aperiodic and non-linear
displacement of water above the calm water level that can be produced mechanically by an
instantaneous impulse. As proposed by Mei et al. [14], the analytical solution of the wave
profile takes the form

n(x,t) = acosh™'/? j%(x—Ct), (5.11)

with a as the wave amplitude, A, as the calm water depth, and C as the wave speed defined as
C=+/g(hy,+a). (5.12)

The motion of a solitary wave is usually characterized by its wave crest advancement and
height. The latter caused by the viscous forces and, as given by [14], described by the fol-
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H() ™4 = a=V/* 40.08356 Vimg (5.13)
(ghw)l/zhw Iy

The simulation is carried out with Re ~ 1 x 103, as given by Eq. (5.9), such that the viscous
effects increase the amount of wave damping. The computational domain consists in a long,
narrow tank (32 m long and 2 m high) initially filled in its lower part by water at rest. The
domain is discretized in 4.5 x 10° cells stretched, according to a hyperbolic distribution, at
the zone in which the passage of the wave crest is expected. No-slip boundary conditions
are imposed at the tank bottom, while Neumann conditions apply on the left, right and top
boundaries of the domain. In this test, the UP convection scheme is used to minimize the
presence of spurious currents. On the right part of the domain, viscosity is artificially in-
creased in order to provide extra amount of damping before the wave reaches the boundary.
Similar to the previous case, @i, is set to 0.1.

The wave —h,, = 1.0 m, a = 0.15 m— is generated on the left part of the domain, as depicted
in Fig. 5.4(a), where it progressively enters the pure numerical zone. Once fully generated,
Fig. 5.4(b), the wave continues its path through the domain with an almost constant velocity,
Figs. 5.4(c) and 5.4(d), preserving its form, but slowly reducing its height.

The evolution in time of the wave height, ¥ = H(t) + h,,, and advancement on the x—axis, X,
are shown in Fig. 5.5, as well as its comparison to the analytical solution.

A small number of time steps are required to stabilize the solution when the wave enters
the pure numerical zone. Consequently, a slightly difference between the analytical and the
numerical solution is noticeable at the initial stage of the simulation, both in Figs. 5.5(a)
and 5.5(b). However, once stabilized, the numerical solution closely follows the analytical
values of wave height and advancement.

In conclusion, this test is a good demonstration that a wave maker can be coupled to the
single-phase scheme. The wave configuration can be easily adapted to model progressive
waves, in linear or composed form, which are representative of ocean waves and their inter-
action with fixed or floating obstacles. For instance, as further demonstrated in Sec. A, the
single-phase approach can be used to simulate the interaction between progressive waves and
an oscillating water column system for the extraction of energy from sea waves.

lowing expression

5.3.4 Dam break 2-D

The problem of the dam break consists in simulating the collapse of a water column, initially
at rest, under the action of gravity. It is one of the most widely used benchmark for the valida-
tion of free-surface models, due to its easy set-up, the simplicity of the boundary conditions
required, and the presence of several references in the literature, both experimental and nu-
merical. The initial configuration is depicted in Fig. 5.6, where the physical properties of the
fluids are also reported, mimicking water and air conditions at room temperature. The initial
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Figure 5.5: Evolution of wave height and crest position of a solitary wave along time. Com-
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wave crest enters the pure numerical zone.
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Test Model Mesh No. cells
1 2-P STR  ~3.7x10%
2 1-P STR  ~3.7x10*
3 I-P  UNSTR ~5.0x10%

Table 5.2: List of the numerical experiments performed for the 2-D dam break case.

water column presents rectangular shape with side length a = 4.5 in, and the proportion f
between rectangle height and length is 1. No-slip boundary conditions are imposed at the
solid walls of the container, Neumann conditions apply at the top in order to mimic an open
boundary, whereas periodic conditions are set on the front and back boundaries.

The numerical results obtained are compared to the experimental data reported in Martin and
Moyce [15], in which several experiments were performed on the fall of a water column,
considering various options for the initial column shape and proportions. In the experimental
set-up of the reference, vacuum conditions were established, thus, making licit the numeri-
cal single-phase approximation. Moreover, the independence of the flow from the periodic
boundaries is assessed, which allows the 2-D approximation.

The results are presented in dimensionless form. In particular, the magnitudes studied are the
dimensionless residual height, H*, of the water column and the dimensionless leading front,
Z*, of the wave generated by the water collapse, given by

H g V4 g f
H="1, r=0/8 z2=% u=n/%L 5.14
a-f \/; a’ Z a .14

where H is the measured residual height, Z is the measured leading edge, and #;; and ¢ are
the corresponding dimensionless time indicators.

In order to highlight differences due to the air phase deactivation, the simulations are per-
formed by means of the 1-P and 2-P approaches. A pure UP scheme is used for the dis-
cretization of the convective term in the momentum equations, such that spurious velocities
are efficiently damped. The different simulations performed are listed in Tab. 5.2, where STR
corresponds to a Cartesian mesh with ~ 3.7 x 10* control volumes (Ah ~ 1.46 x 10~3), while
UNSTR refers to an unstructured mesh with ~ 5 x 10* triangular elements (Ah ~ 2 x 1073).
In order to accurately capture the advancement of the wave front, the deactivation limit is set
to 0.01.

The comparison between numerical results and experimental data is shown in Fig. 5.7, up to
the instant in which the wave front reaches the right boundary of the domain. According to
the STR mesh results (tests 1 and 2), the numerical simulations faithfully follow the exper-
imental values for H*. On the other hand, numerical Z* values are initially higher than the
experimental ones. This trend has been reported in similar studies, e.g. by Sheu et al. [8, 16]
and by Balcazar et al. [8, 9] when using the CLS method on fixed unstructured meshes. Its
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explanation is probably related to the influence of the mechanical apparatus that releases the
water column in the early stages of the experiment. Despite this initial difference, the numer-
ical results agree with the experimental data. In terms of differences between the 1-P and 2-P
simulations, it is noticed that: (1) the H* values practically overlap; (2) the speed of propaga-
tion is very similar, and the wave fronts reach the opposite wall almost at the same time —at
t; = 3.17 for the 1-P case and at 7, = 3.2 for the 2-P one. Hence, no important differences
are observed due to the deactivation of the air phase.

In Test 3, H* is in good agreement with experimental data, though it is noted a lower ho-
mogeneity in the fall of the column on the central part of the plot, due to the irregularity of
the UNSTR mesh. According to Z*, the results are very close to the other experiments, and
the little mismatch is due to the difficulty of measuring exactly the same point on different
meshes.

Snapshots of the liquid-phase time evolution are shown in Fig. 5.8 for Test 2. In detail,
Figs. 5.8(a) and 5.8(b) correspond to the initial collapse of the water column, whose front
reaches its maximum speed at t; ~ 2.3. Then, as shown in Fig. 5.8(c), the wave impacts the
front wall and, after a transition period, it starts flowing in the opposite direction, Fig. 5.8(d).
From this point on, there is a lack of clear references in the literature for the description of
the flow evolution. However, the wavefront presented here follows its path without further
losses of mass, and continues inverting its flow direction each time it encounters a wall, until
the initial potential energy is totally dissipated.

Finally, in order to further assess the mesh convergence of the method, a convergence study
on progressively finer Cartesian meshes is performed. The relative Euclidean norm, ||€|2,
and infinite norm, ||€||«, of the error is evaluated for the H* and Z* values, in the form

lela=1/€t+ - +¢&, ||€lle =max(|e],...,|&]), (5.15)

where the relative error & at point x. is evaluated at each time ¢ as

1N (Xc,t) = Nrey (Xes )|
|77ref(xcvt)‘

g — (5.16)

with 7 (x,,?) representing the numerical solution. As no analytical solution is available, the
reference values, 1. (xc, 1), are taken to be the ones numerically obtained on a very fine mesh
with 1.3 x 10 cells (Ah ~ 0.7 x 1073). The results are plotted in Fig. 5.9, demonstrating a
first- to second-order of accuracy as mesh size is decreased. This behavior is consistent with
the conclusions extracted in Sec. 5.3.1.

Time savings

The computational savings resulting from the deactivation of the light phase are quantified in
this section. These are obtained comparing the simulation time of the dam break problem on
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Ah At ITER 1y
58x1073  -32% -80% -22%
29x1073  +27% -78% -38%
1.45x 1073 +25% -77% -47%

Table 5.3: Differences in % between the 2-P and 1-P approaches regarding time step, At,
number of iterations to solve the Poisson linear system, /7 ER, and total simulation time, #,;,
when varying the mesh size.

Z Water Air
f-a 12-a plkg/m?*] 998 1.205
water air 1 [Pa-s]1.003-107% 1.808-107°
5-a

Figure 5.6: Initial set-up of the 2-D dam break test and properties of the fluids involved in
the simulation.

a Cartesian mesh for the 1-P and 2-P approaches, and are expressed in percentage form for
three different mesh sizes, Ah. In detail the differences in time step, Az, number of iterations
to solve the Poisson linear system, /T ER, and the total time-to-solution are given in Tab. 5.3.
Three main observations are extracted from the results. The first is that the percentage of
reduction in ITER is fairly constant for all cases. The underlying reason is the reduction
in ill-posedness of the Poisson linear system as the light phase is deactivated. The second
observation is the increase in time step for the fine-mesh cases, which is consequence of the
minimization in spurious currents. Last but not least, is that the overall time-to-solution is
reduced for all cases, and this difference is larger as the mesh is densified. For instance, a
47% of reduction in time required to solve the dam break problem is obtained for the finest
mesh.

Adoption of AMR

The dam break tests is further employed to show the advantages led by the AMR technique
—described in Chapter 3— to free-surface configurations. The proposed tests are reported
in Tab. 5.4. First, two simulations are carried out on a coarse and a fine mesh. Next, the
AMR criteria is applied on the coarse mesh. The computational time needed for the AMR
simulation is of the same order of magnitude as that measured with the coarse mesh, while
the number of cells increases with the advancement of the wave front. Its value reaches a
maximum (around 13500) when the water covers the whole box. The data concerning H*,
depicted in Fig. 5.10(a), show that the results obtained with the fine mesh and the AMR
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Figure 5.7: Evolution of residual water column height, H*, and leading edge, Z*, along
time for the 2-D dam break test. Full-domain (2-P) and single-phase (1-P) numerical results,
obtained on Cartesian (STR) and unstructured (UNSTR) grids, are compared to experimental
reference values [15].

(@) 3=1.1 (b) 1;=2.3
(©) £3=3.8 (d) 15=6.6
(e) £3=11.6 (0 13=18.1

Figure 5.8: Time evolution of the collapsing 2-D water column simulated by means of the
single-phase model (Test 2).
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Figure 5.9: Mesh convergence study performed for the 2-D dam break test. Euclidean norm,
||€]|2, and infinite norm, ||&||in¢, Of the error are reported, referring both to Z and H.

Test clock time [min] CVs
coarse 360 7920
fine 2120 31680
coarse +AMR ~500 ~13000

Table 5.4: Mesh data and computational times measured in the dam break tests performed
with AMR. The clock time refer to simulationos carried out on 4CPUs in JFF cluster [17].

test are in full agreement and faithfully reflect the benchmark, while the solution obtained
on the coarse mesh is clearly poorer. The same is founds as regards Z*, whose results are
showed in Fig. 5.10(b). As explained before, in this plot the numerical data slightly deviate
from the experimental ones in the initial part of the simulation, showing a slightly faster front
advancement. The success of this test demonstrates the possibility of increasing the efficiency
in the simulation of free-surface phenomena with Low Reynolds number, by only increasing
the mesh definition in proximity of the interface by means of AMR.

5.3.5 Dam Break 3-D

Once tested on the 2-D dam break problem, the single-phase scheme is further assessed on
a 3-D configuration. The problems concerns the evolution of a collapsing water column
interacting with a solid box in a 3-D domain. The initial column, depicted in Fig. 5.11, is
contained in a tank of 3.2 m with a square cross section of side 1 m, while the solid box
—short sides of 0.16 m and long side of 0.4 m—, is placed at d = 1.17 m from the initial
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Figure 5.10: Evolution of residual water column height, H*, and leading edge, Z*, in time
in the dam break test. Data obtained with coarse, fine and AMR meshes are compared. The
experimental reference [15] is also reported.

water column front.

The results of the simulations are compared to the experimental data obtained at the Maritime
Research Institute Netherlands (MARIN) [18], and reported by Kleefsman et al. [3]. These
refer to the collapse of a water column with dimensions H = 0.55 m and L = 1.22 m on
the described set-up. The available data consists of: (1) the height of the water column at
the center of the domain (z = 0.5 m) for x = 0.56 m (H1) and x = 2.22 m (H2); (2) the
relative pressure of the water at points P1 (2.39,0.025,0.5) m, front of the solid box, and P2
(2.487,0.16,0.5) m, top of the box.

The geometry is discretized by means of an unstructured tetrahedral mesh with ~ 1.1 x 10°
cells, distributed more densely in the zone where the passage of the interface is expected;
see Fig. 5.12. The domain presents no-slip boundary conditions at the solid walls, while
Neumann conditions are imposed at the top boundary. Once more, a pure UP convection
scheme is used for the discretization of vy, while, as in the 2-D case, @i, is set to 0.01.

The evolution in time of the liquid-gas interface is presented in Fig. 5.13. The initial collapse
of the column presents a well-defined linear front, until the point in which the obstacle is
reached, resulting in a total rupture of the liquid stream. After colliding with the box, the
liquid phase encounters the wall of the domain, producing a bounced wave (15T WAVE) —
depicted in Fig. 5.13(c)— that starts flowing in the opposite direction. This 15T WAVE travels
back to the left wall, where it slams and inverts again its direction (ZND WAVE), as shown
in Fig. 5.13(d). Finally, the simulation ends at f = 6 s, approximately when the 2N° WAVE
encounters once more the wall at the right side of the domain.

The numerical results are compared against experimental data in Figs. 5.14 and 5.15. First,
the water height for H1 and H2 is plotted in Fig. 5.14, showing its qualitatively good agree-
ment with experiments. In detail, the water height for H1 reduces correctly during the initial
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Figure 5.11: Initial set-up of the 3-D dam break simulation.

water column collapse, rises when the 15T WAVE reaches the H1 location, and results in
a second height peak due to the passage of the 2N° WAVE. This is further corroborated by
noticing that the water front reaches H2 at the correct time (around # = 0.33 s), shows a maxi-
mum height during the recombination phase (approximately at # = 1.8 s), and shows a second
peak corresponding to the passage of the 2N° WAVE (roughly at r = 5.0 s), with a short de-
lay in comparison to the experimental solution. Similarly, as demonstrated in Fig. 5.15, the
pressure evolution for P1 and P2 is well captured by the numerical simulation. The sudden
pressure increase shown for P1 at time = 0.2 s, indicating the instant in which the water front
reaches the box, is correctly captured as shown in Fig. 5.15(a). Following this peak value,
the pressure slowly reduces, and it only increases again during the passage of the 2N° WAVE
(around ¢t = 5.0 s). The pressure signal for P2 accurately captures the peak corresponding to
the recombination phase that precedes the 13T WAVE formation (approximately ¢ = 1.68 s).
The numerical results reported in [3] and plotted in Figs. 5.14 and 5.15, are obtained on
a Cartesian mesh with ~ 1.2 x 10° cells. These also present differences in comparison to
the experimental data when the water column reaches the obstacle zone. This confirms that
the small uncertainty between the various results is acceptable when taking into account the
complexity and sensibility of the experimental data. Similar conclusions can be extracted
from the numerical results recently presented for the same test case by Gu et al. [19].

In summary, the numerical results obtained by means of the single-phase scheme presented
in this work are in good agreement with the experimental data. This fact further demonstrates
the potential of the method to accurately solve free-surface flows on complex 3-D geometries
discretized with fully unstructured meshes.
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Figure 5.14: Water column height measured at points H1 and H2 for the 3-D dam break
numerical simulation and references, both the numerical [3] and the experimental one [18].



5.3. NUMERICAL TESTS 145

12000 T T
numerical - - - -
Kleefsman et al.
experimental —-—-
10000
8000 i
F t\
£ 6000 [
o | \
4000 |- ‘*W ]
! ‘ “v}f"h WS R
| ) \w{ N :’D;n\;\ )
2000 s \\v’—) ; =
| TSN
0 |
0.0 1.0 2.0 3.0 4.0 5.0 6.0
t[s]
(@
2500 T T
numerical - - - -
Kleefsman et al.
experimental —-—-
2000
1500
‘©
a
N
a )
1000 ,‘[
1 o !
A,/
L
|
o sl .
0.0 1.0 2.0 3.0 4.0 5.0 6.0

t[s]

(b)

Figure 5.15: Pressure measured at probe points P1 and P2 for the 3-D dam break numerical
simulation and references, both the numerical [3] and the experimental one [18].
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5.4 Impulse waves generated by a sliding mass

In this section, a numerical framework for the DNS of a free-surface flow interacting with a
solid is used to simulate the practical case of a landslide event inside a water basin.

The simulation of this type of phenomena requires the development of a robust platform
that takes into account the mutual interaction of liquid, solid and gaseous phases. Usually,
interface-capturing methods proved to be the most efficient and reliable to represent this kind
of situations. Some examples are those of Liu et al. [20] which uses a Large-Eddy-Simulation
(LES) approach and Volume-of-Fluid algorithms to track the interfaces between phases. Yang
et al. [21] introduces the immersed boundary method (IBM) method for the solid tracking
while the interface between fluids is captured by a level-set (LS) method. More recently,
Sanders et al. [22] and Calderer et al. [23] also solved the interaction between solid and
multiphase fluids by means of Fluid Structure Interaction (FSI) methods.

The free-surface approximation described in this Chapter is adopted in order to simulate
the movement of the water independently from the air effect, thus, obtaining a more stable
and efficient calculation then in classic two-phase computations. The interaction between
solid and liquid is solved by means of the Direct Forcing IBM [24, 25] method described in
Sec.1.3.5. Neumann boundary conditions are imposed to the volume fractions at the boundary
between the fluids and the solid, in order to avoid the diffusion of the phases inside the
area occupied by the object. These conditions must be applied to both level-set advection
and reinitialization equations, Egs. 1.6 and 1.9, respectively. The adaptive mesh refinement
strategy (AMR) [26] described in Chapter 3 is adopted in order to dynamically improve the
mesh definition in the interface region and in zones where the basic mesh size is not sufficient
to correctly solve the turbulent scales or the interfacial characteristic lengths. Further details
above this work have been recently published in [11].

The method is firstly validated by simulating the entrance of a 2-D object into a still water
surface. Next, the case of tsunami generation from a subaerial landslide is studied and the
results are validated by comparison to experimental and numerical measurements.

5.4.1 Cylinder entry in water

The numerical method is validated by simulating the entry of a 2-D disk of diameter D = Im
within a initially quiet liquid surface. The disk falls with velocity # =m/s, and the initial
distance from its centre to the water surface is set to d = 1.5m. The domain consists of a
rectangle of sides 10 x 10m, to which Neumann boundary conditions are applied. The liquid
density and viscosity are set to p = 1000kg/m> and u = 1x10~3 Pa s, respectively,and Earth
gravity is assumed. The employment of the free surface method implies the negligibility of
the gas influence on the flow. Additionally, the effect of the surface tension is considered
irrelevant. The basic mesh has a regular Cartesian grid that accounts for 1 x 10* elements.
However, the local definition is increased in the vicinity of the liquid-gas and fluid-solid
interfaces thanks to a second level adaptive mesh refinement (the technique is extensively
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Figure 5.16: Adaptive mesh refinement (level 2) around the interface between gas and liquid
and between 2-D cylinder and fluids. The screenshot is taken from the 2-D water entry
validation case.

described in Chapter 3), as shown in the screenshot of Fig. 5.16. Consequently, throughout
the simulation, the mesh reaches an approximate average of 1 x 10> cells which dynamically
adapt to the position of the free-surface. The profiles of the free surface at different instants
of dimensionless time, t* = ru/h, are presented in Fig. 5.17. The results are compared with
those of Calderer et al. [23], which performed the same test, showing a good agreement.

5.4.2 Subaerial landslide into a water basin

The physical case is introduced by explaining historical causes and consequences. Hence,
our numerical set-up is described in detail, followed by the description of the results obtained
from the numerical simulations.

Background An impulse -or tsunami wave is a large wave generated by the displacement
of a big volume of water. The triggering cause can be an impulsive geophysical event as
earthquakes, subaerial/submerged landslides, rock falls, and snow avalanches. On the one
side, the knowledge on tsunami generation from sudden impulsive events, as underwater
earthquakes, is nowadays considered satisfactory. This was possible thanks to computational
advances that led to better modelling of tectonic source mechanisms and coastal inunda-
tion models, and, additionally, from large-scale laboratory experiments, analytical results,
and post-tsunami field surveys [27]. In such case, because of the deformation speed of the
marine bed with respect to the propagation of the wave, it is possible to directly relate the
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Figure 5.17: Snapshots of the 2-D cylinder entry in water. Results obtained in the present
work are compared to reference by Calderer et al. [23].
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deformation of the soil with the wave characteristics. On the other side, the tsunamigenesis
from submarine-subaerial landslides is still considered a not fully understood phenomenon.
Indeed, in this case the wave generation process can not be considered impulsive, and the
addition of source terms to the equation of motion is needed for the correct modelling [20].
Moreover, the triggering causes may results highly diverse and affected by several factors, as
the form and deformation of the sliding mass. Despite many advances have been done in this
direction, many researchers still agree that more work is needed to determine how landslide
flow processes that involve strong and gradual deformation of subaerial and submarine land
are related to tsunami generation [28]. The case of an impulse wave generated by a sub-
aerial landslide is typical of Alpine environments, favored by the presence of steep valleys
and large basins at high altitude. A remarkable example is the Vajont dam disaster, occurred
in October 1963 in northern Italy [29]: during initial filling, a massive landslide from the
surrounding Monte Toc caused a mega-tsunami in the artificial lake. Consequently, 50 mil-
lion cubic meters of water over-topped the dam and poured into the valley, leading to the
complete destruction of several villages and towns, and to 1,917 deaths. On the other hand,
one of the clearest and disastrous examples of tsunami generated by submarine landslide is
the one occurred in Papua New Guinea in 1998 [30]. The triggering cause was an earth-
quake of magnitude VII (Mercalli intensity scale), which, despite not leading to significant
direct damage, caused a 2 m vertical drop in the pacific plate along 25 miles of shore. This
unleashed a huge tsunami, with 10 m average height and a run-up of 7-8 m, that devastated
a 30 miles shoreline and led to a total of around 2200 official victims. The run-up is the
height reached by the water above the normal sea level, and it is the most important factor to
take into account when evaluating the consequences led by tsunamis. Indeed, except for the
largest ones, tsunami waves does not break but they come onshore as a rapid rising turbulent
surge of water. Consequently, they appear like an endless tide with a maximum run-up that,
historically, has reached up to 30 m a.s.l. [31]. The Papua New Guinea event brought to light
for the first time the dangerousness of this type of phenomenon, demonstrating how minor
earthquakes can lead to disastrous consequences if they produce submarines slips . The pre-
vention of damages caused by impulse waves and the design of countermeasures requires a
detailed knowledge of the characteristics of the waves that can be generated in a particular
basin. On the one hand, the experimental study by means of small-scale prototypes allows
a good understanding of the phenomenon. However, the detailed simulation of large-scale
events and the variability of key parameters, is more easily taken into account through the
numerical simulation. Relevant parameters that may affect the outcomes are the shore slope,
landslide mass and shape, basin depth and configuration.

Description of the case The main objective of this work consists in the validation of our
model for the case of a landslide sliding within a water basin. The benchmark for this exper-
iment was developed by Liu et el. [20], while additional details about set-up and results are
presented in [32]. In an attempt to evaluate accurately the run-up and run-down generated
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Figure 5.18: Subaerial landslide simulation: (a) numerical set-up of the sliding mass simu-
lation; (b) tetrahedral mesh used for the simulation performed in this work.

by three dimensional sliding masses, they performed several experiments, both in labora-
tory and by means of numerical simulations. In particular, we will consider the case of the
subaerial wedge-shaped landslide. Experimental data for free-surface fluctuations and run-
up/run-down at various locations are taken as reference to validate our numerical model. As
shown in Fig. 5.18(a), the domain consists of a rectangular box of sides 6.6 x 3.7 x 3.7 m,
cut by a 1:2 slope. The mass is represented by a wedge of sides 0.91 x 0.455 x 0.61 m,
which follows the same slope. The object is initially raised by D = 0.45 m above the water
level, h, =3 m . In a general case, the equation that describes the movement of a solid body
that slips inside a water basin has been proposed by Pelinovsky [33]. For simplicity, in this
work we use a simplified version of the profile reported by Wu [32] to prescribe the motion of
the body (subaerial case), that was obtained directly from experimental measurements. The
complete time history profile is reported in Fig. 5.19, showing both experimental and sim-
plified curves. Fig. 5.20 depicts the position of the sensors (S4 to S13) used to monitor the
oscillations of the free surface, while run-up gauges 2 and 3 are used to measure the run-up
and run-down in two different points of the coast. Fig. 5.18(b) shows the computational mesh
used for the simulation. It consists of an unstructured tetrahedral mesh, with increased cell
density in proximity of the free-surface, in order to achieve a better precision in the measure-
ments of surface fluctuations. It accounts for nearly 1.8 x 10° cells.

Numerical results Fig. 5.21 shows the results obtained in the measurement of run-up
against simulation time. Run-up 2 demonstrates a good agreement with experimental data
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Figure 5.19: Time history of the wedge absolute velocity in the subaerial landslide simula-
tion: reference profile versus approximated profile adopted in this work.

0.0 05 10 15 20 25 3.0 35
Z-Axis

6.0 5.0 4.0 3.0 2.0 1.0 0.0
X-Axis

Figure 5.20: Position of Sensors and Run-up gauges on the free surface used in the subaerial
landslide simulation.
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Figure 5.21: Run-up and run-down measured at position run-up 2 and 3 for the sliding mass
test, Comparison between present work and experimental data [20].

[20], with a maximum run-up slightly over-predicted at t = 2.7 s (R, = 0.13 m versus
Rexp = 0.13 m). The same trend is reflected in the Run-up 3 plot. However, in this case a
short delay can of the numerical solution can be noticed after a few seconds of simulation.
The time measurement of relative free-surface fluctuations, 4, are shown in Fig. 5.22. For
simplicity only S4 to 8 and S10 probes are reported. In this case, in addition to present work
and experimental data, we add to the comparison the numerical results by Yang and Stern
[21] which performed the same simulation to validate their two-phase numerical model. Also
in this case, the measurements satisfactorily follow those of reference. It is possible to notice
that present work particularly fits to [21] in some time frames in which they both deviate
from the experimental solution. This is clear, for example, in free-surface peaks of S5 and
S7. This can lead to the conclusion that part of the mechanical behaviour of the apparatus
used in the laboratory experiment lead to spurious effects on the liquid unpredictable by nu-
merical simulations. Finally, in Figure 5.23 the comparison between pictures taken from the
flow simulated numerically by [20] and present work are reported for different time instants.
Despite the approximated form of the sliding wedge velocity profile adopted in this work,
a good overall agreement is found. The model correctly represents the flow from the initial
immersion of the object until its stop (+ = 2.7s) and the subsequent propagation of waves on
the free surface and the coast.

5.5 Conclusions

The potential of a new single-phase scheme to accurately reproduce the physics of free-
surface flows based on the conservative level-set method has been assessed. The utilization
of the level-set function for the identification of the interface allows a straightforward deac-
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Figure 5.23: Comparison of the landslide test flow evolution between numerical results com-
puted by Liu et al. [20] (left side) and present work (right side).
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tivation of the light phase, and leads to the unnecessity to extend the velocity field for its
correct advection.

The method has been demonstrated to work properly on both hexahedral and tetrahedral
meshes, since different validation tests are correctly reproduced for both grid types. The hexa-
hedral grid —usually distributed according to a hyperbolic law in the free-surface proximity—
, 1s particularly suitable for the simulation of wave motion. On the other hand, the possibility
of using unstructured meshes extends the applicability of the method to very diverse 3-D ge-
ometrical configurations. In addition, it allows independent grid densification in particular
regions of the domain, for instance, where the passage of the interface or the appearance of
turbulence structures is expected.

The adoption of the single-phase solver, instead of a two-phase one, simplifies the resolution
of the problem, leading to important advantages in terms of computational time savings. This
is due mainly to an increase in time step, as well as a reduction in the number of iterations
required to iteratively solve the Poisson’s pressure linear system. Moreover, the numerical
stability of the simulations is increased due to an overall reduction of the density difference
at interfaces.

The scheme has proven to satisfactorily work for the simulation of marine applications. In
particular, its capability to reproduce the behavior of solitary and progressive waves, makes it
suitable for the numerical simulation of ocean waves interacting with fixed or anchored struc-
tures. Possible applications are the analysis of water impact loadings on marine structures,
or performance evaluation of offshore devices for energy extraction. Finally, we demonstrate
the capability to integrate the level-set aided free surface model with the Immersed Bound-
ary scheme to simulate the interaction of a body with prescribed motion and the surrounding
fluids. The platform is altogether suited to the simulation of land sliding into water pools.
In fact, the waves induced on the free surface faithfully reproduce those measured through
laboratory experiments, allowing the evaluation of the dangerous run-up effect of tsunami
waves. Consequently, the tool allows a comprehensive study of this important phenomenon
or similar ones, by taking into account several of the many variables that may influence them.
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Conclusions and future
work

This work arises from the desire to pursue the efforts made by previous researchers of the
Heat and Mass Transfer Technological Center (CTTC) in the field of development regarding
the numerical study of multiphase phenomena. The original numerical techniques developed
in this thesis, and the physical cases analyzed, were constructed on the robust bases described
in Chapter 1, where the general algorithms for the resolution of momentum conservation
equations and for interface-tracking implemented by Balcézar et al. [1, 2] are reported. In
this section, we summarize the results of my research work, exposed in Chapters 2 to 5.
Finally, I will express my opinion above the further arrangements that need to be added to the
numerical framework presented in this work, in order to improve its range of applicability.

6.1 Conclusions

In Chapter 2, a low-dissipation and low-dispersion discretization for the numerical simulation
of turbulent interfacial flow is analyzed. This section reflects the original work published in
Schillaci et al. [3]. In the tests, the scheme is coupled to both Level-Set (LS) and Volume-of-
Fluid (VOF) methods for the representation of the interface, demonstrating its versatility. The
scheme is designed to minimize the amount of artificial dissipation introduced into the dis-
crete system, while manages to limit the growth of spurious currents. The theoretical analysis
presented in Secs. 2.2 and 2.3 confirms that the scheme is conservative except for the sub-
group of cells found in the vicinity of the interface, where a controlled amount of dissipation
is introduced to diminish spurious flows. This feature is confirmed by the numerical results
of a 3-D vortex presented in Sec. 2.4.1. The same test shows that the overall kinetic-energy
dissipation is kept to a level well lower than classic dissipative schemes. As demonstrated
in the spherical drop test in Sec. 2.4.3, the localized injection of dissipation allows an effec-
tive control of the spurious currents, which remain contained to small values in the case of
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utilizing the hybrid convection scheme. This behavior is further corroborated by obtaining a
proper interface advection when the sphere is placed in a swirling velocity field. The same
test shows how spurious flows grow unbounded when using purely conservative discretiza-
tions, both in static and swirling set-up, leading to unphysical results. The performance of the
numerical framework in a complete multiphase turbulent scenario has been tested by solving
a liquid-gas atomizing jet. The case is firstly validated by comparison to the results presented
by Fuster et al. [4]. The test demonstrates that the controlled dissipation added to the in-
terfacial region is sufficient to stabilize the numerical simulation, otherwise unfeasible when
adopting pure conservative operators. On the other hand, unlike pure dissipative schemes,
the hybrid convection approach properly represents the physics of turbulent flow. Indeed, as
shown in the analysis of the energy spectra (Sec. 2.4.4) the method is able to resolve correctly
the energy cascade and to reproduce the vortex shedding effect.

In Chapter 3, we present a model to improve the efficiency of multiphase flow simulations by
integrating the CLS solver introduced by Balcdzar et al. [1] with the Adaptive Mesh Refine-
ment (AMR) strategy proposed by Antepara et al. [5]. As demonstrated in the various numer-
ical tests, the method is able to dramatically reduce the computational resources employed
compared to static mesh methods, without at the same time losing accuracy in the solution.
The method is mainly intended for the simulation of break-up and atomization phenomena,
where particularly small characteristics length need to be reached. The refinement criteria
designed to follow the interface and to represent the small convective scales in the considered
flow are explained in Sec. 3.2. The model accounts for a divergence-free treatment of the re-
fined and coarsened cells, which is analytically demonstrated to ensure the correct transport
of mass, momentum and kinetic energy. In a first series of tests, proposed in Sec. 3.3, and
accounting for a vortex flow and different rising bubble cases, the convergence of the results
obtained in two-phase flows is demonstrated. The sharp decline in computational resources
required in comparison to static mesh cases is also highlighted. In the instability phenom-
ena section, Sec. 3.4, we have presented some basic tests aimed at demonstrating the correct
capture of instability and break-up phenomena at small scales. First, the Plateau-Rayleigh
instability growth ratio was correctly measured on unstable liquid columns. Hence, in the
2-D coaxial jet case, the capability of the CLS-AMR method to yield a convergent solution
when increasing the refinement level in two-phase phenomena with interface break-up and
turbulent fluctuations is demonstrated.

In Chapter 4, we employ the CLS-AMR solver described in Chapter 3 to carry out the com-
plete DNS of 3D break-up phenomena. In Sec. 4.2, we describe the results obtained when
performing the complete simulation of 3-D coaxial jets at Re;=600 and Re; ~ 1 x 10%, re-
spectively. The simulations are validated by observing the physical features of the flow, and
comparing them with experimental sources. In particular, in the near-field test, where the
primary instabilities lead to the core break-up, we have measured the wavelengths connected
to both Kelvin-Helmholtz and Rayleigh-Taylor instabilities, finding good agreement with the
semi-empirical relations proposed by Marmottant and Villermaux [6]. Hence, in a second
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test, we focused on the study of the far-field region, where the secondary structures have
mostly degraded into droplets. Here we have evaluated the statistical distribution of droplets,
obtaining a Sauter Mean Diameter close to that indicated by [6]. In Sec. 4.3, after introducing
some theoretical and experimental studies concerning the physics of liquid sprays, we con-
ducted a series of simulations to analyze their physical behavior as function of different input
parameters. In a first study we analyzed the variation of the break-up regime according to the
input speed, and therefore the Reynolds number (Re; = 227 : 5400). The characteristics of
the various regimes encountered when increasing Re; are consistent with the literature of the
field [7], allowing to qualitatively recognize the four stages of instability of a jet: Rayleigh,
1°an 2°Wind-Induced and Atomization. Further simulations were performed by varying the
magnitude of other parameters such as gas density (Tests 3-b, 4-b and 6-b) and surface ten-
sion (Tests 2—c, 3—c, 4—c), allowing additional observations. The various simulations have
been placed inside the regime maps, such as Re; vs. Oh, and We, vs. Oh. We noted that,
despite good agreement for most of the analyzed cases, the transition zones observed in the
simulations are slightly shifted to the right compared to those found in the literature. The
interpretation that we gave to this effect is the absence of an initial jet turbulence in the nu-
merical set-up.

In Chapter 5, reflecting the original research paper by Schillaci et al. [8], the potentiality of a
new single-phase scheme to accurately reproduce the physics of free-surface flows based on
the conservative level-set method —introduced and implemented by Balcazar et al. [1, 2]—
are assessed. The utilization of the level-set function for the identification of the interface al-
lows a straightforward deactivation of the light phase, and leads to the unnecessity to extend
the velocity field for its correct advection, as it happens in similar works found in literature.
Thanks to the several numerical tests proposed, the method has been demonstrated to work
properly on both hexahedral and tetrahedral meshes. In case of Cartesian meshes, the possi-
bility of using a dynamic mesh refinement is also contemplated. The adoption of the single-
phase solver, instead of a two-phase one, simplifies the resolution of the problem, leading
to important advantages in terms of computational time savings. This is due mainly to an
increase in time step, as well as a reduction in the number of iterations required to iteratively
solve the Poisson’s pressure linear system. Moreover, the numerical stability of the simu-
lations is increased due to an overall reduction of the density difference at interfaces. The
scheme has proven to satisfactorily work for the simulation of marine applications. In partic-
ular, its capability to reproduce the behavior of solitary and progressive waves —described in
Sec. 5.3.3—, makes it suitable for the numerical simulation of ocean waves interacting with
fixed or anchored structures. The process of generation and damping of waves inside the nu-
merical domain is further described in Appendix B. Possible applications are the analysis of
water impact loadings on marine structures, as demonstrated in the 3-D dam break case, pro-
posed in Sec. 5.3.5. In Appendix A the model is used for the evaluation of the performance
of an offshore device for energy extraction, the Oscillating Water Column (OWC) system.
In Sec. 5.4, we demonstrate the capability to integrate the level-set aided free surface model
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with the Immersed Boundary scheme to simulate the interaction of a body with prescribed
motion and the surrounding fluids. The platform is altogether suited to the simulation of land
sliding into water pools. In fact, the waves induced on the free-surface faithfully reproduce
those measured through laboratory experiments, allowing the evaluation of the dangerous
run-up effect of tsunami waves. Consequently, the tool allows a comprehensive study of this
phenomenon or similar ones, by taking into account several of the many variables that may
influence them.

6.2 Future Work

The numerical techniques developed by CTTC researchers, together with the tools imple-
mented in the context of this thesis, have allowed the study of relatively complex two-phase
phenomena through direct numerical simulations. Some examples are the statistical analysis
of a 2-D turbulent coaxial jet at Re; ~ 1.6 x 10, different cases of 3-D liquid jet injection (Re;
up to ~ 1 x 10%), and the study of the interaction between a solid object and a free surface
flow. Despite the efficacy provided by the proposed solver and numerical techniques, most of
these studies were only possible with the use of heavy computational resources, such as the
JFF cluster and the RES structures —as explained in Sec 1.1.1. For example, the simulation
of the liquid injection at Re= 5100 (Test 7 in Sec. 4.3.2), requires the use of 288 CPUs during
8—10 days only to reach a steady-state condition, having to bear the load of a dynamic mesh
of ~ 1.5 x 107 elements. The complete turbulent analysis of these kind of flows, requiring
the simulation of several shedding cycles, seems to be still out of reach for the computational
resources currently available. In their present state, numerical simulations does not seem a
reasonable alternative to the experimental analysis of atomizing phenomena.

One of the possible proposals for improving efficiency in multiphase flow simulations is
the development and implementation of LEIS (Large Eddy and Interface Simulations) meth-
ods, which combine the resolution of filtered Navier-Stokes equations (LES Models) with
the tracking of the interface by means of the typical one-fluid formulations, as Level-Set or
Volume-of-Fluid. For instance, as in single-phase flows, Sagaut et al. [9] applied a dynamic
Smagorinsky model in under-resolved regions of the domain. Therefore, the flow variables
in governing equations are considered to be the filtered variables by adding a sub-grid scale
(SGS) stress term to the RHS of momentum equations. The main drawback of this method
has been the difficulty of combining filtered equations with the representation of source terms,
such as surface tension. However, there are recent developments related to the combination
of LES with VoF for turbulent free-surface, bubbly flows and break-up phenomena, as dis-
cussed by Liovic and Lakehal [10]. The idea consists of grid-filtering each phase separately,
and modeling the resulting SGS stresses as if they were isolated. Special treatment may be
necessary at the interface though, taking advantage of the fact that the lighter phase perceives
the interfaces like deformable walls. Here, Liovic and Lakehal showed that the effect of un-
resolved surface tension source terms is small compared to classic SGS stress term. Recently,
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the advancement in this field have been demonstrated by Behzad et al. [11], which demon-
strated the reliability of LEIS models by simulating the physical mechanism underlying the
surface break-up of a liquid jet injected transversely on a crossflow at Re= 1200.

Switching now to the topics discussed in Chapter 5, another interesting field of expansion in
the CFD of multiphase flow, is the in-depth study of the mutual interaction between fluids and
solid. In the cases presented in Sec. 5.4, the interaction is only unilateral, as the movement of
the solid is prescribed and results in a forcing term in the RHS of Navier-Stokes equations.
Our intention is now to extend this model, considering the mutual interaction between solid
and fluid, namely, Fluid-Structure Interaction (FSI). This method requires the resolution of
the motion equations of a rigid body, which passes from the integration of fluid pressure
forces on the body surface. Therefore, an iterative solver has the function of balancing the
movement of the body with the stresses exerted by —or on the fluid. Such a method would
allow the study of the hydrodynamics behavior of floating bodies, such as buoys (including
floating power generation devices) or boats. As verified in literature, e.g. Calderer et al. [12]
and Pathak et al. [13], the most common way to represent the solid object within the flow con-
sists in a Lagrangian description of its motion, and in the tracking of its movement within a
fixed mesh through the Immersed Boundary Method (already used in Sec. 5.4). This method
allows a good versatility and mobility of the object within the domain, without compromis-
ing the stability of the flow-solver. We are currently working on this issue by developing a
multiphase FSI model that is capable of granting all the possible degrees of freedom (6 DOF)
to an arbitrary object moving inside the fixed mesh, and ensuring the mass conservation of
all the phases involved.
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Appendix A

2-D Simulation of an
Oscillating Water Column
device

An OWC device consists of a semi-submerged air chamber, partially filled by sea water and
connected to a bidirectional Wells air turbine [1] by means of an air duct. The surface of
the water that fills the stucture oscillates when solicited by ocean waves, thus, driving air in
and out the duct. The turbine, supplied by the air driven through the duct, is able to produce
energy continuously, due to its property of rotating always in the same direction.

In the study proposed in the current work, the OWC device has been represented as a semi-
submerged air chamber —placed in the right extreme of the domain, see Fig. A.1—, opened
to the environment by means of a small orifice that expulses or sucks air when the water
surface is moving. This approximation properly models the ideal behavior of the device,
as demonstrated firstly by Evans and Porter [2]. Moreover, the viscous damping caused by
the friction of the air through the orifice is used to reproduce numerically the pressure losses
caused by the power extraction system —as shown, among others, by Zhang et al. [3]—, thus,
providing a tool to determine the pressure of the air inside the chamber. An early version of
the current model was presented in Schillaci et al. [4].

A.1 Device characterization

The instantaneous power extracted by the device is evaluated as
P{)wc(t) = Achpuir(t)vowc (t)» (Al)

where A, is the surface of the water at rest inside the air chamber, pg; is the pressure of the
air in the chamber, and v, is the mean vertical velocity of the water column inside the air
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chamber. While v,,,. can be evaluated numerically by using both 1-P and 2-P models, the
simulation of the case with 1-P implies the necessity of approximating the pressure of the
air analytically. Here, its value has been estimated considering the pressure drop through the
orifice by means of the ideal Bernoulli theorem

1
Pair — Pair,env = Epair(vgir,or - vginenv)’ (A2)

and imposing zero air velocity, V. eny, and pressure, pir.cnv, at the environment. The velocity
of the air at the orifice, V4. or, is calculated assuming that the air mass moved from the vertical
motion of the wave passes immediately through the hole
Ach
Vairor = Vowcicy (A3)
A()r
where A, is the orifice cross section. Hence, substituting Eq. A.3 into Eq. A.2, and this one
into Eq. A.1, the following expression for the power is obtained
1 A3
Powe(t) = Ach = Pair|Vairor| ~<L.
owc( ) cthatr| amarl A2

or

(A4)

The norm of the velocity indicates that the device is able to extract energy both if the water
level is increasing or decreasing.

The forcing waves are generated in the left part of the domain by means of a wave maker, that
—according to the principle already described in Sec. 5.3.3— imposes wave elevation and
velocity. The wave elevation, 1 (x,), follows a sinusoidal function that produces progressive
waves, identified by the wavelength, A, and the amplitude, o, as

n(x,t) = asin(xkx — ot), (A5)

where K = 27” is the wave number, ® = 27” is the angular frequency and 7 is the wave period.
The linear wave theory [5] gives a tool to relate wavelength and time period by means of the
dispersion relation

>

— = Ktanh kh,,, (A.6)
8
and provides an analytical solution for the velocity field. The linear wave theory admits the
superposition principle, hence, multiple waves can be created in the wave maker to mimic the
real ocean behavior. However, for the scope of this study, only single waves are simulated. In
detail, the waves —generated on a free-surface of water depth &,, ~ 1.0—, present A = 3.7
m, that corresponds to the maximum power output, and o = 0.04 m, in order to obtain a
low wave height to water depth ratio —requirement for the application of linear wave theory
approximations. The simulations are characterized referring to the output of vy, pair and
P, values.
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Figure A.1: Schematics of the model used for the OWC numerical simulation. The dashed
line on the left bounds the wave maker zone, while the gray structure on the right represents
the air chamber. d is chosen to allow the wave travel for a few wavelengths before encoun-
tering the air chamber wall.

A.2 Numerical tests

The proposed tests are carried out on a Cartesian mesh, composed of 7.3 x 10° cells, dis-
tributed more densely close to the interface. The simulations are performed by using the
free-surface (1-P) model, where p,; and P,,. are evaluated by means of Eqs. A.2 and A.4,
and the full-domain (2-P) scheme, where p,;, is evaluated numerically and Eq. A.1 is used
for P,,.. The free-surface model is described in detail in Chapter 5, where the differences
with the full-domain two-phase model are also highlighted.

An upwind convection scheme is used for the discretization of Yy, in Eq. 1.17, as the mesh
is not sufficiently dense to allow the utilization of the simmetry-preserving sceme. No-slip
boundary conditions are imposed at the bottom part of the domain and to the air chamber solid
walls, while Neumann conditions are given to the other boundaries. As no outflow condition
is provided —due to the fact that the air chamber must behave as a rigid body—, a certain
amount of reflection will appear after few time periods of the progressive waves, hence, the
collection of data is stopped before the effect of the reflected waves affects excessively the
solution.

As shown in Fig. A.2(a), the values of v,,. obtained in the 1-P and 2-P simulations are
in good agreement, both for transient and steady-state analysis, thus, confirming again the
effectiveness of the model in simulating the free-surface movement. On the other hand, the
comparison of the air pressure behavior between 1-P and 2-P data, proposed in Fig. A.2(b),
shows a clear mismatch. The same tendency is also shown in the power plot, shown in
Fig. A.2(c). The marked discrepancy is due to the fact that the model chosen for the pressure
evaluation, Eq. A.2, is not reliable, as its simple formulation cannot take into account the
contributions of the air dynamic effects inside the chamber. However, the proportionality of
the results would allow the use of the model for parametric studies. As further work, the
model could be improved to effectively simulate the physics of the device in different ways,
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for example: (1) finding an alternative mathematical model for the calculation of pressure,
or (2) evaluating numerically the air phase in a sector of the domain, at least in the part that
concerns the air chamber.

In this test, the savings in computational time are even more important than those reported
for the dam break case, see Sec. 5.3.4, due to the fact that it is avoided the calculation of
the air that passes through the orifice after being accelerated by the water vertical movement.
This leads to an increase of the time step of 139%, mainly due to the considerably lower
overall velocity. Furthermore, the increase of the stability results in a reduction of 75% on
the number of iterations required for the resolution of the pressure Poisson’s equation. In
total, the computational time is reduced by 65%.
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Figure A.2: Comparison of results obtained with 1-P and 2-P models for the OWC simula-
tion: (a) mean vertical velocity of the water column inside the air chamber; (b) air pressure
—1-P from Eq. A.2, 2-P evaluated numerically—; (c) OWC power —1-P from Eq. A.4, 2-P
from Eq. A.1.
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Appendix B

Generation and damping
of waves generated on a
free-surface

In this Appendix, I report all the information related to the numerical simulation of linear
progressive waves in water that I collected during my research work.

In some of the set-up analyzed during my experience, I had the necessity to set a numerical
domain in which regular or irregular waves reach a steady-state behavior. The model can
be successively integrated in more complex domains to simulate, for example, the interaction
with floating— or fixed solid objects. The physics of the multi-phase flow, described by means
of the Navier-Stokes equations for momentum conservation, can be simulated by using a two-
phase model (that considers both air and water) or a free-surface model —as the one described
in Chapter 5—, that makes the simulation simpler by considering the interface between fluids
as an internal moving boundary and neglecting the air-phase.

The domain used for the simulation, showed in Fig. B.1, consists in a closed tank partially
filled with water (initially at rest). No-slip boundary condition are applied to bottom, left and
right edges. The waves are generated by a wave maker in the left part and propagate through
the whole length of the domain, until entering the damping zone on the right, where they are
numerically damped.

B.1 Wave maker

The wave maker consists in a small sector of the domain, where a relaxed numerical solution,
Wrelaxved 1S applied for water elevation and some scalar fields. In that small sector, the numer-
ical solution, Wy,a1yrical>» and the forcing analytical function, Wyunerical» are mixed by means
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Figure B.1: Domain used for the numerical simulation of progressive linear— or composed
waves. The dashed line on the left delimits the wave maker zone while the on the right marks
the beginning of the damping zone (numerical beach).

of a relaxing function, £ (x), in order to assure numerical stability in the generation zone.

Yrelaxed = (é (x) 1l/analytical + (1 - é (x))IVnumericab (B 1)

&(x), varies smoothly from 1 to 0 moving from the boundary to the center of the tank. The
analytical forcing function that imposes the wave elevation is a sinusoidal function that pro-
duces progressive waves, identified by the wavelength and the amplitude

n(x,t) = a sin(kx — ot), (B.2)
o 2 ©— 2
A ot
where o is the wave amplitude, k is the wave number, @ is the angular frequency, A is

the wavelength and 7 is the wave period. These two quantities (k- or A-T) are correlated,
according to the dispersion relation [1]

pw@>coth(khy,) + pa(® — kKU ) coth(kh,) = (py — Pa)gK, (B.3)

where U is the wind velocity, A, is the calm water depth and £, is the height of the domain
section including air. When the wind velocity is supposed to be zero, an explicit relation can
be found between wavelength and wave period

1 1
2mA (pa tanh( —275{1“ ) T Pw tanh(iznfw ) )
T =

B.4
(pw - pa)g B4

When the air effect is neglected, the dispersion relation simply reduces to

2
@ _ ktanhih,,. (B.5)
g
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The velocity field is also imposed in the wave maker zone by means of the analytical solution
proposed by Milne [1], that used linear wave theory to evaluate progressive wave velocities

uy, = U-—Bykca sin(kx— ot)cosh(k(y+hy)), (B.6)
uy = Byxca cos(kx— ot)sinh(x(y+hy)), (B.7)
u = 0, (B.8)

where ¢ = A /7 is the phase velocity and B,, = 1/sinh(kh,, ). Due to the linearity of the waves,
the superposition principle can be applied, thus, allowing the generation of composed waves.
In this case the forcing functions, water elevation and wave velocities, are given by the sum
of all the composite wave components.

B.2 Damping zone

Once generated, the waves travel through the domain until encountering the right boundary.
As no outflow condition is provided, they would rebound against the wall, thus, reflecting
part of their inertia towards the center of the domain and avoiding the obtention of a steady-
state condition. Moreover, the reflected energy can go back up to the generation zone, thus,
affecting the wave maker and compromising the stability of the simulation. In order to avoid
this drawback, a numerical beach is added in the right part of the domain. It consists of a
region, with length d; (damping length), in which an artificial dissipation of the wave energy
is carried out. The dissipation can be performed by means of different strategies, some of
which are listed below:

* Viscous damping: the viscosity of the water, U,,, is increased artificially in the damp-
ing zone. In particular, it increases linearly from Xpuffer = Xend — dj tO Xend, proportion-
ally to the damping coefficient ¢,

X — Xpuffer
=Uu, |1 _ B.9
Ho = ( eu Xend — xbuffer) ( )

* Gravity damping: the waves movement is damped by adding an additional body force,
ﬁdamp, acting as an additional gravity force on the free surface. Again, this force rises
progressively up to the domain extreme, proportionally to the damping coefficient cgray .
Its absolute value is evaluated as

X — Xpuff
|Fdamp| = gp:Ve <1 + Cgrav S > (B.10)
Xend — Xbuffer

where p. and V. are the cell density and volume, respectively.
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B.3 Numerical tests

In order to assess the effectiveness of these dissipation methods, some tests are realized on
rectangular 2-D domain of sides 16 x 2 m, while the water height is set to 4, = 1 m. The
Cartesian mesh is composed by ~ 6.5 x 10* elements (departed on 8 CPUs), distributed more
densely in the zone of the interface. The forcing progressive waves are assigned a single
wavelength (simple wave, A = 2.3m, a = 0.04m), and the simulations are carried out by
using a single-phase (1-P) scheme described in Chapter 5. The length of the numerical beach
is d; = 5Sm. Hence, the simulation realized without any damping strategy (UNDAMPED)), is
compared with the gravity damped simulation (GRAV damping, c¢eray = 100) and the viscosity
damped one (VISC damping, ¢, = 1.0 x 10°). The parameters used for the comparison are
the vertical velocity of the free surface close to the right boundary, Vour, showed in Fig. B.2,
the vertical velocity of the free surface at the center of the domain, V cpntEr, showed in
Fig. B.3, and the horizontal mean velocity of the water at the center of the domain, UcgNTER,
showed in Fig. B.4.

Fig. B.2 shows how VISC damping manages to reduce the oscillations of the surface at the
output, compared to the obscillations of the UNDAMPED solution, while GRAV damping
produces a very constrained and almost random movement.

In Fig. B.3, it can be noticed that all the solutions reach the same behavior after a few time
periods (time needed by the progressive wave to reach the center of the domain). However,
after a few steady-state oscillations, the UNDAMPED solution rises its velocity peaks, prob-
ably due to the effect of the reflected energy that starts affecting its movement. On the other
side, the GRAV damped solution keep on oscillating between the same values, demonstrating
that the damping zone is properly performing its function. VISC damping also shows regular
oscillations that reach slightly higher peaks than GRAV damping.

The same conclusions can be taken from the analysis of Fig.B.4, that shows how the mean
horizontal velocity of the waves is reduced after a few time periods in the UNDAMPED
solution —where the reflected waves block the horizontal movement of the forcing waves,
also affecting the oscillation time period—, in contrast to the GRAV damped one, where it
mantains the same sinusoidal behavior for the whole simulation. VISC damping shows a
similar behavior than GRAV damping, even if with reduced values of the peaks, probably
because the effect of the reflected energy is still partially present.

Finally, Tab.B.1 resumes some features regarding the computational time of the simulations.
In particular, it is remarkable the reduction of the time step in the VISC damping simulation,
that causes an important increase in the total computational time. This reduction is due to the
fact that the methods for the time step evaluation —here, the self adaptive method proposed
by Trias et al. [2] is used— directly depends, in their diffusive contribution, on the maximun
value of viscosity present on the domain. Hence, the GRAV damping method results the best
one in performing its function, due to its better effectiveness and the avoided weighting of
the computational time.
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v [m/s]

Iter At te; [min/s]
UNDAMPED 553 8.7x107% ~21
VISC damping 513 2x10~* ~ 54

GRAV damping 505 8.5x10°* ~21

Table B.1: Time step, A¢, mean number of iterations for Poisson’s equation solution, Ifer,
and computation time in minutes per second of simulation, ¢,,;, measured in the proposed
tests.
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Figure B.2: Mean vertical velocity of the free surface in the wave damping zone.
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