24,279 research outputs found

    Augmenting data warehousing architectures with Hadoop

    Get PDF
    As the volume of available data increases exponentially, traditional data warehouses struggle to transform this data into actionable knowledge. This study explores the potentialities of Hadoop as a data transformation tool in the setting of a traditional data warehouse environment. Hadoop’s distributed parallel execution model and horizontal scalability offer great capabilities when the amounts of data to be processed require the infrastructure to expand. Through a typification of the SQL statements, responsible for the data transformation processes, we were able to understand that Hadoop, and its distributed processing model, delivers outstanding performance results associated with the analytical layer, namely in the aggregation of large data sets. We demonstrate, empirically, the performance gains that can be extracted from Hadoop, in comparison to a Relational Database Management System, regarding speed, storage usage, and scalability potential, and suggest how this can be used to evolve data warehouses into the age of Big Data

    Data Warehousing Modernization: Big Data Technology Implementation

    Get PDF
    Considering the challenges posed by Big Data, the cost to scale traditional data warehouses is high and the performances would be inadequate to meet the growing needs of the volume, variety and velocity of data. The Hadoop ecosystem answers both of the shortcomings. Hadoop has the ability to store and analyze large data sets in parallel on a distributed environment but cannot replace the existing data warehouses and RDBMS systems due to its own limitations explained in this paper. In this paper, I identify the reasons why many enterprises fail and struggle to adapt to Big Data technologies. A brief outline of two different technologies to handle Big Data will be presented in this paper: Using IBM’s Pure Data system for analytics (Netezza) usually used in reporting, and Hadoop with Hive which is used in analytics. Also, this paper covers the Enterprise architecture consisting of Hadoop that successful companies are adapting to analyze, filter, process, and store the data running along a massively parallel processing data warehouse. Despite, having the technology to support and process Big Data, industries are still struggling to meet their goals due to the lack of skilled personnel to study and analyze the data, in short data scientists and data statisticians

    Augmenting data warehousing architectures with hadoop

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Information Systems and Technologies ManagementAs the volume of available data increases exponentially, traditional data warehouses struggle to transform this data into actionable knowledge. Data strategies that include the creation and maintenance of data warehouses have a lot to gain by incorporating technologies from the Big Data’s spectrum. Hadoop, as a transformation tool, can add a theoretical infinite dimension of data processing, feeding transformed information into traditional data warehouses that ultimately will retain their value as central components in organizations’ decision support systems. This study explores the potentialities of Hadoop as a data transformation tool in the setting of a traditional data warehouse environment. Hadoop’s execution model, which is oriented for distributed parallel processing, offers great capabilities when the amounts of data to be processed require the infrastructure to expand. Horizontal scalability, which is a key aspect in a Hadoop cluster, will allow for proportional growth in processing power as the volume of data increases. Through the use of a Hive on Tez, in a Hadoop cluster, this study transforms television viewing events, extracted from Ericsson’s Mediaroom Internet Protocol Television infrastructure, into pertinent audience metrics, like Rating, Reach and Share. These measurements are then made available in a traditional data warehouse, supported by a traditional Relational Database Management System, where they are presented through a set of reports. The main contribution of this research is a proposed augmented data warehouse architecture where the traditional ETL layer is replaced by a Hadoop cluster, running Hive on Tez, with the purpose of performing the heaviest transformations that convert raw data into actionable information. Through a typification of the SQL statements, responsible for the data transformation processes, we were able to understand that Hadoop, and its distributed processing model, delivers outstanding performance results associated with the analytical layer, namely in the aggregation of large data sets. Ultimately, we demonstrate, empirically, the performance gains that can be extracted from Hadoop, in comparison to an RDBMS, regarding speed, storage usage and scalability potential, and suggest how this can be used to evolve data warehouses into the age of Big Data

    A Framework for Developing Real-Time OLAP algorithm using Multi-core processing and GPU: Heterogeneous Computing

    Full text link
    The overwhelmingly increasing amount of stored data has spurred researchers seeking different methods in order to optimally take advantage of it which mostly have faced a response time problem as a result of this enormous size of data. Most of solutions have suggested materialization as a favourite solution. However, such a solution cannot attain Real- Time answers anyhow. In this paper we propose a framework illustrating the barriers and suggested solutions in the way of achieving Real-Time OLAP answers that are significantly used in decision support systems and data warehouses

    A Survey of Parallel Data Mining

    Get PDF
    With the fast, continuous increase in the number and size of databases, parallel data mining is a natural and cost-effective approach to tackle the problem of scalability in data mining. Recently there has been a considerable research on parallel data mining. However, most projects focus on the parallelization of a single kind of data mining algorithm/paradigm. This paper surveys parallel data mining with a broader perspective. More precisely, we discuss the parallelization of data mining algorithms of four knowledge discovery paradigms, namely rule induction, instance-based learning, genetic algorithms and neural networks. Using the lessons learned from this discussion, we also derive a set of heuristic principles for designing efficient parallel data mining algorithms
    • …
    corecore