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ABSTRACT 

As the volume of available data increases exponentially, traditional data warehouses struggle to 

transform this data into actionable knowledge. Data strategies that include the creation and 

maintenance of data warehouses have a lot to gain by incorporating technologies from the Big Data’s 

spectrum. Hadoop, as a transformation tool, can add a theoretical infinite dimension of data 

processing, feeding transformed information into traditional data warehouses that ultimately will 

retain their value as central components in organizations’ decision support systems. 

This study explores the potentialities of Hadoop as a data transformation tool in the setting of a 

traditional data warehouse environment. Hadoop’s execution model, which is oriented for distributed 

parallel processing, offers great capabilities when the amounts of data to be processed require the 

infrastructure to expand. Horizontal scalability, which is a key aspect in a Hadoop cluster, will allow for 

proportional growth in processing power as the volume of data increases. 

Through the use of a Hive on Tez, in a Hadoop cluster, this study transforms television viewing events, 

extracted from Ericsson’s Mediaroom Internet Protocol Television infrastructure, into pertinent 

audience metrics, like Rating, Reach and Share. These measurements are then made available in a 

traditional data warehouse, supported by a traditional Relational Database Management System, 

where they are presented through a set of reports. 

The main contribution of this research is a proposed augmented data warehouse architecture where 

the traditional ETL layer is replaced by a Hadoop cluster, running Hive on Tez, with the purpose of 

performing the heaviest transformations that convert raw data into actionable information. Through 

a typification of the SQL statements, responsible for the data transformation processes, we were able 

to understand that Hadoop, and its distributed processing model, delivers outstanding performance 

results associated with the analytical layer, namely in the aggregation of large data sets. 

Ultimately, we demonstrate, empirically, the performance gains that can be extracted from Hadoop, 

in comparison to an RDBMS, regarding speed, storage usage and scalability potential, and suggest how 

this can be used to evolve data warehouses into the age of Big Data. 
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1. INTRODUCTION 

Big Data, infinite possibilities. The amount of information collected as of 2012 is astounding; around 

2.5 Exabytes1 of data are created every day and this number is doubling every forty months (McAfee 

& Brynjolfsson, 2012). Like the physical universe, the digital universe is in constant expansion – by 2020 

the amount of generated data annually will reach the 44 Zettabytes2, and by then we will have as many 

digital bits as stars in the universe (Dell EMC, 2014). Nowadays technologies under the umbrella of Big 

Data contribute decisively to the Analytics world (Henry & Venkatraman, 2015) and the availability of 

huge amounts of data opened the possibility for a myriad of different kinds of analyses that ultimately 

feed and enable decision support systems (Ziora, 2015). The ability to process these huge amounts of 

data, one of the key features of Big Data (Jin, Wah, Cheng, & Wang, 2015), is then of great interest to 

organizations as they acknowledge the benefits that can be extracted from Big Data Analytics (Kacfah 

Emani, Cullot, & Nicolle, 2015). Understanding then the importance of Big Data and its contribution to 

Analytics can be viewed under the simple concept that more is just better, since in data science having 

more data outperforms having better models (Lycett, 2013). 

One source of large amounts of data is the Ericsson Mediaroom, a video platform that delivers Internet 

Protocol Television (IPTV) services to customers at their homes, like watching Live television or Video-

on-Demand (Ericsson Mediaroom, 2016). Underneath this platform sits a Relational Database 

Management System (RDBMS) where millions of records are stored every day. These records reflect a 

variety of behaviors that can be performed by the television users at their homes, like changing a 

channel or a program. Periodically these events are sent to a centralized database and stored there. It 

is possible then to access them, in this centralized database, but for a limited time-window since the 

data is refreshed periodically due to volume constraints (Architecture of Microsoft Mediaroom, 2008). 

Therefore, if we want to store this data for future analyses, we need to extract it from this repository 

and store it in another location. From the extraction onwards, our research focuses on optimizing the 

processes surrounding the transformation of this raw data into valuable and actionable information. 

A comparative study is performed with the purpose of assessing the benefits of incorporating Big Data 

technologies in traditional data warehouse architectures, typically supported by an RDBMS. To achieve 

this, the required transformation processes are implemented in both the RDBMS and Hadoop, a 

software framework for storing and processing large data sets in a distributed environment of 

commodity hardware clusters (White, 2015). 

This research explores the opportunities and challenges provided by the Big Data technological 

landscape and solves a specific problem that could not be previously solved by traditional relational 

databases due to the amount of information that needs to be processed. 

 

1.1. BACKGROUND AND PROBLEM IDENTIFICATION 

In traditional systems, when more processing capabilities are required, we are forced to expand their 

processing power by adding more and better resources, namely processors, memory or storage. This 

approach, known as vertical scalability, has associated high costs and it is constrained by the 

                                                           
1 One Exabyte is the equivalent of one billion Gigabytes. 
2 One Zettabyte is the equivalent of one trillion Gigabytes. 
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architectural design that cannot evolve beyond the finite capabilities of one single node, the server (J. 

A. Lopez, 2012). In the Big Data world scalability is horizontal –  instead of growing the capabilities of 

the individual servers, the Big Data infrastructure grows by simply adding more nodes to the cluster, 

the set of computers that work together in a distributed system (Ghemawat, Gobioff, & Leung, 2003). 

This scalability, when compared to the vertical scalability, offers infinite growing potential while the 

costs remain linear (Marz & Warren, 2015). Nowadays, due to the amount and speed of information 

generated from a multiplicity of sources, traditional Data Warehousing tools for data extraction, 

transformation and loading (ETL) are, in many cases, at the limit of their capabilities (Marz & Warren, 

2015). Under these circumstances, the aim of this study is to explore and assess the value of Big Data 

technologies in the transformation of data, with the purpose of integrating them in traditional Data 

Warehousing architectures. The goal is not to replace data warehouses by Big Data infrastructures, but 

instead to put both worlds working together by harnessing the best features of each of them. 

As the amount and types of available data have grown in the past years and will continue to grow, 

there is little doubt that the Big Data paradigm is here to stay (Abbasi, Sarker, & Chiang, 2016). The 

technologies that support the Big Data problems are relatively new, but their application, alongside 

traditional legacy Data Warehousing systems, presents itself as an interesting evolution opportunity. 

With both technologies working together, in a hybrid approach, we can offer the best of both worlds 

and apply them to warehousing architectures (Dijcks & Gubar, 2014; Russom, 2014). 

Adoption of Big Data technology is a hot topic nowadays and the potential benefits are significant but, 

due to its young age, there are many challenges that need to be carefully addressed (Jagadish et al., 

2014). Using Big Data as a transformation tool can be a solid first step in moving towards the world of 

infinite data. Hadoop’s ecosystem has several emerging data warehouse-style technologies that can 

be used to solve the problems that traditional technologies cannot overcome, when the volume and 

variety of data steps up (Kromer, 2014). When faced with huge amounts of data, how can traditional 

data warehouses evolve and maintain their value? This question poses the central topic on which this 

study is focused. In the end, managers need their questions answered and what is changing is the 

amount of information that is being used to support these answers (McAfee & Brynjolfsson, 2012). 

 

1.2. STUDY OBJECTIVES 

The main goal of this study is to assess and validate the feasibility of Hadoop as a data transformation 

tool that can be integrated as part of a traditional data warehouse. In other terms, our driving research 

question relates to the validation of the hypothesis stating that Hadoop can be used to augment 

traditional data warehouse architectures. To achieve this goal, Hadoop is used to calculate, from 

television viewing events, relevant television audience measurements like the Reach, number of 

individuals of the total population who viewed a given channel at any time across its time interval; 

Share, percentage of viewers of a given channel at a given time; and Rating, average population who 

viewed a program across its broadcasting time (Mytton, Diem, & Dam, 2016). These metrics are, 

ultimately, stored in a traditional data warehouse that corresponds to the single version of the truth 

in serving information to the decision support systems (Krishnan, 2013). 

To reach the final goal of this research, we have established a roadmap, with several sequential steps, 

to guide us through in a measurable and successful way. In order to explore the data, with the use of 
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Big Data technologies, there is the necessity of designing and creating a Big Data Hadoop cluster. This 

lays the foundation for the study to implement the required processes and evaluate their results and 

performance. 

It is also an objective of this study to assess the horizontal scalability potential that is offered by Hadoop 

clusters. The design of a solution for a problem should remain valid no matter the volume of data we 

intend to process. This is one of the greatest advantages of using Big Data technologies and in 

particular the Hadoop Distributed File System (HDFS) (White, 2015). When compared with traditional 

ETL technologies, Big Data technologies are able to scale seamless horizontally and adapt to big 

volumes of data (Kromer, 2014). 

Table 1.1 briefly describes the six objectives that help to methodically reach the main goal of this 

research. 

Objective 

O.1 
Investigate Hadoop’s state of the art and determine which solution is more appropriate 

for the problem at hand 

O.2 Install a Hadoop cluster to serve as the foundation for the study 

O.3 
Make use of the selected Hadoop solution to transform Mediaroom’s raw data into 

meaningful television audience measurements, the Rating, Reach and Share 

O.4 
Measure and compare the performance of the implemented transformation processes 

in Hadoop against their performance in an RDBMS 

O.5 
Measure the processing scalability offered by the Big Data infrastructure and its 

corresponding performance improvements 

O.6 Make the calculated audience measurements available through a visualization layer 

Table 1.1. Research objectives 

 

1.3. STUDY RELEVANCE AND IMPORTANCE 

Big Data made its first steps in the beginning of 2000 and it is still a relatively new phenomenon 

conquering its space in the corporate world. In recent years, companies invested millions of dollars in 

creating data warehouses to serve their decision support systems and further investments towards Big 

Data are still seen by managers with some suspicion since they are convinced that their companies 

aren’t fully prepared for the leap (Barton & Court, 2012). It is important to understand that even 

though the big step forward given by Big Data is technological, its motivations are driven by the need 

to find solutions for the problems that became too complex and too expensive to be solved by the 

traditional technologies and architectures (K. Lopez & D’Antoni, 2014). The landscape of Big Data is 

already vast and offers many different solutions to face the challenges of the complexity and volume 

of the available data. With this in mind, a good approach is to start small. A small Big Data initiative is 

a good starting point from where it will be possible to assess its value and plan for the next steps 

(Franks, 2012). Therefore, the integration of Hadoop as a transformation tool, converting the raw data 

into actionable information, in the context of the traditional Data Warehousing ETL layer, can solve 

the problems created by the volume increase of data and also move the organizations’ data strategies 

towards the world of Big Data and its possibilities (J. A. Lopez, 2012). 
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Besides exploring the general applicability of Hadoop as a transformation tool, and with that extend 

organizations’ current Data Warehousing capabilities, this study creates the procedures required to 

calculate television audience metrics from IPTV infrastructures like Ericsson’s Mediaroom. Nowadays, 

to collect audience measures we do not need to resort to population sampling anymore. Television 

service providers have all the data they need, what is missing are simply the right tools to convert this 

data into actionable knowledge. Thus, the importance of this study can be measured in two ways. On 

the one hand, it demonstrates how Hadoop can expand current data warehouse capabilities, and on 

the other hand, for television service providers, the study offers a tangible and scalable way of 

converting their current raw data into useful audience measurements. 

 

1.4. DOCUMENT STRUCTURE 

This dissertation follows the sequence of steps depicted in the diagram below. 

C
h

a
p

te
r 

2
C

h
a

p
te

r 
2

C
h

a
p

te
r 

1
C

h
a

p
te

r 
1

C
h

a
p

te
r 

3
C

h
a

p
te

r 
3

C
h

a
p

te
r 

4
C

h
a

p
te

r 
4

C
h

a
p

te
r 

5
C

h
a

p
te

r 
5

C
h

a
p

te
r 

6
 &

 7
C

h
a

p
te

r 
6

 &
 7

Problem identification and 
statement of objectives

Knowledge acquisition regarding 
Databases and Data Warehousing

Knowledge acquisition regarding 
Big Data technologies

Research Methodology definition

Problem description and analysis
Data warehouse design

Data warehouse implementation 
in the RDBMS

Data warehouse implementation 
in the Hadoop cluster

Performance, scalability and 
storage tests 

Results and conclusions

 
Figure 1.1. Dissertation structure 



5 

2. THEORETICAL FRAMEWORK 

2.1. INTRODUCTION 

The theoretical framework that supports this study crosses a wide-range of theories and techniques. 

Invariably, there is the need to go back to the origins of relational databases and from there expand 

the knowledge towards the focal point of the work, the current paradigms around the explosion of 

information under the umbrella of Big Data. There are many theories and emerging technologies that 

needed to be analyzed before we could start the implementation phase of this study. 

Since the first ideas for the relational databases, proposed by Codd in 1970, the Relational Database 

Management Systems (RDBMS) have been the norm. With Codd’s ideas as a foundation, Online 

Transaction Processing (OLTP) systems proliferated within organizations; their features multiplied and 

their applicability allowed for a big dissemination and adoption in a wide range of Information Systems 

(IS). Relational databases, managed in OLTP systems, became the core of information in organizations, 

no matter their business purposes (Krishnan, 2013). 

The myriad of applications that OLTP systems were supporting created a big divide in information 

inside organizations. The information was there, but the several systems did not communicate among 

themselves. With the purpose of creating a more systemic view of the organizations’ activities, the first 

concepts of Data Warehousing emerged in the late 1970s and early 1980s (Krishnan, 2013). The need 

for transforming data from many sources into useful insights paved the road for the importance of 

Business Intelligence and, for example, Enterprise Data Warehouses (EDW). Ralph Kimball is one the 

central figures in the world of data warehouses and in particular in the definition of the dimensional 

modeling, a variation of the traditional relational model, and the basis of data warehouses’ design 

(Kimball & Ross, 2013). 

Within the world of data warehouses and Business Intelligence, there are several techniques for the 

purpose of providing valuable insights that can be explored through the transformation of data into, 

ultimately, actionable knowledge. Making use of the dimensional modeling defined by Kimball, the 

Online Analytical Processing (OLAP) is an extremely useful approach for delivering fast answers from 

different perspectives (Codd, Codd, & Salley, 1993). Business Intelligence and Analytics have relied, for 

many years, on the dimensional models and online analytical processing tools that enable the 

exploration of business information. The standard approaches, that are associated with data 

warehouse systems, are still very much alive and proof of that is that 80–90% of the deliverables in 

Business Intelligence initiatives are supported by OLAP built upon an RDBMS-based data warehouse 

(Russom, 2014). 

The explosion of the amount of generated data, and the quest for the most up-to-date information to 

base decisions upon, created challenges in the traditional Information Systems. Internet giants like 

Google and Facebook had to change their IS architectures. In 2004, the information regarding the Map-

Reduce paradigm was publicly released (Dean & Ghemawat, 2004). Map-Reduce is a programming 

model focused on the parallel processing of large datasets across an infrastructure composed of 

multiple computers. This paradigm is implemented by several frameworks, however the best known 

is Apache Hadoop (White, 2015). Map-Reduce is among one of the changes in how information is 

processed but, of course, it is not the only one. A plethora of databases that intended to break the 
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barriers of Codd’s relational model were created and as a result, the NoSQL (Not only SQL3) paradigm 

gained popularity and momentum. NoSQL options, when compared with the traditional RDBMSs, are 

very simple in their sophistication levels. RDBMSs evolved through decades and these new approaches, 

in a technological view, look like a return to the past (Mohan, 2013). Traditional RBDMSs are also 

evolving to allow horizontal scalability while maintaining the integrity of a dimensional database. The 

Massively Parallel Processing (MPP) paradigm can be seen as a response, by the traditional RDBMSs, 

to the vast amounts of data and it represents an important approach in the Big Data world 

(Stonebraker et al., 2010). 

The purpose of data warehouses and Big Data, within organizations, is seen through different eyes by 

several authors. While data warehouses provide a source of clearly defined and unified information 

that can then be used by other systems like Business Intelligence tools (Kimball & Ross, 2013), some 

authors state that purpose of Big Data is to provide cheap solutions to store raw data that hasn’t any 

predefined structure (Boulekrouche, Jabeur, & Alimazighi, 2015). This idea is even emphasized by 

authors advocating that there is no correlation between data warehouses and Big Data, since the latter 

is only seen as a technology for storing data (B. Inmon, 2013). Moreover, in the opposite side, some 

defend that Big Data itself consists of both technologies and architectures (Maria, Florea, Diaconita, & 

Bologa, 2015). The Data Warehousing Institute strongly believes that Hadoop cannot replace a 

traditional data warehouse since, for example, enterprise data reporting requirements cannot be 

satisfied by Hadoop as well as they can be by an RDBMS-based data warehouse. Technologies have 

completely different levels of maturity, and in the end, the most important aspect is which approach 

can better suit the specific objectives (Russom, 2014). 

Hadoop can be seen as the next step in the development of data warehouses and especially in the 

Extract-Transform-Load (ETL) phase, even though Hadoop is not an ETL tool (Šubić, Poščić, & Jakšić, 

2015). Combining new technology as an integrator of data in a traditional data warehouse is explored 

so that its advantages and shortcomings can be assessed in an empirical way that goes beyond the 

theory and the so many contradictory opinions in the world of data science. 

 

2.2. RELATIONAL DATABASES 

When we speak about relational databases it is mandatory to go back to 1969-1970 and more 

specifically to the seminal publications “Derivability, Redundancy and Consistency of Relations Stored 

in Large Data Banks” (Codd, 1969) and “A Relational Model of Data for Large Shared Data Banks” (Codd, 

1970) by Edgar Frank Codd. Codd’s second publication is the single most important event in the history 

of databases and its proposed relational model is still a part of the vast majority of databases (Date, 

2003). The relational model appears as a response to the challenges of managing a growing amount of 

data. It is primarily focused on the independence between data and applications, and with the 

problems of inconsistency typically associated to data redundancy. 

Within Codd’s proposal, for the original relational model, we can discern three major components – 

structure, integrity and manipulation (Date, 2015). As structure features, firstly we have the relations 

that are commonly referred as tables. These relations contain tuples that can be interpreted as the 

                                                           
3 SQL stands for Structured Query Language and it is approached in section 2.3. 
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rows of a table, and finally, a tuple is constituted by a set of attributes that instantiate values from the 

valid domains (also referred as types). 

Relation

Attribute

Tuple

 
Figure 2.1. Visual representation of a Relation, Tuple and Attribute 

In Figure 2.1 we have a visual representation of a relation with a set of tuples containing each five 

attributes. This relation can also be expressed as a table containing multiple rows, each with five 

columns. In the depicted example, we are considering a five-ary relation since the number of attributes 

(or columns) is used to express the arity of the relation. Attributes inside relations contain actual values 

within their corresponding domain. As an example, an attribute expressing European countries could 

only contain values belonging to the conceptual pool of European countries. 

Still, regarding the structure of the relational model, we have to consider several kinds of keys. 

Relations need to have at least one candidate key capable of expressing the uniqueness of a tuple. 

These keys can be composed of one or more attributes. What is required is that the relation has a 

unique key value for each distinct tuple. From the candidate keys, we can elect one to be the primary 

key and thus being subject to special treatment. Finally, we have the foreign key that is defined by one 

or more attributes in a given relation R2 that must also exist as a key K in some other relation R1. 

When we approach the aspects of the model structure, that emphasize the importance of data 

consistency, it is important to mention data normalization and the normal forms. The goal of data 

normalization is to reduce or even eliminate data redundancy. That is expressed in the model definition 

by splitting relations, with redundant information, into two or more relations. Even though relational 

theory defines several normal forms, the one most commonly used in relational models is the Third 

Normal Form (3NF) since it covers most of the anomalies related to the update of redundant data 

(Sumathi & Esakkirajan, 2007). The 3NF builds upon the two previous normal forms and states the 

following: 

1. All attributes contain only atomic values (First Normal Form); 

2. Every non-key attribute is fully dependent on the primary key (Second Normal Form); 

3. Every attribute, not belonging to a candidate key, is non-transitively4 dependent on every key. 

                                                           
4 A transitive dependency is when an attribute is only functionally dependent on the key indirectly, i.e. 

through another non-key attribute. 
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The integrity features, from the relational model main components, allow us to enforce rules in the 

model, with the purpose of assuring consistency in the data and in the relationships that help shape 

and express the logical concepts into the relational model. Simply put, the original relational model 

bases its integrity features in two generic constraints, one related to the primary keys and another 

related to the foreign keys. The entity integrity rule states that primary keys should represent uniquely 

the tuples and for that purpose they cannot contain null values, and the referential integrity rule 

establishes that there cannot be any unmatched foreign key values in the corresponding target 

candidate key. A more implicit constraint can also be considered, the attribute integrity that states 

that an attribute value must belong to its specified domain. 

The manipulative features enable us to query and update the data stored in the model. They relate to 

relational algebra and relational algebra assignment which allow us to assign the value of a given 

relational algebra calculation to another relation (e.g., R3 = R1 INTERSECT R2). In relational algebra, we 

can identify the following original operators: 

• Restrict – returns a relation filtered by a given expression; 

• Project – defines the attributes that will be part of the relation; 

• Product – returns a relation containing all the possible tuples resulting from the combination 

of two tuples belonging to two different relations. This operator is also known as cartesian 

product/join; 

• Union – returns a relation containing the tuples that exist in any of two given relations; 

• Intersect – returns a relation containing the tuples that exist in both the specified relations; 

• Difference – returns a relation containing the tuples that exist in the first relation but not in 

the second; 

• Join – originally named natural join; it returns the tuples that are a combination of two tuples 

from two distinct relations that share the same values in the common attributes. 

The relational model itself, as published by Codd, does not establish a formal language per se to 

implement these operators and enable the described manipulative features. That role was taken 

afterward by SQL (Structured Query Language). 

 

2.3. STRUCTURED QUERY LANGUAGE 

SQL was originally developed by IBM, under the name of Structured English Query Language, with the 

purpose of manipulating and retrieving data stored in Codd’s relational model. Its first commercial 

implementation was released in 1979 by the company that is nowadays Oracle (Oracle Corporation, 

2016). Even though SQL’s design foundation was Codd’s relational model, it deviates in some ways 

from its original definitions. In SQL, for example, we can apply order to the data retrieval, and tables 

are viewed as a list of rows instead of a set of tuples. On this spectrum, we can find criticism arguing 

that SQL should be replaced by a language strictly based on the original relational theory (Darwen & 

Date, 1995). 

SQL is the standard language used by RDBMSs to access and manipulate data in relational databases. 

It is a nonprocedural language and, therefore, the user only needs to state which data is to be 

retrieved, without having to specify how the data should be obtained (Sumathi & Esakkirajan, 2007). 
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RDBMSs commonly also include procedural languages that extend SQL features like Oracle’s PL/SQL 

(Procedural Language/Structured Query Language) or Microsoft’s Transact-SQL. As mentioned, SQL is 

indeed standard for relational databases, but despite this, many RDBMSs vendors do not follow strictly 

the standard convention, currently the SQL:2011, and implement their own variations. However, the 

ANSI5 SQL standard is supported in most major RDBMSs, thus making SQL interoperability a great asset 

that contributed to its adoption. 

SQL’s vendor independence based on official standards and associated to a high-level, English-like 

language, are some of the aspects that contributed to SQL’s success (Weinberg, Groff, & Oppel, 2010). 

This complete and common language for all relational databases also assures that the developers’ skills 

remain valid when moving from one vendor to another since all programs written in SQL are portable 

and require little or no modification for them be moved from one RDBMS to another (Oracle 

Corporation, 2016). 

As stated, SQL enables its users to retrieve and manipulate data stored in relational databases. For that 

purpose, SQL has a set of predefined commands that can be divided, according to their scope, in three 

types – the Data Manipulation Language (DML), the Data Definition Language (DDL), and finally the 

Data Control Language (DCL), that according to ANSI SQL is considered to be a part of the DDL. 

SQLSQL

DDLDDLDMLDML DCLDCL

CREATE
ALTER
DROP

INSERT
SELECT
UPDATE
DELETE

GRANT
REVOKE

 
Figure 2.2. SQL's three types of commands 

From the figure above we can discern SQL’s three types of commands. DML implements the four basic 

functions of persistent storage – create, read, update and delete (CRUD) (Martin, 1983). DDL is used to 

create, alter or drop objects like tables, views, constraints or indexes. Moreover, the DCL commands 

allow us to control access to the database objects by granting or revoking permissions to users. 

SQL is much more than a query language as its name suggests. Querying data is one of the most 

important functions performed by SQL but it is not the only one. It enables the users to control many 

aspects of a Database Management System like: 

• Data retrieval – through SQL users can query the database and retrieve the desired 

information. One example of data retrieval statement is presented on Table 2.1; 

• Data manipulation – applications or users can add new data and update or delete previously 

stored data; 

                                                           
5 American National Standards Institute (ANSI) is a non-profit organization that promotes and facilitates 

voluntary consensus standards and conformity assessment systems. 
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• Data sharing – SQL is also used in the coordination of concurrent accesses by assuring ACID6 

properties in the transactions (Haerder & Reuter, 1983); 

• Data definition – SQL lets the users define the structure and the relationships of the model 

responsible for storing the data; 

• Data integrity – to avoid data inconsistency SQL allows for the definition of constraints that 

assure data integrity; 

• Access control – SQL can be used to protect data against unauthorized access. Through the 

Data Control Language, it is possible to restrict the users’ ability to retrieve, add, modify or 

delete data. 

 

SQL Statement Operator Description 

SELECT t1.column1, t2.column3 PROJECT Defining the data retrieval projection 

  FROM table1 t1 Source Retrieving data from a given table 

     JOIN table2 t2 

        ON (t1.column1 = t2.column1) 
JOIN Performing a join with a second table 

 WHERE t1.column2 >= value RESTRICT Restricting the output by a given criteria 

 ORDER BY t1.column1 ASC Order Specifying the result order 

Table 2.1. Example of data retrieval with SQL 

In Table 2.1 we can see an example of a SQL query that will retrieve data from the data model. In the 

column ‘SQL Statement’ the language keywords are highlighted, and in the column ‘Operator’ we can 

observe, also highlighted, the original operators from relational algebra. Note the use of aliases when 

referring to the tables to simplify references to their columns (e.g.: table1 has the alias t1). 

SQL databases are extremely powerful as they enable the combination and analysis of data through 

the simplicity of relational algebra. They can be used to represent a single point in time and a single 

point in space through their transactional serializability and their clear context isolation, respectively. 

As a language, SQL allows the developers to easily express their intent and navigate the relational 

model effectively and efficiently (Helland, 2016). 

 

2.4. RELATIONAL DATABASE MANAGEMENT SYSTEMS 

We can define a database as an organized and interrelated collection of data, modeled to represent a 

specific view of reality, and a Database Management System (DBMS) as a complex system with the 

purpose of managing databases (Date, 2003). The DBMS essentially manages three aspects: the 

database schema that defines the data structure, the data itself and the database engine that enables 

the interface between the users and the data. 

The categorization of a DBMS can be done by its underlying implementation model, and therefore we 

can simply just say that a Relational Database Management System is a DBMS that manages a 

relational database and, in most cases, uses SQL. This is a simplistic view since to correctly classify a 

DBMS as relational it must adhere to “Codd’s 12 rules” (Codd, 1985). 

                                                           
6 ACID (Atomicity, Consistency, Isolation, Durability) 
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One of the objectives of a DBMS is data availability and, to that end, it acts as an interface between 

the users and the data by translating the physical aspects, involved in storing and organizing the data, 

into a logical view that can be easily accessed by users and applications. The DBMS is also responsible 

for the correctness of the data it stores, and thus data integrity is a fundamental objective present in 

these management systems. When providing data to the users, a DBMS needs to have a set of 

functionalities with the purpose of assuring that only authorized users can retrieve and manipulate the 

data they are intended to and this takes us to another objective of a DBMS, data security. Finally, a 

DBMS also provides an abstraction layer of how data is stored inside the database, through the use of 

complex internal structures, specifically concerned with storage efficiency. This is data independence 

and allows for the users to store, manipulate and retrieve data efficiently (Sumathi & Esakkirajan, 

2007). 

Database management systems provide several benefits that empower users in their data 

management activities. Users understand the logical view of data without having to concern with the 

complex physical mechanisms that work to assure that the correct data is available in the most efficient 

way. DBMSs provide a centralized data management entity where all the data and related files are 

integrated in one single system. With this, data redundancy is minimized while, at the same time, its 

consistency and integrity can be more effectively assured. DBMSs also play an important part in 

application architecture since they enable independence between applications and data. 

When we speak about Database Management Systems we are abstracting ourselves from the 

underlying model present in their database engine, but, in most cases, we are implying that we are 

dealing with the relational model and, therefore, the DBMS is an RDBMS. This is true because even 

though there are many approaches to the data model, it is the relational model that is effectively the 

most important one from both theoretical and economic perspectives (Date, 2003). 

 

2.5. DATA WAREHOUSING 

The benefits provided by DBMSs made data a more accessible asset and enabled the creation of 

effective applications and systems throughout organizations with the purpose of supporting their 

specific processes. These systems were initially individual entities that managed their information and 

this led to an uncontrolled proliferation of data. Organizations had in fact data about their activities, 

but it was hard to find it and even harder to assert if it was correct. The existence of a multitude of 

departmental truths, solely based on isolated views, made the task of finding the single organizational 

version of the truth very difficult (W. H. Inmon, 2005). This need for an organization-wide single version 

of the truth, which could be easily used by the decision support systems, triggered a paradigm shift in 

information architecture that consequently gave origin to the concept of Data Warehousing (W. H. 

Inmon, Strauss, & Neushloss, 2008). 

As a unifying repository, containing nonvolatile data, that is both granular and integrated, a data 

warehouse (DW) is a basis for information processing that aims to support management decisions. 

Besides integrating detailed information from various systems, the DW is also time variant since it can 

store historical data for several years. This combination of factors enables multiple subject-oriented 

views that, even though are based on the same single truth, can have different levels of detail and 

different temporal scopes (W. H. Inmon, 2005). Data Warehousing is the process of capturing data 
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from transactional operational systems, transforming it into meaningful information so that it can be 

easily accessed by the users in order to promote data analysis and enable fact-based business decisions 

(Kimball & Caserta, 2004). 

Data warehouses and their architectures vary according to the specific realities and requirements of 

each organization. We can find multiple architectures and also different design approaches when it 

comes to building a DW (Sumathi & Esakkirajan, 2007). In Figure 2.3 we present a high-level 

architecture for a data warehouse designed with the top-down approach. This approach consists of 

firstly creating the data warehouse itself, with an enterprise-wide vision, and then expanding it by 

adding data marts with more subject-oriented views. The top-down approach provides consistent 

dimensional views across all data marts since they are generated from the data warehouse and not 

from the operational systems. This centralized approach is also robust when it comes to business 

changes since the implementation of data marts only depends on the data warehouse. However, 

designing a full data warehouse requires considerably more effort, and thus costs, when we compare 

it to the implementation of single data mart from an operational system as it is proposed by the 

bottom-up approach. With the bottom-up approach it is possible to deliver faster results since 

implementing single data marts, as the requirements evolve, requires lower initial investments than 

creating the full enterprise-wide data warehouse. The data warehouse is then built from the 

information in the data marts (Imhoff, Galemmo, & Geiger, 2003; Sen & Sinha, 2005). Both approaches 

have their advantages, and it is possible to use them together in a hybrid approach that combines the 

development speed and the user-orientation of the bottom-up approach with the enterprise-wide 

integration enforced by the top-down approach (Kimball & Ross, 2013). 

Database X

Files

Web Source

Database Y

Data Mart I

OLAP Cube II

OLAP Cube I

Data Mart II

Metadata

Summary Data

Detailed Data

Data 

Warehouse

 
Figure 2.3. Data warehouse architecture with data marts 

As mentioned, we can have various data warehouse architectures with the purpose of better suiting 

the specific informational needs and constraints of a given situation. In a broad view, we can define 

the architecture of a data warehouse, and the related Business Intelligence applications, as a set of 

tiers. Not all the architectures have the same tiers, and some tiers can be more or less merged, this, of 

course depending on the specific scenario. In Figure 2.3 we depicted the data warehouse architecture 

as being composed by three tiers – the Extraction-Transformation-Loading, the Data Warehouse itself 

that, in this case, is expanded by data marts and also multidimensional aggregated objects, and finally 
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the Data Access and Analysis tier that is composed by a set of tools that make use of the data, ranging 

from simple descriptive analytics, like reporting, to predictive analytics that can, for example, include 

data mining. We could also easily split the data warehouse and data marts tier into two different tiers, 

one related only to data storage that would include the data warehouse and the data marts and 

another tier specifically dedicated to analytics that would contain for example the OLAP cubes. 

Nevertheless, in all Data Warehousing architectures, we can identify a layer that represents the data 

sources, presented in Figure 2.3 as the Operational Systems. The data sources themselves are not part 

of the data warehouse architecture per se, even though they are critical to its design, but they rather 

represent the source of all data that can originate from any system throughout the organization and 

even from external entities. Therefore, we have considered, as the first tier of the data warehouse 

architecture, the ETL. 

 

2.5.1. ETL/ELT 

The Extraction-Transformation-Loading layer is the foundation of a data warehouse. It is responsible 

for extracting data from different operational systems and combining it in a way that makes possible 

to use it together, while at the same time assuring its consistency and quality. Moreover, the role of 

the ETL is to make this transformed data available for the applications associated to data analysis and 

decision making. The ETL tier is hidden from the users but its processes, within the DW architecture, 

are the ones that require more resources for their implementation and maintenance (Kimball & 

Caserta, 2004). 

ETL is far more than just getting data from the sources and deliver it to the users. It can contain complex 

processes with the purpose of cleaning and conforming heterogeneous sources into a single and 

unified enterprise-wide view of the captured systems. This flow of data can be achieved by different 

ETL architectures that can be put into place to better fit the transformation requirements. For example, 

it is common to find a Staging Area within the ETL tier. This area is where the extracted data is placed 

and subsequently undergoes successive transformations before it can be loaded into the data 

warehouse. The need for a Staging Area is more or less related to the data quality in the sources and 

the complexity around their transformation and combination (Malinowski & Zimányi, 2007). 

Some early DW architectures also contained an Operational Data Store (ODS) that could be seen as an 

extension of the ETL layer. The ODS is a hybrid construct that seats between the operational and the 

decision-support systems. Its purpose is to provide low-latency reporting capabilities that could not be 

obtained from the DW due to its slower refresh periodicity. Nowadays the use of dedicated ODS is not 

very frequent and their role was absorbed by the DW itself (Kimball & Caserta, 2004). 

An alternative to the ETL paradigm is to directly load the extracted data and only after transform it. By 

doing so we are implementing an Extract-Load-Transform (ELT) workflow. This approach can be 

dangerous if we are tempted to disregard completely the transformation processes since the data is 

already loaded and available in the data warehouse. This would greatly diminish the value of the data 

and ultimately the value of the DW itself (W. H. Inmon, 2005). Despite this danger, the ELT approach 

can be used to explore various advantages in the DW architectural design. By performing the 

transformation inside the database, we have the possibility to use the huge amounts of data already 

in the DW. The implementation of an ELT architecture also gives us extra flexibility since it facilitates 
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the inclusion of new data sources and it is more adaptable to business requirements changes. The data 

is loaded in its raw format, and, therefore, multiple transformations can be applied as the 

requirements change. ELT addresses some of the inflexibility of ETL when it comes to environmental 

changes as it brings data closer to the users and speeds up the implementation process (Marín-Ortega, 

Dmitriyev, Abilov, & Gómez, 2014). 

In recent years, the diversification of DW workloads is leading to distributed architectures where, for 

example, the ETL processes are being offloaded from expensive dedicated platforms to cheaper 

solutions like Hadoop (Clegg, 2015). Hadoop can be seen as the next step in the design and 

implementation of data warehouses, with special emphasis in the ETL layer (Šubić et al., 2015). We 

approach this hybrid architecture that brings Big Data technologies into the data warehouse ecosystem 

in section 2.8. 

 

2.5.2. Dimensional modeling 

When it comes to designing data warehouses, we cannot escape the discussion around Inmon’s top-

down approach, supported by operational data in the third normal form, and Kimball’s bottom-up 

approach supported by data marts implemented with dimensional models (Breslin, 2004). Both 

approaches have their differences, as presented previously, but they can be combined in the 

implementation of data warehouses so that we can benefit from the merits found in each one (W. H. 

Inmon et al., 2008). 

Kimball’s dimensional modeling, published in the first edition of “The Data Warehouse Toolkit”, 

became the leading design technique to implement data warehouse models (Kimball & Ross, 2013). 

The dimensional model is especially oriented to the delivery of data for analysis with emphasis in 

performance. We can qualify its main benefits, when compared to entity-relationship models, as being 

a model that facilitates understandability and enables performance by using a less normalized data 

model. Data normalization, like the third normal form, is critical to assure data integrity but it has the 

negative effect of making more difficult to interpret the models and the information they support and, 

at the same time, it hinders data access performance. Redundancy harms integrity, but it helps 

performance and understandability. Another benefit, also related to the simplicity of the model, is the 

extensibility that it adds to the design. Due to the simple structure of the model, it is a lot easier to 

adapt it to new requirements. Adding new concepts to a normalized model requires a great deal of 

more effort to assure its full consistency, while in a dimensional model it can be achieved by just adding 

more rows to represent a fact or more columns to identify a dimension (Kimball & Ross, 2013). 

Extensibility is then easier to implement but, at the same time, it is limited up to a certain degree due 

to the dependence of the model regarding the initial requirements (W. H. Inmon et al., 2008). 

At its core, the dimensional model design revolves around the definition of two main entities that 

support the representation of a given subject – the facts and the dimensions. Facts capture and express 

measurements pertinent to a specific business process. These measurements are then related to 

entities that place them in a context, the dimensions. Dimensions are used, for example, to express 

the time of when the measurement occurred or the object being measured, as well as its pertinent 

properties. The arrangement of fact and dimension tables, to express a given business process, is used 

to define the model’s design in which the most popular are the star schema and the snowflake schema. 
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Figure 2.4. Star schema diagram 

In the star schema design, shown in Figure 2.4, the model is not in the 3NF, but instead it is 

denormalized. The process of denormalization consists in reducing the normalization of a given model 

into a less normalized form, e.g. starting from a model in the 3NF, denormalization can produce a new 

model in the second or even first normal form. The process of denormalization grants performance 

benefits to data retrieval since it can eliminate joins that otherwise would be necessary to navigate the 

model but, on the other hand, a denormalized model requires a more complex update process to 

ensure data consistency because it adds redundancy. 

 
Figure 2.5. Snowflake schema diagram 

The snowflake schema, exemplified in Figure 2.5, is a variation of star schema where a fact table is 

surrounded by multiple dimensions, but the difference is that in the snowflake design, with the 
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purpose of eliminating redundancy, the dimension tables are normalized, usually in the 3NF, and can 

be connected to each other through many-to-one relationships. 

Choosing between the star schema and the snowflake schema is a balance between complexity, 

performance, and consistency, where business requirements and the technological infrastructure 

should also be considered. We can also find other designs like the starflake, where we can find both 

normalized and denormalized dimensions and also the constellation schema that consists of multiple 

fact tables that share the same dimension tables (Malinowski & Zimányi, 2007). 

 

2.5.3. DW 2.0 

As businesses and technology evolve, so do IS architectures. The DW 2.0 architecture is the product of 

evolution amongst established architectures, namely the ones proposed by Inmon and by Kimball. The 

DW 2.0 paradigm fits together the corporate information factory concept, which advocates the data 

warehouse as the single version of the truth, with Kimball’s architecture centered in data marts. Its 

focus relates to the basic types of data (structured and unstructured), their supporting structure and 

how they can relate, in order to establish a central data store capable of satisfying organizations’ 

informational needs and enabling their decision support systems (W. H. Inmon et al., 2008). 

The DW 2.0 architecture incorporates several aspects surrounding the diversity of data. Both 

structured and unstructured data are considered as essential, and the recognition of the lifecycle of 

data plays a determinant role within this architecture. Also, at the heart of the architecture, metadata 

is deemed as an essential component containing both technical and business definitions. Metadata in 

the DW 2.0 represents a cohesive enterprise view capable of capturing and coordinating all sources of 

metadata distributed across the organization. 

 
Figure 2.6. The DW 2.0 database landscape (W. H. Inmon et al., 2008) 
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From the Figure 2.6, and related to the lifecycle of data, we can identify a clear distinction amongst 

the different sectors of data. From the Interactive Sector, that contains the most current data related 

to the operational systems, to the Archival Sector where older data is stored, being the Integrated 

Sector the core of the data warehouse where the data remains until the probability of being accessed 

declines. In between these two last sectors, we have the Near Line Sector that can be seen as an 

extension of the Integrated Sector and it is optional. 

Technology is a facilitator that enhances process efficiency, and it is often driven by challenges 

triggered by the environment. New types and volumes of data have prompted a constant state of 

evolution within Data Warehousing architectures and related technologies. The DW 2.0 paradigm is a 

step forward towards facing the new informational challenges, but in recent years the dimensions of 

data, namely volume and variety, have been putting to test the capabilities of Data Warehousing 

architectures. With that in mind, perhaps now, more than a step, we need a leap forward that 

encompasses the incorporation of technologies from the Big Data spectrum in the architecture of 

traditional data warehouses and thus the “Modern Hybrid Big Data Warehouse Architectures” 

(Kromer, 2014). This subject is approached further on in section 2.8 where we identify benefits of 

incorporating Big Data technologies in the architecture of data warehouses. 

 

2.6. BIG DATA 

There are many definitions for Big Data (Dutcher, 2014) but if we just interpret literally its definition 

we do not find anything new. Big Data means large amounts of data, and it is very easy to assert that 

this is not a novelty, for example, by looking at its reference in the title of E. F. Codd’s seminal 

publication from 1970, “A Relational Model for Large Shared Data Banks”. The volume of data has been 

one of the greatest challenges when it comes to transform data into actionable knowledge. As the 

volumes of data increase, architectures and technologies evolve, and by doing so, also create new 

opportunities that quickly are explored to better extract value from data. 

There is no clear distinction between what Big Data is and what it is not if we just look at it from the 

data volume perspective. Within the scope of our study, we can define Big Data as the territory where 

it is possible to manage large and diverse data sets, with adequate responsiveness, in a way that is no 

longer achievable through the traditional RDBMSs architectures (Goss & Veeramuthu, 2013). Big Data 

solutions derive many of their advantages, in the processing of large data sets, from the distributed 

processing and its almost unlimited horizontal scalability. Traditional RDBMSs rely on a vertical 

scalability model to increase their capacity and performance whereas Big Data technologies, and their 

horizontally scalable model, expand or shrink seamless by adding or removing nodes to adapt to the 

distinct volumes of data (Marz & Warren, 2015). 

We already mentioned and emphasized the importance of volume in the characterization of Big Data, 

but we cannot limit its analysis solely based on this characteristic. To better understand the scope of 

Big Data it is useful to address its main characteristics commonly referred as the “Vs”. As approached, 

firstly we have the Volume of data, higher than ever and constantly increasing at incredible speeds. 

This speed at which data is generated and analyzed, to support decision support systems as close to 

real time as possible, point us to another important characteristic, the Velocity. Long gone are the days 

when data was almost exclusively text. In recent years, data became largely available in a multitude of 
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formats, like for example sound, image or video. Addressing this Variety of semi-structured and 

unstructured formats is one of the major challenges under the umbrella of Big Data. These first three 

“Vs” mark the first steps of the Big Data world, but as systems evolved and their applications grew, 

other concerns were included. Collecting and storing data from various sources, and in very distinct 

formats, is a complex task that is prone to data quality issues. Issues that are not disregarded but 

instead are covered by the concerns related to the Veracity of data. Collecting and storing large 

volumes of correct data, in a timely manner, is one part of the equation, the one closer to the data 

itself, but Big Data accounts for other characteristics relevant also for the consumers of this data. 

Variability addresses the changes of data and its context, especially important for sentiment analysis. 

Volatility accounts for the questions around the validity of data in a temporal perspective, a 

characteristic particularly important for real-time analysis and in defining the most relevant periods 

for specific analyses. Big Data opened the door for all kinds of data and empowered analyses that were 

not possible before and thus it requires new and innovative ways capable of delivering the generated 

information so that it can be easily understood and leveraged by the end-users. This refers to the 

usability of data, and it is expressed as the Visualization characteristic. Finally, the last “V” used to 

characterize Big Data is the one directly tied to the goal of data analysis. We use data and its analysis 

to support the process of decision making so that the extracted insights add Value to the organization 

(Du, 2015; Khan, Uddin, & Gupta, 2014). 

Ultimately, we can state that Big Data is a technological enabler for the analysis of huge amounts of 

data, no matter its structure, with the purpose of creating actionable knowledge and thus value for 

organizations. Even though Big Data, as a popular phenomenon, is still relatively new, its technological 

ecosystem is already vast, and it is in a constant state evolution. From the several available tools within 

Big Data’s universe, we can highlight the two main classes of systems, the NoSQL data stores and 

Hadoop (Henry & Venkatraman, 2015). NoSQL databases, like MongoDB or Cassandra, are distributed 

systems that do not rely on the relational model to store their data, while Hadoop represents a broader 

environment that can also include NoSQL data stores like HBase (Moorthy et al., 2015). The Hadoop 

ecosystem is approached, in more detail, in the next section. 

 

2.7. HADOOP 

Hadoop is a framework designed for the storage and processing of large data sets in a distributed 

architecture. Hadoop was initially created by Doug Cutting as part of a web-search engine that would 

be able to search through a high number of web pages (White, 2015). Not long after its first version, 

Google released one of the most influential papers that helped to shape today’s Hadoop and started 

the Big Data hype, “The Google File System” (Ghemawat et al., 2003). In this paper, its authors discuss 

and present a scalable distributed file system that would serve as the foundation for the Hadoop 

Distributed File System (HDFS) that we will approach in more detail shortly. 

Other seminal publication that greatly influenced distributed data processing and particularly Hadoop, 

was again released by Google, the “MapReduce: Simplified Data Processing on Large Clusters” (Dean 

& Ghemawat, 2004). Its authors present a simple, yet effective, programming model for the processing 

of large data sets, the Map-Reduce. Map-Reduce tightly coupled with HDFS defined the shape of 

Hadoop’s first version. 
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MAP-REDUCE 1

Hadoop 1.x (Map-Reduce)

HIVE PIG

HDFS
 

Figure 2.7. Hadoop 1 stack 
(Adapted from Saha et al., 2015) 

In its first version, Hadoop had a monolithic design where both the processing engine and the resource 

management were coupled. This meant that all processing activities had to be translated into its 

programming model and processing engine, the Map-Reduce. In Figure 2.7 we also have the example 

of two higher level engines, Hive and Pig, that, to process their computations, were required to 

translate their instructions into Map-Reduce. 

The constraining limitations of this architecture were addressed by the design of the second version 

of Hadoop that clearly separated the resource management from the execution engine. In Hadoop 2, 

YARN (Yet Another Resource Negotiator) is the layer responsible for the cluster resource management. 

With this modular approach, the processing engines are able to more easily implement their logic 

according to the specificities that are part of their purpose and, at the same time, use and share a set 

of building blocks that are a common part of Hadoop without having to concern with, for example, the 

resource allocation or management. 

HDFS

YARN

HIVE PIG

MR 2

SPARK OTHERSIMPALA

 
Figure 2.8. Hadoop 2 stack 

(Adapted from Saha et al., 2015) 

With Hadoop 2, depicted in the figure above, we can observe that some systems, like Impala, a 

Massively Parallel Processing (MPP) SQL query engine, were able to move away from the Map-Reduce 

programming model and make use of their own specific implementations to access the distributed 

storage and resource management layers (Floratou, Minhas, & Ozcan, 2014). In Hadoop 2, once its 

pillar, the Map-Reduce is now “demoted” and works just like any other application in its ecosystem. 

This decoupling of applications from the core infrastructure has accelerated innovation, but at the 
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same time created a less efficient ecosystem, where some common functionalities are being replicated 

across frameworks (Saha et al., 2015). 

Hadoop’s differentiating capabilities, like the scalable and the flexible processing of massive volumes 

of data, no matter its format, associated with its open source design and relatively inexpensive 

hardware requirements, have revolutionized the world of data management and processing (Grover, 

Malaska, Seidman, & Shapira, 2014). The enthusiasm created around Hadoop motivated the 

development of other projects that, in turn, continue to add value to it and diversifying its capabilities. 

Large scale data analytics, once almost only available to large companies, are nowadays available and 

critical for most modern organizations (Saha et al., 2015). Despite this, when framed in the world of 

data management, Hadoop is still a relatively young technology and many organizations are still 

struggling to understand how it can be used to solve their specific problems (Grover et al., 2014). 

 

2.7.1. HDFS 

The Hadoop Distributed File System (HDFS) lays at the bottom of Hadoop’s application layer, and it is 

a distributed file system especially designed to run on commodity hardware. One of the most relevant 

characteristics of HDFS is that it is designed to work in an environment where the failure of its nodes 

is the norm and not the exception, as it was established by its most influential publication, “The Google 

File System” (Ghemawat et al., 2003). 

The HDFS architecture is intended to the storage and processing of large data sets, and its design 

emphasizes the throughput of data, to support batch processing, rather than low latency to enable 

seamless interactivity with the user data requests (Marz & Warren, 2015). Another important 

differentiating characteristic of HDFS is its simple coherency model that follows the write-once, read-

many schema. HDFS is designed under the assumption that files can only be written once, through 

create or append, and, therefore, data cannot be updated. This not only facilitates data coherency but 

also enables high throughput for data streaming (Apache Hadoop, 2013).  

HDFS follows a master/slave architecture with a master server, the NameNode, managing the file 

system namespace and the access requests to the files by the clients, and with multiple DataNodes 

responsible for managing the data storage attached to them. 
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Figure 2.9. HDFS architecture 

(Adapted from Apache Hadoop, 2013) 

The architecture of HDFS was designed to solve two important aspects in the computation of large 

data sets – distributed processing and fault tolerance. To enable both these characteristics, the HDFS 

relies on the ability to break down files in several segments and distribute them across multiple 

systems. These segments are known as blocks and have a default size of 64MB or 128MB, depending 

on the version, and a replication factor of three  (Krishnan, 2013). Replication has rack awareness, and 

consequently, the system tries to keep one copy of the original block in the same rack and another in 

a different rack to assure data availability even in the case of network partitioning7. 

Figure 2.9 depicts the basics of the HDFS architecture where we have the NameNode controlling the 

namespace and the accesses to data by the clients. The NameNode role is critical, and in earlier 

versions of Hadoop its failure would mean that the cluster would stop, but currently, HDFS has 

redundancy for the NameNode role through Secondary NameNodes. Another important aspect of the 

HDFS architecture, and showed in the figure above, is how the reads and writes are processed. The 

NameNode is responsible for storing and managing the metadata regarding the location of the files 

and blocks but it is not responsible for providing the data itself to the clients. When a client wants to 

write data, the NameNode manages the allocation of storage space through blocks across the cluster, 

sends the location where the client should write the data and then it is the client that writes the data 

itself to the DataNodes. A similar process occurs for reads, the NameNode, through its metadata, 

knows the location of every file and block in the cluster and tells the clients to fetch the data directly 

from the designated DataNodes (Krishnan, 2013). The NameNode never acts as a proxy for data 

between the clients and the DataNodes, but instead, it acts as a manager. 

                                                           
7 Network partitioning refers to the situation when communication between nodes is split due to the failure 

of a network device. 
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The horizontal scalability of storage in a Hadoop cluster is immense, but ironically it is ultimately 

constrained by the vertical scalability limits of the NameNode. The NameNode, for performance 

reasons, keeps all the information about the file system metadata in memory and in the scenario of a 

cluster with billions of small files, each consuming at least one block, we would require huge amounts 

of memory on a single machine, the one hosting the NameNode (Shvachko, 2010). 

In summary, the HDFS is a file system intended for the distributed batch processing of very large files 

over commodity hardware and relies on replication, rather than redundancy, to implement high 

availability and fault tolerance. It is built around the idea of the sequential acquisition of large portions 

of data, and, therefore, follows the paradigm of write-once, read-may times. Finally, since the priority 

is to process large sets of data rather than finding individual records, high throughput of data is far 

more important than low latency. 

 

2.7.2. Map-Reduce 

Map-Reduce is a programming model for the processing of large data sets. It was introduced by 

Google’s seminal publication “MapReduce: Simplified Data Processing on Large Clusters” (Dean & 

Ghemawat, 2004) as a model capable of processing huge amounts of raw data being generated by web 

related services and applications, in a distributed environment. On the first version of Hadoop, Map-

Reduce appears as not only a programming model but also has a resource management framework 

capable of handling the specificities of distributed parallel processing. With this approach, the users 

had an abstraction layer that allowed them to focus solely on the data processing without having to 

deal with the complexity of distributed programming. 

Map-Reduce per se is founded on a simple principle defined by two basic functions –  the Map and the 

Reduce – that are capable of expressing many of the data processing tasks. The Map function processes 

a key-value pair and generates set of intermediate key-value pairs, and the Reduce function merges 

the intermediates values associated with the same key, producing the final result. 

The design of this simple approach makes the implementation of parallel processing a lot less complex. 

Making use of the raw data already split across multiple nodes through a distributed file system like 

HDFS, Map-Reduce can also split its work through a set of tasks that run on the nodes where the data 

resides. This important aspect, the data locality, is a fundamental characteristic of Hadoop’s design 

and instructs that Map tasks should run as close as possible to the data, to minimize the overhead 

generated by the network traffic that occurs if the tasks are not running on the same node as the data 

(White, 2015). 
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Figure 2.10. Detailed Hadoop Map-Reduce data flow (Yahoo!, n.d.) 

From the diagram above, depicting a generic execution of a Map-Reduce job and its associated tasks, 

we can identify its major participants and understand their roles, namely: 

• Input reader – it is responsible for reading and splitting the source data from the storage 

(typically a distributed file system like HDFS). This split data is then passed to the Mappers; 

• Mapper – the Mapper takes the input data and generates a set key-value pairs according to 

the implemented rules; 

• Shuffler – the Shuffler is responsible for transferring the data from the Mappers to the 

Reducers. In the shuffling phase, the output of the Mappers is firstly partitioned by its key, 

with the intervention of the Partitioner, so that the values with the same key are sent to the 

same Reducer. This output can also be sorted to increase the processing speed of the Reducers 

since that, with a sorted set of key-value pairs, each time a key changes the Reducer can start 

a new task. The shuffling phase can transfer data between the various nodes in the cluster 

according to the keys assigned to each Reducer; 

• Reducer – the Reducer iterates through the values associated with each key and processes 

them according to the rules defined by the user; 

• Output writer – the outputs from the Reducers are written to the storage by the Output 

writers. 
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Map-Reduce can also incorporate a local Combiner that gets the results of each local Mapper and 

performs pre-defined Reduce-like operations, before sending the data to the Reducers themselves. 

Through the use of a Combiner, we can optimize the bandwidth and performance of the data flow 

since the amount of data moving from the Mappers to the Reducers is minimized by the operations 

performed by the Combiners. 

 
Figure 2.11. Map-Reduce data flow using Combiners (Yahoo!, n.d.) 

As it shown in the figure above, it is important to emphasize that even though the Combiners can 

execute operations that are typical of the Reducers, they are always local, i.e., they can only use the 

data produced by the Mappers in the node where they are being executed. The Combiner is then a 

local Reducer-like extension of the Mappers. 

Map-Reduce, with its simplistic, but yet effective paradigm, played a pivotal role in re-shaping the 

world of data science, but its merits are far from being uncontested. Characteristics like the lack of 

schema definition or features like indexing and storage options are pointed as aspects that hinder 

Map-Reduce’s performance, making it less efficient than parallel databases in several types of 

analytical processing (Pavlo et al., 2009; Stonebraker et al., 2010). 

Map-Reduce, amidst its flaws and limitations, was greatly responsible for the enthusiasm around Big 

Data and this sentiment, associated with the open-source format of Hadoop’s implementation of Map-

Reduce, led to many other initiatives that built upon these limitations thus creating a plethora of 

frameworks and applications that vastly enrich, not only the Hadoop’s ecosystem, but also data science 

in general. 
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2.7.3. YARN 

When we speak about YARN (Yet Another Resource Negotiator) we are referring to the second 

generation of Hadoop (please refer to Figure 2.8) where the resource management was decoupled 

from the processing engine, thus originating the creation of YARN, the Hadoop’s cluster resource 

management system. YARN was created not only with the support of Map-Reduce in mind but also 

with a general purpose design, capable of supporting other distributed computing paradigms (White, 

2015). 

In YARN we can identify several components that take part in the allocation and management of 

resources with the purpose of executing data processing activities. We have a global Resource 

Manager, which also includes a scheduler, with the responsibility and authority to allocate resources 

like CPU, memory, disk or network throughout the cluster. While the Resource Manager has a global 

stance within the cluster, the Application Master exists, temporarily and per-application, with the 

mission of coordinating the resource allocation between the Resource Manager and the several Node 

Managers. Finally, the Node Manager, existing one per each slave machine, is responsible for launching 

the containers that will serve the tasks’ execution, while monitoring and reporting the resource usage 

to the Resource Manager. 
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Application Client

Resource Manager Node
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Application 
Process

Container

Node Manager (Node 2)

Node Manager

S4.1

Application
Master

Container

Node Manager (Node 1)
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Figure 2.12. Application execution through YARN 

In the figure above we can observe how the processing flow occurs since the moment a client requests 

resources for the execution of a data processing job (S1). The Resource Manager’s first step is then to 

allocate an Application Master (S2 and S2.1) that will coordinate the job’s execution. If the job requires 

more resources, so it can parallelize its execution, the Application Master requests for more resources 

to the Resource Manager (S3) and consequently more containers can be allocated in other nodes or in 

the same one. The diagram shows the allocation of a new container, with the purpose of executing a 

task, in a different node (S4 and S4.1). 

YARN was designed to address many of the limitations present in Map-Reduce 1 and therefore includes 

many benefits like enhanced cluster scalability. With YARN, when compared to Map-Reduce 1, we can 
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have clusters up to five times larger, including a total of 10.000 nodes. The split between the Resource 

Manager and the Application Manager also brought to Hadoop higher levels of availability. Resources 

in YARN are fine-grained which allows for applications to request their customized allocation according 

to the specific tasks, thus reducing their wasteful usage. Unlike Map-Reduce 1, where we had a fix-

sized allocation of slots pre-configured to serve Mappers or Reducers, the approach in YARN is much 

more flexible since that, instead of these static slots, we have a pool of resources that can be allocated 

dynamically according to the task’s execution. Finally, the most revolutionary characteristic of YARN is 

its multitenancy. Only through YARN, it was possible to break from the fixed design that tied together 

the resource management and the processing engine. With this new architecture, Hadoop was made 

available to other frameworks and engines besides Map-Reduce. 

 

2.7.4. Tez 

Tez is a distributed execution framework directed towards data-processing applications. Tez itself, 

even though it appears as a new framework, does not break with the past. Many years of work and 

proven evolution regarding data shuffling operations and resource sharing in Hadoop and Map-Reduce 

are leveraged by Tez. The Map-Reduce paradigm is generalized, as a next evolutionary step in Hadoop 

2 where the resource management is decoupled from the core through YARN, and Tez organizes its 

processing around the execution of complex Directed Acyclic Graphs (DAGs) of tasks representing the 

structure of a data processing workflow (Saha et al., 2015). Tez relies on the strengths of Map-Reduce 

and builds upon its weaknesses and constraints through the incorporation of techniques and strategies 

that can also be found in other frameworks, as in Microsoft’s Dryad distributed execution engine (Isard, 

Budiu, Yu, Birrell, & Fetterly, 2007). 

Tez is not an engine by itself, but instead a library that enables the creation of data-flow driven 

processing runtimes with, for example, Hive or Pig. 
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(MR, SPARK, 

IMPALA, ETC)

 
Figure 2.13. Hadoop 2 + Tez stack 

(Adapted from Saha et al., 2015) 

In Figure 2.13 we can see an extended version of Hadoop 2. There Tez is included above YARN, offering 

a framework to high-level engines like Hive, Pig or even Spark8. As depicted in the diagram above, Tez 

                                                           
8 Spark is an independent engine for Big Data processing that may be configured to use YARN, as a resource 

manager, and can also use Tez as its execution context. 
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offers an abstraction layer that negotiates directly with Hadoop’s resource manager, YARN, but itself 

also provides an internal implementation of Map-Reduce that can be used for compatibility situations, 

even though engines should ideally use Tez as it offers great performance gains over Map-Reduce 

through, for example, a more efficient YARN container allocation or a more effective use of the HDFS 

(Singh & Kaur, 2016; White, 2015). 

Apache Tez provides a unifying framework that facilitates and empowers the creation of purpose-built 

engines that can customize data processing specifically for their needs. Behind this, we can find three 

important aspects that characterize the architecture. First, the expressiveness of the model 

underneath Tez, captured by the representation of data movement through a DAG-oriented model, 

allows for a more natural definition of a broader set of computations. This approach is intended to 

break from the constraining model available in Map-Reduce where all the computations needed to be 

translated into Map and Reduce functions. The second aspect of the architecture of Tez is the data-

plane customizability that allows for the definition of more specific semantics according to each 

different situation. When facing different algorithmic processes or different availability of resources, 

the adaptability of the processing model is fundamental for its efficiency. The semantics of Map-

Reduce and its constraining task structure (Map and Reduce) make the customization difficult because 

it needs to intrude the engine’s mechanics. Tez provides a lower level of abstraction that enables 

specific semantics and customizations, with the purpose of defining data transformations and data 

movements, more adapted to each particular situation. Finally, the third characteristic of Tez are the 

late-binding runtime operations. Hadoop clusters are, in nature, very dynamic environments that can 

be composed of heterogeneous nodes with completely different usage loads at different times and 

where their failure is accepted as normal rather than exceptional. With this in mind, Tez offers the 

possibility of applications to adapt their execution according to the data and to the environment 

through late-binding and on-line decision making. Things like partition cardinality or work division can 

be modified throughout the execution of a DAG so that they better fit into the cluster’s characteristics 

at runtime (Saha et al., 2015). 

As mentioned, Tez represents data movement through DAGs where data flows from data sources 

towards data sinks while being transformed in-between by intermediate vertices. DAGs, at a logical 

level, are composed of vertices, representing data transformations and edges that represent data 

movement. 

Filter A Filter B

Join

Aggregate

 
Figure 2.14. Logical DAG 

(Adapted from Saha et al., 2015) 
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In Figure 2.14 we have an example of a simple DAG, at a logical level, showing two vertices (Filter A 

and Filter B) reading data from two data sources. This data is then processed by a third vertex (Join) 

through a join operation, and finally, a fourth vertex (Aggregate) aggregates this data. The edges, 

depicted as connections in the diagram, represent the movement of data between a producer and 

consumer vertices, and the vertices reflect the logical steps of data processing that apply rules to either 

filter or modify the data. 

When we observe a DAG at a physical level, we can visualize its execution through individual tasks that 

are a composition of a set of inputs, a processor and finally a set of outputs. One vertex, through 

parallelism, can have multiple tasks responsible for processing different subsets of data from the same 

source. 
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Figure 2.15. Physical DAG showing the actual execution 

(Adapted from Saha et al., 2015) 

In the figure above we can observe a DAG at a physical level where the vertices have multiple tasks 

and also the different properties of the edges expressing different data movements that can be one-

to-one, broadcast or scatter-gather. In sum, the physical DAG is the set of tasks that are produced by 

expanding the vertices of a logical DAG into their corresponding tasks. 
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When constructing a DAG, each of the vertices can be associated with a vertex manager that is 

responsible to dynamically adapt the execution according to the characteristics of both the cluster and 

the data at runtime. It is the responsibility of the vertex manager to re-configure the vertices to 

maximize the efficiency of the DAG’s execution. 

Higher level applications, like Hive, build the data processing workflows on the fly with the Tez API 

library, by encoding their native language definitions into Tez DAGs. Afterward the DAG is submitted 

to YARN using Tez runtime library. The first step here is the creation of a new Tez Application Master 

designed to orchestrate the DAG’s execution. This Application Master expands then the logical DAG to 

the physical level to include task parallelism and asks YARN for the required resources to perform their 

execution. Resources in the cluster, managed by YARN, are used in the form of containers. Each 

container represents the required resources (memory and CPU) to the execution of each individual 

task, that is a part of a vertex, and the Application Master itself also uses one YARN container. The 

tasks are usually executed according to the order defined in the DAG, and only the successfully 

completion of all of them represents the completion of the DAG. 

Tez, as a framework, enables a far broader expressiveness than Map-Reduce, and consequently this 

allows for higher level engines to more naturally fit and express their complex logic when defining data 

processing activities. Apache Hive was re-written to integrate with Tez and benefit from its major 

performance gains. One example of this are Hive’s custom edges that are able to perform dynamically 

partitioned hash joins with the orchestration of a customized vertex manager. Runtime performance 

gains are also harvested from the generic execution efficiencies of Tez like, for example, the 

reutilization of containers. 

 

2.7.5. Hive 

Apache Hive provides a SQL-like translation layer on top of YARN where it is possible to define a data 

warehouse infrastructure over the data stored in the HDFS (Du, 2015). It enables data transformation 

and data analysis through the use of SQL while benefiting from the distributed processing paradigm 

implemented by Hadoop. 

Like other translation layers in Hadoop’s ecosystem, Hive intends to provide a more accessible way of 

writing data transformation algorithms when compared to Map-Reduce’s programming model (Šubić 

et al., 2015), where, for example, to write the code to implement a simple join is not easy (White, 

2015). In the world of data analysis, SQL is a widely popular and used language that has been around 

for more than thirty years. Hive provides then a high-level and more familiar programming model for 

data analysis and also eliminates some of the complexities inherent to Java programming (Rutherglen, 

Wampler, & Capriolo, 2012). 

Hive is much more than a way of increasing familiarity and productivity in Hadoop. Hive’s 

implementation takes on several performance improvements regarding data access, storage, and 

transformation. The HDFS flexibility, that enables it to store data in any structure, has its drawbacks 

performance-wise and Hive’s implementation of structure over data in HDFS allows for its faster 

access. Hive also implements new efficient formats like the Optimized Row Columnar (ORC) file and 

relies on a Cost Base Optimizer (CBO), like several RDBMSs, to optimize query efficiency. Another 
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feature delivered by Hive is its vectorized query execution model that optimizes query execution at 

runtime by processing batches of 1024 rows instead of a single row at the time in operations like scans, 

aggregations, filters or joins (Huai et al., 2014). 
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Figure 2.16. Hive query execution architecture with Tez 

In the figure above we can observe the execution of a SQL query using Hive on Tez. The clients can 

connect to Hive Server 2 through JDBC9 or ODBC10 and execute their programs using Hive Query 

Language (HiveQL), Hive’s SQL version. Hive’s Metastore DB11 contains all the information regarding 

the schema definition and also the statistics used by the CBO to determine the execution plans. With 

the information from the CBO, Hive optimizes the query execution and through Tez builds a DAG that 

is subsequently processed to extract and compute, according to the specified rules, the data stored in 

the HDFS. 

Hive supports several structures, common in RDBMSs, like tables, views or partitions and a multitude 

of data types that can also include complex types like arrays, structs, and maps, to allow for a larger 

data variety. Despite this, Hive is not a database; Hadoop’s design and purpose differ from what a 

relational database aims to provide. Hadoop’s orientation for batch processing imposes that queries 

will have higher latency due to the overhead added by the creation of Map-Reduce or Tez jobs 

                                                           
9 JDBC stands for Java Database Connectivity and it is an application programming interface for Java that 

defines how a client connects to a database. 
10 ODBC stands for Open Database Connectivity and it is a standard programming interface for accessing 

databases. 
11 Hive’s Metastore DB is stored in an RDBMS using, for example, Derby or MySQL. 
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(Rutherglen et al., 2012). The concept of relationships between tables also cannot be expressed in Hive 

because referential constraints are not supported. Other differentiating aspects between Hive and 

RDBMSs, that were present in Hive’s first versions, are being trimmed down. As of version 0.14, Hive 

supports transactions even though they have several limitations like, for example, being always auto-

committed. More recently, in version 2.0, Hive introduced a new functionality called Low Latency 

Analytical Processing12 (LLAP) with the purpose of lowering latency and providing interactive SQL to 

the users through caching mechanisms. From an initial approach that aimed to offer a more familiar 

and productive environment, so that data analysts could explore data in Hadoop, Hive is evolving 

towards a fully distributed data warehouse architecture. 

As mentioned before, Hive offers a SQL-like language so that users can express their data 

transformation rules, the HiveQL. HiveQL does not conform fully with the ANSI SQL. It is instead a 

mixture of SQL-92, MySQL and Oracle’s SQL (White, 2015). HiveQL also includes features from later 

SQL standards, like the analytical functions present in SQL:2003, as well as some specific features 

associated with distributed processing like the local sort. HiveQL is a language in constant evolution as 

new constructs are being implemented by the open-source community. Besides HiveQL, Hive, since its 

version 2.0, also includes a procedural language, the Hybrid Procedural SQL (HPL/SQL), that allows for 

users to add a new dimension of functionality to their data transformation activities and even to run 

code from existing RDBMSs on Hive, like PL-SQL from Oracle or Transact-SQL from Microsoft SQL 

Server. This heterogeneous and procedural nature of HPL/SQL enables it to implement ETL processes 

in an efficient way (Apache Hive, 2016). 

 

2.7.6. Impala 

Impala represents a new emerging class of SQL-on-Hadoop that, instead of relying on Hadoop’s 

frameworks like Map-Reduce or Tez, uses its own engine to access and process data in the HDFS. 

Together with Hive, Impala is one of the most popular SQL-on-Hadoop systems that implement a 

database-like architecture. Both systems are part of the suites offered by the two major Hadoop 

distribution vendors. While the priority for Hortonworks is Hive, Impala is the SQL flagship for Cloudera 

(Floratou et al., 2014). 

Impala was inspired by Google’s paper where they present their project Dremel, an interactive ad-hoc 

query system for data analytics (Melnik et al., 2010). Impala differs from most Hadoop systems as its 

design is focused on optimizing latency and its architecture is similar to the ones we can find in 

traditional MPP data warehouses (Grover et al., 2014). Impala architecture uses its own long running 

daemons in every node, and each node can act as Query Planer, Query Coordinator and Query 

Execution Engine, the components of Impala’s daemons. In Figure 2.17 we can observe these 

components during the execution of a query with Impala. 

                                                           
12 Can also be referred as Live Long and Process. 
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Figure 2.17. Impala query execution architecture 

The figure above depicts the steps that are part of a query execution with Impala. Clients can connect 

to Impala, for example, through ODBC or JDBC and submit their queries that are parsed by the Query 

Planer. This component also produces the execution plan for the query, and this plan is then passed to 

the Query Coordinator that assigns parts of this plan to the several nodes in the cluster. Since each 

node hosts an Impala daemon, it is possible for them to execute the assigned parts of the query 

execution plan through the Query Execution Engine. Finally, when the processing is complete, the 

Query Planner returns the results to the Client. Note that in this diagram, under the Unified Metadata 

block, Hive’s Metastore DB is present since Impala was designed to use it so that we could avoid the 

creation of metadata silos within Hadoop’s ecosystem. Impala also uses the same SQL implementation 

as Hive, thus facilitating code and schema metadata sharing. 

It has been stated that Impala offers a significant performance advantage over Hive, especially when 

the working set fits in memory (Floratou et al., 2014). Impala’s MPP architecture has several specific 

features that contribute to its performance enhancements. Impala’s completely re-written engine 

makes a more efficient use of memory because it is not restricted by the limitations of Map-Reduce, 

by, for example, caching data when the tables are scanned for the first time. The long running 

daemons, that are distinguishing characteristic of Impala, offer an advantage over other frameworks 

since they do not create any overhead due to startup because Impala is always running. Unlike many 

other applications in Hadoop, Impala is not written in Java. Instead, its engine was written from scratch 

using C++, thus offering several performance benefits, starting with the fact that it does not require a 

virtual machine, like the Java Virtual Machine (JVM), to access the hardware. 

Still, on the performance chapter, there are several empirical works that prove that Impala is faster 

than Hive and, on the other hand, there are also demonstrations stating that Hive is faster than Impala. 

It is obvious that these studies are biased by whom is doing them –  Cloudera demonstrates that Impala 

is faster (Cloudera, 2016) and Hortonworks argues that Hive on Tez is faster (Hortonworks, 2016a). 
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2.7.7. The SQL cycle 

We have approached two of the most popular SQL-Like systems in the Hadoop ecosystem, Hive and 

Impala, but recently more interest towards the integration of SQL in Big Data triggered the creation of 

new SQL-like systems like Apache Drill and Presto or even the incorporation of a SQL layer in Spark, 

the Spark SQL. 

If we look at the technological evolution within the Hadoop’s ecosystem, and in a broader view even 

at the data analysis world, we cannot stop noticing an increased interest regarding SQL. The main 

problem behind the proliferation of Big Data was that the traditional DBMSs could not handle the 

amount and diversity of data that was being generated. This took us to solutions like NoSQL or Map-

Reduce that broke with the relational and SQL paradigms. From this solution, another problem arose; 

Map-Reduce, in comparison to SQL, is a lot more complex to use and consequently the implementation 

of data transformation and analysis processes became more difficult and more time consuming to the 

developers accustomed to SQL. From this point forward, SQL started to be integrated with Map-

Reduce, and even though this simplified the implementation process, we were still trapped by the 

constraints of Map-Reduce and its batch-oriented processing with poor performance for interactive 

querying. So finally, what we are observing is that the interest towards high-performance massively 

parallel processing SQL engines is growing. In summary, the Big Data technologies that initially broke 

from SQL are finding their way back into it (Chandran, 2013; Floratou et al., 2014). 

 

2.8. HYBRID APPROACH 

At their core, RDBMSs and Hadoop were created to deal with the same root problem, data 

management. Their features, weaknesses, and strengths are quite different as it were the 

circumstances from which both these technologies emerged. If we can argue that RDBMSs are no 

longer capable to cope with the volumes and variety of data that is produced nowadays, we can also 

argue that Hadoop is still too young and too volatile to be seen as a reliable technology to play such a 

critical role in the decision-making process that is nowadays fundamental in modern companies. 

Discussions aside, it is recognized that both technologies have their merits and can be seen as 

complementary in the evolution of data warehouses (Russom, 2014). 

The technological landscape around data management is constantly evolving. Massively Parallel 

Processing databases, Columnar data stores, NoSQL approaches and Hadoop’s vast ecosystem are just 

examples of how technology can help us extract value from data. Deciding on which path to take is 

perhaps the hardest step. The challenge of creating the best Data Warehousing architecture is now 

more complex than ever due to the plethora of solutions and technologies available (Clegg, 2015). 

Starting from the educated belief that Enterprise Data Warehouses are and will continue to be 

extremely valuable for the companies’ decision-making processes (Kimball & Ross, 2013; Krishnan, 

2013), how can we then expand their capabilities and consequently provide them with the ability to 

adapt to their ever-changing environment and through this assure their viability (Carvalho, 1998)? The 

list of opportunities and alternatives is vast, and of course, they need to be weighted according to the 

specific problems at hand. One path to be explored, the one being assessed in this research, is the use 

of Hadoop as a transformation tool and this presents itself as great opportunity for organizations to 
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maximize their current EDW infrastructure through the process of offloading the massive amounts of 

data being stored and processed currently by their data warehouse (O’Reilly Media, 2015). 

In some aspects, Hadoop outperforms RDBMSs and vice-versa, so it is valid to equate that, by 

combining them together, each of them can minimize the limitations of the other and potentially result 

in a fruitful synergy (Russom, 2014). To support this hypothesis, the first step is to further the 

understanding of both technologies in a context where their combination can be used to produce a 

superior Data Warehousing architecture. 

A DW can be designed to support reporting or more advanced analytics and, of course, to support the 

combination of both, but it is important to discern its architecture so that we can better understand 

the aspects that can be improved by the use of Hadoop or an RDBMS. A data storage, supporting a 

reporting layer, demands above all low latency. Users want to access and visualize reports in seconds, 

and relational databases excel for this purpose. Another advantage in RDBMSs, when supporting a 

reporting layer, is the implementation of the data structure. When serving reports, data needs to be 

transformed and clearly structured and Hadoop was not designed to enforce structure or define 

relationships between the entities. This is what relational databases have been providing for more 

than forty years. If it is true that reporting requires structured data, that does not mean that the source 

is mandatorily structured. Data warehouses collect data from many and diverse sources, and this data 

requires treatment before it can be incorporated in the data warehouse. For that purpose, the 

transformation of large and diverse datasets, Hadoop is better suited for the task. Its design is oriented 

for distributed batch processing that can easily scale to better accommodate distinct amounts of data 

(Hortonworks, 2016b). 

Data warehouses represent a unified version of the truth that characterizes an organization at a given 

time and also keep a record of its history. Hadoop, as cheaper and more scalable solution, can be used 

to store, and automatically compress, the “cold data”, older data that is rarely accessed by the 

reporting layer. This offload alleviates the data warehouse, not only in storage requirements but also 

in processing needs (Hogan & Jovanovic, 2015). The huge amounts of data stored in a Hadoop cluster 

can also be easily accessed by business analysts, at any given time, with the purpose of performing ad-

hoc analysis without having to rely on pre-defined ETL processes (Duda, 2012). 

In summary, an RDBMS is an excellent option to store facts, dimensions and aggregated metrics that 

are used to support the reporting layer, while Hadoop is a great fit for ETL, data storage and to serve 

as a platform for knowledge discovery and advanced analytics (J. A. Lopez, 2012). This offload of data 

and time-consuming processes to Hadoop is a cost-effective and non-disruptive approach of 

incorporating the emerging technologies from the Big Data landscape in the architectures of traditional 

Enterprise Data Warehouses (O’Reilly Media, 2015). 

 

2.9. IPTV 

IPTV is a protocol that allows for the delivery of media content through Internet Protocol (IP), rather 

than through broadcasting like satellite, terrestrial or cable. With IPTV is possible to deliver a wide 

variety of contents beyond the traditional live television. Users can stream videos, visualize live 

television replays, use applications or even play games. Media content is streamed from the IPTV 
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infrastructure to the customer premises over different network technologies like xDSL (Digital 

Subscriber Lines) or GPON (Gigabit Passive Optical Network) and it is received in user equipment’s like 

the Set-Top Boxes (STBs). 

Ericsson’s Mediaroom is a middleware composed by a collection of software that allows for service 

providers to deliver the IPTV functionalities like Live Television (TV), Digital Video Recording (DVR), 

Video-on-Demand (VoD) or Interactive TV Applications. Mediaroom was originally created by 

Microsoft in 2007 but in 2013 it was acquired by Ericsson. 
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Figure 2.18. IPTV high-level architecture 

At a high-level view, we can discern the IPTV platform in the four major areas presented in Figure 2.18. 

Firstly, the different types of contents (Live TV and VoD) are acquired by the Acquisition Servers and, 

according to the configurations defined in the Operations Support Systems (OSS) and Business Support 

Systems (BSS), are then distributed to the end users (Architecture of Microsoft Mediaroom, 2008). 
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In this study, we are interested in collecting the metadata and information stored by the OSS and BSS 

(Ericsson Mediaroom Server Operations Help, 2015). Service, device and channel configurations, 

content metadata, subscriber information and ultimately the data regarding the user behavior, needs 

to be extracted from the operational systems and integrated into a data warehouse that, through a 

set of transformation processes, is capable of providing tangible and valuable measurements 

concerning television audiences. 

Analyzing IPTV and Mediaroom themselves is not the main goal of this study, they represent just an 

instance of the main problem with which we drive our research. Nevertheless, tearing apart and 

comprehending the IPTV infrastructure, at a logical level, is fundamental to understand the entities 

and relationships between them, that all put back together, in a database model, will allow us to 

analyze all the available data and from there generate useful insights. 

 

2.10. TELEVISION AUDIENCE MEASUREMENTS 

Even though the focus of our research is not on the topic of audience measurements, we recognize its 

importance and impact in the television industry as they support the operation of commercial media 

(Nelson & Webster, 2016). Like many other businesses, advertising is no foreigner to the new 

technological trends. Big Data technologies play an important role in analyzing the large data sets 

generated by many kinds of audiences not only from the traditional medias, like radio and television, 

but also from the new universes of digital content and social media (Marks, 2013). 

Audience research can be conducted through several approaches, that are motivated by different goals 

and methodologies, and can use both qualitative or quantitative methods (Webster, Phalen, & Lichty, 

2014). These quantitative methods can rely on content analyses, with the purpose of quantifying data, 

that can be used afterward by more in-depth researches. As mentioned, our study is not an audience 

research, but instead, it can be seen as an enabler of future audience research initiatives because it is 

able to generate relevant quantitative measurements from the analysis of audience behaviors. From 

the specialized literature, we highlight three measurements that are commonly used in audience 

research projects (Webster et al., 2014): 

• Rating: the average of a given population watching a television channel or a program across a 

time interval (can also be expressed as a percentage calculated over the total number of 

potential households); 

• Reach: the cumulative percentage or total of a population that watched a given channel at 

least once during a time interval; 

• Share: the percentage of individuals that viewed a given channel or program during a specific 

time interval, calculated over the total number of individuals watching television during the 

same period. 

These are the main measurements that drive the design of the data models implemented during our 

study, but other metrics could be generated to support a comprehensive audience research project. 
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2.11. SUMMARY 

The core of the theoretical framework supporting our research relates to data science and how data 

can be transformed into ultimately actionable knowledge. We have explored the origins of relational 

databases and highlighted their still critical role in supporting data warehouses and their architectures.  

Invariably driven by the constant growth of data, data warehouse architectures are forced to evolve 

as relational databases struggle to transform data into usable information and here we have explored 

the emerging technologies from the universe of Big Data, namely the Hadoop’s ecosystem and more 

specifically the SQL-like approaches that offer the proven advantages of SQL while implementing 

scalable distributed processing and its ability to handle enormous amounts of data. 

Finally, our theoretical framework briefly touched the architecture and functionalities of Internet 

Television and how the data extracted from this infrastructure can be transformed into valuable 

audience measurements. Even though audience measurements are not the core of our research, their 

importance and the challenges they create due to the amount of data generated, represent a specific 

situation that triggers the need to evolve data warehouse architectures to assure their relevance and 

viability. 
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3. METHODOLOGY 

3.1. INTRODUCTION 

Research is a systematic process, supported by data, through which we attempt to answer a question, 

solve a problem or expand our understanding of a phenomenon (Leedy & Ormrod, 2010). Research 

methodologies provide frameworks and guidelines in the definition of the research scope, how it 

should be performed and what type of conclusions can be inferred from the data that is collected 

(Williams, 2007). 

In order to set the appropriate methodological path linking our initial problem, and related aspects, to 

the goals of our research, we approach the definition of its underpinning methodology in this chapter. 

The design of our research was driven by the phased approach proposed by Saunders et al. (2016) 

known as “The Research Onion” and complemented by the Design Science methodology (A. Hevner & 

Chatterjee, 2010) in the aspects concerning the methods and strategy. 

 

3.2. RESEARCH DESIGN 

The research design defines, at a high-level, the plan and the steps put in place so that initial research 

questions can be answered (Saunders et al., 2016). In our study, the elaboration of this plan was driven 

and supported by Saunders’s “Research Onion” (see Figure 3.1). 

 
Figure 3.1. The Research Onion (Saunders et al., 2016) 
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The Research Onion consists of a set of layers, or research dimensions, that guide the researcher to 

methodically define each of the steps that must be taken to effectively achieve the research goals. 

Within each layer, we are asked to perform a set of questions that help frame and direct the research 

and consequently define the concrete steps required to implement it. In the next sections, we go over 

the different research dimensions and see how they directly relate to our research. 

 

3.2.1. Research philosophy 

The first layer, proposed by Saunders’s Research Onion, is concerned with the philosophical aspects of 

the research. This research dimension relates to the researcher’s view of the world, its assumptions 

and the nature of the realities studied (Saunders & Tosey, 2013). A thorough analysis of the underlying 

philosophical aspects of the research is critical to define how the research questions are understood, 

which methods to use and how the findings are interpreted (Crotty, 1998). To achieve this definition, 

researchers perform a set of claims, under the viewing of scientific philosophy, regarding: the view of 

the nature of reality (Ontology), how we know it and what is acceptable as knowledge (Epistemology), 

what values are associated to it (Axiology) and the methods applied to its study (Methodology) 

(Creswell, 2003). 

According to literature, the most referenced schools of thought, or research paradigms, are the 

Positivism/Postpositivism and the Interpretivism/Constructivism (Easterby-Smith, Thorpe, & Jackson, 

2012). Positivism is an empirical approach that relies on the idea that reality exists independently of 

the study, meaning that it is possible to observe and describe reality from an objective view point 

(Bryman, 2013). Interpretivism advocates that the meaning of the phenomena is created by the 

observer and, therefore, it is subject to interpretations that are bounded to the observer’s values 

(Creswell, 2013). There are other research paradigms, but we devote special attention to the ones that 

could be aligned with our research, like Pragmatism that conceives knowledge as an experiential 

process rather than a reflex of an independent reality. Pragmatism is a philosophy where the 

worldview is built from actions, situations, and consequences (Creswell, 2013; Morgan, 2014). To 

relate the research paradigms to the different philosophic views, and through that define which is 

better suited to our research, we present, in Table 3.1, their main characteristics. 

Philosophical 

View 

Research Paradigm 

Positivism Interpretivism Pragmatism 

Ontology 

External; 

Single reality; 

Independent of social 

actors and objective. 

Socially constructed; 

Multiple realities; 

Subjective. 

External; 

Multiple realities; 

Adaptable to better 

answer the research 

question. 

Epistemology 

Objective – only 

observable phenomena 

provide credible data and 

facts; 

Focus on causality and 

generalizations, reducing 

Subjective – social 

phenomena and 

subjective meanings 

provide acceptable 

knowledge; 

Objective and/or 

subjective – observable 

phenomena and/or 

subjective meanings can 

provide acceptable 

knowledge; 
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phenomena to their 

simplest elements. 

Focus on the details of 

situations and the 

subjective meanings 

motivating the actions. 

Focus on practical 

research and integrates 

different perspectives to 

interpret data. 

Axiology 

Objective; 

Independent from the 

researcher’s values. 

Subjective; 

Highly dependent on the 

researcher’s values 

(researcher and research 

cannot be dissociated). 

Researcher can adopt 

both objective and 

subjective stances where 

values have a late role in 

interpreting the results. 

Methodology 

Primarily quantitative 

(can also be qualitative); 

Large datasets; 

Measurement gathering. 

Qualitative methods; 

Small datasets; 

In-depth detailed 

investigations. 

Both quantitative and 

qualitative methods; 

Mixed or multiple 

method designs. 

Table 3.1. Research paradigms according to philosophical views 
(Adapted from Creswell, 2013; Gregg, Kulkarni, & Vinzé, 2001; Saunders et al., 2016) 

Defining the research paradigm is essential to clarify the nature and goal of our research as it helps to 

establish a clear and methodological route between the initial questions, their rationale and ultimately 

their answers and contributions (Saunders et al., 2016). By reflecting upon the characteristics of the 

pertinent research paradigms to our study, presented in Table 3.1, we are able to establish a parallel 

with our own research and define Positivism as the chosen research paradigm for our study. We start 

from the hypothesis that Hadoop can be used to enhance the shortcomings of traditional data 

warehouses, when dealing with large amounts of data, and to validate this theory, we conduct a series 

of experimentations on a specific problem, the calculation of television audience measurements. The 

experimentations will produce a series of quantitative data that will be used to validate the initial 

hypothesis and afterward, from the established facts related to the specific problem, our goal is to 

move to the generalization of our conclusions towards the definition of an enhanced data warehouse 

architecture that incorporates Big Data technologies. 

 

3.2.2. Research approach 

The second layer of Saunders’s Research Onion relates to the types of  approaches that can be 

adopted during a research. The reasoning behind the research is driven by the relationship between 

theory and the research itself; whether we move from the theory to the observations or if are the 

observations that allow us to form the theory, thus the deductive and inductive researches (Bryman, 

2013).  With deductive reasoning we arrive logically at the conclusion from an initial set of premises, 

being the conclusion only true if also the premises are validated positively (Ketokivi & Mantere, 2010). 

In inductive reasoning, the results of the observations can be used to produce premises that are then 

used to support the validity of the conclusion (Saunders et al., 2016). While in a deductive approach 

the researcher defines a hypothesis from the theory and then proceeds to validate this hypothesis, in 

an inductive approach the outcome is the theory itself that is inferred from the conclusions (Bryman, 

2013). There is also a third research approach, the abductive, that is devoted to the explanation of 

“surprising facts”. These facts are defined as the conclusions, and the purpose of the research is to 

determine a set of premises that are able to explain them (Ketokivi & Mantere, 2010). 
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Our research evolves in a single continuum, but it is composed of two distinct moments that are driven 

by two different reasoning approaches. From our initial hypothesis, based on the premise that Hadoop 

can be used to augment a traditional data warehouse that lost its viability due to the volume of data, 

we follow a deductive reasoning approach that drives us from the theoretical exploration and 

subsequent empirical experimentation to the positive validation of the hypothesis and resolution of 

the specific problem. Afterward, from the results gathered in our experimentation phase and the 

insights gained during the theoretical study, our research is driven by an inductive reasoning with the 

purpose of generalizing our conclusions to a broader area, the evolution of Data Warehousing 

architectures through the inclusion of Big Data technologies. 

 

3.2.3. Research strategy 

Moving into the inner layers of Saunders’s Onion, we are confronted with the choices regarding the 

design of the research. Instead of analyzing the next two layers separately (Methodological Choice and 

Strategy) we believe that, for our study, it is useful to evaluate them together. A strategy is typically 

based on science, and it is comprised of a coherent relationship between a goal, a sequence of steps 

to be followed and a set of techniques associated with these procedures (Saunders & Tosey, 2013). 

Strategy and methods are closely connected to the support of the underpinning research approach. 

As mentioned previously, our research is composed of two stages driven by different approaches, and 

thus the methods associated are also distinct, even though they complete each other. The first stage 

attempts to validate our initial hypothesis mainly through the collection of quantitative results 

gathered from the experimentations, while the second phase aims to generalize our results through 

more qualitative techniques like observations and insights inferred from our literature analysis. The 

mixed nature of the methods and their sequential combination gives a clear indication that the most 

appropriate design for our research are the explanatory sequential mixed methods (Creswell, 2013). 

Defining an adequate research strategy does not serve the purpose of constraining the research body 

but instead serves to direct it methodologically towards its goals (Saunders & Tosey, 2013). The 

strategy definition does not impose on the research but instead facilitates it, as it is devised primarily 

from the consideration of the problem at hand, the related body of knowledge and the available data 

(Ellis & Levy, 2010). 

Most of the research in Information Systems follows two distinct paradigms – Behavioral/Analytical 

Science and Design Science (A. R. Hevner, March, Park, & Ram, 2004). The first is more concerned with 

the observation of IS as a phenomenon, thus focusing on their characteristics and on predicting 

computer-human interactions, while the design-oriented paradigm aims to develop and provide 

guidelines for the construction and operation of IS and also for the creation of innovative concepts 

within Information Systems (Österle et al., 2011). Considering the goals, nature and the body of 

knowledge of our research, the design-oriented approach was selected as the guiding methodology 

since it focuses on understanding, explaining, improving and innovating Information Systems (A. 

Hevner & Chatterjee, 2010). In alignment with the Design Science methodology, we identify and 

describe the associated activities and their application to our study in Table 3.2. 
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Activities Application in the research 

Problem 

identification 

and motivation 

Our initial problem comes from the necessity of evolving a data warehouse 

responsible for the transformation of Mediaroom subscriber events into 

relevant television audience metrics. This DW, due to the amount of data, is no 

longer capable of executing the proper data transformations within an 

acceptable timeline and thus it fails to deliver the required information. 

Beyond the resolution of this immediate problem, our research is motivated by 

the study of Big Data technologies and their application with the purpose of 

augmenting Data Warehousing architectures. 

Knowledge13 

Acquisition 

The theoretical foundation of our research focuses on two major areas of 

interest – Data Warehousing and Big Data.  To understand data warehouses, we 

performed a study not only of their architectures but also of their underlying 

technologies and models. This study was then expanded by an assessment 

throughout the solutions within the Big Data ecosystem so that theoretical 

foundations, architectures and technologies, from both worlds, could be 

combined most effectively and efficiently towards the resolution of our 

problem. 

Define the 

objectives for a 

solution 

Our objectives are defined according to our initial problem and the possibilities 

and limitations associated with the relevant body of knowledge. In a broad view, 

our research is comprised of two main objectives: 

1. Implement a technological solution capable of generating television 

audience measurements from the raw data produced by Mediaroom 

and presenting them to the users; 

2. Propose an enhanced DW architecture where Hadoop is the main actor 

performing the data transformations. 

To achieve these general objectives our research included other more detailed 

objectives that were described in section 1.2. 

Design and 

development 

The main construct of our research is the DW that produces and presents the TV 

audience measurements. To achieve this, the reality of the problem was 

studied, modeled and implemented in both an RDBMS and a Hadoop cluster. 

The dual implementation is related to the assessment of how Big Data 

technologies can, in fact, enhance data warehouse architectures. 

Our research also delivers another artifact that is not an IS but rather our 

considerations towards the definition of an enhanced DW architecture that 

combines Hadoop with an RDBMS. 

Demonstration 

The generated TV audience measurements are presented by means of graphical 

reports and dashboards. 

The validation of the initial hypothesis, that argued that Hadoop could be used 

to enhance traditional data warehouse architectures, is demonstrated through 

the presentation of comparative benchmarking results. 

                                                           
13 This activity, according to the proposed six steps of Design Science (A. Hevner & Chatterjee, 2010), is part 

of the “Problem identification and motivation” step, but we believe that, due to its importance to our research, 
its best highlighted as a separate step. 
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Evaluation 

The evaluation of both the set of processes that generate the audience 

measurements and the usability of Hadoop as a transformation tool was 

performed by several benchmarking tests regarding performance and storage. 

The same performance tests were also executed on a subsequent iteration 

designed to evaluate the scalability potential of the systems. 

Communication 

The main target audience of this research are IS solution architects and 

managers looking to enhance their data warehouse architectures. To reach this 

audience, we will produce a paper with our summarized results and conclusions. 

Table 3.2. Activity summary according to the Design Science steps 

The table above describes summarily the activities that compose our research. These activities, and 

globally our research, are much in line with the essence of Design Science, as it is problem driven, 

literature based and it is focused on the production and evaluation of artifacts (Ellis & Levy, 2010). 

 

3.2.4. Time horizon 

The time horizon dimension is not particularly relevant to our research because our focus is towards 

the problematics surrounding the transformation of large volumes of data, rather than the extraction 

of knowledge from a specific dataset. The data used in our experimentations reflects several days of 

television users’ behaviors but the days themselves have no relevance for the study. The results and 

conclusions of our research are not time-dependent. 

 

3.2.5. Data collection 

Our research uses large amounts of quantitative data. This data reflects television users’ behaviors, 

and it is directly extracted, in bulk, from the Mediaroom platform. Data is vital to our research, but our 

concern is towards the impacts of its volume rather than the behaviors extracted from its content. For 

this reason, data collection is a simple and straightforward task, even though we have a set of steps to 

prepare the data, before its utilization during our experimentation phase, with the purpose of assuring 

its quality and facilitate the benchmarking tests. 
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3.3. SUMMARY 

This chapter addressed the importance of methodology in establishing the views, boundaries, and 

techniques that are part of any research project and later instantiated them to our research, with the 

purpose of clearly defining the steps that took us from the initial problem to the materialization of the 

goals. In Table 3.3 we present the summary of the methodological dimensions and their instantiations 

in the context of our research. 

Dimensions Instantiation in the research 

Philosophy Positivism 

Approach Mainly deductive but complemented by inductive 

Strategy Methods and strategy are defined under Design Science 

Time horizon Not applicable 

Data collection Primarily quantitative data extracted from the Mediaroom platform 

Target outputs 

(Artifacts) 

1. DW capable of producing TV audience measurements 

2. Hybrid DW architecture proposal 

3. Installation guides for an Oracle DB and a Hadoop cluster (Annexes) 

Table 3.3. Methodology summary 
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4. DESIGN AND DEVELOPMENT 

4.1. INTRODUCTION 

Throughout this chapter we will describe the practical aspects that supported and materialized our 

study. From the identification of the problem, we searched for solutions and explored them, as 

described in the Theoretical framework chapter, and here we materialize the knowledge previously 

acquired so that not only the initial problem is tackled, but also new insights can be gathered regarding 

the inclusion of Big Data technologies in data warehouse architectures. 

We start by defining the boundaries of the problem and devise a feasible solution that consists of an 

enhanced data warehouse architecture. The validity assessment of the proposed system requires 

empirical substation and, for that purpose, one of our first steps is to implement the data warehouse 

that relies solely on a traditional RDBMS. This is only possible after a comprehensive analysis of the 

IPTV infrastructure and especially how Mediaroom manages it. It is this analysis that allows us to design 

the DW data model and subsequently implement all the required processes that will transform data 

into usable information, the audience measurements. Before the implementation itself, we have 

installed and configured the environments that would support it. It is then, in both these systems, the 

RDBMS and the Hadoop cluster, where the transformation processes are effectively implemented. 

In Table 4.1 we present the main steps, framed under the “Design and development” activity of Design 

Science, which are executed in this chapter. 

Step Phase Description Section(s) 

1 Design Problem description and high-level analysis 4.2, 4.3 

2 Design Entity identification and data preparation 4.4 

3 Design Data warehouse design and modeling 4.5 

4 Development Environment preparation 4.6 

5 Development Data warehouse implementation in the RDBMS 4.7 

6 Development Data warehouse implementation in Hadoop 4.8 

Table 4.1. Design and development activities 

 

4.2. PROBLEM DESCRIPTION 

The specific problem being tackled in this study portrays a practical case of a traditional data 

warehouse system that simply can no longer produce answers due to the increase of data it had to 

rely upon. A data warehouse that processes television viewing events, reflecting the users’ behaviors, 

and transforms them into useful insights for the business area, has a critical value for any television 

service provider, but for the system to maintain its validity, it has to adapt to the increase of data it 

has to process. 

Customers of a television provider using the Mediaroom platform perform actions like changing a 

channel, recording a program or visualizing a video, at their homes, using the set-top box (STB) remote 

control, and these actions are stored in a central repository. These events are afterward collected and 

transformed into meaningful metrics that are made available through reports and dashboards. 
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4.3. DATA WAREHOUSE ARCHITECTURE 

From the IPTV infrastructure, and more precisely from the data generated by the Mediaroom platform, 

the data is extracted as text files and loaded into the data warehouse where it is transformed to meet 

the reporting needs. This architecture, portrayed in Figure 4.1, uses an Extract-Load-Transform (ELT) 

approach where all the transformations are performed inside the database. This approach makes the 

data warehouse architecture less complex since no extra transformation tools are needed, but it 

requires more processing power on its database. Advantages and disadvantages of this architecture 

were described in section 2.5.1. 

Application 

Server

Client 

Gateway

Subscriber and 

System Store

Notification

 Server

Application 

Server

Acquisition

Servers

Distribution

Servers

Data Warehouse

Reporting

File Server

 
Figure 4.1. Current data warehouse architecture 

Scalability on a traditional Relational Database Management System has severe constraints since it is 

vertical. If more processing power is required, mandatorily we need to enhance the resources and 

capabilities of the processing unit, in this case, the database. Coping with large volumes of data that 

require great processing capabilities is a problem that is only exacerbated by the ELT approach. With 

ELT, the transformations are being performed in a single place whereas in an Extract-Transform-Load 

approach it is possible to, in many cases, break down these transformations. 

We are faced with the problem where, due to the increasing volume of data being fed to the data 

warehouse, we can no longer produce useful information on time. Upon such scenario, several 

directions could be followed. The simplest, but also the most expensive, would be to resort to the 

enhancement of the database capabilities and upgrade the database server, but this solution could 

become obsolete very quickly if the volume of data continues to increase at a quick pace. 
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Breaking down the transformation processes and moving them out of the database, thus changing the 

paradigm from ELT to ETL, is also a viable solution for the problem at hand. Nevertheless, this approach 

would increase the complexity of the data warehouse architecture and consequently its management 

and operation. Another important aspect that we need to take into consideration is the effort required 

to re-write the transformation processes that are currently in the database, according to the adopted 

transformation tool. 

Finally, and taking into consideration very specifically the processes involved in this study, we need to 

account for the analytical component of the system. Even though we need to load and transform 

enormous volumes of data, we cannot overlook the processes that will consume this data. The system 

relies on heavy aggregation processes, built upon hundreds of millions of records, which will ultimately 

produce the desired metrics. 

Even though it is feasible to move the transformation processes out of the database into a specialized 

transformation tool, doing the same for the aggregations would not be as feasible. Aggregations rely 

on gigabytes of transformed and enriched data that is stored inside the DW and, therefore, just the 

need to extract this data out of the database would represent an expensive and time-consuming step. 

Another important aspect is the concept of aggregation itself that makes it harder to manually 

decompose into smaller processing tasks. 

Faced with these constraints when dealing with enormous amounts of information, this study focuses 

on incorporating a Hadoop cluster in the data warehouse architecture. The DW will consume all the 

data transformed and aggregated by the cluster and make it available to the reporting layer. This 

hybrid approach will allow for a flexible architecture capable of adapting to the effort required by the 

transformation processes that can vary throughout time or if the project is applied on a different scale. 
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Figure 4.2. Proposed data warehouse architecture 
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Combining a data lake14, empowered by the processing capabilities of a Hadoop cluster, with the 

RDBMS supporting the already established reporting layer will add a transformation layer that can 

easily adapt to the volumes of data. The Hadoop cluster, shown in Figure 4.2, will also serve as a 

repository, replacing the file server on the previous architecture (Figure 4.1), where historical data can 

be stored and used by future ad hoc analyses that go beyond the information provided by the 

established reporting layer. 

 

4.4. SOURCE DATA 

The source data of this study is produced inside the IPTV infrastructure and, more specifically, by the 

Ericsson’s IPTV Mediaroom platform. This data reflects the events and actions taken by the television 

users and is stored in a central database. Our study does not consider all the possible event types but 

instead focuses on extracting insights from the most relevant and representative types, like channel 

or program visualizations. Besides the subscriber events (also called activity logs), that represent the 

facts in the data warehouse, we also need the infrastructure information to establish the proper 

context. Extracted from the Mediaroom platform, we have the information that concerns to the 

infrastructure at a logical level, like the users, their set-top boxes, the television channels and the 

programs. This information constitutes the infrastructure inventory, and it is modeled in the DW as 

dimension tables. 

 

4.4.1. Inventory information 

The inventory information reflects the different entities that are a part of the Mediaroom platform, 

and, therefore, it is fundamental to understand their purpose and interconnections so that we can 

design and represent them, not only accurately, but also efficiently. The entities are defined in a non-

enforced relational model (there are no referential integrity constraints), and they are the following: 

• Set-Top Boxes – Users’ home devices that are used to access the television services available 

on the IPTV platform; 

• Subscribers – Subscribers of the IPTV service. One subscriber can own multiple set-top boxes 

(STBs); 

• Services – The services available on the platform. The most common services are the Live 

television, the Video-on-Demand (VoD) and the Digital Video Recording (DVR); 

• TV Channels – Television channels available on the Live service; 

• Service Collections – a set of Live TV services that together present a consistent content view 

in display contexts, like the program info screen displayed on the client. An example is a given 

TV program that is composed of two distinct streams that are presented together, the main 

program and rolling band at the bottom, called Picture-in-Picture (PiP); 

• Programs – Complete list of television programs that are transmitted on the Live television 

channels; 

                                                           
14 A data lake is a storage repository of vast amounts of raw data that can be either structured, semi-

structured or unstructured (Barnes et al., 2016). 
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• Subscriber Groups –  A subscriber group consists of a set of services like, for example, the 

“Sports Package” that contains multiple television channels; 

• Channel Maps – Channel maps provide a complete list of channels that a subscriber group can 

access; 

• VoD Assets – The repository of Video-on-Demand assets that can be visualized by the users. 

These entities can, like on any relational model, be connected to each other, and for that purpose, we 

have a set of relationships that represent these logical connections. They are the following: 

• Mapping between Subscriber Groups and Subscribers – Subscribers are related to the 

Subscriber Groups so that it is possible to know to which services they have access to; 

• Mapping between Subscriber Groups and Set-Top Boxes – Similar to the relationship between 

Subscriber Groups and Subscribers. It is possible to define, for each individual set-top box, to 

which services they have access to; 

• Mapping between Service Collections and Services – This mapping aggregates several and 

distinct types of services under the entity called Service Collection; 

• Mapping between TV Channels and the platform Channel Mapping – This relationship 

instantiates the Channel Maps with the corresponding virtual channel numbers. The Channel 

Maps are used by the client devices to determine which channels are displayed in the program 

guide. Simply put, a channel mapping defines that a given channel is being transmitted on a 

specific channel position (e.g., the “Discovery Channel” is being transmitted on the channel 

position 130). 

 

4.4.2. Subscriber events 

The subscriber events, or also known as activity logs, reflect the events happening on the IPTV 

platform. These events can happen as a result of the user’s actions, like changing a television channel, 

or can be simply part of the normal operation of the platform, like the change of program when the 

previous one finishes and the streaming of a new one begins. The table below identifies the event 

types that are part of the subset covered by our study. 

Event Type Event Type Name Description 

100 Channel Tune 

This event happens when an end user tunes away from a 

TV channel. This event is only recorded if the user 

remains tuned to the channel for a specified minimum 

amount of time (the default defined by the platform is 20 

seconds) 

101 Box Power 
This event reports a change in a set-top box’s power 

state (on or off) 

104 Trick State 
This event occurs when a set-top box changes to a new 

trick state such as fast-forward, play or reverse 

114 Program Watched 

The Program Watched event is recorded when the 

program, that an end user is watching, changes to 

another program 
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115 DVR Start Recording 
A DVR Start Recording event occurs when a set-top box 

starts recording a program 

116 DVR Abort Recording 

A DVR Abort Recording event occurs when an ongoing 

recording is manually stopped before its originally 

scheduled stop time 

117 DVR Playback Recording 
A DVR Playback Recording event occurs when the user 

plays back a recording 

118 DVR Schedule Recording 
A DVR Schedule Recording event happens when the user 

schedules a program to record 

119 DVR Delete Recording 
A DVR Delete Recording event occurs when the user 

deletes a recording 

120 DVR Cancel Recording 
A DVR Cancel Recording event occurs when the user 

cancels a scheduled recording 

Table 4.2. Mediaroom event types 

The selection of these particular event types is related to their volume and their meaning. These events 

represent clear user behaviors and are the ones that are generated in greater number. 

Detailed information about each of these event types is shown in Appendix A.  

 

4.4.3. Source files 

All the source data used in this study is composed of text files that were already extracted from the 

Mediaroom platform. We have the files that represent the snapshot of the infrastructure and the files 

containing subscriber events. The fields inside the files are semi-colon separated, and quotes enclose 

the text fields. In the figure below we present an example of the source files. 

 
Figure 4.3. Source file sample 

During the evaluation phase of our research, we compare and benchmark the transformation 

processes designed in both the DW and the Hadoop cluster, and to help us achieve that, in a more 

controlled and systematic approach, the source files, regarding the subscriber events, were specifically 

prepared for the task. 
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4.4.4. Data preparation 

Multiple days and multiple event types are present in a single subscriber events file. This is the norm 

since the events are sent without any particular order, to the central repository, by each set-top box 

when its buffer reaches the limit. These heterogeneous source files were prepared with the purpose 

of creating similar files in size, split by day and event type. 
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Slice Files

Split files by date 
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Files without duplicates

Subscriber Events

files

Final files

split.sh

dup.sh
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Figure 4.4. Data preparation functional model 

The subscriber events files were processed by the three procedures shown in the diagram above. 

• A0: Split Files – the source files are decompressed and then split, into multiple files, as per 

their content. A file is generated for each combination of date (YYYYMMDD) and event type; 

• A1: Remove Duplicates – the files generated in the previous procedure are analyzed, and any 

duplicate record is removed. The generation of the output files is compressed on the fly and 

the source file removed with the purpose of saving space in the file system; 

• A2: Slice Files – the files, already without duplicates, are firstly decompressed and then sliced 

into 200MB files. The final files generated by this procedure are then compressed back again 

since all the source files, for both the RDBMS and the Hadoop cluster, will be in a compressed 

format. 

The subscriber event files, generated by this process, follow the naming convention 

‘MR_AL_YYYYMMDD_nnn.txt.gz’ where: 

• MR – Mediaroom; 

• AL – Activity Logs; 

• YYYYMMDD – Day identifier; 

• nnn – Event type identifier. 
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These files have the extension ‘txt.gz’ since they are compressed text files. An example of a file name 

produced after the data preparation is: MR_AL_20160601_100.txt.gz. The same exact files are used to 

feed both environments, the RDBMS and the Hadoop cluster. 

The scripts used on this data preparation step can be found in Appendix B.  

 

4.5. DATA WAREHOUSE DESIGN 

The data that is extracted from the IPTV platform, in its raw form, needs to be transformed into 

meaningful information so that it can be afterward made available in the data warehouse. The 

transformation stage is performed inside the DW itself, meaning that we are working with an Extract-

Load-Transform approach. 

The data warehouse is composed of a Staging Area where both the inventory and the subscriber 

events, extracted from the Mediaroom, are initially loaded. The transformation processes then use 

this data to populate, according to a set of predefined rules, the definitive inventory and fact tables at 

the core of the DW. Afterward, the events are used to produce the aggregations that will ultimately 

feed the reporting layer. This flow and its related processes are presented in Figure 4.5. 
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Figure 4.5. Data warehouse functional model 

Between the ‘Load Events’ (A1) and the ‘Aggregate’ (A3) we have an extra activity that segments the 

events into five-minute slots to produce the heaviest aggregation delivered by the system, the 

television audience measurements for every five-minute interval during the entire day. 
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The source data needs to be transformed into valid and meaningful information for the consumers of 

the system. This study focused on the diversity of the transformations rather than in the complete 

coverage of the required transformation procedures. We are driven by the ultimate goal that is 

producing the valuable insights from the input data, but in this study, we are focusing on the processes 

themselves so that we can gather information and reach conclusions regarding the usefulness of a 

Hadoop cluster as a transformation tool in a traditional Data Warehousing context. With this in mind, 

in this chapter, we cover a set of distinct transformation processes that range from the initial data 

loading to the last phase, the analytical part where the information is aggregated, and the metrics 

produced. 

From the analysis of the IPTV infrastructure and the data we can extract from it, we identified a set of 

entities and their associated relationships, that put together in a data model, are capable of expressing 

effectively the pertinent information concerning television audience measurements. This data model 

follows the principles of dimensional modeling where the relevant measurements are expressed as 

facts, and the entities that give them context are defined as dimensions. However, before the data can 

be integrated into the core of the data warehouse, it needs to undergo a series of transformation steps 

to assure several of the dimensions of data quality like conformity, completeness or integrity. All the 

required tables to the construction of the data warehouse are identified and described in the next five 

sections, and in the sixth section, we identify the main transformation processes that are subject to 

our evaluation tests later in the research. A detailed data dictionary of each of the tables in the data 

model is described in Appendix C.  

 

4.5.1. Staging Area tables 

These tables, listed on Table 4.3, map the source files directly and they are responsible for feeding the 

data into the data warehouse. 

Table Name Description 

SA_ACTIVITY_EVENTS Activity logs representing the user behaviors 

SA_ASSET Inventory of VoD assets 

SA_CHANNEL_MAP Channel maps list 

SA_GROUP List of subscriber groups 

SA_PROGRAM Inventory of television programs 

SA_SERVICE List of services 

SA_SERVICE_COLLECTION List of service collections 

SA_SERVICE_COLLECTION_MAP 
Mapping between the service collections and the services 

they contain 

SA_STB List of set-top boxes 

SA_SUBSCRIBER_GROUP_MAP 
Mapping between the subscribers and the groups to which 

they are assigned to 

SA_TV_CHANNEL List of television channels 

Table 4.3. Staging Area tables 
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4.5.2. Inventory tables 

The Inventory tables, listed on Table 4.4, are responsible for describing the Mediaroom platform inside 

the DW. They identify and characterize its entities, relationships, and configurations. These tables are, 

in most cases, an improved mirror of the staging tables but they also describe, in a more explicit way, 

certain relationships with the purpose of facilitating the transformation of the subscriber events. 

Table Name Description 

SS_ASSET Inventory of VoD assets 

SS_CHANNEL_MAP Channel maps list 

SS_GROUP List of subscriber groups 

SS_MAP_CHANNEL_MAP_SERVICE 
Mapping between the channel maps and their 

corresponding services 

SS_MAP_STB_CHANNEL_MAP 
Mapping between the set-top boxes and their assigned 

channel maps 

SS_PROGRAM Inventory of television programs 

SS_SERVICE List of services 

SS_SERVICE_COLLECTION List of service collections 

SS_SERVICE_COLLECTION_MAP Mapping between the service collections and the services  

SS_STB List of set-top boxes 

SS_STB_GROUP_MAP 
Mapping between the set-top boxes and the groups to 

which they are assigned to 

SS_SUBSCRIBER_GROUP_MAP 
Mapping between the subscribers and the groups to which 

they are assigned to 

SS_TV_CHANNEL List of television channels 

Table 4.4. Inventory tables 

 

4.5.3. Support tables 

The support tables are used as straightforward dimensions, inside the DW, with the purpose of 

facilitating the representation of time. The only two support tables are presented below. 

Table Name Description 

LU_DATE List of days in the ‘YYYYMMDD’ format 

LU_START_GP 
List of granularity periods, i.e., slices of time, in a day, 

according to a specified duration (5, 15, 30 or 60 minutes) 

Table 4.5. Support tables 

 

4.5.4. Fact tables 

In our data warehouse we have one fact table that stores all the different types of television viewing 

behaviors. However, two particular type of events, the Channel Tune and the Program Watched, are 

segmented in five-minute slots, and this result is stored temporarily in a second fact table that is used 

exclusively as a helper for the aggregations. Both these fact tables are described on Table 4.6. 
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Table Name Description 

FACT_ACTIVITY_EVENTS 
Fact table containing the activity logs that represent the user 

behaviors while using the IPTV service 

FACT_EVT_SEGMENTED 

Fact table containing the Channel Tune or the Program 

Watched events, segmented by five-minute periods. This 

table is used as source for the aggregation processes that 

calculate the audience measurements 

Table 4.6. Fact tables 

 

4.5.5. Aggregation tables 

The aggregation tables, listed on Table 4.7, are the ultimate target of the transformation processes, as 

they store the calculated metrics that are then presented by the reporting layer. 

Table Name Description 

AG_LIVE_SHARE_GP 
Aggregation table reporting the television channel audience 

by five-minute periods per day 

AG_LIVE_RATING_DY Aggregation table reporting the daily program rating 

AG_LIVE_REACH_DY Aggregation table reporting the daily channel reach 

Table 4.7. Aggregation tables 

 

4.5.6. Transformation processes 

To better understand the transformation and aggregation processes, it is important to categorize them 

according to their input, output, the volume of data and of course how the data is processed. Through 

this distinction, we can better understand where performance advantages can be gained and with this 

information, we are in a position to determine which processes are the best candidates to be moved 

out from the RDBMS and into the Hadoop cluster, to maximize the overall efficiency of the data 

warehouse. 

We present the Data Flow Diagrams (DFDs) that capture the most relevant processes inside the DW 

and that were benchmarked in both systems, the RDBMS and the Hadoop cluster. These DFDs are 

however colored in a way so that we can visually and easily understand the volumes of data being used 

and produced. Table 4.8 identifies and describes the used color scheme. 

Color Table Type Size 

 
Small table Less than 50.000 records 

 
Medium table Between 50.000 and 2.000.000 records 

 
Big table Between 2.000.000 and 20.000.000 records 

 
Huge table More than 20.000.0000 records 

Table 4.8. Color scheme for the data volume representation 
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4.5.6.1. Subscriber events transformation 

Different event types have different transformation rules since they represent very distinct concepts. 

We have events reporting channel changes, program changes, DVR actions or simple set-top box 

power on/power off actions. These different behaviors also represent very dissimilar volumes of data, 

and of course, it is important to discern their execution and performance. 

When we analyze the subscriber events transformation, it is important to point out that these 

processes are purely transformation processes, in the sense that the number of records at the input is 

exactly the same as the one at the output. The transformation rules are responsible for enriching these 

events in the data warehouse context so that afterward we can extract the desired insights. 

The transformation of the Channel Tune event (Event Type 100), depicted in Figure 4.6, uses as source 

the input files extracted from the Mediaroom platform and adds to these records extra information 

like the television channel that they are reporting. This is only possible by joining the events with the 

mappings between the STBs and their associated Channel Maps that relate them to the TV channels. 

Input = Output

Events (SA)

STBs – Channel 
Mappings

Channel Mappings – 
Services

Events (FACT)Event 100

 
Figure 4.6. Channel Tune event transformation DFD 

This process can transform more than ten million records that are enriched through a join with a 

medium size table, containing more than a million records, and also with a small table populated with 

less than one thousand records. 

The Program Watched event (Event Type 114), depicted in Figure 4.7, follows the same principle of 

event Channel Tune but adds an extra complexity layer due to the amount of data used in its 

transformation. To identify to which channel the program being watched belongs, we need to perform 

a join between the raw Program Watched events and the already transformed Channel Tune events. 

Input = Output

Events (SA)

Events (FACT) : 100 VoD Assets

Events (FACT)Event 114

 
Figure 4.7. Program Watched event transformation DFD 

In this case, we are joining two big sets of data containing, each more than ten million records. A third 

table is also used, containing the information about the VoDs, but the size of this table is minimal. 
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Volume-wise, the process in Figure 4.8, is a light transformation since the subscriber events reporting 

Digital Video Recordings (Event Types from 115 to 120) are not so frequent when compared with other 

event types. It is normal that the number of programs being recorded is significantly smaller than the 

number of, for example, programs being watched. Unlike the transformations of Channel Tune and 

Program Watched events, here the volume is around just one tenth of them, approximately one 

million. 

Input = Output

Events (SA)

Services Service Collections

Events (FACT)Event DVR

Service Collection 
Mappings

 
Figure 4.8. DVR Events transformation DFD 

This transformation, on the other hand, is using multiple event types and performing different 

transformations on the same iteration, this according to the particularity of each event type. 

 

4.5.6.2. Subscriber events segmentation 

The Event Segmentation purpose is to facilitate the aggregation that will report viewing measurements 

in five-minute intervals. Channel Tune and Program Watched events are facts that have a start time 

and a duration, and from the combination of these two attributes, we can place them in a time interval. 

Knowing which users or set-top boxes were tuned in a given channel and in a given five-minute interval, 

from millions of records, requires a carefully designed process. The method that was followed took a 

phased approach where firstly we create segments of the events for each five-minute slot. The result 

has as many segments, as many five-minute slots are crossed by the event since its beginning until its 

end, having in consideration the start time and the duration. 

This process has the particularity that it multiplies the number of records used as input by their 

duration, or more precisely, by the number of five-minute slots it traverses. 

 
Figure 4.9. Event Segmentation example 
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In Figure 4.9, we have an event traversing eight different five-minute slots, even though its beginning 

and ending do not cross the entire slot. Either way, this event, through the segmentation process, will 

originate eight different records and these records will then be used as input for the aggregation 

process in charge of creating the five-minute television viewing metrics. 

The challenge here is once again volume but in a different perspective; this process, illustrated in Figure 

4.10, is responsible for the creation of new facts that increase the level of granularity and the volume 

of data. From an already big input of about ten million records, we can generate an output multiple 

times bigger (approximately seven times bigger). 

Input < Output

Events (FACT)

Dates Granularity Periods

Segmented EventsSegmentation

 
Figure 4.10. Event Segmentation DFD 

 

4.5.6.3. Subscriber events aggregation 

Unlike the previous processes, this is not a transformation process, but instead, an aggregation one 

that generates a small analytical result from a huge input, containing millions of facts. 

Aggregation processes are not part of the transformation stage in data warehouses, but many times 

can represent interesting challenges motivated by the complexity of their calculations or by the 

amount of data they have to rely upon. In this specific case, the process depicted in Figure 4.11, we 

are using a huge amount of information, the segmented events, and calculating television viewing 

metrics that represent an amount of information more than one thousand times smaller than its input. 

Input > Output

Segmented Events Audiences Metrics
Audiences 

Aggregation

Set-Top Boxes

Input > Output

Segmented Events Audiences MetricsAggregation

Set-Top Boxes

 
Figure 4.11. Audiences Aggregation DFD 

Through this process classification, we are able to represent different processes, mainly discerned by 

the differences of input size versus output size and, of course, the volumes of data involved. This 

concludes the design phase of our research, and from this point forward we move to the 

implementation stage that creates the transformation processes and associated data model, in both 

the RDBMS and the Hadoop cluster.  
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4.6. ENVIRONMENT 

Before the implementation of the model and processes previously identified, we need to address the 

questions related to the supporting infrastructure. We need several computer systems capable of 

hosting the different components participating as support for the implementation and testing of the 

processes subject to our research. We have the system that represents the data warehouse, the 

system that acts as the Hadoop cluster, and finally, the system that plays the role of the “Presentation 

Layer” where the measurements, produced from the raw data, are made available to the users. 

Additionally, we also need to consider the systems that take part in the scalability tests. The various 

and diverse systems were installed and configured over a virtual environment implemented by Oracle’s 

VirtualBox (version 5.1.18). Hosting our virtual environment, we have one single personal computer 

with the hardware specifications described in Table 4.9. 

Component Specifications 

Processor Intel Core i7-4770S, 3100 MHz (QuadCore) 

Motherboard Asus Z87-Pro (4 PCI-E x1, 3 PCI-E x16, 4 DDR3 DIMM, Gigabit LAN) 

Memory 32 GB (4 x Kingston HyperX KHX1866C9D3/8GX) 

Graphic card MSI NVIDIA GeForce GTX 750 Ti (2 GB) 

Storage 

Samsung SSD 840 EVO 120GB (120 GB, SATA-III) 

WDC WD10EZEX-00BN5A0 (1000 GB, 7200 RPM, SATA-III) 

WDC WD30EZRX-00SPEB0 (3000 GB, 5400 RPM, SATA-III) 

WDC WD6400AAKS-65A7B0 (640 GB, 7200 RPM, SATA-II) 

SanDisk Ultra (128 GB USB3) 

Seagate ST332062 0AS USB Device (320 GB, 7200 RPM, SATA-II) 

Seagate ST332062 0AS USB Device (320 GB, 7200 RPM, SATA-II) 

Network Intel Ethernet Connection I217-V 

Operating System Windows 10 Professional 64-bit 

Table 4.9. Hardware specifications of the host computer 
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4.7. RDBMS IMPLEMENTATION 

The Relational Database Management System used to support the traditional data warehouse, central 

in this study, is built on top of an Oracle database. Oracle databases have been around since 1980, and 

they still are the most widely used RDBMS nowadays. Their robustness, performance, and features 

makes them one of the top performers in the RDBMS world (DB-Engines, 2017). 

 

4.7.1. RDBMS infrastructure 

As mentioned, the database system supporting our data warehouse, is an Oracle, more specifically, 

the Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 – 64bit Production with the Partitioning, 

OLAP, Advanced Analytics and Real Application Testing options. The database is installed on top of an 

Oracle Linux Server 7.2 with Unbreakable Enterprise Kernel (3.8.13-118.13.2.el7uek.x86_64) and has 

the hardware specifications described in Table 4.10. 

OS RDBMS Hardware (virtual) 

Oracle Linux 
Server 7.2 

Oracle Database 12c 
Enterprise Edition 

CPU: 2 cores 
Memory: 8 GB (Maximum memory target: 5 GB) 
Disk: WDC WD30EZRX (5400 RPM SATA-III) 

Table 4.10. Data warehouse environment 

Details about the installation of the Oracle database for this study can be found in Annex A. This 

chapter was built as annex so that it can also be used independently from our research, as a step-by-

step guide on how to install a database instance in a virtual environment using Oracle VirtualBox. 

 

4.7.2. RDBMS configuration 

The configuration of the RDBMS was minimal with the purpose of making use of many of the automatic 

management mechanisms offered by Oracle DBMS, like the Automatic Memory Management that 

balances memory allocation between the System Global Area (SGA), and the Program Global Area 

(PGA) according to the database’s usage. In Figure 4.12 we can observe the memory configuration that 

sets the maximum target to 5 GB. Additional configuration parameters were set during the database 

installation and can be confirmed in Annex A. 
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Figure 4.12. RDBMS memory configuration 

Still part of the database configuration, and part of Oracle’s architecture, we need to create the 

tablespaces where the tables are being stored, and configure the system tablespaces used by the 

RDBMS to perform its operations. The table below shows us the tablespace configuration and its DDL 

is in Appendix D.2. 

Tablespace Size Description 

HRD_DW_AGG 1 GB Tablespace for the aggregation tables 

HRD_DW_DAT 12 GB Tablespace for the fact table containing the subscriber events 

HRD_DW_INV 2 GB Tablespace for the inventory tables 

HRD_DW_SEG 8 GB Tablespace exclusively for the segmented table 

TEMP 24 GB 

System tablespace used for actions like hash or merge joins when they 

do not fit in memory. In our study, we have big hash joins that require 

a large temporary tablespace 

UNDOTBS1 1 GB 

System tablespace used for rollback operations. In our study, we 

perform mostly insert operations in direct-load mode, and because of 

that the usage of this tablespace is minimal 

SYSTEM  1 GB 
System tablespace containing the information about the structure and 

contents of the database 

SYSAUX 1 GB 
Secondary system tablespace containing the information about the 

structure and contents of the database 

Table 4.11. Tablespace configuration 

There are no specific tablespaces for the indexes since their usage is reduced to the minimum, 

especially because we are mostly performing big operations like merge or hash joins that use entire 

tables or entire partitions. Adding indexes in this scenario would give us no benefit, and it would 

damage performance for the insert operations. 
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The configuration of this database, for the purposes of our study, represents the limit of vertical 

scalability of the data warehouse. 

 

4.7.3. Data model design 

In this section, we address the design and creation of the multiple tables implementing the data 

warehouse’s data model on all its components – the Staging Area, the Fact and associated Dimension 

tables, and finally, the Aggregation tables where the calculated metrics are stored. 

 

4.7.3.1. Staging Area tables 

The Staging Area tables store the source data, composed of the files extracted from the Mediaroom 

platform and compressed to save space in the file system. The diagram in Figure 4.13 illustrates all the 

Staging Area tables that were created as Oracle external tables and its DDL is presented in Appendix 

D.4. Before the creation of these external tables, directories as Oracle objects were created with the 

DDL shown in Appendix D.3, so that the files could be mapped directly from the file system into the 

database. 

 
Figure 4.13. Staging Area tables physical model in the RDBMS 

 



63 

4.7.3.2. Inventory tables 

The Inventory tables reflect the Mediaroom infrastructure on a daily basis. Under this design, the 

tables are partitioned by day, where each day represents a snapshot of the Mediaroom entities 

identified and described in section 4.4.1. These Inventory tables have a dual function in our data 

warehouse. Part of them act as dimension tables, which contextualize the facts, and others are used 

simply as support for the transformation processes. 

 
Figure 4.14. Inventory tables physical model in the RDBMS 

The relationships depicted in the diagram above are merely informative since they are not enabled in 

the physical model. All the relationships, rather than being explicit, are implicit and represented 

through the column names. Having an enabled referential integrity definition in a data warehouse has 

performance costs (Ordonez & García-García, 2008) and its implementation brings some extra 

complexity especially when dealing with partitioned tables (Imhoff et al., 2003; Kimball & Ross, 2013). 

The DDL and the DML statements used to create and load the Inventory tables are available in 

Appendix D.6. 

 

4.7.3.3. Fact tables 

The fact tables are at the core of every data warehouse as they capture, at a granular level, the 

measurements being studied. Our fact tables store the different events extracted from Mediaroom. 

As these events represent different user behaviors, with different characteristics and volumes, our fact 

tables are partitioned by day and sub-partitioned by event type with the purpose of optimizing data 

access performance. 
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Fact tables also store very large amounts of data and consequently are heavy consumers of the storage 

resources. To find the right balance between storage consumption and performance, we conducted a 

series of tests, described in Appendix D.1, and concluded that the best approach, from the possible 

options, would be to store the fact tables using the row store basic compression format. 

 
Figure 4.15. Fact tables physical model in the RDBMS 

As for the Inventory tables, also here the relationships, depicted in Figure 4.15, are informative since 

they are not enabled in the data model. The purpose of our fact tables is described in section 4.5.4, 

and its DDL and DML statements are in Appendix D.7. 

 

4.7.3.4. Aggregation tables 

Aggregations store summarized analyses of the facts and are normally accessed by the Business 

Intelligence layer. The design and implementation of aggregation tables is tightly connected to this 

layer as it defines the information requirements that need to be answered by the data warehouse. For 

our research, we defined three aggregation tables, described in section 4.5.5, that can deliver the 

previously defined audience measurements Rating, Reach and Share. These aggregations are also 

some of the ones that rely on large amounts of data and, therefore, perfect candidates for the 

benchmarking tests performed by our study. 
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Figure 4.16. Aggregation tables physical model in the RDBMS 

The aggregation tables presented above, store small datasets and therefore represent no concern 

regarding performance. Nevertheless, they are, like the fact tables, partitioned by date (their DDL, and 

related DML, is available in Appendix D.8). This facilitates aging mechanisms and also the processes in 

place with the purpose of exchanging data between the Hadoop cluster and the RDBMS. The depicted 

relationships, between the aggregation and dimension tables serve, also here, the purpose of 

contextualizing the information since they are not enabled in the physical model. 

 

4.7.4. Data transformation 

The implementation of the processes is a fundamental step in our research as they are responsible for 

the transformation of the raw data into meaningful measurements. These processes were identified 

and described in section 4.5.6, and at this stage, they are materialized in SQL statements. For our study, 

rather than exhaustively analyze all the required processes, we focused on a subset that, according to 

their intrinsic characteristics, allow us to infer the conclusions of their testing onto other similar 

processes. To calculate the proposed audience measurements, other processes were implemented, 

but throughout the benchmarking tests, the processes identified in Table 4.12 were our focus. 

Process Type15 Description 

Channel Tune 1:1 
Transformation process that takes one input record and also 

generates one record as output (uses medium sized joins) 

Program Watched 1:1 
Transformation process that takes one input record and also 

generates one record as output (uses a large sized join) 

                                                           
15 ‘1:1’ stands for One-to-One, ‘1:M’ for One-to-Many and ‘M:1’ for Many-to-One. 



66 

DVR Events 1:1 

Transformation process that takes one input record and also 

generates one record as output (uses multiple small sized 

joins) 

Event Segmentation 1:M 
Multiplies each input record into one or more output records. 

The average ratio of this multiplication is around 1 to 7 

Audiences Aggregation M:1 

Aggregates large number of records to produce a single 

output record and performs analytical operations as well as 

roll-ups 

Table 4.12. Implemented transformation processes 

The SQL statements associated with all the processes implemented during our study are disclosed in 

Appendix D. The statements directly associated with the transformation and aggregation of the 

subscriber events are detailed in Appendix D.7 and Appendix D.8, respectively. 

During the implementation of the SQL statements, our prime guideline was performance, and to that 

effect, special attention was paid to the execution plans of each of the statements, where execution 

time was given priority over the execution cost. The transformation statements were implemented 

with multiple approaches, and the most performant ones were selected. We present the execution 

plans for the transformation statements in Appendix D.10. We can observe that the statements make 

the correct use of the physical model, by using its partitioning scheme and that the joins are performed 

via merge or hash joins and never through nested loops where each record is evaluated individually on 

both sides of the join and thus only advisable for small data sets and preferably with indexes (Oracle 

Corporation, 2017). All our tables were kept with current statistics at all times so that Oracle’s Cost 

Based Optimizer could always base its decisions with the most accurate information regarding the 

tables’ volumes and contents. 

Finally, one important aspect is that during the implementation of these transformations in Oracle, we 

always tried to make use of what is most efficient in Oracle, like the use of helper functions that store 

their values in cache, without any concerns whatsoever of how this would or could be implemented in 

Hive. Assessing the number and level of adaptions to the SQL, required to move it from Oracle to Hive, 

was also an important aspect to gather. 

 

4.8. HADOOP CLUSTER IMPLEMENTATION 

Before installing and configuring the Hadoop cluster, supporting the transformation processes being 

implemented in this study, we analyzed the several options around the Big Data landscape and in 

particular Hadoop. To build the required Hadoop cluster, we need several components, namely to 

manage the storage and also to assure the distributed processing management and the associated 

resource allocation. On top of this, there is also the need for a high-level framework/engine, with the 

purpose of enabling the most effortless migration of the SQL statements, responsible for the 

transformation mechanisms inside the RDBMS, that are part of the initial data warehouse architecture. 

Every Apache project, like Apache Hadoop, Apache Tez or Apache Hive can be downloaded, installed 

and configured manually with the purpose of creating a Hadoop cluster. This is a time-consuming task 

that can be easily avoided by using one of the Hadoop distributions developed by Cloudera, 
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Hortonworks or MapR. Each of the solutions, offered by these companies, package together several 

applications that can be easily installed and managed throughout a Hadoop cluster, thus saving us the 

process of installing and configuring each application in each node. Any of the distributions offer the 

standard Apache applications, available in Hadoop’s ecosystem, but there are also many differences 

between them that may or may not have implications in the installation of a cluster. Our study does 

not include a comprehensive analysis of the features available in each of the distributions, but instead, 

our approach is rather pragmatic when deciding which of the distributions is better suited. 

The first important decision relates to the selection of the SQL-like engine that would be used and here 

our choice fell onto Hive simply because, according to DB-Engines, Hive ranked, in April of 2016, on 

the tenth position while Impala appeared only on the twenty-third in the ranking of relational DBMSs 

(DB-Engines, 2017). By selecting Hive as the relational engine to be used in the Hadoop cluster, 

Cloudera was immediately discarded as the distribution that would support our study because 

Cloudera favors Impala as a SQL-like engine in Hadoop and puts most of its efforts in its development. 

On the other hand, Hortonworks favors Hive and its development, namely through the “Stinger 

Initiative” (Gates, 2013). When compared to MapR Converged Platform 5.2, Hortonworks Data 

Platform 2.5 expands the delivered 1.2 Hive version with several features from Hive 2.1. At this point 

the decision was clear, Hive as the SQL-like engine and the Hadoop cluster installed and managed by 

Hortonworks Data Platform 2.5. 

Another important aspect that we took into consideration, when choosing between Cloudera, 

Hortonworks or MapR, was that Hortonworks is completely open-source while, for example, MapR 

uses several proprietary components. Cloudera also has an enhanced commercial license while 

Hortonworks works under an open-source license with no extra features or costs associated with a 

commercial license. 

 

4.8.1. Hadoop cluster infrastructure 

By making use of our virtual environment, described in section 4.6, we created three virtual machines 

with the purpose of hosting the cluster’s nodes. For the installation of our nodes, we chose the same 

operating system like the one used for the RDBMS, the Oracle Linux Server 7.2 with Unbreakable 

Enterprise Kernel (3.8.13-118.13.2.el7uek.x86_64). The hardware reserved for each of the nodes is 

detailed in Table 4.13. 

Node OS Hadoop Hardware (virtual) 

1 

Oracle Linux 
Server 7.2 

Hortonworks 
Data Platform 

2.5.3 

CPU: 2 cores 
Memory: 10 GB (7.5 GB for YARN containers) 
Disk: WDC WD10EZEX (7200 RPM, SATA-III) 

2 
CPU: 2 cores 
Memory: 6 GB (5 GB for YARN containers) 
Disk: WDC WD6400AAKS (7200 RPM, SATA-II) 

3 
CPU: 1 core 
Memory: 6 GB (5 GB for YARN containers) 
Disk: WDC WD30EZRX (5400 RPM SATA-III) 

Table 4.13. Hadoop cluster environment 
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The installation of the cluster was done using Hortonworks Data Platform (HDP) 2.5.016 and it is 

detailed in Annex B. This chapter was built as annex so that it can also be used independently from our 

research, as a step-by-step guide on how to install a Hadoop cluster in a virtual environment using the 

Ambari managed environment of HDP. 

 

4.8.2. Hadoop cluster configuration 

The installation of the cluster through Ambari is a very straightforward task and assures us an initial 

effective configuration based on default values. Due to the limited resources of our environment, and 

with the cluster already up and running, we performed several tests to assess the best role and service 

distribution amongst our three the nodes. The final distribution is presented in Table 4.14. 

Node Component Services 

hrd-mt-h01 

HDFS 
NameNode 
DataNode 

YARN 
ResourceManager 
NodeManager 

Hive 

Hive Metastore 
HiveServer2 
MySQL Server 
WebHCat Server 

Others 
Knox Gateway (Knox) 
ZooKeeper Server (ZooKeeper) 
Metrics Monitor  (Ambari Metrics) 

hrd-mt-h02 

HDFS 
SNameNode 
DataNode 

YARN 
App Timeline Server 
NodeManager 

Others 
ZooKeeper Server (ZooKeeper) 
Metrics Collector (Ambari Metrics) 
Metrics Monitor (Ambari Metrics) 

hrd-mt-h03 

HDFS DataNode 

YARN NodeManager 

Others 

Oozie Server (Oozie) 
ZooKeeper Server (ZooKeeper) 
History Server  (MapReduce2) 
Infra Solr Instance  (Ambari Infra) 
Metrics Monitor (Ambari Metrics) 
Grafana (Ambari Metrics) 

Table 4.14. Hadoop cluster service distribution 

Not all the services of the table above are required or, at least, they do not need to be always running, 

for our Hive on Tez to be able to execute our data transformation processes. The basis of the cluster is 

its data storage implemented by HDFS, and to that effect, each node is a DataNode. The central part 

of HDFS is the NameNode, where the metadata regarding all the data distributed across the cluster is 

stored. Since Hadoop 2, this critical role is safeguarded by a Secondary NameNode that can step in to 

                                                           
16 Later the HDP version was upgraded to 2.5.3. 
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cover for a potential failure of the NameNode. We recognize that it is not the best practice to have the 

roles of DataNode and NameNode on the same node, but due to the resource limitation, this was a 

scenario that we could not avoid. 

On top of HDFS, we have YARN so that it is possible to execute data access or transformation tasks. 

Each of our nodes, that are already a DataNode, are also NodeManagers and, consequently, they have 

the ability to process tasks. Also on the YARN context, we require the ResourceManager to arbitrate 

all the resources in the cluster and effectively manage the distribution of tasks by the NodeManagers. 

Finally, on YARN, we have the role of the App Timeline Server that, very succinctly, serves the purpose 

of storing and presenting information about running and completed tasks. 

Moving up on Hadoop’s software stack, we have the components that implement Hive. Hive Metastore 

stores all the metadata concerning the database objects that were defined under Hive’s scope, like 

tables and partitions. This information is stored in a relational database and in our case we opted to 

use a MySQL database, but other RDBMSs can be used. The WebHCat server provides an interface to 

Hive’s metadata catalog management layer (HCatalog). HCatalog is built on top of Hive Metastore and 

provides a relational view of the managed objects that simplifies object management. Finally, 

HiveServer2 is the service that enables, preferably through JDBC, clients to execute their queries 

against Hive. 

We have other services running in our cluster, some completely optional, like the Ambari Metrics that 

is responsible for collecting and processing metrics to help us manage the cluster, and others with 

more relevant functions like ZooKeeper that acts as a coordination service for distributed applications, 

or the Oozie Server, a workflow system that enable the scheduling of jobs in Hadoop. 

After balancing the services throughout the cluster, the most relevant configuration task is to define 

several critical parameters that dictate how Hive, Tez, Map-Reduce and YARN perform their tasks. The 

list of parameters is extensive and requires, not only technical knowledge but also previous experience 

to determine their optimum configuration and should also take into account the data and processes 

that will be handled. To accomplish the parameter configuration, we used the script ‘hdp-

configuration-utils.py’ that is provided by Hortonworks (2017). Due to our limited hardware, the 

default configuration gathered from this script proved not to be the best regarding performance. 

Through a set of tests, we concluded that the optimal configuration, for the allocation of YARN 

containers, should be between one and two containers for the same hard-drive. More than that 

hinders the performance of the tasks inside the containers, and so the script was changed to account 

for that limit. The final configurations set the minimum YARN container size to 2560 MB, and all the 

other parameters were generated, by the script, according to that value. With this configuration, we 

achieved the optimal configuration – Nodes 2 and 3 each can allocate two YARN containers and Node 

1 has room for three containers, where the extra container, beyond the two, should be used for the 

allocation of the Application Master. In Figure 4.17 we present an overview of the cluster after the 

configuration of all its components. 
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Figure 4.17. Ambari dashboard reporting the cluster overview 

 

4.8.3. Data model design 

The implementation of the data model in Hive replicated the same model implemented for the data 

warehouse, supported by the Oracle database, and presented in section 4.7.3. The minor differences 

between the two environments are related to the data types and to the partitioning techniques, but, 

in the end, they serve the same purpose. 

 

4.8.3.1. Staging Area tables 

The Staging Area tables in Hive map to the same exact files that were used to load data into the RDBMS. 

Like Oracle, Hive also can map tables directly over compressed files, a very useful feature that allows 

us to save large amounts of space in the file system. For the DDL related to the Staging Area tables, 

please refer to Appendix E.2. 

 

4.8.3.2. Inventory tables 

Like in the DW, the Inventory tables are partitioned by day and work as daily snapshots of the 

Mediaroom infrastructure. The contents of the Inventory tables are derived from the Staging Area 

tables, through a set of simple transformation processes, and stored in the HDFS using ORC file format 

that, according to our tests described in Appendix E.1, offer great compression ratios and no processing 

time overhead. The DDL and DML pertaining to the creation and loading of the Inventory tables is 

presented in Appendix E.4. 
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4.8.3.3. Fact tables 

Both our fact tables are created as they were for the DW, but with a slight difference, the partitioning 

for the table FACT_EVT_SEGMENTED. In the RDBMS, this table was treated like a “temporary” table 

that only stores data as an intermediate step before the aggregations and afterward its contents are 

deleted. This approach was motivated by the enormous amounts of storage used by this table but in 

Hive, with the ORC file format, the storage requirements are greatly reduced, and so we can store this 

table permanently (we develop on this subject in section 5.4). To this effect, the table 

FACT_EVT_SEGMENTED is partitioned by day and by event type in Hive, while in Oracle it was 

partitioned just by day. 

The DDL and DML related to the creation and loading of the fact tables is disclosed in Appendix E.5. 

 

4.8.3.4. Aggregation tables 

The summarized data, gathered from our fact tables, is stored in Hive as aggregation tables with the 

same structure as the ones created initially for the DW. We decided not to use the ORC file format 

here to facilitate the exchange of data between the cluster and the DW. One simple and viable 

approach to accomplish this is to simply map the text files generated by Hive as external tables for 

Oracle and the measurements calculated by the cluster would be immediately available in the DW. 

Additionally, not using the ORC file format for the aggregation tables does not affect the storage 

requirements since these tables have very few records. 

The DDL and DML related to the aggregation tables is available in Appendix E.6. 

 

4.8.4. Data transformation 

After the creation of the underlying data model in Hive, we have developed the processes described 

in section 4.5.6 and already implemented in the RDBMS supporting the data warehouse (section 4.7.4). 

Our purpose was to replicate, in HiveQL, the statements already written in PL/SQL, rather than to write 

them completely from scratch. We have chosen this approach so that we could assess the effort 

associated to the porting of code from one system to another. We used HiveQL exclusively, without 

any user-defined functions, and we also did not attempt to use HPL/SQL because it was not available 

when we initiated our study, even though its assessment represents a very interesting opportunity 

that should be explored in future studies. 

As the initial SQL statements were written using the ANSI notation of performing joins, rather than the 

specific Oracle notation, they could be completely re-used without any changes. The biggest difficulty 

we found was associated with the limited number of functions available to deal with date operations 

and, therefore, to cope with this, we had to rely on conversions to and from Unix time17. The generated 

statements were initially assessed regarding their execution plans, with the special concern to evaluate 

whether or not the partitioning scheme was being accounted for, and secondly to guarantee that the 

best Hive join techniques were being applied, like the map joins that are especially useful for the star-

                                                           
17 Unix time describes time as the number of elapsed seconds since 1970-01-01 00:00:00. 
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schema joins where one big table is joined against several small tables. We have to note the enormous 

optimization improvements since earlier versions of Hive. Using the CBO and keeping the table 

statistics up to date, there was not a single time when we had to force more efficient execution plans 

through the use of SQL hints. 

During the implementation and testing of the transformation processes, we also focused our attention 

on the DAGs associated to each statement and how parallelism was being applied by the creation of 

multiple Mapper and Reducer tasks. The DAGs responsible for the execution of each statement are 

presented in Appendix E.7. 

Special care should be taken when using analytical functions, like ranking, since they will force Hive to 

process the data with a single Mapper task and, therefore, completely remove the usage of parallel 

processing. These functions should, whenever possible, only be applied to the already filtered results. 

If it is true that we can use the same SQL in Oracle or Hive, it is also true that, to optimize its execution, 

we need to be aware of the architectural differences between both systems and how the processing 

takes place. 

The re-written SQL statements, associated with the data transformation processes being analyzed, are 

presented in Appendix E.5 and Appendix E.6. 

 

4.9. SUMMARY 

This chapter covered the design and development phases of our research where new technologies, 

from the spectrum of Big Data, are incorporated in a traditional data warehouse with the purpose of 

solving a specific problem – the calculation of television audience measurements from the raw data 

generated by the Mediaroom platform. 

A database model and a set of transformation processes were designed from the initial in-depth 

analysis of the IPTV Mediaroom platform and implemented in the two environments specifically 

created to support our study – a DW supported by an Oracle RDBMS and a Hadoop cluster using 

primarily Hive on Tez. These are the environments that will be used, in the next chapter, as a testing 

ground for a subset of processes with the purpose of assessing the performance, scalability and storage 

capabilities that characterize each of the underlying technologies of the two systems. 
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5. EVALUATION 

5.1. INTRODUCTION 

This chapter is dedicated to the benchmarking of both the RDBMS and the Hadoop cluster while 

executing the same, previously implemented, transformation processes. This empirical assessment 

covers not only the performance of the systems, as they were initially defined, but also the evaluation 

concerning their scalability potential. Also, as performance is tightly connected to the size of data, we 

compare the storage requirements of each environment as they process and store the same data. The 

purpose of these benchmarking tests is to assess the performance of the new proposed architecture, 

using Hadoop, in comparison to the RDBMS. 

We finalize this chapter with a section dedicated to the presentation of the calculated audience 

measurements and a brief assessment of the latest developments in Hive interactive query engine, the 

Low Latency Analytical Processing, and how it compares against an RDBMS when it comes to data 

access latency that is critical in supporting the visualization layer of data warehouses. 

 

5.2. PERFORMANCE 

The performance tests cover the transformation processes previously described and implemented on 

the RDBMS and the Hadoop cluster. The diversification of the processes, subject to our benchmarking, 

allow us to deepen the understanding of how distinct scenarios behave in both environments. Our 

generic goal is to assess if the Hadoop cluster can outperform the RDBMS in a set of transformation 

processes. However, beyond that we are trying to understand which processes fit better under the 

distributed architecture of a Hadoop cluster and from these conclusions collect valuable information 

that will support an efficient evolution of data warehouse architectures through the inclusion of Big 

Data technologies. 

The execution of the benchmarking tests, presented in the next sections, was performed in completely 

idle systems where no other processes were running. Both our environments are running through 

virtualization, and to these specific tests their corresponding configuration is as it follows: 

System Software Hardware (virtual) 

DW 
Oracle Database 12c 

Enterprise Edition 

CPU: 2 cores 
Memory: 8 GB (Maximum memory target: 5 GB) 
Disk: WDC WD30EZRX (5400 RPM SATA-III) 

Hive 
Hive on Tez using 

HDP 2.5.3 

Node 1 
CPU: 2 cores 
Memory: 10 GB (7.5 GB for YARN containers) 
Disk: WDC WD10EZEX (7200 RPM, SATA-III) 

Node 2 
CPU: 2 cores 
Memory: 6 GB (5 GB for YARN containers) 
Disk: WDC WD6400AAKS (7200 RPM, SATA-II) 

Node 3 
CPU: 1 core 
Memory: 6 GB (5 GB for YARN containers) 
Disk: WDC WD30EZRX (5400 RPM SATA-III) 

Table 5.1. Environment configuration for the performance tests 
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The benchmarking results presented in the next three sub-sections were obtained through the 

sequential execution of five iterations of the same scenario, where each scenario, for a given test, 

corresponds to the amount of data being used. From the five executions, the best and the worst results 

were removed, and an average was performed with the remaining three results. The results reported 

for each of the scenarios, within each test, are then a trimmed mean calculated by the following 

formula: 

𝜇 =
∑ (𝑓(𝑥𝑖))

𝑁

𝑖=1
− 𝑀𝑎𝑥({𝑓(𝑥1), … , 𝑓(𝑥𝑛)}) −  𝑀𝑖𝑛({𝑓(𝑥1), … , 𝑓(𝑥𝑛)})

N − 2
 

Where: 

N is the number of iterations (5 in our case) 

i is the iteration number 

x is the test scenario 

f(x) is the execution time of the test scenario 

𝜇 is the average execution time of the test scenario (trimmed mean) 

Equation 5.1. Formula to calculate the average execution time of a test scenario 

Each of the five transformation processes being benchmarked have a total of ten scenarios that 

correspond to the different number of data rows being fed to the transformation (i.e., one million, two 

million, up until ten million) and for each scenario, a total of five iterations are performed. The detailed 

execution statistics of the transformation processes are presented in Appendix F.  

All the tables that are part of the transformation processes are analyzed before their utilization. This 

assures that, for both environments, the Cost Based Optimizer has the most accurate statistics and 

consequently is able to generate the most efficient execution plans. 

 

5.2.1. Subscriber events transformation 

The subscriber events transformation, as described in section 4.5.6.1, is characterized by a set of 

processes with the purpose of enhancing raw data entering the data warehouse. They represent the 

type of processes where the number of input rows is the same as the number of generated rows. Inside 

this group of processes, we cover three distinct transformations that vary in complexity and in the 

volume of the data being used. 

The first transformation process, the Channel Tune, uses as input the raw files and performs two joins 

with two dimension tables, one small and another classified as medium. Also, due to its simplicity, this 

process does not use any Reducer task when executed in Hive. 
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Figure 5.1. Channel Tune transformation benchmarking 

From the analysis of the chart above, we can gather that the execution in the RDBMS (identified as 

DW) is more or less steady no matter the volume of data, while the same executions, in the Hadoop 

cluster (identified as Hive) are progressively increasing the number of records processed per second 

as the volumes of data increase. It is important to highlight that since we are using compressed files as 

input, the processing in the cluster cannot split them into multiple Mapper tasks, and for that, in the 

first two scenarios, only two nodes are being used to handle the raw data subject to the 

transformation. When we reach the scenario of ten million of rows, corresponding to ten distinct input 

files, we then have a total of ten Mapper tasks dedicated to the processing of the raw data. 

As a final observation we can state that, for the amounts of data being used, the results obtained by 

the Hadoop cluster were far from being great. The trend shows us that above ten million rows the 

performance of the RDBMS would be surpassed, but only marginally. 

The next transformation process, the Program Watched, uses similar amounts of data as input but also 

uses the data transformed by the Channel Tune process as a lookup table, so for this process we are 

considering not only a join with a small dimension table but also a join with a large fact table (with 

around ten million rows), or partition of a fact table to be more exact. Here we are reading and writing 

from the same table, but from different partitions. 
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DW 63 806 65 169 66 105 70 000 71 544 72 609 71 196 72 029 71 373 71 518
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Figure 5.2. Program Watched transformation benchmarking 

As expected and when we compare this process with the Channel Tune transformation, with the 

inclusion of a join with a large table, the transformation process gets its performance degraded. In 

Figure 5.2 we can observe that when we reach the nine million of rows in the input table, the cluster 

outperforms the RDBMS and the visible trend appears to show us that from this point forward, while 

the performance in the cluster continues to increase, the opposite happens in the DW. Again, we need 

to highlight that the cluster usage is dependent on the number of input files (since they are 

compressed) and, therefore, the number of Mapper tasks being created is directly related to the 

number of files. For the observed process, it is only possible to start using the three nodes when we 

reach the three million of rows that correspond to three distinct source files. 

The following test uses similar amounts of data as input, but globally the amount of data is far less 

since we are not performing any join with a large table. The DVR Events processing, when compared 

to the Program Watched transformation, decreases the amount of data used as lookup and, when 

compared with the Channel Tune process, adds more complexity to the transformation statement by 

including more joins. 

1 2 3 4 5 6 7 8 9 10

DW 53 072 49 224 50 443 48 350 49 804 53 351 54 659 51 173 48 676 47 370

Hive 13 751 24 882 30 971 38 597 41 422 44 209 48 034 48 610 54 104 59 482
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Figure 5.3. DVR Events transformation benchmarking 

With just a quick glance at Figure 5.3, and especially if we compare it with the results in Figure 5.1, we 

can safely say that the extra complexity added to the transformation had no impact on the 

performance. For the DW, both transformations display similar performance values no matter the 

scenario. It is also true that, contrary to what happened for the Channel Tune transformation, here the 

Hadoop cluster was able to outperform the DW at the last two scenarios and the trend is still moving 

upwards. Also here, we took the opportunity to test the performance differences between Map-

Reduce and Tez and the conclusion is that, as analyzed during the literature review performed at the 

Theoretical framework chapter, Tez offers consistently better performance than Map-Reduce, even on 

such a small test as the one conducted here. We will again take the opportunity to compare Tez and 

Map-Reduce on a test that intends to transform larger amounts of data. 

These three transformation processes fit into the same category of processes that, in a simplistic view, 

take one input row, add information to it according to a set of rules, and finally output it to a fact table. 

The observations gathered for the RDBMS tell us that performance for these systems is more or less 

stable no matter the size of the input data, meaning that we can obtain excellent results with small 

amounts of data. On the other hand, the Hadoop cluster seems to thrive on the size of data. In our 

tests we did not reach a point where the cluster’s performance suffered from degradation due to the 

amounts of data, by the contrary, the trend only showed us that the more data, the better. 

As stated, the tested processes fit into the same category, but the differences between them allow us 

to have a deeper level of understanding regarding their behavior in different settings. Straightforward 

transformations, no matter the complexity of the lookup component, displayed solid results for the 

RDBMS, while a transformation that relies on large amounts of data to perform the lookup component 

(the Program Watched transformation), is the best candidate to collect the benefits of distributed 

processing, especially when the amounts of data increase. 
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5.2.2. Subscriber events segmentation 

The Event Segmentation, described in section 4.5.6.2, is not a very typical process in the sense it 

performs a cartesian product that multiplies the number of input rows, according to a set of rules, and 

produces an output far larger than the input. For this reason, the costly step associated with the 

execution of this process is the writing of the output to the storage. 

 
Figure 5.4. Event Segmentation benchmarking 

The input data used by this transformation is the output generated by the Channel Tune process. 

Contrary to the processes tested previously, here the input data, in Hadoop, is not stored in 

compressed files but instead is composed of files using the ORC format. Due to this, the input readers 

can split the files by stripes and allocate the corresponding Mapper tasks. We did not force any number 

of tasks per Mapper but instead relied on Tez to automatically define the needed tasks according to 

the statistics calculated for the input files. These files that were previously generated by the Channel 

Tune transformation are small (less than 40 MB on average) and for that, and the current configuration 

of the cluster, one Mapper task is assigned to each file. Depicted in Figure 5.4, the test scenarios start 

with 7 million records (one single input file) and finish with 73 million, distributed by ten different files. 

Respectively, the allocation of Mapper tasks, for the processing of these records, ranges between one 

and ten. When we reach the third test scenario, and with the use of three Mapper tasks, the cluster is 

already greatly outperforming the DW, and by the forth, this difference is even larger. From this point 

forward the performance gains more or less stabilize, even though they start again gaining momentum 

in the last test scenarios. Throughout all the test scenarios, the RDBMS performance increases steadily, 

but slowly, never being able to get closer to the performance extracted from the cluster. This test 

revealed large performance gains by using the Hadoop cluster and also gave us the insight that, beyond 

four Mapper tasks, the performance gains tend to be less significant, albeit becoming relevant again 

with eight Mapper tasks or more. 

Our Hadoop cluster is fairly limited in resources and is also composed of heterogeneous nodes where 

concurrency of YARN containers can impose significant overhead. Another aspect the can condition 
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the performance in our cluster is in which node the Application Master is created. The resource 

constraints of the cluster supporting this study, and in particular for this more complex test, was a 

useful mean towards gaining insights on how the correct resource sharing and concurrency can be 

used to optimize performance. 

 

5.2.3. Subscriber events aggregation 

The subject of our final test is not a process that is part of the ETL layer of a data warehouse but instead, 

it belongs to the more analytical components. The concept of transformation still applies here but 

more in a literal sense than in a conceptual one. Data is indeed transformed, but that transformation 

is performed through analytical capabilities on top of an aggregation. Since our data warehouse 

architecture uses ELT rather than ETL, transformation and aggregation processes co-exist in the same 

system. This gives us the opportunity to explore the analytical performance capabilities of a distributed 

architecture easily. The Audiences Aggregation process makes use of the data previously generated by 

the Event Segmentation transformation, and its purpose is to calculate aggregated measurements 

related to television audiences. 

Unlike the other processes analyzed so far, here the depicted number of records per second in Figure 

5.5 reflects the number of input records instead of the number of output records. This process 

represents the case where the number of input rows is far greater than the number of output rows, as 

it is characteristic of aggregations. 

 
Figure 5.5. Audiences Aggregation benchmarking 

From the analyzed processes, this is the first where the amount of data seriously affects the 

performance of the RDBMS. In Figure 5.5 we can observe two opposite trends – the DW performance 

degrades, with the increase of input data, while the performance of Hive improves. 
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For this process, we also performed several tests using Map-Reduce instead of Tez but the results 

obtained were very disappointing. The execution times were completely diverse, ranging from 1300 

seconds to more than 7000 and for multiple occasions, the jobs simply failed to finish. Also important 

to highlight is that the best time obtained with Map-Reduce was still two times slower than the worst 

execution time on Tez. 

As a retrospective of the performed tests, and their corresponding benchmarks, this process is where 

we were able to obtain the greatest performance gains by the use of Hive on Tez, reaching almost 

results that are three times better. 

 

5.3. SCALABILITY 

Data warehouses fulfill their mission by collecting data from multiple sources, transforming it into 

meaningful information and delivering actionable knowledge that can be used to improve business 

processes and thus adding value to the organizations. Data plays a key role in this chain of value and 

the ability to process it relies on the capabilities of the DWs. As data increases in volume and in the 

velocity in which it is generated, capabilities and their underlying resources need to be expanded so 

that systems remain viable in their mission. The expansion of capabilities can be approached from 

several perspectives, surrounding different aspects, of both the problem and the solution. In this 

section of our research, we were interested in understanding, empirically, the performance gains of 

scaling-up the RDBMS versus the scaling-out of our Hadoop cluster. Scaling the resources is a fast and 

simple route to evolve a system so that it continues to be able to fulfill its mission. 

In this section, we scale both systems that were used during the performance tests (section 5.2) and 

benchmark once again the execution of our tests. The hardware configurations for the systems, tested 

in this section, are described in Table 5.2. 

System Software Hardware (virtual) 

DW 
Oracle Database 12c 

Enterprise Edition 

CPU: 2 cores 
Memory: 8 GB (Maximum memory target: 5 GB) 
Disk: WDC WD30EZRX (5400 RPM SATA-III) 

Hive-3N 
 

Hive on Tez using 
HDP 2.5.3 

Node 1 
CPU: 2 cores 
Memory: 10 GB (7.5 GB for YARN containers) 
Disk: WDC WD10EZEX (7200 RPM, SATA-III) 

Node 2 
CPU: 2 cores 
Memory: 6 GB (5 GB for YARN containers) 
Disk: WDC WD6400AAKS (7200 RPM, SATA-II) 

Node 3 
CPU: 1 core 
Memory: 6 GB (5 GB for YARN containers) 
Disk: WDC WD30EZRX (5400 RPM SATA-III) 

DW-X 
Oracle Database 12c 

Enterprise Edition 
(with Parallel Auto) 

CPU: 6 cores 
Memory: 24 GB (Maximum memory target: 20 GB) 
Disk 1: WDC WD10EZEX (7200 RPM, SATA-III) 
Disk 2: WDC WD30EZRX (5400 RPM SATA-III) 

Hive-4N 
 

Hive on Tez using 
HDP 2.5.3 

Node 1 
CPU: 2 cores 
Memory: 10 GB (7.5 GB for YARN containers) 
Disk: WDC WD10EZEX (7200 RPM, SATA-III) 
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Node 2 
CPU: 2 cores 
Memory: 6 GB (5 GB for YARN containers) 
Disk: WDC WD6400AAKS (7200 RPM, SATA-II) 

Node 3 
CPU: 1 core 
Memory: 6 GB (5 GB for YARN containers) 
Disk: WDC WD30EZRX (5400 RPM SATA-III) 

Node 4 
CPU: 1 core 
Memory: 6 GB (5 GB for YARN containers) 
Disk: SanDisk Ultra (USB3) 

Table 5.2. Environment configuration for the scalability tests 

The DW was expanded to 6 CPU cores, a total of 24 GB of memory and a second hard drive to reduce 

concurrency during input/output tasks. To better harvest the benefits of the hardware upgrade, the 

system was adequately configured by re-defining the memory parameters and enabling parallel 

processing to a maximum of four threads per process. The new system that resulted from this upgrade 

is referred as “DW-X” in the next tests. 

Our Hadoop cluster was scaled-out by adding a new node with data processing ability (DataNode and 

NodeMaster). We also changed the replication factor from three to four and updated this attribute for 

all the existing files. This assured us that any of the nodes had the ability to process any chunk of data. 

The “new” cluster was upgraded to a total of 28 GB of memory and 6 CPU cores, and it is referred as 

“Hive-4N”. The cluster used during the performance tests is referred, in this section, as “Hive-3N”. 

For our scalability tests, we opted to consider a subset of the processes previously benchmarked. This 

subset works in sequence, being the output of one process the input of the next, and covers the three 

major transformation process types being studied, regarding the relation between the number of input 

rows and the number of output rows (One-to-One, One-to-Many and Many-to-One). For the detailed 

execution statistics, please refer to Appendix G.  

The first evaluated process is the Channel Tune and it depicts a One-to-One transformation type. 

 
Figure 5.6. Channel Tune transformation scalability benchmarking 
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DW 63 806 65 169 66 105 70 000 71 544 72 609 71 196 72 029 71 373 71 518

Hive-3N 20 017 30 177 44 389 50 830 52 613 53 557 55 090 61 533 65 752 68 632

Hive-4N 20 017 30 177 44 389 61 250 65 151 68 802 70 960 71 608 72 500 76 909
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The Channel Tune transformation was the only test executed previously where the cluster was not able 

to outperform the RDBMS. This was due to the simplicity of the process where the results are produced 

between fifteen seconds and a little over two minutes, but nevertheless, we used the scaled-out 

cluster to assess if we could surpass the RDBMS performance. 

Due to the already mentioned fact that parallelism for this test is directly related to the number of 

input files, the measurements for the scaled-out cluster only start at the fourth test scenario and, 

therefore, the results displayed in Figure 5.6 include, for the first three test scenarios, the previously 

collected measurements for the cluster with three nodes as being also the results for the cluster with 

four nodes. From the fourth test scenario onwards, we can observe that the expanded cluster shows 

significant performance gains when compared to the previous cluster. By the end of the test scenarios, 

our new cluster can outperform the RDBMS. It is true that these improvements are not very 

substantial, but this test ultimately serves the purpose of demonstrating that scaling-out is a simple 

solution to cope with larger amounts of data. 

The Event Segmentation transformation test makes use of much more data than the Channel Tune 

process, and previously we already were able to collect significant performance gains with the Hadoop 

cluster. For this test, we compare not only the scaled-out cluster but also the scaled-up RDBMS. 

 
Figure 5.7. Event Segmentation scalability benchmarking 

By analyzing the chart presented in Figure 5.7, the first observation we gather is that the scaled-up DW 

added no performance improvements. The reason behind this behavior lies within the process itself. 

The Event Segmentation transformation is a process that relies heavily on the speed of writing to the 

disk. The reading of information and the complexity of the transformation add very little cost to the 

transformation when we compare it with the cost of writing the large amounts of data to the disk. This 

is why the scaled-out cluster consistently gives us performance improvements. In this cluster, we have 

four disks instead of three, even though we have to deal with the overhead of having the replication 

factor set to four. 
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Our last scalability test takes to the heaviest of the processes under scrutiny, the Audiences 

Aggregation. Previously this was the transformation process where the cluster greatly surpassed the 

RDBMS, and here we benchmarked the upgraded systems to assess the impacts of scalability in both 

architectures for a process that relies more heavily on disk reads and memory. 

 
Figure 5.8. Audiences Aggregation scalability benchmarking 

The results of both the expanded systems, displayed in Figure 5.8, outperformed their original systems, 

but it is very evident that the distributed processing is clearly the best fit for heavy aggregations, like 

the one subject to this test. For the RDBMS to come close to the performance of the Hadoop cluster, 

the level of scaling-up would have to be enormous. 

From the analysis of the scalability test results, one thing became clear – the scaling-out of the cluster, 

no matter the type of process, always give us visible performance gains, while tangible improvements 

of scaling-up the RDBMS are dependent on the process. This final observation refers us to a potentially 

serious problem surrounding the capability of data warehouses to cope with the increase in the 

volumes of data. There may be processes that would require more costly and complex hardware 

improvements to retain their validity when facing larger volumes of data. 

 

5.4. STORAGE 

During our storage analysis options, performed in Appendix D.1 and Appendix E.1, we already observed 

that Hive supports file formats capable of storing data with high compression rates, without hindering 

performance, especially through the ORC format. 
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Figure 5.9. Storage usage comparison 

In the chart above we present the comparison of storage requirements in both the RDBMS (with basic 

compression) and the Hadoop cluster (with Hive’s ORC format without any extra compression). We 

have compared the storage usage for each of the tested transformation processes with the maximum 

amount of data used during the tests and the results tell us very clearly that, even without any 

compression algorithm, the ORC format enables huge savings in the storage space utilization. 

 

5.5. DATA VALIDATION 

With the purpose of assuring that the data being transformed on both systems is exactly the same, we 

performed a set of tests that targeted the outputs of each process. The data generated in the Hadoop 

cluster was exported to the DW and subsequently compared against the corresponding data that had 

been generated inside this system. This comparison exercise is fundamental not only to assure data 

quality but also to ensure that the recorded execution times were indeed considering similar processes 

in the sense that, with the same input, they generated the same exact output. Even though the 

transformation processes in both environments are very similar, they aren’t exactly the same, namely 

because of the differences regarding the data types and in the use of functions to manipulate dates. 

For the validation tests, our decision towards the push of data from the cluster to the data warehouse 

relates to two important considerations. Firstly, comparison of tables within our RDBMS is easier 

because Oracle supports the SQL operator minus while in Hive the same operation can only be 

performed through outer joins. The second, and most important consideration, is founded around one 

critical aspect driving this study, the integration between the two systems. Our purpose is to optimize 

heavy transformation processes by migrating them from the DW to a cluster and subsequently move 

the calculated results back to the DW where they can continue to serve the reporting layer. To 

implement the data exchange between the two systems, we made use of Apache Sqoop, a tool 

designed for the bulk transfer of data between Hadoop and structured datastores. The use of Sqoop 

is rather simple, and its programming can be done by expressing the data transfers through SQL 
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statements. It supports direct export from several formats, like ORC, and includes a metastore where 

jobs can be stored for recurrent executions, a particular useful feature when dealing with multiple 

transformation tasks that are executed recurrently. 

Through these data validation tests, we were also able to briefly explore a viable solution capable of 

assuring data exchange between the Hadoop cluster and the data warehouse. 

 

5.6. VISUALIZATION 

As part of data warehouses’ global architectures, the Data Access and Analysis layer brings information 

closer to the users through several tools and techniques. One of the goals of our study is to deliver 

meaningful television audiences metrics that were extracted from the raw data generated by the 

Mediaroom platform. For that purpose, we have developed a set of reports that present some relevant 

television measurements and deliver quick insights to their consumers. 

The reports were developed using Microsoft Reporting Services 2016 and are supported by the 

aggregation tables that were previously calculated by the Hadoop cluster and then propagated to the 

data warehouse’s Oracle database. Since we have the same data residing in both environments, we 

also used this opportunity to perform some brief analyses regarding the latency of both our systems 

with the purpose of assessing whether or not Hive can be a feasible solution to support reports where 

the speed associated with the presentation of results is of the uttermost importance. 

 

5.6.1. Reporting 

The reports developed did not intend to offer a full and comprehensive view of the measurements 

that we can produce from the Mediaroom subscriber events. For demonstration purposes, we focused 

our attention around some of the best-known metrics in the field of television audiences, the Rating, 

the Reach and the Share of Live television. Here we present a dashboard that aggregates several 

measurements associated with a television channel. Its purpose is to deliver quick insights at the 

distance of a simple click. 

The dashboard presented in Figure 5.10 provides a general overview of any given television channel 

for any day. This dashboard encompasses several aspects relevant for a TV channel and communicates 

clearly some of its pertinent metrics. On a single view, we have the daily Reach and Share of the 

channel, the detailed evolution of the Share throughout the entire day, the top ten programs watched 

with their corresponding Rating and rank, as well as the top five programs that were recorded and/or 

visualized as part of the Digital Video Recording service. 
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Figure 5.10. Television Channel Daily Overview dashboard 

In Appendix H. we present several other reports, developed to demonstrate some of the metrics that 

can be derived from the Mediaroom data. These reports were also used to assess the performance of 

interactive querying, approached in the next section. 

 

5.6.2. Performance 

Even though the premise of our study, regarding the incorporation of Big Data technologies in Data 

Warehousing architectures, considers an RDBMS as the system supporting the visualization layer, due 

to its low latency characteristics, we used this opportunity to briefly assess Hive’s performance 

regarding interactive querying. 

The reports developed to display the calculated metrics were executed, through ODBC, against Oracle, 

and Hive. The SQL statements supporting the reports are simple selects to the aggregation tables 
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complemented by inner joins to the dimension tables to obtain descriptions like the channel or 

program names. It is also important to note that both the source tables and the outputted results 

consist of very small datasets that in most cases represent less than 1000 records. 

Under this scenario, all the report queries executed against the RDBMS took less the one second to 

complete, and, therefore, the reports are presented immediately. On the other hand, the same 

executions, but this time against Hive (using Tez), took between thirty seconds and one minute and a 

half to complete. Since Tez can cache intermediate data and even results inside the same session, we 

can reduce the execution time of the queries, to just some seconds (between 2 and 15), if the queries 

are re-executed inside the same session. However, in our current scenario, where the reporting tool 

does not re-use the same session, we could not collect any benefits from Tez caching mechanisms. 

From the results of these tests, it is obvious that latency on Hive is too high and, therefore, we cannot 

display the reports in an interactive way. We expanded our tests further and decided to test Hive’s 

new feature regarding the interactive querying subject, the Low Latency Analytical Processing (LLAP) 

component. LLAP uses a combination of in-memory caching, pre-fetching and persistent query 

executors (similar to Impala’s long-lived daemons) and enables a hybrid execution model, where large 

queries continue to be processed in standard YARN containers, while the persistent executors handle 

small queries. Using LLAP, the execution of our reports for the first iteration was cut in half and for the 

subsequent executions always performed under ten seconds with results similar to the ones already 

obtained by the re-execution of queries inside the same session just by using Tez. 

Using LLAP, we can query small datasets much faster but currently still not even close to the 

performance of an RDBMS. Moreover, enabling the LLAP adds overhead to the cluster that, depending 

on its size, can severely hinder its overall performance. On our tests, LLAP permanently allocated three 

YARN containers and by doing so, our total of seven possible YARN containers was greatly reduced and 

thus also the possibility of parallel processing when performing transformation tasks. 

 

5.7. SUMMARY 

From the previously implemented systems, this chapter was dedicated to the exploration of both 

technologies with the purpose of empirically discerning their strongest and weakest aspects. On a 

general perspective, our tests focused on three main aspects – data manipulation, data storage, and 

data access. On top of these characteristic functions of database management systems, we have 

assessed the scalability potential of each system and their associated performance benefits. This is a 

critical aspect in assuring the viability of any system, especially in scenarios where the volume of data 

tends to increase significantly. 

Finally, our evaluation took us to the data warehouse visualization layer with the purpose of delivering 

the calculated audience measurements and assessing the interactive querying performance of both 

systems, a fundamental aspect for the delivery of reports to the users. 

Triggered by the initial problem and supported by our theoretical framework, the benchmarking tests 

conducted in this chapter provided us a set of results and valuable inferred insights that will be subject 

to discussion in the next chapter as we move to integrate our findings in the definition of an enhanced 

data warehouse architecture supported by Hadoop. 
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6. RESULTS AND DISCUSSION 

6.1. INTRODUCTION 

This chapter is devoted to the presentation and discussion of the results gathered in the course of our 

evaluation phase. During the execution of our tests, we presented and commented the results 

associated with each specific observation, but here we present a more summarized view of these 

results and, associated to them, a more generalized discussion with the purpose of making the bridge 

from the specific problem to the general area of study, the data warehouse architectures. 

 

6.2. PERFORMANCE 

6.2.1. Batch processing 

Hadoop was designed for parallel batch processing of large amounts of data (Barnes et al., 2016). On 

top of Hadoop, Hive offers a familiar SQL-like approach of implementing distributed data 

transformation tasks that fit the typical batch processing use cases (Grover et al., 2014). Also, at the 

storage level, there is a clear orientation towards batch processing since HDFS focuses on the overall 

throughput rather than the latency of individual operations (Shvachko, Kuang, Radia, & Chansler, 

2010). Through our performance tests, we could effectively assess that the combination of these 

characteristics is, in fact, materialized in great performance gains during the execution of data 

transformation tasks. In Figure 6.1 we present the cumulative execution time of the benchmarked 

processes during our research (the hardware details of the systems are in Table 5.1). From the first 

look at this chart, the most obvious conclusion is that the same data transformation tasks in Hive are 

completed in around half the time that takes them to be processed in the RDBMS. 

 
Figure 6.1. Data transformation tasks cummulative execution time 
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Figure 6.1 also gives us other quick insights – our classification of transformation processes, as depicted 

in section 4.7.4 (1:1, 1:M and M:1), confirmed us that not all data transformations are the same. The 

processes that fit in the One-to-One category show little or no improvement when processed by 

Hadoop, but, as the volumes of data grow, their performance increases to the point where eventually 

it surpasses the RDBMS (this is shown in section 5.2.1). The One-to-Many and the Many-to-One 

processes are where Hadoop outperforms, without any doubt, the RDBMS. One aspect that is common 

to all the processes is that the more data we have to process, the bigger is the performance difference 

between Hadoop and the RDBMS. 

 

6.2.2. Interactive querying 

We have tested the data access latency in Hadoop during the execution of the reports designed to 

show the calculated television audience measurements. The results are much in line with what it was 

to be expected according to the underlying design of the supporting technologies. As we discussed in 

the previous section, HDFS and Hadoop are designed for throughput rather than latency. All of the SQL 

statements feeding the data to the reports complete in under a second when we use the RDBMS while 

these same statements, using Hive, can take more than one minute to return the data. The subject of 

latency in Hadoop is being addressed through some initiatives, namely the Low Latency Analytical 

Processing in Hive, and indeed it can be reduced very significantly – using LLAP we could cut in half the 

execution of some statements and even, through caching, consistently deliver the data under ten 

seconds. If it is true that LLAP gives us faster access to data, it is also true that this comes with the cost; 

to provide faster results, LLAP uses persistent query executors, and this requires the permanent 

allocation of YARN containers that consume and remove resources from the batch processing 

capability. 

Hive, even with LLAP, cannot match the low latency delivered by an RDBMS and consequently, data 

cannot be instantly displayed in the visualization layer, a very important feature, especially in the 

presentation of dashboards that use multiple datasets. Nevertheless, in recent years, the need for low 

latency solutions in Big Data systems has gained focus, namely through the emphasis in Lambda 

Architectures that discern the different purposes of data by layers – the Batch Layer, the Serving Layer 

and the Speed Layer (Marz & Warren, 2015). Today’s fact is that Hadoop cannot match an RDBMS 

regarding low latency and thus it cannot effectively support interactive querying, but with Lambda 

Architectures gaining momentum and adoption we can expect for the minimization of this 

performance gap in a near future. 

 

6.3. SCALABILITY 

The first consideration about scalability is its simplicity when it comes to Hadoop; increasing or 

decreasing the processing power or storage capabilities of a cluster entails only the addition or removal 

of nodes. No further configurations are required. Scaling an RDBMS is far more complex, starting with 

the need to change the hardware configuration (i.e., adding more or better CPUs, disks or memory) 

and then reflecting these changes in the configurations of the database instance. In a virtual 
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environment, the hardware assignment does not have this complexity, but nevertheless, the database 

and even the operating system need to be re-configured if we want to maximize the upgrade benefits. 

In our research, we have scaled both our environments to the maximum capabilities of the available 

hardware, and in the end, the processing power of both systems was very similar (the hardware details 

of the systems are in Table 5.2). In Figure 6.2 we present the results of our scalability tests where we 

compare the processing of three transformation processes in both the systems before and after the 

upgrade. The RDBMS is represented by the acronym DW and its scaled-up version by DW-X. The 

Hadoop clusters are referred by Hive-3N and Hive-4N where the numeric part indicates the number of 

nodes. 

 
Figure 6.2. Scalability effects on the data transformation tasks execution time 

From the information presented in the chart above we can infer several conclusions. Firstly, we got 

improvements from scaling both systems. The improvement in the RDBMS is far greater (25% against 

10%), but we need to consider that the scaling-up of the RDBMS tripled its resources while the scaling-

out of the Hadoop cluster just added a new node to the three already in place. Even this slight upgrade 

resulted in improvements for all the processes, whereas in the RDBMS we only got improvements for 

the Audiences Aggregation. This process falls in the category of the Many-to-One and it is the one that 

requires the most memory. To perform hash joins, Oracle uses the PGA and what does not fit in 

memory is overflown to the temporary tablespace. The memory upgrade, given to the RDBMS, greatly 

sped up this process because the overflow from memory to disk was greatly reduced. One feature of 

Oracle’s architecture is that each session can only use a portion of the PGA and thus we cannot use it 

entirely to perform large joins (Oracle Corporation, 2017). In Hadoop, there are no limitations to 

dedicate all the resources of the cluster to complete a single process. 

Besides being much easier to implement in Hadoop, our results showed that the scalability in a Hadoop 

cluster is far more efficient in making use of the resources. The execution time decreased 25% in the 
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RDBMS but, to achieve those results, we had to triple the associated memory (from 8 GB to 24 GB) 

and CPU cores (from 2 to 6), while the 10% execution time decrease in the cluster was obtained by just 

adding a new node with 6 GB of memory, to the existent 22 GB, and a single CPU core to the existing 

five allocated CPU cores. In the RDBMS, to get an improvement of 25% we had to increase the 

hardware by 200%, while the 10% performance increment in the cluster was obtained by just 

upgrading the hardware by less than 25%18. 

Finally, scalability under the distributed architecture of Hadoop is not only easier to implement and 

more efficient in the resource utilization, but it is also virtually unlimited as it grows horizontally, 

through the inclusion of more modes, instead of growing vertically under the hardware constraints of 

a single server. 

 

6.4. STORAGE 

From the analysis of the storage usage in both systems for the same data, presented in Figure 6.3, it is 

very obvious the enormous gains that are obtained by using Hive’s ORC format, in comparison to the 

compression used in Oracle. 

 
Figure 6.3. Total storage usage comparison 

From the original size of data in Oracle, Hive’s format allowed us to save 76% of storage space19. It is 

important to state though that we are comparing two very different storage approaches – Oracle basic 

compression is a row compression method while Hive’s ORC file format uses columnar compression. 

                                                           
18 These comparisons only took into consideration memory and CPU, even though an extra disk was added to 

both environments. 
19 We did not account for replication in the cluster nor for redundancy in the RDBMS. 
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We were forced to use row compression in Oracle because columnar compression is not available for 

the used database, such compression is only available in more high-end products like Exadata. 

In Figure 6.3 we are showing the storage usage for Hive’s ORC format without any extra compression, 

but if, for example, we added the Zlib compression, the default in Hortonworks Data Platform, the 

storage savings would improve from 76% to 91%. It is clear that Hive’s ORC format is extremely efficient 

in storing data and associated to this efficiency is the performance of any read/write operations. 

 

6.5. ARCHITECTURES 

Data warehouse architectures are composed of a multitude of systems, and in turn, these systems 

have their own intrinsic architectures. In our research, during both the theoretical and empirical 

phases, we have explored several aspects of the underlying technologies and architectures of 

Relational Database Management Systems and Hadoop. From the knowledge gathered, we present in 

Table 6.1, the major advantages and disadvantages concerning Hadoop and RDBMSs architectures. 

Technology Pros Cons 

RDBMS 

• Very mature and robust; 

• Has many features; 

• Deep support for relational 

semantics; 

• Deep support for transaction 

processing; 

• Extensive knowledge base; 

• Great for interactive querying; 

• A large number of skilled 

professionals. 

• Mostly proprietary software; 

• Licensing costs; 

• Data must be structured; 

• Little support for complex data 

structures; 

• Fault tolerance requires complex and 

expensive approaches (redundancy); 

• Optimized for high-end custom 

hardware; 

• Limited and expensive scalability. 

Hadoop 

• Open source; 

• None or little licensing costs; 

• Uses cheap commodity hardware; 

• Supports heterogeneous hardware; 

• Data structure is not mandatory; 

• Deep support for complex data 

structures; 

• Designed for batch processing; 

• Great for massive full scans; 

• Very fault tolerant. Fault tolerance is 

a critical part of its design; 

• Virtually unlimited scalability; 

• Advanced data compression. 

• Relatively new technology; 

• Complex architecture constructed by 

many components; 

• Limited set of features still under 

development; 

• Poor performance for interactive 

querying; 

• Limited knowledge base; 

• Limited support for relational 

semantics (Hive, Impala, etc.); 

• Little support for transaction 

processing; 

• A limited number of skilled 

professionals. 

Table 6.1. Comparison between RDBMS and Hadoop architectures 
(Adapted from Goss & Veeramuthu, 2013; Kimball & Ross, 2013) 
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The overview provided by Table 6.1 can be an extremely helpful guide towards aligning specific 

requirements with the most viable solutions. In our specific case, we were interested in enhancing the 

transformation layer of a data warehouse so that it could cope with large volumes of data while, at the 

same time, assuring a responsive visualization layer that could quickly deliver the results to the users. 

From our study, and summarized in Table 6.1, we verify that currently, the best approach is to integrate 

both technologies in the data warehouse architecture, and thus we present in Figure 6.4 the high-level 

diagram of the proposed new DW architecture. 
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Figure 6.4. Enhanced data warehouse architecture integrating Hadoop 

In Figure 6.4 we acknowledge an architecture where the ETL layer is completely replaced by a Hadoop 

cluster, running Hive on Tez. This cluster is responsible for the transformation and storage of detailed 

data, and the computation of summary data. This summary data is then integrated into the Data 

Warehouse layer, and with it there we can continue to serve the Data Access layer without the need 

for any modifications. At the same time, with Hadoop, we can store larger amounts of detailed and 

historical data, and this enables us to enhance the Data Access layer with new approaches and 

mechanisms in the area of Analytics. 

 

6.6. SUMMARY 

In this chapter, we analyzed some of the key aspects of the underlying architectures of RDBMSs and 

Hadoop. Our summarized results, regarding performance, scalability, and storage, showed us that 

Hadoop can greatly improve data transformations tasks but, at the same time, we verified that 

RDBMSs still have the upper hand when it comes to low latency and the consequent speed of 

interactive querying. 

The results gathered from the analysis of the intrinsic characteristics of both the systems played a 

decisive role in the definition of the right formula, where the advantages of Big Data technologies can 

be used to complement RDBMSs towards a more efficient and effective data warehouse architecture. 



94 

7. CONCLUSIONS 

7.1. KEY FINDINGS 

Hive in conjunction with Tez, rather than with Map-Reduce, offers a very reliable and performant 

solution with which we can collect great benefits from the distributed processing model implemented 

by Hadoop. Hive also brings a familiar layer to data warehouse developers who are used to express 

their data access and manipulation tasks through SQL. During our research, we observed that lately 

SQL gained considerably more interest in the Big Data world and to attest that we can find many 

projects that rely on SQL as its primary language, like Hive, Impala, Drill, and Presto or even Spark that 

recently also started to support SQL. The SQL approach is extremely important when we analyze 

traditional Data Warehousing architectures that have at their core an RDBMS, since it greatly facilitates 

the migration of processes and data from one technology to the other. 

As it was expected, we confirmed that Hadoop thrives with large volumes of data. Hadoop’s batch 

oriented data processing model, when compared to RDBMSs, is capable of processing larger amounts 

of data and in a much faster way. However, on this subject, we found out that not all transformation 

processes extract the same benefits from distributed processing. More than related to the 

transformation layer of data warehouses, we observed that Hadoop, through Hive on Tez, delivers 

outstanding performance results associated with the analytical layer, namely in the aggregation of 

large data sets that generate analytical measurements. 

In combining both technologies, to create an enhanced data warehouse architecture, we also need to 

acknowledge Hive’s storage capabilities. Beyond the fact that Hadoop is designed to work with 

commodity hardware, and therefore being less expensive than dedicated hardware, Hive’s ORC file 

format offers tremendous storage savings due to its columnar compression. Similar compression 

models, in RDBMSs, are typically associated with high-end and more expensive systems like Exadata 

or Teradata. 

Designing a system requires that not only the present is accounted for but also the future, and for that 

purpose, the subject of scalability is crucial. Through our scalability tests we observed that horizontal 

scalability offers far greater performance improvements than vertical scalability. Moreover, the fact 

that horizontal scalability is easier to implement, virtually unlimited and considerably less expensive, 

makes it a key aspect to take into consideration in the design of systems where the volumes of data 

are not constant. 

RDBMSs have been around for decades and they still retain much of their value. As relational semantics 

continue to be improved in Big Data solutions and Lambda Architectures intend to deal with the 

different types of data and related access needs, RDBMS are still to be reckoned with when it comes 

to interactive querying. We have tested Hive’s LLAP, the state of the art engine designed to improve 

interactive querying, and its results are still very shy of what can be accomplished by an RDBMS. 

Due to the already mentioned advantages of Hadoop, namely concerning performance, storage and 

scalability, we believe that its inclusion within a data warehouse architecture will result in great 

benefits that will not only enhance its current performance but will also add several new dimensions 

regarding data analytics, like more in-depth analyses. Data mining activities or machine learning 

algorithms can make use of the detailed data stored in the cluster without affecting the performance 
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of the visualization layer, while the latter continues to be supported by the summarized data, 

previously calculated by Hadoop, but made available to the RDBMS. Hadoop’s advantages can also be 

leveraged to support the DW 2.0 architecture, for instance as an enabler of the Archival Sector or as 

the basis for the Exploration Warehouse and the Unstructured DW, both part of the Integrated Sector. 

Wirth’s law observes a real phenomenon and depicts it with humor by stating that “software is getting 

slower more rapidly than hardware becomes faster” (Wirth, 1995), but with the advent of Big Data 

and distributed processing, this difficult balance between software and hardware performances can 

be tackled very easily – if it is not fast enough then just distribute the work more. 

 

7.2. RESEARCH QUESTION AND ESTABLISHED OBJECTIVES 

Our driving research question was related to the initial hypothesis stating that Hadoop could be used 

to augment traditional data warehouses and, consequently, assure their viability even when facing 

huge amounts of data. This hypothesis was validated positively in a very clear way, especially by the 

results obtained during our evaluation of the implemented processes. To validate the initial 

hypothesis, our study was guided by a set of intermediary objectives20 that were verified individually, 

but their value, towards the final goal, has a far greater importance when viewed from a cumulative 

perspective.  

Initially, our theoretical research took us from the Data Warehousing foundations towards the SQL-

like technologies of the Big Data world where we defined that, through Hive on Tez, it would be 

possible to easily integrate Hadoop as part of a traditional data warehouse and with that expand 

greatly its capabilities (O.1). Our practical journey began by the installation of a Hadoop cluster with 

especial focus on Hive on Tez (O.2). With this environment as support, we implemented a dimensional 

model, and associated transformation processes, with the purpose of extracting television audience 

measurements, like Rating, Reach and Share, from the Mediaroom platform (O.3). These processes 

were then used to perform a set of benchmarking tests regarding performance and storage, in 

comparison to a data warehouse created in an RDBMS that had been specifically implemented for the 

purpose. From this comparison, we were able to extract several insights regarding the architectures of 

each of the systems, their weaknesses and strengths, and how they could be best combined (O.4). The 

next step of our research took us to a fundamental aspect in Information Systems architectures, 

scalability. In a world where more and more data is being constantly generated, we assessed how 

scalability could contribute to the viability of both systems; horizontal scalability enables an almost 

infinite processing capability, whereas vertical scalability, typical of traditional RDBMSs, is too 

constrained by the hardware limits and associated high costs (O.5). Finally, the last objective (O.6), 

used the task of communicating the calculated television audience measurements, to ascertain the 

performance of Hadoop regarding interactive querying. Here it became very clear that the 

performance of RDBMSs, due to their low latency, greatly outperforms the one that can be obtained 

from Hadoop or more precisely from Hive on Tez even with the Low Latency Analytical Processing 

engine. This conclusion had a decisive importance in determining the final proposed data warehouse 

architecture that results from the combination of the strengths of both technologies.  

                                                           
20 Our objectives are identified in section 1.2 and more specifically in Table 1.1.  
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7.3. MAIN CONTRIBUTIONS 

Our research demonstrates empirically that indeed Hadoop can be used to augment traditional data 

warehouse architectures. We believe that this is a valuable asset to solution architects and managers 

when they need to equate the possible solutions that will help their current DW architectures expand 

to face the new challenges of data, with special emphasis on volume. Moving to the world of Big Data, 

and in particular, by the adoption of Hadoop, does not have to follow the path of disruptive innovation. 

Managers can avoid the big bang adoption paradigm and choose to follow a phased approach where 

change, rather than being transformational, is incremental. We propose that Hadoop is integrated as 

part of the data warehouse architecture, and the first step to achieve that would be to move out the 

most time-consuming processes from the current RDBMS and into the Hadoop cluster. To help with 

this task, our research explored the taxonomy of typical SQL statements and identified the heavy 

aggregations as the processes where the most benefits can be gained from processing them in Hive 

rather than in an RDBMS. Our vision of an augmented data warehouse, empowered by Hadoop, 

portrays an architecture that, even though it adds capability to the transformation layer, remains 

unchanged in the user-facing layer. The visualization layer is not altered but it is complemented by a 

new set of possibilities enabled by the capabilities of Hadoop, namely the massive storage possibilities 

and the power of distributed processing that can be used to conduct more in-depth analyses, 

dependent on large amounts of historical data. 

Related to the television audience measurements, this research produced a powerful artifact that is 

capable of extracting valuable information from the raw data produced by Ericsson’s IPTV Mediaroom 

platform. We modeled, designed and implemented a dimensional model, their related data 

transformation processes and finally created a set of reports that can be easily integrated into a 

broader data warehouse with the purpose of delivering pertinent television metrics like Rating, Reach 

and Share. 

During our research, we had to install and configure, in a virtual setting, the two environments 

responsible for the roles of portraying the RDBMS and the Hadoop cluster that served as support for 

the practical implementations and testing. With the purpose of helping future similar installations, we 

created two step-by-step guides (Annex A and Annex B) regarding the installation and configuration of 

both systems. These guides, not only provide instructions towards the installation and configuration 

of the systems, but also incorporate the solutions for the problems we faced to deploy the 

environments successfully. 

 

7.4. LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORKS 

The greatest limitation of our research is related to the dimension of the hardware settings. Our limited 

resources did not allow for a better exploration of scalability and also prevented us from being able to 

calculate a linear relation between performance gains and scaling. This exercise would be interesting 

to explore so that it could provide tangible results applicable to other situations. Associated with this 

idea, we believe that it would be valuable to develop an artifact that could be used to assess, 

generically, the performance of RDBMs and then project the required Hadoop infrastructure that 

would deliver the same results and also propose new configurations that could deliver the needed 

results. This artifact could be extremely useful in the planning of data warehouse architectures and 
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their underlying infrastructures. Our research explored briefly the taxonomy of SQL statements, and a 

broader exploration of this subject can potentially enrich and diversify the use cases to be added to 

the proposed artifact. 

Our research transposed the relational model directly to a distributed architecture without exploring 

the advantages that could be extracted by adapting the table-based relational model to more complex 

data structures like, for example, Hive’s structs. The data used in our study is a good candidate to be 

stored in flexible data structures since the diverse television event types each have their own specific 

characteristics and by storing them in tables, with fixed structures, we are making an inefficient usage 

of storage that consequently has adverse impacts on performance. Structure is required to support 

pre-defined reports but the inner-layers of data warehouse architectures, more concerned with 

detailed data, could potentially benefit from a more flexible data definition. 

Moving SQL from an RDBMS to Hive, especially if it follows the ANSI specifications, revealed to be a 

fairly straightforward task that does not require much time to accomplish. Our study focused solely on 

the use of SQL statements to perform the data transformations, and it did not account for the necessity 

to port procedures or functions. It is possible to create user-defined functions in Hive, and more 

recently, with Hive’s HPL/SQL, it is possible to wrap SQL statements with a procedural dimension that 

can greatly enhance and facilitate data transformations. It is also stated that HPL/SQL can execute 

procedures written in other languages, like Oracle’s PL/SQL or Microsoft’s Transact-SQL, without the 

need for any adaptations. Assessing to which extent this is possible, and also the performance 

implications of utilizing user-defined functions or HPL/SQL, presents itself as a great opportunity to 

deepen the knowledge regarding the SQL implementation of Hive and how it behaves with Hadoop. 

Our study started by evaluating Hadoop’s performance connected to the processes typically associated 

with the transformation layer of ETL, but it also did a brief incursion to more analytical processes, like 

the aggregations. It was in these aggregation processes that we were able to find outstanding 

performance improvements. This suggested us that Hadoop can also play an important role in the 

analytical layer of data warehouses and so, future investigations, related to OLAP on Hadoop, can 

reveal yet another way in which Hadoop can enhance Data Warehousing architectures. 

As the volumes of data increased, companies were forced to upgrade their infrastructures to maintain 

the viability of their decision support systems. In an economic perspective, we believe that a study 

within organizations, with in-premises data warehouses, regarding their hardware that was deemed 

obsolete, can reveal a potential costless “new” infrastructure from which a Hadoop cluster can emerge 

with the purpose of augmenting the existing data warehouse architecture. 

Information Systems are an area in a constant state of change, and thus it is recommended that the 

research performed here be regularly updated to include the new tendencies and technologies. If this 

study had happened three years ago most probably the focus would be Map-Reduce rather than Tez, 

and perhaps three years from now, solutions like Apache Drill or Presto are the ones where the 

spotlights will be. This research worked to find a solution that, by bringing together traditional RDBMSs 

and Hadoop, would expand the efficiency and viability of Data Warehousing architectures. However, 

sustaining the viability of Information Systems requires a permanent state of curiosity, criticism, 

creativity and innovative drive. In light of this, our final recommendation is to include these aspects in 

future research that will continue to help organizations transform their data into actionable 

knowledge. 
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9. APPENDIX 

Appendix A.  MEDIAROOM EVENT TYPES 

This appendix details the information contained in each of the Mediaroom event types. Only the 

relevant fields for this study are presented and described, even though the event types contain more 

information. 

Appendix A.1. CHANNEL TUNE 

Field name Field description 

EVENT_TYPE 100 

COD_DATE Date of the event in the ‘YYYYMMDD’ format 

SOURCE_TIMESTAMP Timestamp of when the event happened 

CLIENT_ID Set-box identifier 

CLIENT_TYPE Type of set-top box 

SERVICE_TYPE Type of service (this information is empty for event type 100) 

SERVICE_ID Service identifier (this information is empty for event type 100) 

CHANNEL_NBR Number of the channel in the television grid (Ex.: 1) 

STATION_ID 
Identifier of the station: Live, Video-on-Demand (VoD), Pay-per-View 

(PPV), etc. 

VIEW_MODE Visualization mode: Full-screen or PiP (Picture-in-Picture) for example 

DURATION Duration of the event in seconds 

ACTION_STATE Status of the executed action (0 = failed, 1 = successful) 

TUNE_ID 
Unique identifier that links each Channel Tune event to its associated 

Event Type 114: Program Watched 

Table 9.1. Channel Tune event information 

 

Appendix A.2. BOX POWER 

Field name Field description 

EVENT_TYPE 101 

COD_DATE Date of the event in the ‘YYYYMMDD’ format 

SOURCE_TIMESTAMP Timestamp of when the event happened 

CLIENT_ID Set-box identifier 

CLIENT_TYPE Type of set-top box 

ACTION Flag indicating the action performed (0 = power off, 1 = power on) 

ACTION_STATE Status of the executed action (0 = failed, 1 = successful) 

Table 9.2. Box Power event information 

 

Appendix A.3. TRICK STATE 

Field name Field description 

EVENT_TYPE 104 

COD_DATE Date of the event in the ‘YYYYMMDD’ format 
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SOURCE_TIMESTAMP Timestamp of when the event happened 

CLIENT_ID Set-box identifier 

CLIENT_TYPE Type of set-top box 

SERVICE_TYPE Type of service (this information is empty for event type 104) 

CONTENT_ID Content identifier (the VoD, DVR or Live content being visualized) 

ACTION 

Trick stated invoked by the user (Pause, Play, StepBackward, 

StepForward, FastForward, Rewind, Skip, Replay, ScanBackward, 

ScanForward, Live or Stop) 

ACTION_STATE Status of the executed action (0 = failed, 1 = successful) 

Table 9.3. Trick State event information 

 

Appendix A.4. PROGRAM WATCHED 

Field name Field description 

EVENT_TYPE 114 

COD_DATE Date of the event in the ‘YYYYMMDD’ format 

SOURCE_TIMESTAMP Timestamp of when the event happened 

CLIENT_ID Set-box identifier 

CLIENT_TYPE Type of set-top box 

SERVICE_TYPE Type of service (this information is empty for event type 114) 

SERVICE_ID Service identifier (this information is empty for event type 114) 

CONTENT_ID Content identifier (the VoD, DVR or Live content being visualized) 

VIEW_MODE Visualization mode: Full-screen or PiP (Picture-in-Picture) for example 

DURATION Duration of the event in seconds 

ACTION_STATE Status of the executed action (0 = failed, 1 = successful) 

TUNE_ID 
Unique identifier that links each Program Watched event to its 

associated Event Type 100: Channel Tune 

Table 9.4. Program Watched event information 

 

Appendix A.5. DVR START RECORDING 

 Field name Field description 

EVENT_TYPE 115 

COD_DATE Date of the event in the ‘YYYYMMDD’ format 

SOURCE_TIMESTAMP Timestamp of when the event happened 

CLIENT_ID Set-box identifier 

CLIENT_TYPE Type of set-top box 

SERVICE_TYPE Type of service (this information is empty for event type 115) 

SERVICE_ID Service identifier (this information is empty for event type 115) 

CONTENT_ID Identifier of the program being recorded 

STATION_ID Identifier of the station being recorded 

DURATION 
Expected duration of the recording in seconds, based on the information 

in the Electronic Program Guide (EPG) 
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ACTION_STATE Status of the executed action (0 = failed, 1 = successful) 

DYNAMIC Flag indicating if this is a dynamic or a manual recording 

RECURRING Flag indicating if this is a one-time or a recurring recording 

Table 9.5. DVR Start Recording event information 

 

Appendix A.6. DVR ABORT RECORDING 

Field name Field description 

EVENT_TYPE 116 

COD_DATE Date of the event in the ‘YYYYMMDD’ format 

SOURCE_TIMESTAMP Timestamp of when the event happened 

CLIENT_ID Set-box identifier 

CLIENT_TYPE Type of set-top box 

SERVICE_TYPE Type of service (this information is empty for event type 116) 

SERVICE_ID Service identifier (this information is empty for event type 116) 

CONTENT_ID Identifier of the program being recorded 

STATION_ID Identifier of the station being recorded 

ACTION_STATE Status of the executed action (0 = failed, 1 = successful) 

Table 9.6. DVR Abort Recording event information 

 

Appendix A.7. DVR PLAYBACK RECORDING 

Field name Field description 

EVENT_TYPE 117 

COD_DATE Date of the event in the ‘YYYYMMDD’ format 

SOURCE_TIMESTAMP Timestamp of when the event happened 

CLIENT_ID Set-box identifier 

CLIENT_TYPE Type of set-top box 

SERVICE_TYPE Type of service (this information is empty for event type 117) 

SERVICE_ID Service identifier (this information is empty for event type 117) 

CONTENT_ID Identifier of the recorded program 

STATION_ID Identifier of the recorded station 

ACTION_STATE Status of the executed action (0 = failed, 1 = successful) 

Table 9.7. DVR Playback Recording event information 

 

Appendix A.8. DVR SCHEDULE RECORDING 

Field name Field description 

EVENT_TYPE 118 

COD_DATE Date of the event in the ‘YYYYMMDD’ format 

SOURCE_TIMESTAMP Timestamp of when the event happened 

CLIENT_ID Set-box identifier 

CLIENT_TYPE Type of set-top box 
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SERVICE_TYPE Type of service (this information is empty for event type 118) 

SERVICE_ID Service identifier (this information is empty for event type 118) 

CONTENT_ID Identifier of the program being recorded 

STATION_ID Identifier of the station being recorded 

DURATION 
Expected duration of the recording in seconds, based on the information 

in the Electronic Program Guide (EPG) 

ACTION_STATE Status of the executed action (0 = failed, 1 = successful) 

DYNAMIC Flag indicating if this is a dynamic or a manual recording 

RECURRING Flag indicating if this is a one-time or a recurring recording 

FREQUENCY Frequency of the recording 

Table 9.8. DVR Schedule Recording event information 

 

Appendix A.9. DVR DELETE RECORDING 

Field name Field description 

EVENT_TYPE 119 

COD_DATE Date of the event in the ‘YYYYMMDD’ format 

SOURCE_TIMESTAMP Timestamp of when the event happened 

CLIENT_ID Set-box identifier 

CLIENT_TYPE Type of set-top box 

SERVICE_TYPE Type of service (this information is empty for event type 119) 

SERVICE_ID Service identifier (this information is empty for event type 119) 

CONTENT_ID Identifier of the program being recorded 

STATION_ID Identifier of the station being recorded 

ACTION_STATE Status of the executed action (0 = failed, 1 = successful) 

MANUAL_DELETION 

Flag indicating by whom the program was deleted. ‘1’ means that the 

user manually deleted the recording. ‘0’ means that the system deleted 

the recording to make room for other recordings 

Table 9.9. DVR Delete Recording event information 

 

Appendix A.10. DVR CANCEL RECORDING 

Field name Field description 

EVENT_TYPE 120 

COD_DATE Date of the event in the ‘YYYYMMDD’ format 

SOURCE_TIMESTAMP Timestamp of when the event happened 

CLIENT_ID Set-box identifier 

CLIENT_TYPE Type of set-top box 

SERVICE_TYPE Type of service (this information is empty for event type 120) 

SERVICE_ID Service identifier (this information is empty for event type 120) 

CONTENT_ID Identifier of the program being recorded 

STATION_ID Identifier of the station being recorded 
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DURATION 
Expected duration of the recording in seconds, based on the information 

on the Electronic Program Guide (EPG) 

ACTION_STATE Status of the executed action (0 = failed, 1 = successful) 

DYNAMIC Flag indicating if this is a dynamic or a manual recording 

RECURRING Flag indicating if this is a one-time or a recurring recording 

INST_OF_RECURRING 
Flag indicating if the end user either canceled an episode of a series or 

the entire series 

FREQUENCY Frequency of the recording 

Table 9.10. DVR Cancel Recording event information 
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Appendix B.  DATA PREPARATION SCRIPTS 

split.sh 

gunzip -fc input/*.txt.gz | awk -f hrd.awk -v path=inter/ 

 

hrd.awk (used by split.sh) 

BEGIN { FS = ";" } ; 
 
{ 
  fo=path "MR_AL_"$1"_"$5".txt"; 
  print $0 >> fo; 
} 

 

dup.sh 

for f in inter/MR_AL_*.txt; 
do echo "Processing $f file..."; 
  awk '!seen[$0]++' $f | gzip > "output/$(basename " $f".gz)" 
  rm $f 
done 

 

slice.sh 

dir=output 
for f in $dir/*.txt.gz; 
do 
  filename=$(basename "$f") 
  extension="${filename##*.}" 
  filename="${filename%.*}" 
  extension2="${filename##*.}" 
  filename2="${filename%.*}" 
 
  echo "Uncompressing $filename.$extension..." 
  gunzip $f 
  echo "Uncompressing $filename.$extension...done." 
  echo "" 
  echo "Slicing $filename..."; 
  split -a 2 --line-bytes=200M --numeric-suffixes --additional-
suffix=.$extension2 $dir/$filename final/$filename2"_" 
  echo "Slicing $filename...done."; 
  echo "" 
  echo "Compressing slices..." 
  for t in final/*.txt; 
  do 
    t2=$(basename "$t") 
    te="${t2##*.}" 
    t2="${t2%.*}" 
 
    echo "  Compressing $t2.$te..." 
    gzip $t 
  done 
  echo "Compressing slices...done." 
  echo "" 
  echo "Re-compressing $filename..." 
  gzip $dir/$filename 
  echo "Re-compressing $filename...done." 
  echo "" 
done 
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Appendix C.  DATA DICTIONARY 

Appendix C.1. STAGING AREA TABLES 

SA_ACTIVITY_EVENTS 

Column Name Description 

COD_DATE Day identifier in the format ‘YYYYMMDD’ 

SOURCE_TIMESTAMP Timestamp reporting the date and time when the event happened 

STB_ID Mediaroom set-top box identifier  

STB_TYPE 
Type of set-top box. This information is only sent when the set-top 

box is turned on or off 

EVENT_TYPE Unique identification number for each event type 

CHANNEL_ID 
Empty. Channel information needs to be obtained through the 

CHANNEL_NBR and the Channel Map associated to the set-top box 

CHANNEL_NBR Channel number where the user is tuned to 

CONTENT_ID Program identifier for Live TV or media descriptor for VoD 

STATION_ID Station identifier: Live, VoD, PPV, etc. 

VIEW_MODE 
Type of stream to which the user is connected (Full-screen or PiP) 

and the service type of the media (primary or secondary) 

DURATION Duration of the event in seconds 

EXPIRATION_DATE Date and time of when the user’s access to the rented VoD expires 

ACTION 

Event Type 101: flag indicating the action performed (0 = power off, 

1 = power on) 

Event Type 104: trick stated invoked by the user (Pause, Play, 

StepBackward, StepForward, FastForward, Rewind, Skip, Replay, 

ScanBackward, ScanForward, Live or Stop) 

ACTION_TIMESTAMP Timestamp of when the action was performed 

ACTION_STATE Status of the executed action (0 = failed, 1 = successful) 

CATEGORY Menu category identifier 

APP_NAME Name of the application launched by the user 

MENU_ID Menu identifier 

RESOLUTION Content resolution 

CULTURE Culture of the media (default is ‘en-US’) 

DYNAMIC Flag indicating if this is a dynamic or a manual recording 

RECURRING Flag indicating if this is a one-time or a recurring recording 

INSTANCE_OF_RECURRING 
Flag indicating if the end user either canceled an episode of a series 

or the entire series 

FREQUENCY Frequency of the recording 

MANUAL_DELETION 

Flag indicating by whom the program was deleted. ‘1’ means that the 

user manually deleted the recording. ‘0’ means that the system 

deleted the recording to make room for other recordings 

BYTES Deprecated. For Event Type 119 is returned always as zero 

TUNE_ID 
Identifier connecting the several Program Watched events, of a set-

top box, to the corresponding Channel Tune event 

Table 9.11. SA_ACTIVITY_EVENTS table information 



112 

SA_ACTIVITY_EVENTS – Mapping of Event Type information by column 

Column Name 100 101 104 114 115 116 117 118 119 120 

COD_DATE           

SOURCE_TIMESTAMP           

STB_ID           

STB_TYPE           

EVENT_TYPE           

CHANNEL_ID           

CHANNEL_NBR           

CONTENT_ID           

STATION_ID           

VIEW_MODE           

DURATION           

EXPIRATION_DATE           

ACTION           

ACTION_TIMESTAMP           

ACTION_STATE           

CATEGORY           

APP_NAME           

MENU_ID           

RESOLUTION           

CULTURE           

DYNAMIC           

RECURRING           

INSTANCE_OF_RECURRING           

FREQUENCY           

MANUAL_DELETION           

BYTES           

TUNE_ID           

Table 9.12. SA_ACTIVITY_EVENTS information mapping by event 

The table above depicts the information present in each column of the table SA_ACTIVITY_EVENTS, for 

each of the event types. Green indicates that the column is populated and yellow that it is empty. 

 

SA_ASSET 

Column Name Description 

COD_DATE Day identifier in the format ‘YYYYMMDD’ 

ASSET_ID Asset identifier 

TITLE Asset name 

DESCRIPTION Asset description 

TYPE Asset type (VoD, SVoD or Application) 

LANGUAGE Asset language 

COUNTRY_REGION Asset country of origin 
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PROVIDER_NAME Asset provider name 

GENRE Asset genre (Comedy, Action, Fantasy, etc.) 

SERVICE_COLLECTION_ID Asset default Service Collection 

DURATION Asset duration in minutes 

RELEASE_YEAR Asset release year in the ‘YYYY’ format 

STUDIO Studio that released the asset 

PRICE Asset price 

RATING Asset content rating  

Table 9.13. SA_ASSET table information 

 

SA_CHANNEL_MAP 

Column Name Description 

COD_DATE Day identifier in the format ‘YYYYMMDD’ 

CHANNEL_MAP_ID Channel Map identifier 

DESCRITPION Channel Map name 

FLG_DEFAULT Flag stating if the Channel Map is the default one or not 

Table 9.14. SA_CHANNEL_MAP table information 

 

SA_GROUP 

Column Name Description 

COD_DATE Day identifier in the format ‘YYYYMMDD’ 

GROUP_ID Group identifier 

CHANNEL_MAP_ID Channel Map assigned to the group 

INTERNAL_ID Internal Group identifier 

Table 9.15. SA_GROUP table information 

 

SA_PROGRAM 

Column Name Description 

COD_DATE Day identifier in the format ‘YYYYMMDD’ 

PROGRAM_ID Program identifier 

DESCRIPTION Program name 

SERVICE_ID Service to which the program can be associated 

Table 9.16. SA_PROGRAM table information 

 

SA_SERVICE 

Column Name Description 

COD_DATE Day identifier in the format ‘YYYYMMDD’ 

SERVICE_ID Service identifier 
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DESCRIPTION Service name 

VIEW_MODE Service visualization mode (Full-screen or PiP) 

INTENT Visualization intent mode (Full-screen or PiP)  

TYPE Service type (DVR, Live or VoD) 

MULTICAST_GRP_IP_ADDR IP Address of the multicast Acquisition Server 

VIDEO_BITRATE Video bit rate 

AUDIO_BITRATE Audio bit rate 

AUDIO_CODEC Audio codec 

PROCESS_ID Process identifier streaming the service 

PROCESS_ID_CODE Process identifier code streaming the service 

Table 9.17. SA_SERVICE table information 

 

SA_SERVICE_COLLECTION 

Column Name Description 

COD_DATE Day identifier in the format ‘YYYYMMDD’ 

ID Asset identifier associated to the Service Collection 

SERVICE_COLLECTION_ID Service Collection identifier 

DESCRIPTION Service Collection name 

EPG_ID EPG identifier associated to the Service Collection 

Table 9.18. SA_SERVICE_COLLECTION table information 

 

SA_SERVICE_COLLECTION_MAP 

Column Name Description 

COD_DATE Day identifier in the format ‘YYYYMMDD’ 

SERVICE_ID Service identifier 

SERVICE_COLLECTION_ID Service Collection identifier 

TYPE 
Type of stream (Full-screen or PiP) plus the service type of the media 

(primary or secondary) 

SERVICE_ORDER Priority of the Service inside the Service Collection 

Table 9.19. SA_SERVICE_COLLECTION_MAP table information 

 

SA_STB 

Column Name Description 

COD_DATE Day identifier in the format ‘YYYYMMDD’ 

CLIENT_ID Set-top box identifier 

EXTERNAL_ID External set-top box identifier 

SUBSCRIBER_ID Subscriber identifier to which the set-top box is assigned to 

STATUS Set-top box status (1 if active or 0 if inactive) 

VERSION Set-top box version 

Table 9.20. SA_STB table information  
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SA_SUBSCRIBER_GROUP_MAP 

Column Name Description 

COD_DATE Day identifier in the format ‘YYYYMMDD’ 

SUBSCRIBER_ID Subscriber identifier 

GROUP_ID Group Identifier 

Table 9.21. SA_SUBSCRIBER_GROUP_MAP table information 

 

SA_TV_CHANNEL 

Column Name Description 

COD_DATE Day identifier in the format ‘YYYYMMDD’ 

TUNER_POSITION Position of the TV Channel in the Channel Map 

SERVICE_COLLECTION_ID Service Collection identifier 

CHANNEL_MAP_ID Channel Map identifier 

Table 9.22. SA_TV_CHANNEL table information 

 

Appendix C.2. INVENTORY TABLES 

SS_ASSET 

Column Name Description 

COD_DATE Day identifier in the format ‘YYYYMMDD’ 

ASSET_ID Asset identifier 

TITLE Asset name 

DESCRIPTION Asset description 

TYPE Asset type (VoD, SVoD or Application) 

LANGUAGE Asset language 

COUNTRY_REGION Asset country of origin 

PROVIDER_NAME Asset provider name 

GENRE Asset genre (Comedy, Action, Fantasy, etc.) 

SERVICE_COLLECTION_ID Asset default Service Collection 

DURATION Asset duration in minutes 

RELEASE_YEAR Asset release year in ‘YYYY’ format 

STUDIO Studio that released the asset 

PRICE Asset price 

RATING Asset content rating  

Table 9.23. SS_ASSET table information 
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SS_CHANNEL_MAP 

Column Name Description 

COD_DATE Day identifier in the format ‘YYYYMMDD’ 

CHANNEL_MAP_ID Channel Map identifier 

DESCRITPION Channel Map name 

FLG_DEFAULT Flag stating if the Channel Map is the default one or not 

Table 9.24. SS_CHANNEL_MAP table information 

 

SS_GROUP 

Column Name Description 

COD_DATE Day identifier in the format ‘YYYYMMDD’ 

GROUP_ID Group identifier 

CHANNEL_MAP_ID Channel Map assigned to the group 

INTERNAL_ID Internal Group identifier 

Table 9.25. SS_GROUP table information 

 

SS_MAP_CHANNEL_MAP_SERVICE 

Column Name Description 

COD_DATE Day identifier in the format ‘YYYYMMDD’ 

CHANNEL_MAP_ID Channel Map identifier 

TUNER_POSITION Position of the TV Channel in the Channel Map 

SERVICE_ID Service identifier 

SERVICE_TYPE Service type (DVR, Live or VoD) 

Table 9.26. SS_MAP_CHANNEL_MAP_SERVICE table information 

 

SS_MAP_STB_CHANNEL_MAP 

Column Name Description 

COD_DATE Day identifier in the format ‘YYYYMMDD’ 

STB_ID Mediaroom set-top box identifier 

CHANNEL_MAP_ID Channel Map identifier 

Table 9.27. SS_MAP_STB_CHANNEL_MAP table information 

 

SS_PROGRAM 

Column Name Description 

COD_DATE Day identifier in the format ‘YYYYMMDD’ 

PROGRAM_ID Program identifier 

DESCRIPTION Program name 

SERVICE_ID Service to which the program can be associated 

Table 9.28. SS_PROGRAM table information 
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SS_SERVICE 

Column Name Description 

COD_DATE Day identifier in the format ‘YYYYMMDD’ 

SERVICE_ID Service identifier 

DESCRIPTION Service name 

VIEW_MODE Service visualization mode (Full-screen or PiP) 

INTENT 
Service visualization intent mode (Full-screen or PiP). Often the same 

as the VIEW_MODE 

TYPE Service type (DVR, Live or VoD) 

MULTICAST_GRP_IP_ADDR IP Address of the multicast Acquisition Server 

VIDEO_BITRATE Video bit rate 

AUDIO_BITRATE Audio bit rate 

AUDIO_CODEC Audio codec 

PROCESS_ID Process identifier streaming the service 

PROCESS_ID_CODE Process identifier code streaming the service 

Table 9.29. SS_SERVICE table information 

 

SS_SERVICE_COLLECTION 

Column Name Description 

COD_DATE Day identifier in the format ‘YYYYMMDD’ 

SERVICE_COLLECTION_ID Asset identifier associated to the Service Collection 

EPG_ID Service Collection identifier 

DESCRIPTION Service Collection name 

ID EPG identifier associated to the Service Collection 

Table 9.30. SS_SERVICE_COLLECTION table information 

 

SS_SERVICE_COLLECTION_MAP 

Column Name Description 

COD_DATE Day identifier in the format ‘YYYYMMDD’ 

SERVICE_COLLECTION_ID Service identifier 

SERVICE_ID Service Collection identifier 

TYPE 
Type of stream (Full-screen or PiP) and the service type of the media 

(primary or secondary) 

SERVICE_ORDER Priority of the Service inside the Service Collection 

Table 9.31. SS_SERVICE_COLLECTION_MAP table information 
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SS_STB 

Column Name Description 

COD_DATE Day identifier in the format ‘YYYYMMDD’ 

STB_ID Set-top box identifier 

EXTERNAL_ID External set-top box identifier 

SUBSCRIBER_ID Subscriber identifier to which the set-top box is assigned to 

STATUS Set-top box status (1 if active or 0 if inactive) 

VERSION Set-top box version 

Table 9.32. SS_STB table information 

 

SS_STB_GROUP_MAP 

Column Name Description 

COD_DATE Day identifier in the format ‘YYYYMMDD’ 

STB_ID Set-top box identifier 

GROUP_ID Group Identifier 

Table 9.33. SS_STB_GROUP_MAP table information 

 

SS_SUBSCRIBER_GROUP_MAP 

Column Name Description 

COD_DATE Day identifier in the format ‘YYYYMMDD’ 

SUBSCRIBER_ID Subscriber identifier 

GROUP_ID Group Identifier 

Table 9.34. SS_SUBSCRIBER_GROUP_MAP table information 

 

SS_TV_CHANNEL 

Column Name Description 

COD_DATE Day identifier in the format ‘YYYYMMDD’ 

TUNER_POSITION Position of the TV Channel in the Channel Map 

CHANNEL_MAP_ID Service Collection identifier 

SERVICE_COLLECTION_ID Channel Map identifier 

Table 9.35. SS_TV_CHANNEL table information 
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Appendix C.3. SUPPORT TABLES 

LU_DATE 

Column Name Description 

COD_DATE Day identifier in the format ‘YYYYMMDD’ 

DSC_DATE Day description to be displayed in the reports 

COD_WEEK Week identifier in the format ‘IYYYIW’ 

COD_MONTH Month identifier in the format ‘YYYYMM’ 

COD_QUARTER Quarter identifier in the format ‘YYYYQ’ 

COD_SEMESTER Semester identifier in the format ‘YYYYS’ 

COD_YEAR Year identifier in the format ‘YYYY’ 

Table 9.36. LU_DATE table information 

 

LU_START_GP 

Column Name Description 

COD_START_GP 
Identifier of the granularity period beginning, within a day, in the 

format ‘HH24MI’ 

COD_GP_DURATION 
Identifier of the granularity period duration (also expresses the 

duration itself in minutes) 

DSC_START_GP 
Granularity period description to be displayed in the reports 

(HH24:MI – HH24:MI) 

Table 9.37. LU_START_GP table information 

 

Appendix C.4. FACT TABLES 

FACT_ACTIVITY_EVENTS 

Column Name Description 

COD_DATE Day identifier in the format ‘YYYYMMDD’ 

COD_DATE_GP 
Day and granularity period identifier in the format 

‘YYYYMMDDHH24MI’ 

COD_START_GP Granularity period identifier in the format ‘HH24MI’ 

SOURCE_TIMESTAMP Timestamp reporting the date and time when the event happened 

STB_ID Mediaroom set-top box identifier  

STB_TYPE 
Type of set-top box. This information is only sent when the set-top 

box is turned on or off 

EVENT_TYPE Unique identification number for each event type 

SERVICE_TYPE Service type: Live, DVR, SVoD and VoD 

CHANNEL_ID Service identifier 

CHANNEL_NBR Channel number where the user is tuned to 

CONTENT_ID Program identifier for Live TV or media descriptor for VoD 

STATION_ID Station identifier: Live, VoD, PPV, etc. 

VIEW_MODE 
Type of stream to which the user is connected (Full-screen or PiP) 

and the service type of the media (primary or secondary) 
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DURATION Duration of the event in seconds 

EXPIRATION_DATE Date and time of when the user’s access to the rented VoD expires 

ACTION 

Event Type 101: flag indicating the action performed (0 = power off, 

1 = power on) 

Event Type 104: trick stated invoked by the user (Pause, Play, 

StepBackward, StepForward, FastForward, Rewind, Skip, Replay, 

ScanBackward, ScanForward, Live or Stop) 

ACTION_TIMESTAMP Timestamp of when the action was performed 

ACTION_STATE Status of the executed action (0 = failed, 1 = successful) 

CATEGORY Menu category identifier 

APP_NAME Name of the application launched by the user 

MENU_ID Menu identifier 

RESOLUTION Content resolution 

CULTURE Culture of the media (default is ‘en-US’) 

DYNAMIC Flag indicating if this is a dynamic or a manual recording 

RECURRING Flag indicating if this is a one-time or a recurring recording 

INSTANCE_OF_RECURRING 
Flag indicating if the end user either canceled an episode of a series 

or the entire series 

FREQUENCY Frequency of the recording 

MANUAL_DELETION 

Flag indicating by whom the program was deleted. ‘1’ means that the 

user manually deleted the recording. ‘0’ means that the system 

deleted the recording to make room for other recordings 

BYTES Deprecated. For Event Type 119 is returned always as zero 

TUNE_ID 
Identifier connecting the several Program Watched events, of a set-

top box, to the corresponding Channel Tune event 

Table 9.38. FACT_ACTIVITY_EVENTS table information 

 

FACT_ACTIVITY_EVENTS – Mapping of Event Type information by column 

Column Name 100 101 104 114 115 116 117 118 119 120 

COD_DATE           

COD_DATE_GP           

COD_START_GP           

SOURCE_TIMESTAMP           

STB_ID           

STB_TYPE           

EVENT_TYPE           

SERVICE_TYPE           

CHANNEL_ID           

CHANNEL_NBR           

CONTENT_ID           

STATION_ID           

VIEW_MODE           
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DURATION           

EXPIRATION_DATE           

ACTION           

ACTION_TIMESTAMP           

ACTION_STATE           

CATEGORY           

APP_NAME           

MENU_ID           

RESOLUTION           

CULTURE           

DYNAMIC           

RECURRING           

INSTANCE_OF_RECURRING           

FREQUENCY           

MANUAL_DELETION           

BYTES           

TUNE_ID           

Table 9.39. FACT_ACTIVITY_EVENTS information mapping by event 

The table above depicts the information present in each column of the table FACT_ACTIVITY_EVENTS, 

for each of the event types. Green indicates that the column is populated and yellow that it is empty. 

 

FACT_EVT_SEGMENTED 

Column Name Description 

COD_DATE Day identifier in the format ‘YYYYMMDD’ 

COD_DATE_GP 
Day and granularity period identifier in the format 

‘YYYYMMDDHH24MI’ 

COD_START_GP Granularity period identifier in the format ‘HH24MI’ 

COD_GP_DURATION 
Identifier of the granularity period duration (also expresses the 

duration itself in minutes) 

EVENT_TYPE 
Unique identification number for each event type (this table is only 

produced for the events 100 and 114) 

SERVICE_TYPE Service type: Live, DVR, SVoD and VoD. 

SERVICE_ID Service identifier 

CONTENT_ID Program identifier for Live TV or media descriptor for VoD 

STB_ID Mediaroom set-top box identifier 

SOURCE_TIMESTAMP Timestamp reporting the date and time when the event happened 

DURATION Duration of the event inside the granularity period 

TOTAL_DURATION 
Total duration of the event throughout all the granularity periods it 

crosses 

Table 9.40. FACT_EVT_SEGMENTED table information  
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Appendix C.5. AGGREGATION TABLES 

AG_LIVE_RATING_DY 

Column Name Description 

COD_DATE Day identifier in the format ‘YYYYMMDD’ 

SERVICE_ID Service identifier 

PROGRAM_ID Program identifier 

RNK_PROGRAM 
Program ranking, within the day, according to the average number of 

viewers 

AVG_VIEWERS 
Average number of viewers that watched the program throughout its 

broadcast time 

Table 9.41. AG_LIVE_RATING_DY table information 

 

AG_LIVE_REACH_DY 

Column Name Description 

COD_DATE Day identifier in the format ‘YYYYMMDD’ 

SERVICE_ID Service identifier 

RNK_SERVICE Service ranking, within the day, according to the number of viewers 

NBR_VIEWERS 
Number of viewers that tuned the service at least once during the 

day 

Table 9.42. AG_LIVE_REACH_DY table information 

 

AG_LIVE_SHARE_GP 

Column Name Description 

COD_DATE Day identifier in the format ‘YYYYMMDD’ 

COD_START_GP Granularity period identifier in the format ‘HH24MI’ 

COD_GP_DURATION 
Identifier of the granularity period duration (also expresses the 

duration itself in minutes) 

SERVICE_ID Service identifier 

NBR_SUBSCRIBERS 

Number of subscribers that were tuned in the service during the 

granularity period (one subscriber can have one or more set-top 

boxes) 

NBR_VIEWERS 
Number of set-top boxes that were tuned in the service during the 

granularity period 

DUR_VIEWING Service viewing duration during the granularity period 

Table 9.43. AG_LIVE_SHARE_GP table information 
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Appendix D.  DATA WAREHOUSE RDMBS IMPLEMENTATION 

Appendix D.1. STORAGE OPTIONS ANALYSIS 

Before implementing the physical model, that would support our data, we conducted a brief analysis 

of the data compression options available, in order to understand its advantages and explore the best 

option for the study at hand. Speed is the most important attribute but size is also important to 

consider, since many times they are related, and of course when designing a data warehouse, planning 

for the storage requirements is fundamental. 

The version of Oracle, being used as the RDBMS, supports basic and advance compression and, 

therefore, our analysis focuses on the use of both these options, plus the use of no compression, and 

assesses not only the performance of writing into tables, using the different compression options, but 

also the potential performance overhead of reading from them. 

The first test comprises of loading and transforming a compressed text file of 32MB (its uncompressed 

size is 200MB) containing Channel Tune events (section 4.5.6.1). 

Compression Execution time (s) Size (MB) Compression ratio 

None 15 248 1.0 : 1.0 

Basic 16 120 2.1 : 1.0 

Advanced 17 136 1.8 : 1.0 

Table 9.44. Oracle ‘write’ compression test 

From the table above we can easily state that the best compression can be obtained through the basic 

compression but, and due to the simplicity of the test, we do not observe large variations regarding 

the execution times. 

The next test uses the tables generated in the previous test as input and processes its rows through 

the Event Segmentation process (section 4.5.6.3). Through this test we can observe the effect of 

compression for both the read and write operations. 

Compression Execution time (s) Size (MB) 

From/To None Basic Advanced Source Target 

None 111 113 113 248 960 

Basic 106 113 116 120 528 

Advanced 110 114 113 136 592 

Table 9.45. Oracle 'read/write' compression test 

From the data in Table 9.45 we can observe again that the basic compression is able to produce smaller 

outputs, even when compared with the advanced compression. On the other hand, the benchmarking 

regarding execution time is not very conclusive nor does it point to an obvious best approach. 

Based on these tests we believe that the best compression type, the one we will use for the fact tables, 

seems to be the basic. With this format, we can obtain compression ratios around 2 to 1 without any 

visible performance implications.  
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Appendix D.2. TABLESPACES 

System tablespaces creation scripts 

-- Temporary tablespace 
CREATE TEMPORARY TABLESPACE TEMP TEMPFILE  
  '/mnt/sdb/oradata/dw/temp01.dbf' SIZE 4G AUTOEXTEND OFF, 
  '/mnt/sdb/oradata/dw/temp02.dbf' SIZE 4G AUTOEXTEND OFF, 
  '/mnt/sdb/oradata/dw/temp04.dbf' SIZE 4G AUTOEXTEND OFF, 
  '/mnt/sdb/oradata/dw/temp03.dbf' SIZE 4G AUTOEXTEND OFF, 
  '/mnt/sdb/oradata/dw/temp05.dbf' SIZE 4G AUTOEXTEND OFF, 
  '/mnt/sdb/oradata/dw/temp06.dbf' SIZE 4G AUTOEXTEND OFF 
EXTENT MANAGEMENT LOCAL UNIFORM SIZE 1M; 
 
-- Undo tablespace 
CREATE UNDO TABLESPACE UNDOTBS1 DATAFILE  
  '/mnt/sdb/oradata/dw/undotbs01.dbf' SIZE 1G AUTOEXTEND OFF 
ONLINE 
RETENTION NOGUARANTEE 
BLOCKSIZE 8K 
FLASHBACK ON; 
 
-- Sysaux tablespace 
CREATE TABLESPACE SYSAUX DATAFILE  
  '/mnt/sdb/oradata/dw/sysaux01.dbf' SIZE 1G AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED 
LOGGING 
FORCE LOGGING 
DEFAULT  
  NO INMEMORY 
ONLINE 
EXTENT MANAGEMENT LOCAL AUTOALLOCATE 
BLOCKSIZE 8K 
SEGMENT SPACE MANAGEMENT AUTO 
FLASHBACK ON; 
 
-- System tablespace 
CREATE TABLESPACE SYSTEM DATAFILE  
  '/mnt/sdb/oradata/dw/system01.dbf' SIZE 1G AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED 
LOGGING 
FORCE LOGGING 
DEFAULT  
  NO INMEMORY 
ONLINE 
EXTENT MANAGEMENT LOCAL AUTOALLOCATE 
BLOCKSIZE 8K 
FLASHBACK ON; 

 

Data tablespaces creation scripts 

-- Tablespace for the Inventory tables 
CREATE TABLESPACE HRD_DW_INV DATAFILE  
  '/mnt/sdb/oradata/dw/hrd_dw_inv_01.dbf' SIZE 2G AUTOEXTEND OFF 
NOLOGGING 
DEFAULT  
  NO INMEMORY 
ONLINE 
EXTENT MANAGEMENT LOCAL AUTOALLOCATE 
BLOCKSIZE 8K 
SEGMENT SPACE MANAGEMENT AUTO 
FLASHBACK ON; 
 
-- Tablespace for Fact tables 
CREATE TABLESPACE HRD_DW_DAT DATAFILE  
  '/mnt/sdb/oradata/dw/hrd_dw_dat_01.dbf' SIZE 4G AUTOEXTEND OFF, 
  '/mnt/sdb/oradata/dw/hrd_dw_dat_02.dbf' SIZE 4G AUTOEXTEND OFF, 
  '/mnt/sdb/oradata/dw/hrd_dw_dat_03.dbf' SIZE 4G AUTOEXTEND OFF, 
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  '/mnt/sdb/oradata/dw/hrd_dw_dat_04.dbf' SIZE 4G AUTOEXTEND OFF 
NOLOGGING 
DEFAULT  
  NO INMEMORY 
ONLINE 
EXTENT MANAGEMENT LOCAL AUTOALLOCATE 
BLOCKSIZE 8K 
SEGMENT SPACE MANAGEMENT AUTO 
FLASHBACK OFF; 
 
-- Tablespace for the Segmented tale 
CREATE TABLESPACE HRD_DW_SEG DATAFILE  
  '/mnt/sdb/oradata/dw/hrd_dw_seg_01.dbf' SIZE 4G AUTOEXTEND OFF, 
  '/mnt/sdb/oradata/dw/hrd_dw_seg_02.dbf' SIZE 4G AUTOEXTEND OFF 
NOLOGGING 
DEFAULT  
  NO INMEMORY 
ONLINE 
EXTENT MANAGEMENT LOCAL AUTOALLOCATE 
BLOCKSIZE 8K 
SEGMENT SPACE MANAGEMENT AUTO 
FLASHBACK OFF; 
 
-- Tablespace for the Aggregation tables 
CREATE TABLESPACE HRD_DW_AGG DATAFILE  
  '/mnt/sdb/oradata/dw/hrd_dw_agg_01.dbf' SIZE 1G AUTOEXTEND OFF 
NOLOGGING 
DEFAULT  
  NO INMEMORY 
ONLINE 
EXTENT MANAGEMENT LOCAL AUTOALLOCATE 
BLOCKSIZE 8K 
SEGMENT SPACE MANAGEMENT AUTO 
FLASHBACK ON; 

 

Appendix D.3. DIRECTORIES 

Directories creation scripts 

CREATE OR REPLACE DIRECTORY  
D_BIN AS  
'/mnt/sdc/bin'; 
 
CREATE OR REPLACE DIRECTORY  
D_EVT AS  
'/mnt/sdc/evt'; 
 
CREATE OR REPLACE DIRECTORY  
D_INV AS  
'/mnt/sdc/inv'; 
 
CREATE OR REPLACE DIRECTORY  
D_LOG AS  
'/mnt/sdc/log'; 
 
CREATE OR REPLACE DIRECTORY  
D_TMP AS  
'/mnt/sdc/tmp'; 

The source files mapped to the external tables will be placed in these directories. 
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Appendix D.4. STAGING AREA TABLES 

SA_ACTIVITY_EVENTS 

CREATE TABLE SA_ACTIVITY_EVENTS ( 
  COD_DATE              NUMBER(8,0), 
  SOURCE_TIMESTAMP      DATE, 
  STB_ID                VARCHAR2(100), 
  STB_TYPE              VARCHAR2(100), 
  EVENT_TYPE            NUMBER(3,0), 
  CHANNEL_ID            VARCHAR2(100), 
  CHANNEL_NBR           NUMBER(6,0), 
  CONTENT_ID            VARCHAR2(100), 
  STATION_ID            VARCHAR2(100), 
  VIEW_MODE             VARCHAR2(100), 
  DURATION              NUMBER(5,0), 
  EXPIRATION_DATE       DATE, 
  ACTION                VARCHAR2(100), 
  ACTION_TIMESTAMP      DATE, 
  ACTION_STATE          VARCHAR2(100), 
  CATEGORY              VARCHAR2(100), 
  APP_NAME              VARCHAR2(100), 
  MENU_ID               VARCHAR2(100), 
  RESOLUTION            VARCHAR2(100), 
  CULTURE               VARCHAR2(100), 
  DYNAMIC               VARCHAR2(100), 
  RECURRING             VARCHAR2(100), 
  INSTANCE_OF_RECURRING VARCHAR2(100), 
  FREQUENCY             VARCHAR2(100), 
  MANUAL_DELETION       VARCHAR2(100), 
  BYTES                 NUMBER(5,0), 
  TUNE_ID               VARCHAR2(100)     
) 
ORGANIZATION EXTERNAL ( 
  TYPE ORACLE_LOADER 
  DEFAULT DIRECTORY D_EVT 
  ACCESS PARAMETERS ( 
    RECORDS DELIMITED BY NEWLINE 
    CHARACTERSET AL32UTF8 
    LOGFILE D_LOG:'sa_activity_events.log' 
    BADFILE D_LOG:'sa_activity_events.bad' 
    DISCARDFILE D_LOG:'sa_activity_events.dsc'    
    PREPROCESSOR D_BIN:'zcat'  
    FIELDS TERMINATED BY ';' OPTIONALLY ENCLOSED BY '"' 
    DATE_FORMAT DATE MASK "YYYY-MM-DD HH24:MI:SS" 
    MISSING FIELD VALUES ARE NULL 
    ( 
      COD_DATE              CHAR(8), 
      SOURCE_TIMESTAMP      DATE, 
      STB_ID                CHAR(100), 
      STB_TYPE              CHAR(100), 
      EVENT_TYPE            CHAR(3), 
      CHANNEL_ID            CHAR(100), 
      CHANNEL_NBR           CHAR(6), 
      CONTENT_ID            CHAR(100), 
      STATION_ID            CHAR(100), 
      VIEW_MODE             CHAR(100), 
      DURATION              CHAR(5), 
      EXPIRATION_DATE       DATE, 
      ACTION                CHAR(100), 
      ACTION_TIMESTAMP      DATE, 
      ACTION_STATE          CHAR(100), 
      CATEGORY              CHAR(100), 
      APP_NAME              CHAR(100), 
      MENU_ID               CHAR(100), 
      RESOLUTION            CHAR(100), 
      CULTURE               CHAR(100), 
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      DYNAMIC               CHAR(100), 
      RECURRING             CHAR(100), 
      INSTANCE_OF_RECURRING CHAR(100), 
      FREQUENCY             CHAR(100), 
      MANUAL_DELETION       CHAR(100), 
      "BYTES"               CHAR(5), 
      TUNE_ID               CHAR(100) 
    ) 
  ) 
  LOCATION ('MR_AL_20160504_100_00.txt.gz', 
            'MR_AL_20160505_100_00.txt.gz', 
            'MR_AL_20160505_100_01.txt.gz', 
            'MR_AL_20160505_100_02.txt.gz', 
            'MR_AL_20160505_100_03.txt.gz', 
            'MR_AL_20160505_100_04.txt.gz', 
            'MR_AL_20160505_100_05.txt.gz', 
            'MR_AL_20160505_100_06.txt.gz', 
            'MR_AL_20160505_100_07.txt.gz', 
            'MR_AL_20160505_100_08.txt.gz', 
            'MR_AL_20160505_100_09.txt.gz', 
            'MR_AL_20160505_100_10.txt.gz', 
            'MR_AL_20160505_100_11.txt.gz' 
           )  
) 
REJECT LIMIT 100; 

The files in the ‘LOCATION’ option are just an example since more files, representing the activity logs, 

were used for the tests. 

 

 SA_ASSET 

CREATE TABLE SA_ASSET ( 
  COD_DATE              NUMBER(8,0), 
  ASSET_ID              VARCHAR2(100), 
  TITLE                 VARCHAR2(500), 
  DESCRIPTION           VARCHAR2(1024), 
  TYPE                  VARCHAR2(25),  
  LANGUAGE              VARCHAR2(20),  
  COUNTRY_REGION        VARCHAR2(20),  
  PROVIDER_NAME         VARCHAR2(100),  
  GENRE                 VARCHAR2(100),  
  SERVICE_COLLECTION_ID VARCHAR2(50),  
  DURATION              NUMBER(4,0),  
  RELEASE_YEAR          NUMBER(4,0),  
  STUDIO                VARCHAR2(100),  
  PRICE                 NUMBER(5,2),  
  RATING                VARCHAR2(100) 
) 
ORGANIZATION EXTERNAL ( 
  TYPE ORACLE_LOADER 
  DEFAULT DIRECTORY D_INV 
  ACCESS PARAMETERS ( 
    RECORDS DELIMITED BY NEWLINE 
    CHARACTERSET AL32UTF8 
    LOGFILE D_LOG:'sa_asset.log' 
    BADFILE D_LOG:'sa_asset.bad' 
    DISCARDFILE D_LOG:'sa_asset.dsc'    
    PREPROCESSOR D_BIN:'zcat'  
    FIELDS TERMINATED BY ';' OPTIONALLY ENCLOSED BY '"' 
    MISSING FIELD VALUES ARE NULL 
    ( 
       COD_DATE              CHAR(8), 
       SOURCE                CHAR(100), 
       ASSET_ID              CHAR(100), 
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       TITLE                 CHAR(500), 
       DESCRIPTION           CHAR(1024), 
       "TYPE"                CHAR(25),  
       "LANGUAGE"            CHAR(20),  
       COUNTRY_REGION        CHAR(20),  
       PROVIDER_NAME         CHAR(100),  
       GENRE                 CHAR(100),  
       SERVICE_COLLECTION_ID CHAR(50),  
       DURATION              CHAR(5),  
       RELEASE_YEAR          CHAR(4),  
       STUDIO                CHAR(100),  
       PRICE                 CHAR(10),  
       RATING                CHAR(100) 
    ) 
  ) 
  LOCATION ('MSTVInv_LU_ASSET_20160615.txt.gz')   
) 
REJECT LIMIT UNLIMITED; 

 

SA_CHANNEL_MAP 

CREATE TABLE SA_CHANNEL_MAP ( 
  COD_DATE       NUMBER(8,0), 
  CHANNEL_MAP_ID VARCHAR2(100), 
  DESCRITPION    VARCHAR2(100), 
  FLG_DEFAULT    NUMBER(1,0) 
) 
ORGANIZATION EXTERNAL ( 
  TYPE ORACLE_LOADER 
  DEFAULT DIRECTORY D_INV 
  ACCESS PARAMETERS ( 
    RECORDS DELIMITED BY NEWLINE 
    CHARACTERSET AL32UTF8 
    LOGFILE D_LOG:'sa_channel_map.log' 
    BADFILE D_LOG:'sa_channel_map.bad' 
    DISCARDFILE D_LOG:'sa_channel_map.dsc'    
    PREPROCESSOR D_BIN:'zcat'  
    FIELDS TERMINATED BY ';' OPTIONALLY ENCLOSED BY '"' 
    MISSING FIELD VALUES ARE NULL 
    ( 
      COD_DATE       CHAR(8), 
      SOURCE         CHAR(100), 
      CHANNEL_MAP_ID CHAR(100), 
      DESCRITPION    CHAR(100), 
      FLG_DEFAULT    CHAR(1)       
    ) 
  ) 
  LOCATION ('MSTVInv_LU_CHANNEL_MAP_20160615.txt.gz')   
) 
REJECT LIMIT UNLIMITED; 

 

SA_GROUP 

CREATE TABLE SA_GROUP ( 
  COD_DATE       NUMBER(8,0), 
  GROUP_ID       VARCHAR2(100), 
  CHANNEL_MAP_ID VARCHAR2(100), 
  INTERNAL_ID    VARCHAR2(100) 
) 
ORGANIZATION EXTERNAL ( 
  TYPE ORACLE_LOADER 
  DEFAULT DIRECTORY D_INV 
  ACCESS PARAMETERS ( 
    RECORDS DELIMITED BY NEWLINE 
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    CHARACTERSET AL32UTF8 
    LOGFILE D_LOG:'sa_group.log' 
    BADFILE D_LOG:'sa_group.bad' 
    DISCARDFILE D_LOG:'sa_group.dsc'    
    PREPROCESSOR D_BIN:'zcat'  
    FIELDS TERMINATED BY ';' OPTIONALLY ENCLOSED BY '"' 
    MISSING FIELD VALUES ARE NULL 
    ( 
      COD_DATE       CHAR(8), 
      SOURCE         CHAR(100), 
      GROUP_ID       CHAR(100), 
      CHANNEL_MAP_ID CHAR(100), 
      INTERNAL_ID    CHAR(100) 
    ) 
  ) 
  LOCATION ('MSTVInv_LU_SUBS_GROUP_20160615.txt.gz')   
) 
REJECT LIMIT UNLIMITED; 

 

SA_PROGRAM 

CREATE TABLE SA_PROGRAM ( 
  COD_DATE    NUMBER(8,0), 
  PROGRAM_ID  VARCHAR2(100),  
  DESCRIPTION VARCHAR2(300),  
  SERVICE_ID  VARCHAR2(100) 
) 
ORGANIZATION EXTERNAL ( 
  TYPE ORACLE_LOADER 
  DEFAULT DIRECTORY D_INV 
  ACCESS PARAMETERS ( 
    RECORDS DELIMITED BY NEWLINE 
    CHARACTERSET AL32UTF8 
    LOGFILE D_LOG:'sa_program.log' 
    BADFILE D_LOG:'sa_program.bad' 
    DISCARDFILE D_LOG:'sa_program.dsc'    
    PREPROCESSOR D_BIN:'zcat'  
    FIELDS TERMINATED BY ';' OPTIONALLY ENCLOSED BY '"' 
    MISSING FIELD VALUES ARE NULL 
    ( 
      COD_DATE    CHAR(8), 
      SOURCE      CHAR(100), 
      PROGRAM_ID  CHAR(100),  
      DESCRIPTION CHAR(300),  
      SERVICE_ID  CHAR(100)       
    ) 
  ) 
  LOCATION ('MSTVInv_LU_PROGRAM_20160615.txt.gz')   
) 

REJECT LIMIT UNLIMITED; 

 

SA_SERVICE 

CREATE TABLE SA_SERVICE ( 
  COD_DATE              NUMBER(8,0), 
  SERVICE_ID            VARCHAR2(100), 
  DESCRIPTION           VARCHAR2(100), 
  VIEW_MODE             VARCHAR2(100), 
  INTENT                VARCHAR2(100), 
  TYPE                  VARCHAR2(100), 
  MULTICAST_GRP_IP_ADDR VARCHAR2(100), 
  VIDEO_BITRATE         VARCHAR2(100), 
  AUDIO_BITRATE         VARCHAR2(100), 
  AUDIO_CODEC           VARCHAR2(100), 
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  PROCESS_ID            VARCHAR2(100), 
  PROCESS_ID_CODE       VARCHAR2(100) 
) 
ORGANIZATION EXTERNAL ( 
  TYPE ORACLE_LOADER 
  DEFAULT DIRECTORY D_INV 
  ACCESS PARAMETERS ( 
    RECORDS DELIMITED BY NEWLINE 
    CHARACTERSET AL32UTF8 
    LOGFILE D_LOG:'sa_service.log' 
    BADFILE D_LOG:'sa_service.bad' 
    DISCARDFILE D_LOG:'sa_service.dsc'    
    PREPROCESSOR D_BIN:'zcat'  
    FIELDS TERMINATED BY ';' OPTIONALLY ENCLOSED BY '"' 
    MISSING FIELD VALUES ARE NULL 
    ( 
      COD_DATE              CHAR(8), 
      SOURCE                CHAR(100), 
      SERVICE_ID            CHAR(100), 
      DESCRIPTION           CHAR(100), 
      VIEW_MODE             CHAR(100), 
      INTENT                CHAR(100), 
      TYPE                  CHAR(100), 
      MULTICAST_GRP_IP_ADDR CHAR(100), 
      VIDEO_BITRATE         CHAR(100), 
      AUDIO_BITRATE         CHAR(100), 
      AUDIO_CODEC           CHAR(100), 
      PROCESS_ID            CHAR(100), 
      PROCESS_ID_CODE       CHAR(100) 
    ) 
  ) 
  LOCATION ('MSTVInv_LU_SERVICE_20160615.txt.gz')   
) 
REJECT LIMIT UNLIMITED; 

 

SA_SERVICE_COLLECTION 

CREATE TABLE SA_SERVICE_COLLECTION ( 
  COD_DATE              NUMBER(8,0), 
  ID                    VARCHAR2(100), 
  SERVICE_COLLECTION_ID VARCHAR2(100), 
  DESCRIPTION           VARCHAR2(100), 
  EPG_ID                VARCHAR2(100) 
) 
ORGANIZATION EXTERNAL ( 
  TYPE ORACLE_LOADER 
  DEFAULT DIRECTORY D_INV 
  ACCESS PARAMETERS ( 
    RECORDS DELIMITED BY NEWLINE 
    CHARACTERSET AL32UTF8 
    LOGFILE D_LOG:'sa_service_collection.log' 
    BADFILE D_LOG:'sa_service_collection.bad' 
    DISCARDFILE D_LOG:'sa_service_collection.dsc'    
    PREPROCESSOR D_BIN:'zcat'  
    FIELDS TERMINATED BY ';' OPTIONALLY ENCLOSED BY '"' 
    MISSING FIELD VALUES ARE NULL 
    ( 
      COD_DATE              CHAR(8), 
      SOURCE                CHAR(100), 
      ID                    CHAR(100), 
      SERVICE_COLLECTION_ID CHAR(100), 
      DESCRIPTION           CHAR(100), 
      EPG_ID                CHAR(100)  
    ) 
  ) 
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  LOCATION ('MSTVInv_LU_SERV_COLLECTION_20160615.txt.gz')   
) 
REJECT LIMIT UNLIMITED; 

 

SA_SERVICE_COLLECTION_MAP 

CREATE TABLE SA_SERVICE_COLLECTION_MAP ( 
  COD_DATE      NUMBER(8,0), 
  SERVICE_ID            VARCHAR2(100), 
  SERVICE_COLLECTION_ID VARCHAR2(100), 
  TYPE                  VARCHAR2(100), 
  SERVICE_ORDER         NUMBER(1,0) 
) 
ORGANIZATION EXTERNAL ( 
  TYPE ORACLE_LOADER 
  DEFAULT DIRECTORY D_INV 
  ACCESS PARAMETERS ( 
    RECORDS DELIMITED BY NEWLINE 
    CHARACTERSET AL32UTF8 
    LOGFILE D_LOG:'sa_service_collection_map.log' 
    BADFILE D_LOG:'sa_service_collection_map.bad' 
    DISCARDFILE D_LOG:'sa_service_collection_map.dsc'    
    PREPROCESSOR D_BIN:'zcat'  
    FIELDS TERMINATED BY ';' OPTIONALLY ENCLOSED BY '"' 
    MISSING FIELD VALUES ARE NULL 
    ( 
      COD_DATE              CHAR(8), 
      SOURCE                CHAR(100), 
      SERVICE_ID            CHAR(100), 
      SERVICE_COLLECTION_ID CHAR(100), 
      TYPE                  CHAR(100), 
      SERVICE_ORDER         CHAR(3)       
    ) 
  ) 
  LOCATION ('MSTVInv_LU_SERV_COLL_SERV_20160615.txt.gz')   
) 
REJECT LIMIT UNLIMITED; 

 

SA_STB 

CREATE TABLE SA_STB ( 
  COD_DATE      NUMBER(8,0), 
  CLIENT_ID     VARCHAR2(100), 
  EXTERNAL_ID   VARCHAR2(100), 
  SUBSCRIBER_ID VARCHAR2(100), 
  STATUS        VARCHAR2(100), 
  VERSION       VARCHAR2(100) 
) 
ORGANIZATION EXTERNAL ( 
  TYPE ORACLE_LOADER 
  DEFAULT DIRECTORY D_INV 
  ACCESS PARAMETERS ( 
    RECORDS DELIMITED BY NEWLINE 
    CHARACTERSET AL32UTF8 
    LOGFILE D_LOG:'sa_stb.log' 
    BADFILE D_LOG:'sa_stb.bad' 
    DISCARDFILE D_LOG:'sa_stb.dsc'    
    PREPROCESSOR D_BIN:'zcat'  
    FIELDS TERMINATED BY ';' OPTIONALLY ENCLOSED BY '"' 
    MISSING FIELD VALUES ARE NULL 
    ( 
      COD_DATE      CHAR(8), 
      SOURCE        CHAR(100), 
      CLIENT_ID     CHAR(100), 
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      EXTERNAL_ID   CHAR(100), 
      SUBSCRIBER_ID CHAR(100), 
      STATUS        CHAR(100), 
      VERSION       CHAR(100) 
    ) 
  ) 
  LOCATION ('MSTVInv_LU_IPTV_CLIENT_20160615.txt.gz')   
) 
REJECT LIMIT UNLIMITED; 

 

SA_SUBSCRIBER_GROUP_MAP 

CREATE TABLE SA_SUBSCRIBER_GROUP_MAP ( 
  COD_DATE      NUMBER(8,0), 
  SUBSCRIBER_ID VARCHAR2(100), 
  GROUP_ID      VARCHAR2(100) 
) 
ORGANIZATION EXTERNAL ( 
  TYPE ORACLE_LOADER 
  DEFAULT DIRECTORY D_INV 
  ACCESS PARAMETERS ( 
    RECORDS DELIMITED BY NEWLINE 
    CHARACTERSET AL32UTF8 
    LOGFILE D_LOG:'sa_subscriber_group_map.log' 
    BADFILE D_LOG:'sa_subscriber_group_map.bad' 
    DISCARDFILE D_LOG:'sa_subscriber_group_map.dsc'    
    PREPROCESSOR D_BIN:'zcat'  
    FIELDS TERMINATED BY ';' OPTIONALLY ENCLOSED BY '"' 
    MISSING FIELD VALUES ARE NULL 
    ( 
      COD_DATE      CHAR(8), 
      SOURCE        CHAR(100), 
      SUBSCRIBER_ID CHAR(100), 
      GROUP_ID      CHAR(100) 
    ) 
  ) 
  LOCATION ('MSTVInv_LU_SUBS_GRP_SUBS_20160615.txt.gz')   
) 
REJECT LIMIT UNLIMITED; 

 

SA_TV_CHANNEL 

CREATE TABLE SA_TV_CHANNEL ( 
  COD_DATE              NUMBER(8,0), 
  TUNER_POSITION        NUMBER(3,0), 
  SERVICE_COLLECTION_ID VARCHAR2(100), 
  CHANNEL_MAP_ID        VARCHAR2(100) 
) 
ORGANIZATION EXTERNAL ( 
  TYPE ORACLE_LOADER 
  DEFAULT DIRECTORY D_INV 
  ACCESS PARAMETERS ( 
    RECORDS DELIMITED BY NEWLINE 
    CHARACTERSET AL32UTF8 
    LOGFILE D_LOG:'sa_tv_channel.log' 
    BADFILE D_LOG:'sa_tv_channel.bad' 
    DISCARDFILE D_LOG:'sa_tv_channel.dsc'    
    PREPROCESSOR D_BIN:'zcat'  
    FIELDS TERMINATED BY ';' OPTIONALLY ENCLOSED BY '"' 
    MISSING FIELD VALUES ARE NULL 
    ( 
      COD_DATE              CHAR(8), 
      SOURCE                CHAR(100), 
      TUNER_POSITION        CHAR(5), 
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      SERVICE_COLLECTION_ID CHAR(100), 
      CHANNEL_MAP_ID        CHAR(100) 
    ) 
  ) 
  LOCATION ('MSTVInv_LU_TVCHANNEL_20160615.txt.gz')   
) 
REJECT LIMIT UNLIMITED; 

 

Gather statistics for the Staging tables script 

BEGIN 
  FOR MyTable IN (SELECT TABLE_NAME 
                    FROM user_external_tables 
                   ORDER BY TABLE_NAME) 
  LOOP 
    DBMS_STATS.GATHER_TABLE_STATS (OWNNAME          => 'HRD',  
                                   TABNAME          => MyTable.TABLE_NAME, 
                                   ESTIMATE_PERCENT => NULL, 
                                   METHOD_OPT       => 'FOR ALL COLUMNS SIZE 1', 
                                   DEGREE           => NULL, 
                                   CASCADE          => TRUE, 
                                   NO_INVALIDATE    => FALSE);   
    DBMS_OUTPUT.PUT_LINE('Table ' || MyTable.TABLE_NAME || ' analyzed.'); 
  END LOOP;                    
END; 
/ 

 

Appendix D.5. SUPPORT TABLES 

LU_DATE 

CREATE TABLE LU_DATE ( 
  COD_DATE     NUMBER NOT NULL ENABLE,  
  DSC_DATE     VARCHAR2(20),  
  COD_WEEK     NUMBER,  
  COD_MONTH    NUMBER,  
  COD_QUARTER  NUMBER,  
  COD_SEMESTER NUMBER,  
  COD_YEAR     NUMBER,  
  CONSTRAINT PK_IOT_LU_DATE PRIMARY KEY (COD_DATE) ENABLE 
)  
ORGANIZATION INDEX NOCOMPRESS  
TABLESPACE HRD_DW_INV; 

 

LU_START_GP 

CREATE TABLE LU_START_GP ( 
  COD_START_GP    NUMBER NOT NULL ENABLE,  
  COD_GP_DURATION NUMBER NOT NULL ENABLE,  
  DSC_START_GP    VARCHAR2(50),  
  CONSTRAINT PK_START_GP PRIMARY KEY (COD_START_GP, COD_GP_DURATION) ENABLE 
) 
TABLESPACE HRD_DW_INV; 

 

Appendix D.6. INVENTORY TABLES 

SS_ASSET 

CREATE TABLE SS_ASSET 
( 
  COD_DATE              NUMBER(8,0), 
  ASSET_ID              VARCHAR2(100), 
  TITLE                 VARCHAR2(500), 
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  DESCRIPTION           VARCHAR2(1024), 
  TYPE                  VARCHAR2(25),  
  LANGUAGE              VARCHAR2(20),  
  COUNTRY_REGION        VARCHAR2(20),  
  PROVIDER_NAME         VARCHAR2(100),  
  GENRE                 VARCHAR2(100),  
  SERVICE_COLLECTION_ID VARCHAR2(50),  
  DURATION              NUMBER(4,0),  
  RELEASE_YEAR          NUMBER(4,0),  
  STUDIO                VARCHAR2(100),  
  PRICE                 NUMBER(5,2),  
  RATING                VARCHAR2(100) 
) 
PARTITION BY RANGE (COD_DATE) 
(PARTITION P&cod_date VALUES LESS THAN (&cod_date_next) TABLESPACE HRD_DW_INV); 

Data loading 

ALTER TABLE SS_ASSET TRUNCATE PARTITION P&&cod_date; 
 
INSERT /*+ APPEND */ INTO SS_ASSET PARTITION (P&&cod_date) 
SELECT COD_DATE,  
       ASSET_ID,  
       TITLE,  
       DESCRIPTION,  
       TYPE,  
       LANGUAGE,  
       COUNTRY_REGION,  
       PROVIDER_NAME,  
       GENRE,  
       SERVICE_COLLECTION_ID,  
       DURATION,  
       RELEASE_YEAR,  
       STUDIO,  
       PRICE,  
       RATING 
  FROM SA_ASSET 
 WHERE COD_DATE = &&cod_date;   
 
COMMIT; 

 

SS_CHANNEL_MAP 

CREATE TABLE SS_CHANNEL_MAP ( 
  COD_DATE       NUMBER(8,0), 
  CHANNEL_MAP_ID VARCHAR2(100), 
  DESCRITPION    VARCHAR2(100), 
  FLG_DEFAULT    NUMBER(1,0) 
) 
PARTITION BY RANGE (COD_DATE) 
(PARTITION P&cod_date VALUES LESS THAN (&cod_date_next) TABLESPACE HRD_DW_INV); 

Data loading 

ALTER TABLE SS_CHANNEL_MAP TRUNCATE PARTITION P&&cod_date; 
 
INSERT /*+ APPEND */ INTO SS_CHANNEL_MAP PARTITION (P&&cod_date) 
SELECT COD_DATE, 
       CHANNEL_MAP_ID, 
       DESCRITPION, 
       FLG_DEFAULT 
  FROM SA_CHANNEL_MAP 
 WHERE COD_DATE = &&cod_date;   
 
COMMIT; 
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SS_GROUP 

CREATE TABLE SS_GROUP ( 
  COD_DATE       NUMBER(8,0), 
  GROUP_ID       VARCHAR2(100), 
  CHANNEL_MAP_ID VARCHAR2(100), 
  INTERNAL_ID    VARCHAR2(100) 
) 
PARTITION BY RANGE (COD_DATE) 
(PARTITION P&cod_date VALUES LESS THAN (&cod_date_next) TABLESPACE HRD_DW_INV); 

Data loading 

ALTER TABLE SS_GROUP TRUNCATE PARTITION P&&cod_date; 
 
INSERT /*+ APPEND */ INTO SS_GROUP PARTITION (P&&cod_date) 
SELECT COD_DATE, 
       GROUP_ID, 
       CHANNEL_MAP_ID, 
       INTERNAL_ID 
  FROM SA_GROUP 
 WHERE COD_DATE = &&cod_date; 
 
COMMIT; 

 

SS_PROGRAM 

CREATE TABLE SS_PROGRAM 
( 
  COD_DATE    NUMBER(8,0), 
  PROGRAM_ID  VARCHAR2(100),  
  DESCRIPTION VARCHAR2(300),  
  SERVICE_ID  VARCHAR2(100) 
) 
PARTITION BY RANGE (COD_DATE) 
(PARTITION P&cod_date VALUES LESS THAN (&cod_date_next) TABLESPACE HRD_DW_INV); 

Data loading 

ALTER TABLE SS_PROGRAM TRUNCATE PARTITION P&&cod_date; 
 
INSERT /*+ APPEND */ INTO SS_PROGRAM PARTITION (P&&cod_date) 
SELECT COD_DATE,  
       PROGRAM_ID,  
       DESCRIPTION,  
       SERVICE_ID 
  FROM SA_PROGRAM 
 WHERE COD_DATE = &&cod_date;   
 
 

-- Manually insert the 'Program Measures Totalizer' that is used to aggregate global 
values from all the Programs 
INSERT INTO SS_PROGRAM 
  (COD_DATE, PROGRAM_ID, DESCRIPTION, SERVICE_ID) 
VALUES 
  (&&cod_date, '0', 'Program Measures Totalizer', 'GlobalIPTVTVService'); 
 
COMMIT; 

 

SS_SERVICE 

CREATE TABLE SS_SERVICE ( 
  COD_DATE              NUMBER(8,0), 
  SERVICE_ID            VARCHAR2(100), 
  DESCRIPTION           VARCHAR2(100), 
  VIEW_MODE             VARCHAR2(100), 
  INTENT                VARCHAR2(100), 
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  TYPE                  VARCHAR2(100), 
  MULTICAST_GRP_IP_ADDR VARCHAR2(100), 
  VIDEO_BITRATE         VARCHAR2(100), 
  AUDIO_BITRATE         VARCHAR2(100), 
  AUDIO_CODEC           VARCHAR2(100), 
  PROCESS_ID            VARCHAR2(100), 
  PROCESS_ID_CODE       VARCHAR2(100) 
) 
PARTITION BY RANGE (COD_DATE) 
(PARTITION P&cod_date VALUES LESS THAN (&cod_date_next) TABLESPACE HRD_DW_INV); 

Data loading 

ALTER TABLE SS_SERVICE TRUNCATE PARTITION P&&cod_date; 
 
INSERT /*+ APPEND */ INTO SS_SERVICE PARTITION (P&&cod_date) 
SELECT COD_DATE, 
       SERVICE_ID, 
       RTRIM(TRANSLATE(REGEXP_REPLACE(DESCRIPTION, '(pip)|(PIP)|(main)|(Main)', ''), '_', 
' ')), 
       VIEW_MODE, 
       INTENT, 
       TYPE, 
       MULTICAST_GRP_IP_ADDR, 
       VIDEO_BITRATE, 
       AUDIO_BITRATE, 
       AUDIO_CODEC, 
       PROCESS_ID, 
       PROCESS_ID_CODE 
  FROM SA_SERVICE 
 WHERE COD_DATE = &&cod_date; 
  
  
-- Manually insert the Global IPTV TV Service that is used to aggregate global values 
from all the TV Service channels 
INSERT INTO SS_SERVICE  
  (COD_DATE, SERVICE_ID, DESCRIPTION) 
VALUES  
  (&&cod_date, 'GlobalIPTVTVService', 'Global TV Service');  
 
COMMIT; 

 

SS_SERVICE_COLLECTION 

CREATE TABLE SS_SERVICE_COLLECTION ( 
  COD_DATE              NUMBER(8,0), 
  SERVICE_COLLECTION_ID VARCHAR2(100), 
  EPG_ID                VARCHAR2(100), 
  DESCRIPTION           VARCHAR2(100), 
  ID                    VARCHAR2(100) 
) 
PARTITION BY RANGE (COD_DATE) 
(PARTITION P&cod_date VALUES LESS THAN (&cod_date_next) TABLESPACE HRD_DW_INV); 

Data loading 

ALTER TABLE SS_SERVICE_COLLECTION TRUNCATE PARTITION P&&cod_date; 
 
INSERT /*+ APPEND */ INTO SS_SERVICE_COLLECTION PARTITION (P&&cod_date) 
SELECT COD_DATE, 
       SERVICE_COLLECTION_ID, 
       EPG_ID, 
       DESCRIPTION, 
       ID 
  FROM SA_SERVICE_COLLECTION 
 WHERE COD_DATE = &&cod_date;   
 
COMMIT; 
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SS_SERVICE_COLLECTION_MAP 

CREATE TABLE SS_SERVICE_COLLECTION_MAP ( 
  COD_DATE              NUMBER(8,0), 
  SERVICE_COLLECTION_ID VARCHAR2(100), 
  SERVICE_ID            VARCHAR2(100), 
  TYPE                  VARCHAR2(100), 
  SERVICE_ORDER         NUMBER(1,0) 
) 
PARTITION BY RANGE (COD_DATE) 
(PARTITION P&cod_date VALUES LESS THAN (&cod_date_next) TABLESPACE HRD_DW_INV); 

Data loading 

ALTER TABLE SS_SERVICE_COLLECTION_MAP TRUNCATE PARTITION P&&cod_date; 
 
INSERT /*+ APPEND */ INTO SS_SERVICE_COLLECTION_MAP PARTITION (P&&cod_date) 
SELECT COD_DATE, 
       SERVICE_COLLECTION_ID, 
       SERVICE_ID, 
       TYPE, 
       SERVICE_ORDER 
  FROM SA_SERVICE_COLLECTION_MAP 
 WHERE COD_DATE = &&cod_date; 
 
COMMIT; 

 

SS_STB 

CREATE TABLE SS_STB ( 
  COD_DATE      NUMBER(8,0), 
  STB_ID        VARCHAR2(100), 
  EXTERNAL_ID   VARCHAR2(100), 
  SUBSCRIBER_ID VARCHAR2(100), 
  STATUS        VARCHAR2(100), 
  VERSION       VARCHAR2(100) 
) 
PARTITION BY RANGE (COD_DATE) 
(PARTITION P&cod_date VALUES LESS THAN (&cod_date_next) TABLESPACE HRD_DW_INV); 

Data loading 

ALTER TABLE SS_STB TRUNCATE PARTITION P&&cod_date; 
 
INSERT /*+ APPEND */ INTO SS_STB PARTITION (P&&cod_date) 
SELECT COD_DATE, 
       CLIENT_ID, 
       EXTERNAL_ID, 
       SUBSCRIBER_ID, 
       STATUS, 
       VERSION 
  FROM SA_STB 
 WHERE COD_DATE = &&cod_date;   
  
COMMIT;  

 

SS_STB_GROUP_MAP 

CREATE TABLE SS_STB_GROUP_MAP ( 
  COD_DATE      NUMBER(8,0), 
  STB_ID        VARCHAR2(100), 
  GROUP_ID      VARCHAR2(100) 
) 
PARTITION BY RANGE (COD_DATE) 
(PARTITION P&cod_date VALUES LESS THAN (&cod_date_next) TABLESPACE HRD_DW_INV); 
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Data loading 

ALTER TABLE SS_STB_GROUP_MAP TRUNCATE PARTITION P&&cod_date; 
 
INSERT /*+ APPEND */ INTO SS_STB_GROUP_MAP PARTITION (P&&cod_date) 
SELECT m.COD_DATE, 
       m.SUBSCRIBER_ID STB_ID, 
       m.GROUP_ID 
  FROM SA_SUBSCRIBER_GROUP_MAP m 
 WHERE EXISTS (SELECT 1  
          FROM SS_STB s  
         WHERE m.SUBSCRIBER_ID = s.STB_ID 
           AND s.COD_DATE = &&cod_date) 
   AND m.COD_DATE = &&cod_date; 
 
COMMIT; 

 

SS_SUBSCRIBER_GROUP_MAP 

CREATE TABLE SS_SUBSCRIBER_GROUP_MAP ( 
  COD_DATE      NUMBER(8,0), 
  SUBSCRIBER_ID VARCHAR2(100), 
  GROUP_ID      VARCHAR2(100) 
) 
PARTITION BY RANGE (COD_DATE) 
(PARTITION P&cod_date VALUES LESS THAN (&cod_date_next) TABLESPACE HRD_DW_INV); 

Data loading 

ALTER TABLE SS_SUBSCRIBER_GROUP_MAP TRUNCATE PARTITION P&&cod_date; 
 
INSERT /*+ APPEND */ INTO SS_SUBSCRIBER_GROUP_MAP PARTITION (P&&cod_date) 
SELECT m.COD_DATE, 
       m.SUBSCRIBER_ID, 
       m.GROUP_ID 
  FROM SA_SUBSCRIBER_GROUP_MAP m, 
       (SELECT DISTINCT SUBSCRIBER_ID 
          FROM SS_STB  
         WHERE COD_DATE = P&&cod_date 
       ) s 
 WHERE m.SUBSCRIBER_ID = s.SUBSCRIBER_ID 
   AND m.COD_DATE = P&&cod_date; 
 
COMMIT; 

 

SS_TV_CHANNEL 

CREATE TABLE SS_TV_CHANNEL ( 
  COD_DATE              NUMBER(8,0), 
  TUNER_POSITION        NUMBER(3,0), 
  CHANNEL_MAP_ID        VARCHAR2(100),   
  SERVICE_COLLECTION_ID VARCHAR2(100) 
) 
PARTITION BY RANGE (COD_DATE) 
(PARTITION P&cod_date VALUES LESS THAN (&cod_date_next) TABLESPACE HRD_DW_INV); 

Data loading 

ALTER TABLE SS_TV_CHANNEL TRUNCATE PARTITION P&&cod_date; 
 
INSERT /*+ APPEND */ INTO SS_TV_CHANNEL PARTITION (P&&cod_date) 
SELECT COD_DATE, 
       TUNER_POSITION, 
       CHANNEL_MAP_ID, 
       SERVICE_COLLECTION_ID 
  FROM SA_TV_CHANNEL 
 WHERE COD_DATE = &&cod_date; 
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COMMIT; 

 

SS_MAP_CHANNEL_MAP_SERVICE 

CREATE TABLE SS_MAP_CHANNEL_MAP_SERVICE 
( 
  COD_DATE       NUMBER(8,0), 
  CHANNEL_MAP_ID VARCHAR2(100),  
  TUNER_POSITION NUMBER(3,0),  
  SERVICE_ID     VARCHAR2(100),  
  SERVICE_TYPE   VARCHAR2(100) 
) 
PARTITION BY RANGE (COD_DATE) 
(PARTITION P&cod_date VALUES LESS THAN (&cod_date_next) TABLESPACE HRD_DW_INV); 

Data loading 

ALTER TABLE SS_MAP_CHANNEL_MAP_SERVICE TRUNCATE PARTITION P&&cod_date; 
 
INSERT /*+ APPEND */ INTO SS_MAP_CHANNEL_MAP_SERVICE PARTITION (P&&cod_date)  
SELECT &&cod_date COD_DATE, 
       r.CHANNEL_MAP_ID,  
       r.TUNER_POSITION,  
       r.SERVICE_ID,  
       r.SERVICE_TYPE 
  FROM (SELECT ch.CHANNEL_MAP_ID, 
               ch.TUNER_POSITION, 
               svc.SERVICE_ID, 
               svc.TYPE SERVICE_TYPE, 
               ROW_NUMBER()  
               OVER (PARTITION BY ch.CHANNEL_MAP_ID, ch.TUNER_POSITION 
                         ORDER BY CASE m.TYPE 
                                    WHEN 'FULLSCREEN_PRIMARY'   THEN 1 
                                    WHEN 'FULLSCREEN_SECONDARY' THEN 2 
                                  END, 
                                  m.SERVICE_ORDER 
                    ) RN 
          FROM SS_TV_CHANNEL ch, 
               SS_SERVICE_COLLECTION col, 
               SS_SERVICE_COLLECTION_MAP m, 
               SS_SERVICE svc 
         WHERE ch.SERVICE_COLLECTION_ID = col.ID 
           AND col.SERVICE_COLLECTION_ID = m.SERVICE_COLLECTION_ID 
           AND m.SERVICE_ID = svc.SERVICE_ID 
           AND svc.VIEW_MODE = 'FULLSCREEN' 
           AND ch.COD_DATE = &&cod_date 
           AND col.COD_DATE = &&cod_date 
           AND m.COD_DATE = &&cod_date 
           AND svc.COD_DATE = &&cod_date 
      ) r 
 WHERE r.RN = 1 
 ORDER BY r.CHANNEL_MAP_ID,  
          r.TUNER_POSITION; 
           
COMMIT; 

 

SS_MAP_STB_CHANNEL_MAP 

CREATE TABLE SS_MAP_STB_CHANNEL_MAP 
( 
  COD_DATE       NUMBER(8,0), 
  STB_ID         VARCHAR2(100), 
  CHANNEL_MAP_ID VARCHAR2(100) 
) 
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PARTITION BY RANGE (COD_DATE) 
(PARTITION P&cod_date VALUES LESS THAN (&cod_date_next) TABLESPACE HRD_DW_INV); 

Data loading 

ALTER TABLE SS_MAP_STB_CHANNEL_MAP TRUNCATE PARTITION P&&cod_date; 
 
INSERT /*+ APPEND */ INTO SS_MAP_STB_CHANNEL_MAP PARTITION (P&&cod_date) 
WITH w_stb 
  AS (SELECT STB_ID, 
             SUBSCRIBER_ID 
        FROM SS_STB  
       WHERE COD_DATE = &&cod_date) 
SELECT &&cod_date COD_DATE, 
       uni.STB_ID,  
       COALESCE(m2.CHANNEL_MAP_ID, d.CHANNEL_MAP_ID) CHANNEL_MAP_ID 
  FROM w_stb uni 
  LEFT OUTER  
  JOIN (SELECT m1.STB_ID,  
               MAX(m1.CHANNEL_MAP_ID) CHANNEL_MAP_ID 
          FROM (SELECT stb.STB_ID, 
                       COALESCE(c.CHANNEL_MAP_ID, s.CHANNEL_MAP_ID) CHANNEL_MAP_ID 
                  FROM w_stb stb 
                  LEFT OUTER  
                  JOIN (SELECT sgm.SUBSCRIBER_ID, 
                               sgm.GROUP_ID, 
                               g.CHANNEL_MAP_ID 
                          FROM SS_SUBSCRIBER_GROUP_MAP sgm, 
                               SS_GROUP g 
                         WHERE sgm.GROUP_ID = g.GROUP_ID 
                           AND g.CHANNEL_MAP_ID IS NOT NULL 
                           AND sgm.COD_DATE = &&cod_date 
                           AND g.COD_DATE = &&cod_date 
                        ) s 
                    ON (stb.SUBSCRIBER_ID = s.SUBSCRIBER_ID) 
                  LEFT OUTER  
                  JOIN (SELECT cgm.STB_ID, 
                               cgm.GROUP_ID, 
                               g.CHANNEL_MAP_ID 
                          FROM SS_STB_GROUP_MAP cgm, 
                               SS_GROUP g 
                         WHERE cgm.GROUP_ID = g.GROUP_ID 
                           AND g.CHANNEL_MAP_ID IS NOT NULL 
                           AND cgm.COD_DATE = &&cod_date 
                           AND g.COD_DATE = &&cod_date 
                       ) c 
                    ON (stb.STB_ID = c.STB_ID) 
                 GROUP BY stb.STB_ID, 
                          COALESCE(c.CHANNEL_MAP_ID, s.CHANNEL_MAP_ID) 
               ) m1 
         GROUP BY STB_ID 
           HAVING COUNT(*) = 1 -- To prevent Mediaroom configurations that have the same 
STB in more than one Channel Map 
       ) m2 
    ON (uni.STB_ID = m2.STB_ID) 
 CROSS  
  JOIN (SELECT MAX(CHANNEL_MAP_ID) CHANNEL_MAP_ID 
          FROM SS_CHANNEL_MAP 
         WHERE FLG_DEFAULT = 1 
           AND COD_DATE = &&cod_date) d; -- Default channel map to STBs without Channel 
Map or wrong configuration 
 
COMMIT; 
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Appendix D.7. FACT TABLES 

FACT_ACTIVITY_EVENTS 

CREATE TABLE FACT_ACTIVITY_EVENTS 
( 
  COD_DATE              NUMBER(8,0), 
  COD_DATE_GP           NUMBER(12,0), 
  COD_START_GP          NUMBER(4,0), 
  SOURCE_TIMESTAMP      DATE, 
  STB_ID                VARCHAR2(100), 
  STB_TYPE              VARCHAR2(30), 
  EVENT_TYPE            NUMBER(3,0), 
  SERVICE_TYPE          VARCHAR2(30), 
  CHANNEL_ID            VARCHAR2(100), 
  CHANNEL_NBR           NUMBER(6,0), 
  CONTENT_ID            VARCHAR2(100), 
  STATION_ID            VARCHAR2(100), 
  VIEW_MODE             VARCHAR2(30), 
  DURATION              NUMBER(5,0), 
  EXPIRATION_DATE       DATE, 
  ACTION                VARCHAR2(30), 
  ACTION_TIMESTAMP      DATE, 
  ACTION_STATE          NUMBER, 
  CATEGORY              VARCHAR2(100), 
  APP_NAME              VARCHAR2(100), 
  MENU_ID               VARCHAR2(30), 
  RESOLUTION            VARCHAR2(30), 
  CULTURE               VARCHAR2(30), 
  DYNAMIC               VARCHAR2(10), 
  RECURRING             VARCHAR2(10), 
  INSTANCE_OF_RECURRING VARCHAR2(10), 
  FREQUENCY             VARCHAR2(10), 
  MANUAL_DELETION       VARCHAR2(10), 
  BYTES                 NUMBER (5,0), 
  TUNE_ID               VARCHAR2(100) 
) 
PARTITION BY RANGE (COD_DATE) 
SUBPARTITION BY LIST (EVENT_TYPE) 
SUBPARTITION TEMPLATE 
( SUBPARTITION S100 VALUES (100) 
    TABLESPACE HRD_DW_DAT ROW STORE COMPRESS BASIC, 
  SUBPARTITION S101 VALUES (101) 
    TABLESPACE HRD_DW_DAT ROW STORE COMPRESS BASIC, 
  SUBPARTITION S104 VALUES (104) 
    TABLESPACE HRD_DW_DAT ROW STORE COMPRESS BASIC, 
  SUBPARTITION S114 VALUES (114) 
    TABLESPACE HRD_DW_DAT ROW STORE COMPRESS BASIC, 
  SUBPARTITION S115 VALUES (115) 
    TABLESPACE HRD_DW_DAT ROW STORE COMPRESS BASIC, 
  SUBPARTITION S116 VALUES (116) 
    TABLESPACE HRD_DW_DAT ROW STORE COMPRESS BASIC, 
  SUBPARTITION S117 VALUES (117) 
    TABLESPACE HRD_DW_DAT ROW STORE COMPRESS BASIC, 
  SUBPARTITION S118 VALUES (118) 
    TABLESPACE HRD_DW_DAT ROW STORE COMPRESS BASIC, 
  SUBPARTITION S119 VALUES (119) 
    TABLESPACE HRD_DW_DAT ROW STORE COMPRESS BASIC, 
  SUBPARTITION S120 VALUES (120) 
    TABLESPACE HRD_DW_DAT ROW STORE COMPRESS BASIC, 
  SUBPARTITION PDEF VALUES (DEFAULT) 
    TABLESPACE HRD_DW_DAT ROW STORE COMPRESS BASIC 
) 
(PARTITION P&&partition_date VALUES LESS THAN (&&value_date) TABLESPACE HRD_DW_DAT ROW 
STORE COMPRESS BASIC) 
TABLESPACE HRD_DW_DAT ROW STORE COMPRESS BASIC; 
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Data loading – Event 100 

PROCEDURE load_event_100(p_cod_date IN NUMBER, p_cod_date_inv IN NUMBER DEFAULT NULL) 
IS 
  l_cod_date_inv NUMBER(8) := COALESCE(p_cod_date_inv, getInventoryDate); 
BEGIN  
  DBMS_OUTPUT.PUT_LINE('Using inventory date from ' || l_cod_date_inv);     
   
  EXECUTE IMMEDIATE 'ALTER TABLE FACT_ACTIVITY_EVENTS TRUNCATE SUBPARTITION P' || 
p_cod_date || '_S100'; 
 
  INSERT /*+ APPEND */ INTO FACT_ACTIVITY_EVENTS 
    (COD_DATE, 
     COD_DATE_GP, 
     COD_START_GP, 
     SOURCE_TIMESTAMP, 
     STB_ID, 
     STB_TYPE, 
     EVENT_TYPE, 
     SERVICE_TYPE, 
     CHANNEL_ID, 
     CHANNEL_NBR, 
     CONTENT_ID, 
     STATION_ID, 
     VIEW_MODE, 
     DURATION, 
     EXPIRATION_DATE, 
     ACTION, 
     ACTION_TIMESTAMP, 
     ACTION_STATE, 
     CATEGORY, 
     APP_NAME, 
     MENU_ID, 
     RESOLUTION, 
     CULTURE, 
     DYNAMIC, 
     RECURRING, 
     INSTANCE_OF_RECURRING, 
     FREQUENCY, 
     MANUAL_DELETION, 
     BYTES, 
     TUNE_ID) 
  SELECT /*+ NO_GATHER_OPTIMIZER_STATISTICS */ 
         sa.COD_DATE, 
         utl.CodDateGP(utl.trunc2GP(sa.SOURCE_TIMESTAMP)), 
         utl.CodStartGP(utl.trunc2GP(sa.SOURCE_TIMESTAMP)), 
         sa.SOURCE_TIMESTAMP, 
         sa.STB_ID, 
         sa.STB_TYPE, 
         sa.EVENT_TYPE, 
         --==================== SERVICE TYPE ====================-- 
         srv.SERVICE_TYPE, 
         --==================== CHANNEL ID ====================-- 
         srv.SERVICE_ID, 
         --==================== CHANNEL NBR ====================-- 
         sa.CHANNEL_NBR, 
         --==================== CONTENT ID ====================-- 
         NULL,  
         --==================== STATION ID ====================-- 
         sa.STATION_ID, 
         --==================== VIEW MODE ====================-- 
         sa.VIEW_MODE, 
         --==================== DURATION ====================-- 
         sa.DURATION, 
         --==================== EXPIRATION_DATE ====================-- 
         NULL, 
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         --==================== ACTION ====================-- 
         'Channel Tune', 
         --==================== ACTION TIMESTAMP ====================-- 
         NULL, 
         --==================== ACTION STATE ====================-- 
         sa.ACTION_STATE, 
         --==================== CATEGORY ====================-- 
         NULL, 
         --==================== APP NAME ====================-- 
         NULL, 
         --==================== MENU ID ====================-- 
         NULL, 
         --==================== RESOLUTION ====================-- 
         NULL, 
         --==================== CULTURE ====================-- 
         NULL, 
         --==================== DYNAMIC ====================-- 
         NULL, 
         --==================== RECURRING ====================-- 
         NULL, 
         --==================== INSTANCE OF RECURRING ====================-- 
         NULL, 
         --==================== FREQUENCY ====================-- 
         NULL, 
         --==================== MANUAL DELETION ====================-- 
         NULL, 
         --==================== BYTES ====================-- 
         NULL, 
         --==================== TUNE ID ====================-- 
         sa.TUNE_ID 
    FROM (SELECT evt.*,  
                 chanmap.CHANNEL_MAP_ID 
            FROM SA_ACTIVITY_EVENTS evt 
            LEFT OUTER 
            JOIN SS_MAP_STB_CHANNEL_MAP chanmap 
              ON (evt.STB_ID = chanmap.STB_ID AND 
                  chanmap.COD_DATE = l_cod_date_inv) 
           WHERE evt.EVENT_TYPE = 100 /*Channel Tune Event*/ 
             AND evt.COD_DATE = p_cod_date) sa  
    LEFT OUTER 
    JOIN SS_MAP_CHANNEL_MAP_SERVICE srv 
      ON (sa.CHANNEL_NBR = srv.TUNER_POSITION AND 
          sa.CHANNEL_MAP_ID = srv.CHANNEL_MAP_ID AND 
          srv.COD_DATE = l_cod_date_inv); 
 
  COMMIT; 
END; 

Data loading – Event 101 

PROCEDURE load_event_101(p_cod_date IN NUMBER) 
IS 
BEGIN 
 
  EXECUTE IMMEDIATE 'ALTER TABLE FACT_ACTIVITY_EVENTS TRUNCATE SUBPARTITION P' || 
p_cod_date || '_S101'; 
 
  INSERT /*+ APPEND */ INTO FACT_ACTIVITY_EVENTS 
    (COD_DATE, 
     COD_DATE_GP, 
     COD_START_GP, 
     SOURCE_TIMESTAMP, 
     STB_ID, 
     STB_TYPE, 
     EVENT_TYPE, 
     SERVICE_TYPE, 
     CHANNEL_ID, 
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     CHANNEL_NBR, 
     CONTENT_ID, 
     STATION_ID, 
     VIEW_MODE, 
     DURATION, 
     EXPIRATION_DATE, 
     ACTION, 
     ACTION_TIMESTAMP, 
     ACTION_STATE, 
     CATEGORY, 
     APP_NAME, 
     MENU_ID, 
     RESOLUTION, 
     CULTURE, 
     DYNAMIC, 
     RECURRING, 
     INSTANCE_OF_RECURRING, 
     FREQUENCY, 
     MANUAL_DELETION, 
     BYTES, 
     TUNE_ID) 
  SELECT /*+ NO_GATHER_OPTIMIZER_STATISTICS */ 
         sa.COD_DATE, 
         utl.CodDateGP(utl.trunc2GP(sa.SOURCE_TIMESTAMP)), 
         utl.CodStartGP(utl.trunc2GP(sa.SOURCE_TIMESTAMP)), 
         sa.SOURCE_TIMESTAMP, 
         sa.STB_ID, 
         sa.STB_TYPE, 
         sa.EVENT_TYPE, 
         --==================== SERVICE TYPE ====================-- 
         NULL, 
         --==================== CHANNEL ID ====================-- 
         NULL, 
         --==================== CHANNEL NBR ====================-- 
         NULL, 
         --==================== CONTENT ID ====================-- 
         NULL, 
         --==================== STATION ID ====================-- 
         NULL, 
         --==================== VIEW MODE ====================-- 
         NULL, 
         --==================== DURATION ====================-- 
         NULL, 
         --==================== EXPIRATION_DATE ====================-- 
         NULL, 
         --==================== ACTION ====================-- 
         sa.ACTION, 
         --==================== ACTION TIMESTAMP ====================--        
         sa.SOURCE_TIMESTAMP, 
         --==================== ACTION STATE ====================-- 
         1, 
          --==================== CATEGORY ====================-- 
         NULL, 
         --==================== APP NAME ====================-- 
         NULL, 
         --==================== MENU ID ====================-- 
         NULL, 
         --==================== RESOLUTION ====================-- 
         NULL, 
         --==================== CULTURE ====================-- 
         NULL, 
         --==================== DYNAMIC ====================-- 
         NULL, 
         --==================== RECURRING ====================-- 
         NULL, 
         --==================== INSTANCE OF RECURRING ====================-- 
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         NULL, 
         --==================== FREQUENCY ====================-- 
         NULL, 
         --==================== MANUAL DELETION ====================-- 
         NULL, 
         --==================== BYTES ====================-- 
         NULL, 
         --==================== TUNE ID ====================-- 
         NULL 
    FROM SA_ACTIVITY_EVENTS sa 
   WHERE sa.EVENT_TYPE = 101 -- Set-top Box Power (On/Off) 
     AND sa.COD_DATE = p_cod_date; 
 
  COMMIT; 
END; 

Data loading – Event 104 

PROCEDURE load_event_104(p_cod_date IN NUMBER, p_cod_date_inv IN NUMBER DEFAULT NULL) 
IS 
  l_cod_date_inv  NUMBER(8) := COALESCE(p_cod_date_inv, getInventoryDate); 
BEGIN 
  DBMS_OUTPUT.PUT_LINE('Using inventory date from ' || l_cod_date_inv);     
   
  EXECUTE IMMEDIATE 'ALTER TABLE FACT_ACTIVITY_EVENTS TRUNCATE SUBPARTITION P' || 
p_cod_date || '_S104'; 
 
  INSERT /*+ APPEND */ INTO FACT_ACTIVITY_EVENTS 
    (COD_DATE, 
     COD_DATE_GP, 
     COD_START_GP, 
     SOURCE_TIMESTAMP, 
     STB_ID, 
     STB_TYPE, 
     EVENT_TYPE, 
     SERVICE_TYPE, 
     CHANNEL_ID, 
     CHANNEL_NBR, 
     CONTENT_ID, 
     STATION_ID, 
     VIEW_MODE, 
     DURATION, 
     EXPIRATION_DATE, 
     ACTION, 
     ACTION_TIMESTAMP, 
     ACTION_STATE, 
     CATEGORY, 
     APP_NAME, 
     MENU_ID, 
     RESOLUTION, 
     CULTURE, 
     DYNAMIC, 
     RECURRING, 
     INSTANCE_OF_RECURRING, 
     FREQUENCY, 
     MANUAL_DELETION, 
     BYTES, 
     TUNE_ID) 
  SELECT /*+ NO_GATHER_OPTIMIZER_STATISTICS */ 
         sa.COD_DATE, 
         utl.CodDateGP(utl.trunc2GP(sa.SOURCE_TIMESTAMP)), 
         utl.CodStartGP(utl.trunc2GP(sa.SOURCE_TIMESTAMP)), 
         sa.SOURCE_TIMESTAMP, 
         sa.STB_ID, 
         sa.STB_TYPE, 
         sa.EVENT_TYPE, 
         --==================== SERVICE TYPE ====================-- 
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         CASE WHEN vod.ASSET_ID IS NOT NULL  
           THEN 'VOD' 
           ELSE typ.SERVICE_TYPE 
         END SERVICE_TYPE, 
         --==================== CHANNEL ID ====================-- 
         NULL, 
         --==================== CHANNEL NBR ====================-- 
         NULL, 
         --==================== CONTENT ID ====================-- 
         sa.CONTENT_ID, 
         --==================== STATION ID ====================-- 
         NULL, 
         --==================== VIEW MODE ====================-- 
         NULL, 
         --==================== DURATION ====================-- 
         NULL, 
         --==================== EXPIRATION_DATE ====================-- 
         NULL, 
         --==================== ACTION ====================-- 
         sa.ACTION, 
         --==================== ACTION TIMESTAMP ====================--        
         sa.SOURCE_TIMESTAMP, 
         --==================== ACTION STATE ====================-- 
         1, 
          --==================== CATEGORY ====================-- 
         NULL, 
         --==================== APP NAME ====================-- 
         NULL, 
         --==================== MENU ID ====================-- 
         NULL, 
         --==================== RESOLUTION ====================-- 
         NULL, 
         --==================== CULTURE ====================-- 
         NULL, 
         --==================== DYNAMIC ====================-- 
         NULL, 
         --==================== RECURRING ====================-- 
         NULL, 
         --==================== INSTANCE OF RECURRING ====================-- 
         NULL, 
         --==================== FREQUENCY ====================-- 
         NULL, 
         --==================== MANUAL DELETION ====================-- 
         NULL, 
         --==================== BYTES ====================-- 
         NULL, 
         --==================== TUNE ID ====================-- 
         NULL 
    FROM SA_ACTIVITY_EVENTS sa 
    LEFT OUTER 
    JOIN SS_ASSET vod 
      ON (sa.CONTENT_ID = vod.ASSET_ID AND  
          vod.COD_DATE = l_cod_date_inv) 
    LEFT OUTER 
    JOIN (SELECT col.ID,  
                 MAX(svc.TYPE) SERVICE_TYPE 
            FROM SS_SERVICE_COLLECTION col, 
                 SS_SERVICE_COLLECTION_MAP m, 
                 SS_SERVICE svc 
           WHERE col.COD_DATE = l_cod_date_inv 
             AND col.SERVICE_COLLECTION_ID = m.SERVICE_COLLECTION_ID 
             AND m.COD_DATE = l_cod_date_inv 
             AND m.SERVICE_ID = svc.SERVICE_ID 
             AND svc.COD_DATE = l_cod_date_inv 
             AND svc.VIEW_MODE NOT LIKE 'PIP%' 
           GROUP BY col.ID 



147 

         ) typ 
      ON (sa.CONTENT_ID = typ.ID) 
   WHERE sa.EVENT_TYPE = 104 -- Trick State 
     AND sa.COD_DATE = p_cod_date; 
 
  COMMIT; 
END; 

Data loading – Event 114 

PROCEDURE load_event_114(p_cod_date IN NUMBER, p_cod_date_inv IN NUMBER DEFAULT NULL) 
IS 
  l_cod_date_prev NUMBER(8) := TO_CHAR(TO_DATE(p_cod_date, 'YYYYMMDD') - 1, 'YYYYMMDD'); 
  l_cod_date_inv  NUMBER(8) := COALESCE(p_cod_date_inv, getInventoryDate); 
BEGIN 
  DBMS_OUTPUT.PUT_LINE('Using inventory date from ' || l_cod_date_inv);     
   
  EXECUTE IMMEDIATE 'ALTER TABLE FACT_ACTIVITY_EVENTS TRUNCATE SUBPARTITION P' || 
p_cod_date || '_S114'; 
 
  INSERT /*+ APPEND */ INTO FACT_ACTIVITY_EVENTS 
    (COD_DATE, 
     COD_DATE_GP, 
     COD_START_GP, 
     SOURCE_TIMESTAMP, 
     STB_ID, 
     STB_TYPE, 
     EVENT_TYPE, 
     SERVICE_TYPE, 
     CHANNEL_ID, 
     CHANNEL_NBR, 
     CONTENT_ID, 
     STATION_ID, 
     VIEW_MODE, 
     DURATION, 
     EXPIRATION_DATE, 
     ACTION, 
     ACTION_TIMESTAMP, 
     ACTION_STATE, 
     CATEGORY, 
     APP_NAME, 
     MENU_ID, 
     RESOLUTION, 
     CULTURE, 
     DYNAMIC, 
     RECURRING, 
     INSTANCE_OF_RECURRING, 
     FREQUENCY, 
     MANUAL_DELETION, 
     BYTES, 
     TUNE_ID) 
  SELECT /*+ NO_GATHER_OPTIMIZER_STATISTICS */ 
         sa.COD_DATE, 
         utl.CodDateGP(utl.trunc2GP(sa.SOURCE_TIMESTAMP)), 
         utl.CodStartGP(utl.trunc2GP(sa.SOURCE_TIMESTAMP)), 
         sa.SOURCE_TIMESTAMP, 
         sa.STB_ID, 
         sa.STB_TYPE, 
         sa.EVENT_TYPE, 
         --==================== SERVICE TYPE ====================-- 
         COALESCE(fact.SERVICE_TYPE, vod.TYPE), 
         --==================== CHANNEL ID ====================-- 
         -- CHANNEL_ID for EVENT_TYPE 114 is the SERVICE_ID of the matching EVENT_TYPE 
100 
         fact.SERVICE_ID, 
         --==================== CHANNEL NBR ====================-- 
         NULL, 
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         --==================== CONTENT ID ====================-- 
         sa.CONTENT_ID, 
         --==================== STATION ID ====================-- 
         NULL, 
         --==================== VIEW MODE ====================-- 
         COALESCE(sa.VIEW_MODE, fact.VIEW_MODE), 
         --==================== DURATION ====================-- 
         sa.DURATION, 
         --==================== EXPIRATION_DATE ====================-- 
         NULL, 
         --==================== ACTION ====================-- 
         'Program Transition', 
         --==================== ACTION TIMESTAMP ====================-- 
         NULL, 
         --==================== ACTION STATE ====================-- 
         1, -- Success 
         --==================== CATEGORY ====================-- 
         NULL, 
         --==================== APP NAME ====================-- 
         NULL, 
         --==================== MENU ID ====================-- 
         NULL, 
         --==================== RESOLUTION ====================-- 
         NULL, 
         --==================== CULTURE ====================-- 
         NULL, 
         --==================== DYNAMIC ====================-- 
         NULL, 
         --==================== RECURRING ====================-- 
         NULL, 
         --==================== INSTANCE OF RECURRING ====================-- 
         NULL, 
         --==================== FREQUENCY ====================-- 
         NULL, 
         --==================== MANUAL DELETION ====================-- 
         NULL, 
         --==================== BYTES ====================-- 
         NULL, 
         --==================== TUNE ID ====================-- 
         sa.TUNE_ID 
    FROM SA_ACTIVITY_EVENTS sa 
    LEFT OUTER -- STB_ID/TUNE_ID is unique for each event 100 
    JOIN (SELECT STB_ID, TUNE_ID, CHANNEL_ID SERVICE_ID, SERVICE_TYPE, VIEW_MODE 
            FROM FACT_ACTIVITY_EVENTS 
           WHERE EVENT_TYPE = 100 -- Channel Tune 
             AND COD_DATE BETWEEN l_cod_date_prev AND p_cod_date 
         ) fact 
      ON (sa.STB_ID = fact.STB_ID AND sa.TUNE_ID = fact.TUNE_ID) 
    LEFT OUTER -- Joining with VoDs to get a better definition of the service type for 
VoDs 
    JOIN SS_ASSET vod 
      ON (vod.COD_DATE = l_cod_date_inv AND  
          sa.CONTENT_ID = vod.ASSET_ID) 
   WHERE sa.EVENT_TYPE = 114 -- Program Transition 
     AND sa.COD_DATE = p_cod_date; 
 
  COMMIT; 
END; 

Data loading – Event DVR 

PROCEDURE load_event_dvr(p_cod_date IN NUMBER, p_cod_date_inv IN NUMBER DEFAULT NULL) 
IS 
  l_cod_date_inv  NUMBER(8) := COALESCE(p_cod_date_inv, getInventoryDate); 
BEGIN 
 
  DBMS_OUTPUT.PUT_LINE('Using inventory date from ' || l_cod_date_inv);     
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  EXECUTE IMMEDIATE 'ALTER TABLE FACT_ACTIVITY_EVENTS TRUNCATE SUBPARTITION P' || 
p_cod_date || '_S115'; 
  EXECUTE IMMEDIATE 'ALTER TABLE FACT_ACTIVITY_EVENTS TRUNCATE SUBPARTITION P' || 
p_cod_date || '_S116'; 
  EXECUTE IMMEDIATE 'ALTER TABLE FACT_ACTIVITY_EVENTS TRUNCATE SUBPARTITION P' || 
p_cod_date || '_S117'; 
  EXECUTE IMMEDIATE 'ALTER TABLE FACT_ACTIVITY_EVENTS TRUNCATE SUBPARTITION P' || 
p_cod_date || '_S118'; 
  EXECUTE IMMEDIATE 'ALTER TABLE FACT_ACTIVITY_EVENTS TRUNCATE SUBPARTITION P' || 
p_cod_date || '_S119'; 
  EXECUTE IMMEDIATE 'ALTER TABLE FACT_ACTIVITY_EVENTS TRUNCATE SUBPARTITION P' || 
p_cod_date || '_S120';  
 
  INSERT /*+ APPEND */ INTO FACT_ACTIVITY_EVENTS 
    (COD_DATE, 
     COD_DATE_GP, 
     COD_START_GP, 
     SOURCE_TIMESTAMP, 
     STB_ID, 
     STB_TYPE, 
     EVENT_TYPE, 
     SERVICE_TYPE, 
     CHANNEL_ID, 
     CHANNEL_NBR, 
     CONTENT_ID, 
     STATION_ID, 
     VIEW_MODE, 
     DURATION, 
     EXPIRATION_DATE, 
     ACTION, 
     ACTION_TIMESTAMP, 
     ACTION_STATE, 
     CATEGORY, 
     APP_NAME, 
     MENU_ID, 
     RESOLUTION, 
     CULTURE, 
     DYNAMIC, 
     RECURRING, 
     INSTANCE_OF_RECURRING, 
     FREQUENCY, 
     MANUAL_DELETION, 
     BYTES, 
     TUNE_ID) 
  SELECT /*+ NO_GATHER_OPTIMIZER_STATISTICS */ 
         sa.COD_DATE, 
         utl.CodDateGP(utl.trunc2GP(sa.SOURCE_TIMESTAMP)), 
         utl.CodStartGP(utl.trunc2GP(sa.SOURCE_TIMESTAMP)), 
         sa.SOURCE_TIMESTAMP, 
         sa.STB_ID, 
         sa.STB_TYPE, 
         sa.EVENT_TYPE, 
         --==================== SERVICE TYPE ====================-- 
         sm.SERVICE_TYPE, 
         --==================== CHANNEL ID ====================-- 
         sm.SERVICE_ID, 
         --==================== CHANNEL NBR ====================-- 
         NULL, 
         --==================== CONTENT ID ====================-- 
         sa.CONTENT_ID, 
         --==================== STATION ID ====================-- 
         sa.STATION_ID,        
         --==================== VIEW MODE ====================-- 
         NULL, 
         --==================== DURATION ====================-- 
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         CASE 
           WHEN sa.EVENT_TYPE IN (115, 118, 120) THEN 
             sa.DURATION 
         END DURATION, 
         --==================== EXPIRATION_DATE ====================-- 
         NULL, 
         --==================== ACTION ====================-- 
         CASE 
           WHEN sa.EVENT_TYPE = 115 THEN 'DVR Start Recording' 
           WHEN sa.EVENT_TYPE = 116 THEN 'DVR Abort Recording' 
           WHEN sa.EVENT_TYPE = 117 THEN 'DVR Playback Recording' 
           WHEN sa.EVENT_TYPE = 118 THEN 'DVR Schedule Recording' 
           WHEN sa.EVENT_TYPE = 119 THEN 'DVR Delete Recording' 
           WHEN sa.EVENT_TYPE = 120 THEN 'DVR Cancel Recording' 
         END ACTION, 
         --==================== ACTION TIMESTAMP ====================-- 
         CASE 
           WHEN sa.EVENT_TYPE IN (116, 118, 119, 120) THEN 
             sa.ACTION_TIMESTAMP 
           ELSE 
             sa.SOURCE_TIMESTAMP 
         END ACTION_TIMESTAMP, 
         --==================== ACTION STATE ====================-- 
         1, 
          --==================== CATEGORY ====================-- 
         NULL, 
         --==================== APP NAME ====================-- 
         NULL, 
         --==================== MENU ID ====================-- 
         NULL, 
         --==================== RESOLUTION ====================-- 
         NULL, 
         --==================== CULTURE ====================-- 
         NULL, 
         --==================== DYNAMIC ====================-- 
         CASE 
           WHEN sa.EVENT_TYPE IN (115, 118, 120) THEN 
             sa.DYNAMIC 
         END DYNAMIC, 
         --==================== RECURRING ====================-- 
         CASE 
           WHEN sa.EVENT_TYPE IN (115, 118, 120) THEN 
             sa.RECURRING 
         END RECURRING, 
         --==================== INSTANCE OF RECURRING ====================-- 
         CASE 
           WHEN sa.EVENT_TYPE IN (120) THEN 
             sa.INSTANCE_OF_RECURRING 
         END INSTANCE_OF_RECURRING, 
         --==================== FREQUENCY ====================-- 
         CASE 
           WHEN sa.EVENT_TYPE IN (118, 120) THEN 
             sa.FREQUENCY 
         END FREQUENCY, 
         --==================== MANUAL DELETION ====================-- 
         CASE 
           WHEN sa.EVENT_TYPE IN (119) THEN 
             sa.MANUAL_DELETION 
         END MANUAL_DELETION, 
         --==================== BYTES ====================-- 
         CASE 
           WHEN sa.EVENT_TYPE IN (119) THEN 
             sa.BYTES 
         END BYTES, 
         --==================== TUNE ID ====================-- 
         NULL 
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    FROM SA_ACTIVITY_EVENTS sa 
    LEFT OUTER 
    JOIN (SELECT s.SERVICE_ID, 
                 s.TYPE SERVICE_TYPE, 
                 e.EPG_ID 
            FROM SS_SERVICE s 
           INNER JOIN (SELECT col.EPG_ID, 
                              MAX(svc.SERVICE_ID) SERVICE_ID 
                         FROM SS_SERVICE svc, 
                              SS_SERVICE_COLLECTION_MAP scm, 
                              SS_SERVICE_COLLECTION col 
                        WHERE svc.COD_DATE = l_cod_date_inv 
                          AND svc.VIEW_MODE = 'FULLSCREEN' 
                          AND svc.SERVICE_ID = scm.SERVICE_ID 
                          AND scm.COD_DATE = l_cod_date_inv 
                          AND scm.SERVICE_COLLECTION_ID = col.SERVICE_COLLECTION_ID 
                          AND col.COD_DATE = l_cod_date_inv 
                        GROUP BY col.EPG_ID) e 
              ON (s.SERVICE_ID = e.SERVICE_ID) 
           WHERE s.COD_DATE = l_cod_date_inv 
         ) sm   
      ON (sa.STATION_ID = sm.EPG_ID) 
   WHERE sa.EVENT_TYPE IN (115, 116, 117, 118, 119, 120) -- DVR related events 
     AND sa.COD_DATE = p_cod_date; 
 
  COMMIT; 
END; 

 

FACT_EVT_SEGMENTED 

CREATE TABLE FACT_EVT_SEGMENTED 
( 
  COD_DATE         NUMBER(8,0), 
  COD_DATE_GP      NUMBER(12,0), 
  COD_START_GP     NUMBER(4,0), 
  COD_GP_DURATION  NUMBER(2,0), 
  EVENT_TYPE       NUMBER(3,0), 
  SERVICE_TYPE     VARCHAR2(20), 
  SERVICE_ID       VARCHAR2(100), 
  CONTENT_ID       VARCHAR2(100), 
  STB_ID           VARCHAR2(100), 
  SOURCE_TIMESTAMP DATE, 
  DURATION         NUMBER(5,0), 
  TOTAL_DURATION   NUMBER(5,0) 
) 
PARTITION BY LIST (EVENT_TYPE) 
( 
  PARTITION P100 VALUES (100) 
    TABLESPACE HRD_DW_SEG ROW STORE COMPRESS BASIC, 
  PARTITION P114 VALUES (114) 
    TABLESPACE HRD_DW_SEG ROW STORE COMPRESS BASIC, 
  PARTITION PDEF VALUES (DEFAULT) 
    TABLESPACE HRD_DW_SEG ROW STORE COMPRESS BASIC 
) 
TABLESPACE HRD_DW_SEG ROW STORE COMPRESS BASIC; 

Data loading 

PROCEDURE load_segmented (p_cod_date IN NUMBER, p_event_type IN NUMBER DEFAULT 100)  
IS 
  l_cod_date_prev NUMBER(8) := TO_CHAR(TO_DATE(p_cod_date, 'YYYYMMDD') - 1, 'YYYYMMDD'); 
BEGIN 
  EXECUTE IMMEDIATE 'TRUNCATE TABLE FACT_EVT_SEGMENTED'; 
   
  INSERT /*+ APPEND */ INTO FACT_EVT_SEGMENTED 
      ( COD_DATE, 
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        COD_DATE_GP, 
        COD_START_GP, 
        COD_GP_DURATION, 
        EVENT_TYPE, 
        SERVICE_TYPE, 
        SERVICE_ID, 
        CONTENT_ID, 
        STB_ID, 
        SOURCE_TIMESTAMP, 
        DURATION, 
        TOTAL_DURATION 
      ) 
  SELECT /*+ NO_GATHER_OPTIMIZER_STATISTICS */ *  
    FROM (SELECT gp.COD_DATE,  
                 gp.COD_DATE_GP,  
                 gp.COD_START_GP,  
                 gp.COD_GP_DURATION,  
                 evt.EVENT_TYPE,  
                 evt.SERVICE_TYPE,  
                 evt.CONTENT_ID, 
                 evt.CHANNEL_ID SERVICE_ID,  
                 evt.STB_ID,  
                 evt.SOURCE_TIMESTAMP,  
                 ROUND(LEAST(300, (MY_END_DATE - DATE_GP) * 24 * 60 * 60) - GREATEST(0, 
(MY_START_DATE - DATE_GP) * 24 * 60 * 60)) DURATION,  
                 evt.DURATION TOTAL_DURATION  
            FROM (SELECT GREATEST(ae.SOURCE_TIMESTAMP, TO_DATE(p_cod_date, 'YYYYMMDD')) 
MY_START_DATE,  
                         LEAST(ae.SOURCE_TIMESTAMP + DURATION / 60 / 60 / 24, 
TO_DATE(p_cod_date, 'YYYYMMDD') + 1) MY_END_DATE,  
                         TO_NUMBER(TO_CHAR(utl.trunc2GP(GREATEST(ae.SOURCE_TIMESTAMP, 
TO_DATE(p_cod_date, 'YYYYMMDD'))), 'YYYYMMDDHH24MI')) MY_START_DATE_GP,  
                         TO_NUMBER(TO_CHAR(utl.trunc2GP(LEAST(ae.SOURCE_TIMESTAMP + 
ae.DURATION / 60 / 60 / 24, TO_DATE(p_cod_date, 'YYYYMMDD') + 1)), 'YYYYMMDDHH24MI')) 
MY_END_DATE_GP,  
                         ae.*  
                    FROM FACT_ACTIVITY_EVENTS ae 
                   WHERE COD_DATE BETWEEN l_cod_date_prev AND p_cod_date  
                     AND EVENT_TYPE IN (p_event_type)  
                     AND VIEW_MODE NOT LIKE 'PIP%'  
                     AND DURATION > 0 
                     AND ROWNUM > 0 -- Forces materialization of the inner select and 
speeds up the statement 
                 ) evt,  
                 (SELECT y.COD_DATE, 
                         y.COD_DATE * 10000 + y.COD_START_GP COD_DATE_GP,  
                         y.COD_START_GP, 
                         y.COD_GP_DURATION, 
                         TO_DATE(y.COD_DATE * 10000 + y.COD_START_GP, 'YYYYMMDDHH24MI') 
DATE_GP 
                    FROM (SELECT l_cod_date_prev COD_DATE, 
                                 COD_START_GP,  
                                 COD_GP_DURATION, 
                                 ROW_NUMBER() OVER (PARTITION BY NULL ORDER BY 
COD_START_GP) RN 
                            FROM LU_START_GP 
                           WHERE COD_GP_DURATION = 5 
                         ) y -- Previous day. We only need 3 hours of GPs because the 
events are truncated to a maximum of 3 hours 
                   WHERE y.RN >= (1440 / y.COD_GP_DURATION) - (180 / y.COD_GP_DURATION - 
1) 
                  UNION ALL  
                  SELECT t.COD_DATE, 
                         t.COD_DATE * 10000 + t.COD_START_GP COD_DATE_GP,  
                         t.COD_START_GP, 
                         t.COD_GP_DURATION, 
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                         TO_DATE(t.COD_DATE * 10000 + t.COD_START_GP, 'YYYYMMDDHH24MI') 
DATE_GP 
                    FROM (SELECT p_cod_date COD_DATE, 
                                 COD_START_GP,  
                                 COD_GP_DURATION        
                            FROM LU_START_GP 
                           WHERE COD_GP_DURATION = 5 
                         ) t -- Current day 
                 ) gp 
           WHERE gp.COD_DATE_GP >= evt.MY_START_DATE_GP  
             AND gp.COD_DATE_GP <= evt.MY_END_DATE_GP) f  
   WHERE f.DURATION > 0; 
 
  COMMIT; 
END; 

 

Appendix D.8. AGGREGATION TABLES 

AG_LIVE_RATING_DY 

CREATE TABLE AG_LIVE_RATING_DY 
( 
  COD_DATE    NUMBER,  
  SERVICE_ID  VARCHAR2(100),  
  PROGRAM_ID  VARCHAR2(100),    
  RNK_PROGRAM NUMBER, 
  AVG_VIEWERS NUMBER 
)   
PARTITION BY RANGE (COD_DATE)   
( 
  PARTITION P&&partition_date VALUES LESS THAN (&&value_date) TABLESPACE HRD_DW_AGG 
) 
TABLESPACE HRD_DW_AGG; 

Data loading 

PROCEDURE load_ag_live_rating_dy (p_cod_date     IN NUMBER,  
                                  p_cod_date_inv IN NUMBER DEFAULT getInventoryDate, 
                                  p_max_rank     IN NUMBER DEFAULT 100) 
IS 
BEGIN   
  DBMS_OUTPUT.PUT_LINE('Using inventory date from ' || p_cod_date_inv);     
   
  EXECUTE IMMEDIATE 'ALTER TABLE AG_LIVE_RATING_DY TRUNCATE PARTITION P' || p_cod_date; 
 
  INSERT /*+ APPEND */ 
    INTO AG_LIVE_RATING_DY 
       ( COD_DATE, 
         SERVICE_ID, 
         PROGRAM_ID, 
         RNK_PROGRAM, 
         AVG_VIEWERS) 
  WITH dat  
    AS (SELECT COD_DATE,  
               CASE WHEN GRP_ID = 0 THEN SERVICE_ID ELSE 'GlobalIPTVTVService' END 
SERVICE_ID,  
               CASE WHEN GRP_ID = 0 THEN CONTENT_ID ELSE '0' END PROGRAM_ID,  
               GRP_ID, 
               ROUND(AVG(NBR_STBS)) AVG_VIEWERS 
          FROM (SELECT COD_DATE,  
                       COD_DATE_GP,  
                       COD_START_GP,  
                       COD_GP_DURATION,  
                       SERVICE_ID,  
                       CONTENT_ID,  
                       GROUPING_ID(COD_DATE, COD_DATE_GP, COD_START_GP, COD_GP_DURATION, 
SERVICE_ID, CONTENT_ID) GRP_ID, 
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                       COALESCE(COUNT(DISTINCT STB_ID), 0) NBR_STBS 
                  FROM FACT_EVT_SEGMENTED 
                 WHERE COD_DATE = p_cod_date 
                   AND EVENT_TYPE = 114 -- Program Transition 
                   AND SERVICE_TYPE = 'LIVE' -- Just Live TV 
                 GROUP BY GROUPING SETS ((COD_DATE, COD_DATE_GP, COD_START_GP, 
COD_GP_DURATION, SERVICE_ID, CONTENT_ID),  
                                         (COD_DATE, COD_GP_DURATION)) 
               ) 
         GROUP BY COD_DATE,  
                  SERVICE_ID,  
                  CONTENT_ID,  
                  GRP_ID 
       ) 
  SELECT /*+ NO_GATHER_OPTIMIZER_STATISTICS */ *  
    FROM (SELECT f.COD_DATE,  
                 f.SERVICE_ID,  
                 f.PROGRAM_ID,  
                 DENSE_RANK() OVER (PARTITION BY GRP_ID ORDER BY AVG_VIEWERS DESC) 
RNK_PROGRAM, 
                 AVG_VIEWERS 
            FROM dat f 
           INNER JOIN SS_SERVICE s -- Excluding non-existent TV Channels 
              ON (f.SERVICE_ID = s.SERVICE_ID AND 
                  s.COD_DATE = p_cod_date_inv)   
           INNER JOIN SS_PROGRAM p -- Excluding non-existent Programs 
              ON (f.PROGRAM_ID = p.PROGRAM_ID AND 
                  p.COD_DATE = p_cod_date_inv) 
         ) 
   WHERE RNK_PROGRAM <= p_max_rank 
   ORDER BY AVG_VIEWERS DESC; 
             
  COMMIT; 
END; 

 

AG_LIVE_REACH_DY 

CREATE TABLE AG_LIVE_REACH_DY 
( 
  COD_DATE    NUMBER,  
  SERVICE_ID  VARCHAR2(100),  
  RNK_SERVICE NUMBER, 
  NBR_VIEWERS NUMBER 
)   
PARTITION BY RANGE (COD_DATE)   
( 
  PARTITION P&&partition_date VALUES LESS THAN (&&value_date) TABLESPACE HRD_DW_AGG 
) 
TABLESPACE HRD_DW_AGG; 

Data loading 

PROCEDURE load_ag_live_reach_dy (p_cod_date IN NUMBER) 
IS 
  l_cod_date_prev NUMBER(8) := TO_CHAR(TO_DATE(p_cod_date, 'YYYYMMDD') - 1, 'YYYYMMDD'); 
BEGIN 
   
  EXECUTE IMMEDIATE 'ALTER TABLE AG_LIVE_REACH_DY TRUNCATE PARTITION P' || p_cod_date; 
 
  INSERT /*+ APPEND */ 
    INTO AG_LIVE_REACH_DY 
       ( COD_DATE, 
         SERVICE_ID, 
         RNK_SERVICE, 
         NBR_VIEWERS) 
  SELECT /*+ NO_GATHER_OPTIMIZER_STATISTICS */ 
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         p_cod_date COD_DATE,  
         f.SERVICE_ID, 
         DENSE_RANK() OVER (PARTITION BY f.GRP_ID ORDER BY f.NBR_VIEWERS DESC) 
RNK_SERVICE, 
         NBR_VIEWERS 
    FROM (SELECT CASE WHEN GROUPING_ID(CHANNEL_ID) > 0 THEN 'GlobalIPTVTVService' ELSE 
CHANNEL_ID END SERVICE_ID,  
                 GROUPING_ID(CHANNEL_ID) GRP_ID, 
                 COUNT(DISTINCT STB_ID) NBR_VIEWERS 
            FROM FACT_ACTIVITY_EVENTS 
           WHERE EVENT_TYPE = 100 
             AND SERVICE_TYPE = 'LIVE' 
             AND ((COD_DATE = p_cod_date) OR  
                  (COD_DATE = l_cod_date_prev AND TRUNC(SOURCE_TIMESTAMP + 
(DURATION/86400)) > TO_DATE(COD_DATE, 'YYYYMMDD'))) 
           GROUP BY GROUPING SETS ((CHANNEL_ID), ()) 
         ) f 
    ORDER BY NBR_VIEWERS DESC; 
           
  COMMIT; 
END; 

 

AG_LIVE_SHARE_GP 

CREATE TABLE AG_LIVE_SHARE_GP 
( 
  COD_DATE        NUMBER,  
  COD_START_GP    NUMBER,  
  COD_GP_DURATION NUMBER,  
  SERVICE_ID      VARCHAR2(100),  
  NBR_SUBSCRIBERS NUMBER,  
  NBR_VIEWERS     NUMBER,  
  DUR_VIEWING     NUMBER 
)   
PARTITION BY RANGE (COD_DATE)   
( 
  PARTITION P&&partition_date VALUES LESS THAN (&&value_date) TABLESPACE HRD_DW_AGG 
) 
TABLESPACE HRD_DW_AGG; 

Data loading 

PROCEDURE load_ag_live_share_gp(p_cod_date IN NUMBER, p_cod_date_inv IN NUMBER DEFAULT 
NULL) 
IS 
  l_cod_date_inv NUMBER(8) := COALESCE(p_cod_date_inv, getInventoryDate); 
BEGIN     
  DBMS_OUTPUT.PUT_LINE('Using inventory date from ' || l_cod_date_inv);     
   
  EXECUTE IMMEDIATE 'ALTER TABLE AG_LIVE_SHARE_GP TRUNCATE PARTITION P' || p_cod_date; 
 
  INSERT /*+ APPEND */ 
    INTO AG_LIVE_SHARE_GP 
       ( COD_DATE, 
         COD_START_GP, 
         COD_GP_DURATION, 
         SERVICE_ID, 
         NBR_SUBSCRIBERS, 
         NBR_VIEWERS, 
         DUR_VIEWING)             
  SELECT /*+ NO_GATHER_OPTIMIZER_STATISTICS */ 
         fact.COD_DATE, 
         fact.COD_START_GP, 
         fact.COD_GP_DURATION, 
         DECODE(GROUPING(fact.SERVICE_ID), 0, fact.SERVICE_ID, 'GlobalIPTVTVService') 
SERVICE_ID, 
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         COALESCE(COUNT (DISTINCT stb.SUBSCRIBER_ID), 0) NBR_SUBSCRIBERS, 
         COALESCE(COUNT (DISTINCT fact.STB_ID), 0) NBR_VIEWERS, 
         COALESCE(SUM(fact.DURATION), 0) DUR_VIEWING 
    FROM FACT_EVT_SEGMENTED fact 
   INNER JOIN SS_STB stb 
      ON (fact.STB_ID = stb.STB_ID AND 
          stb.COD_DATE = l_cod_date_inv) 
   WHERE fact.COD_DATE = p_cod_date 
     AND fact.EVENT_TYPE = 100  /* Channel Tune Event */ 
     AND fact.SERVICE_TYPE = 'LIVE' 
   GROUP BY fact.COD_DATE, 
            fact.COD_START_GP, 
            fact.COD_GP_DURATION, 
            ROLLUP(fact.SERVICE_ID); 
             
  COMMIT; 
END; 

 

Appendix D.9. SUPPORT PROCEDURES 

Package UTL 

CREATE OR REPLACE PACKAGE BODY utl  
IS 
  ------------------------------------------------------------------------------ 
  -- Name:        trunc2GP 
  -- Description: Truncs a given date to the closest Granularity Period 
  -- Parameters:  p_gp_duration: Granularity Period size in minutes (eg.: 5) 
  --              p_date:        Date to be truncated 
  ------------------------------------------------------------------------------ 
  FUNCTION trunc2GP(p_date        DATE   DEFAULT SYSDATE, 
                    p_gp_duration NUMBER DEFAULT 5) RETURN DATE DETERMINISTIC  
  IS 
  BEGIN 
    RETURN p_date - MOD(TO_NUMBER(TO_CHAR(p_date, 'SSSSS')), p_gp_duration * 60) / (60 * 
60 * 24); 
  END; 
 
  ------------------------------------------------------------------------------ 
  -- Name:        CodDateGP 
  -- Description: Returns a COD_DATE_GP identifier (YYYYMMDDHH24MI) from a  
  --              given date 
  -- Parameters:  p_date: date to be formated 
  ------------------------------------------------------------------------------ 
  FUNCTION CodDateGP(p_date DATE DEFAULT SYSDATE) RETURN NUMBER RESULT_CACHE 
DETERMINISTIC  
  IS 
  BEGIN 
    RETURN TO_NUMBER(TO_CHAR(p_date, 'YYYYMMDDHH24MI')); 
  END; 
 
  ------------------------------------------------------------------------------ 
  -- Name:        CodStartGP 
  -- Description: Returns a COD_START_GP identifier (HH24MI) from a given date 
  -- Parameters:  p_date: date to be formated 
  ------------------------------------------------------------------------------ 
  FUNCTION CodStartGP(p_date DATE DEFAULT SYSDATE) RETURN NUMBER RESULT_CACHE 
DETERMINISTIC  
  IS 
  BEGIN 
    RETURN TO_NUMBER(TO_CHAR(p_date, 'HH24MI')); 
  END; 
 
  ------------------------------------------------------------------------------ 
  -- Name:        getInventoryDate 
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  -- Description: Gets the last date populated in the inventory tables 
  -- Parameters:  (none) 
  ------------------------------------------------------------------------------ 
  FUNCTION getInventoryDate RETURN NUMBER RESULT_CACHE DETERMINISTIC 
  IS 
    l_cod_date_inv NUMBER; 
  BEGIN 
    SELECT MAX(COD_DATE)  
      INTO l_cod_date_inv 
      FROM SS_CHANNEL_MAP; 
       
    RETURN l_cod_date_inv; 
  END;     
 
END utl; 
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Appendix D.10. EXECUTION PLANS 

 

 
Figure 9.1. Channel Tune transformation execution plan 

 

 
Figure 9.2. Program Watched transformation execution plan 
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Figure 9.3. DVR Events transformation execution plan 
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Figure 9.4. Event Segmentation execution plan 

 

 
Figure 9.5. Audiences Aggregation execution plan  
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Appendix E.  HADOOP CLUSTER IMPLEMENTATION 

Appendix E.1. STORAGE OPTIONS ANALYSIS 

In order to achieve a better balance between performance and storage size, in the implementation of 

the physical model, we need to consider and test several storage options available in Hive. As it was 

done for Oracle, in Appendix D.1, here we performed the same tests and analyzed the results. 

The storage options available for creating tables in Hive are vast and we analyzed some of the most 

frequently used. Besides the storage of data as simple text files, we took a look at the Record Columnar 

File (RCFile) and at the Optimized Row Columnar (ORC), the latter with two possible compression 

formats, Zlib (ORC-Z) and Snappy (ORC-S). The ORC format, by design, already compresses data by 

grouping rows of data in stripes, stores metadata and it is optimized to handle projection clauses 

defined on Hive statements thus enabling efficient reads that require just a subset of columns (Huai et 

al., 2014). 

The first test comprises of loading and transforming a compressed text file of 32MB (its uncompressed 

size is 200MB) containing Channel Tune events (section 4.5.6.1). Because we are loading a single 

compressed file all the executions used only a single Mapper. 

File format Execution time (s) Size (MB) Compression ratio 

Text 44 244 1.0 : 1.0 

RCFile 43 220 1.1: 1.0 

ORC 46 40 6.1: 1.0 

ORC-Z 48 17 14.1 : 1.0 

ORC-S 49 26 9.5 : 1.0 

Table 9.46. Hive 'write' compression test 

From the analysis of Table 9.46 we can see that the ORC format, even without any extra compression, 

offers great compression ratios. Ratios that can even be largely improved by using, for example, the 

Zlib compression. Regarding performance, and due to the simplicity of the test, our findings are not 

conclusive, even though a small degradation can be observed in more compressed formats, when 

compared to less compressed formats. 

Using the tables generated by our first test as source, the second test attempts to assess the 

performance implications in a process that, not only writes its output in a compressed format, but also 

reads its source data from compressed formats. The process used as test subject corresponds to the 

Event Segmentation described in section 4.5.6.3. 

Compression Execution time (s) Size (MB) 

From/To Text RCFile ORC ORC-Z ORC-S Source Target 

Text 77 59 58 59 55 244 831 

RCFile 63 60 55 54 53 220 775 

ORC 74 73 69 61 60 40 81 

ORC-Z 174 161 161 161 149 17 23 

ORC-S 170 168 162 163 166 26 33 

Table 9.47. Hive 'read/write' compression test 
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Table 9.47 shows the results of the Event Segmentation process in the possible combinations of read 

and write using the several file formats subject of the analysis. Since this test only used one file as 

source, the performance of uncompressed data against compressed data cannot be performed in a 

linear way. With just one file, compressed formats (ORC-Z and ORC-S) cannot be split for processing 

between several nodes and therefore the timings in Table 9.47 were obtained with ten Mapper tasks 

for the first three formats (Text, RCFile and ORC) while only one Mapper task was used for the 

compressed ORC formats (Zlib and Snappy). Regarding processing parallelization, it is also important 

to highlight that, while for text files the split is done by chuncks of data, defined by their size, ORC files 

are split by stripes. 

From the analysis of Table 9.47 it is obvious the enormous gains we can obtain by using the ORC format. 

Gains that can even be extended by using the extra compression of Zlib or Snappy. Zlib once again is 

able to compress the original data to smaller sizes and it is slightly faster than Snappy for reads but 

slower for writes. 

With the gathered results, we decided to store our fact tables using ORC without any extra 

compression. When compared to the best compression obtained in the tests performed for Oracle 

(Appendix D.1) the ORC format will already give us enormous savings in storage space. 
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Appendix E.2. STAGING AREA TABLES 

SA_ACTIVITY_EVENTS 

CREATE EXTERNAL TABLE IF NOT EXISTS SA_ACTIVITY_EVENTS 
( 
  COD_DATE              INT, 
  SOURCE_TIMESTAMP      TIMESTAMP, 
  STB_ID                VARCHAR(100), 
  STB_TYPE              VARCHAR(100), 
  EVENT_TYPE            SMALLINT, 
  CHANNEL_ID            VARCHAR(100), 
  CHANNEL_NBR           INT, 
  CONTENT_ID            VARCHAR(100), 
  STATION_ID            VARCHAR(100), 
  VIEW_MODE             VARCHAR(100), 
  DURATION              SMALLINT, 
  EXPIRATION_DATE       TIMESTAMP, 
  ACTION                VARCHAR(100), 
  ACTION_TIMESTAMP      TIMESTAMP, 
  ACTION_STATE          VARCHAR(100), 
  CATEGORY              VARCHAR(100), 
  APP_NAME              VARCHAR(100), 
  MENU_ID               VARCHAR(100), 
  RESOLUTION            VARCHAR(100), 
  CULTURE               VARCHAR(100), 
  DYNAMIC               VARCHAR(100), 
  RECURRING             VARCHAR(100), 
  INSTANCE_OF_RECURRING VARCHAR(100), 
  FREQUENCY             VARCHAR(100), 
  MANUAL_DELETION       VARCHAR(100), 
  BYTES                 SMALLINT, 
  TUNE_ID               VARCHAR(100) 
) 
COMMENT 'Activity Logs Source File' 
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.OpenCSVSerde' 
WITH SERDEPROPERTIES ( 
   "separatorChar" = "\;", 
   "quoteChar"     = "\"", 
   "escapeChar"    = "\\" 
)   
STORED AS TEXTFILE 
LOCATION '/user/hrd/sa/sa_activity_events'; 

 

SA_ASSET 

CREATE EXTERNAL TABLE IF NOT EXISTS SA_ASSET 
( 
  COD_DATE              INT, 
  SOURCE                VARCHAR(100), 
  ASSET_ID              VARCHAR(100), 
  TITLE                 VARCHAR(500), 
  DESCRIPTION           VARCHAR(1024), 
  TYPE                  VARCHAR(25),  
  LANGUAGE              VARCHAR(20),  
  COUNTRY_REGION        VARCHAR(20),  
  PROVIDER_NAME         VARCHAR(100),  
  GENRE                 VARCHAR(100),  
  SERVICE_COLLECTION_ID VARCHAR(50),  
  DURATION              SMALLINT,  
  RELEASE_YEAR          SMALLINT,  
  STUDIO                VARCHAR(100),  
  PRICE                 DECIMAL(5,2),  
  RATING                VARCHAR(100) 
) 



164 

COMMENT 'Asset list' 
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.OpenCSVSerde' 
WITH SERDEPROPERTIES ( 
   "separatorChar" = ";", 
   "quoteChar"     = "\"", 
   "escapeChar"    = "\\" 
)   
STORED AS TEXTFILE 
LOCATION '/user/hrd/sa/sa_asset'; 

 

SA_CHANNEL_MAP 

CREATE EXTERNAL TABLE IF NOT EXISTS SA_CHANNEL_MAP 
( 
  COD_DATE        INT, 
  SOURCE          VARCHAR(100), 
  CHANNEL_MAP_ID  VARCHAR(100), 
  DESCRITPION     VARCHAR(100), 
  FLG_DEFAULT     TINYINT 
) 
COMMENT 'Channel Maps' 
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.OpenCSVSerde' 
WITH SERDEPROPERTIES ( 
   "separatorChar" = ";", 
   "quoteChar"     = "\"", 
   "escapeChar"    = "\\" 
)   
STORED AS TEXTFILE 
LOCATION '/user/hrd/sa/sa_channel_map'; 

 

SA_GROUP 

CREATE EXTERNAL TABLE IF NOT EXISTS SA_GROUP 
( 
  COD_DATE        INT, 
  SOURCE          VARCHAR(100), 
  GROUP_ID        VARCHAR(100), 
  CHANNEL_MAP_ID  VARCHAR(100), 
  INTERNAL_ID     VARCHAR(100) 
) 
COMMENT 'Groups' 
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.OpenCSVSerde' 
WITH SERDEPROPERTIES ( 
   "separatorChar" = ";", 
   "quoteChar"     = "\"", 
   "escapeChar"    = "\\" 
)   
STORED AS TEXTFILE 
LOCATION '/user/hrd/sa/sa_group'; 

 

SA_PROGRAM 

CREATE EXTERNAL TABLE IF NOT EXISTS SA_PROGRAM 
( 
  COD_DATE    INT, 
  SOURCE      VARCHAR(100), 
  PROGRAM_ID  VARCHAR(100),  
  DESCRIPTION VARCHAR(300),  
  SERVICE_ID  VARCHAR(100) 
) 
COMMENT 'Program list' 
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.OpenCSVSerde' 
WITH SERDEPROPERTIES ( 
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   "separatorChar" = ";", 
   "quoteChar"     = "\"", 
   "escapeChar"    = "\\" 
)   
STORED AS TEXTFILE 
LOCATION '/user/hrd/sa/sa_program'; 

 

SA_SERVICE 

CREATE EXTERNAL TABLE IF NOT EXISTS SA_SERVICE 
( 
  COD_DATE              INT, 
  SOURCE                VARCHAR(100), 
  SERVICE_ID            VARCHAR(100), 
  DESCRIPTION           VARCHAR(100), 
  VIEW_MODE             VARCHAR(100), 
  INTENT                VARCHAR(100), 
  TYPE                  VARCHAR(100), 
  MULTICAST_GRP_IP_ADDR VARCHAR(100), 
  VIDEO_BITRATE         VARCHAR(100), 
  AUDIO_BITRATE         VARCHAR(100), 
  AUDIO_CODEC           VARCHAR(100), 
  PROCESS_ID            VARCHAR(100), 
  PROCESS_ID_CODE       VARCHAR(100) 
) 
COMMENT 'Services' 
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.OpenCSVSerde' 
WITH SERDEPROPERTIES ( 
   "separatorChar" = ";", 
   "quoteChar"     = "\"", 
   "escapeChar"    = "\\" 
)   
STORED AS TEXTFILE 
LOCATION '/user/hrd/sa/sa_service'; 

 

SA_SERVICE_COLLECTION 

CREATE EXTERNAL TABLE IF NOT EXISTS SA_SERVICE_COLLECTION 
( 
  COD_DATE              INT, 
  SOURCE                VARCHAR(100), 
  ID                    VARCHAR(100), 
  SERVICE_COLLECTION_ID VARCHAR(100), 
  DESCRIPTION           VARCHAR(100), 
  EPG_ID                VARCHAR(100) 
) 
COMMENT 'Service Collections' 
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.OpenCSVSerde' 
WITH SERDEPROPERTIES ( 
   "separatorChar" = ";", 
   "quoteChar"     = "\"", 
   "escapeChar"    = "\\" 
)   
STORED AS TEXTFILE 
LOCATION '/user/hrd/sa/sa_service_collection'; 

 

SA_SERVICE_COLLECTION_MAP 

CREATE EXTERNAL TABLE IF NOT EXISTS SA_SERVICE_COLLECTION_MAP 
( 
  COD_DATE              INT, 
  SOURCE                VARCHAR(100), 
  SERVICE_ID            VARCHAR(100), 
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  SERVICE_COLLECTION_ID VARCHAR(100), 
  TYPE                  VARCHAR(100), 
  SERVICE_ORDER         SMALLINT 
) 
COMMENT 'Service Collection Mappings' 
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.OpenCSVSerde' 
WITH SERDEPROPERTIES ( 
   "separatorChar" = ";", 
   "quoteChar"     = "\"", 
   "escapeChar"    = "\\" 
)   
STORED AS TEXTFILE 
LOCATION '/user/hrd/sa/sa_service_collection_map'; 

 

SA_STB 

CREATE EXTERNAL TABLE IF NOT EXISTS SA_STB 
( 
  COD_DATE      INT, 
  SOURCE        VARCHAR(100), 
  CLIENT_ID     VARCHAR(100), 
  EXTERNAL_ID   VARCHAR(100), 
  SUBSCRIBER_ID VARCHAR(100), 
  STATUS        VARCHAR(100), 
  VERSION       VARCHAR(100) 
) 
COMMENT 'STBs inventory' 
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.OpenCSVSerde' 
WITH SERDEPROPERTIES ( 
   "separatorChar" = ";", 
   "quoteChar"     = "\"", 
   "escapeChar"    = "\\" 
)   
STORED AS TEXTFILE 
LOCATION '/user/hrd/sa/sa_stb'; 

 

SA_SUBSCRIBER_GROUP_MAP 

CREATE EXTERNAL TABLE IF NOT EXISTS SA_SUBSCRIBER_GROUP_MAP 
( 
  COD_DATE      INT, 
  SOURCE        VARCHAR(100), 
  SUBSCRIBER_ID VARCHAR(100), 
  GROUP_ID      VARCHAR(100) 
) 
COMMENT 'Subscriber-Group Mapping' 
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.OpenCSVSerde' 
WITH SERDEPROPERTIES ( 
   "separatorChar" = ";", 
   "quoteChar"     = "\"", 
   "escapeChar"    = "\\" 
)   
STORED AS TEXTFILE 
LOCATION '/user/hrd/sa/sa_subscriber_group_map'; 

 

SA_TV_CHANNEL 

CREATE EXTERNAL TABLE IF NOT EXISTS SA_TV_CHANNEL 
( 
  COD_DATE              INT, 
  SOURCE                VARCHAR(100), 
  TUNER_POSITION        INT, 
  SERVICE_COLLECTION_ID VARCHAR(100), 



167 

  CHANNEL_MAP_ID        VARCHAR(100) 
) 
COMMENT 'TV Channels' 
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.OpenCSVSerde' 
WITH SERDEPROPERTIES ( 
   "separatorChar" = ";", 
   "quoteChar"     = "\"", 
   "escapeChar"    = "\\" 
)   
STORED AS TEXTFILE 
LOCATION '/user/hrd/sa/sa_tv_channel'; 

 

Appendix E.3. SUPPORT TABLES 

LU_DATE 

CREATE TABLE IF NOT EXISTS LU_DATE 
( 
  COD_DATE      INT, 
  DSC_DATE      VARCHAR(10), 
  COD_WEEK      INT, 
  COD_MONTH     INT, 
  COD_QUARTER   INT, 
  COD_SEMESTER  INT, 
  COD_YEAR      INT 
) 
COMMENT 'Dates' 
STORED AS ORC 
LOCATION '/user/hrd/dw/lu_date' 
TBLPROPERTIES ('orc.compress'='NONE'); 

 

LU_START_GP 

CREATE TABLE IF NOT EXISTS LU_START_GP 
( 
  COD_START_GP    INT, 
  COD_GP_DURATION SMALLINT, 
  DSC_START_GP    VARCHAR(20) 
) 
COMMENT 'Granularity Periods' 
STORED AS ORC 
LOCATION '/user/hrd/dw/lu_start_gp' 
TBLPROPERTIES ('orc.compress'='NONE'); 

 

Appendix E.4. INVENTORY TABLES 

SS_ASSET 

CREATE TABLE IF NOT EXISTS SS_ASSET 
( 
  ASSET_ID              VARCHAR(100), 
  TITLE                 VARCHAR(500), 
  DESCRIPTION           VARCHAR(1024), 
  TYPE                  VARCHAR(25),  
  LANGUAGE              VARCHAR(20),  
  COUNTRY_REGION        VARCHAR(20),  
  PROVIDER_NAME         VARCHAR(100),  
  GENRE                 VARCHAR(100),  
  SERVICE_COLLECTION_ID VARCHAR(50),  
  DURATION              SMALLINT,  
  RELEASE_YEAR          SMALLINT,  
  STUDIO                VARCHAR(100),  
  PRICE                 DECIMAL(5,2),  
  RATING                VARCHAR(100) 
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) 
COMMENT 'Asset list' 
PARTITIONED BY (COD_DATE INT) 
STORED AS ORC 
LOCATION '/user/hrd/dw/ss_asset' 
TBLPROPERTIES ('orc.compress'='NONE'); 

Data loading 

INSERT OVERWRITE TABLE SS_ASSET PARTITION (COD_DATE = ${hiveconf:COD_DATE}) 
SELECT CASE WHEN ASSET_ID = '' THEN NULL ELSE ASSET_ID END, 
       CASE WHEN TITLE = '' THEN NULL ELSE TITLE END, 
       CASE WHEN DESCRIPTION = '' THEN NULL ELSE DESCRIPTION END, 
       CASE WHEN TYPE = '' THEN NULL ELSE TYPE END, 
       CASE WHEN LANGUAGE = '' THEN NULL ELSE LANGUAGE END, 
       CASE WHEN COUNTRY_REGION = '' THEN NULL ELSE COUNTRY_REGION END, 
       CASE WHEN PROVIDER_NAME = '' THEN NULL ELSE PROVIDER_NAME END, 
       CASE WHEN GENRE = '' THEN NULL ELSE GENRE END, 
       CASE WHEN SERVICE_COLLECTION_ID = '' THEN NULL ELSE SERVICE_COLLECTION_ID END, 
       CASE WHEN DURATION = '' THEN 0 ELSE DURATION END, 
       CASE WHEN RELEASE_YEAR = '' THEN NULL ELSE RELEASE_YEAR END, 
       CASE WHEN STUDIO = '' THEN NULL ELSE STUDIO END, 
       CASE WHEN PRICE = '' THEN 0 ELSE PRICE END, 
       CASE WHEN RATING = '' THEN NULL ELSE RATING END 
  FROM SA_ASSET 
 WHERE COD_DATE = ${hiveconf:COD_DATE}; 

 

SS_CHANNEL_MAP 

CREATE TABLE SS_CHANNEL_MAP 
( 
  CHANNEL_MAP_ID  VARCHAR(100), 
  DESCRITPION     VARCHAR(100), 
  FLG_DEFAULT     TINYINT 
) 
PARTITIONED BY (COD_DATE INT) 
STORED AS ORC 
LOCATION '/user/hrd/dw/ss_channel_map' 
TBLPROPERTIES ('orc.compress'='NONE'); 

Data loading 

INSERT OVERWRITE TABLE SS_CHANNEL_MAP PARTITION (COD_DATE = ${hiveconf:COD_DATE}) 
SELECT CHANNEL_MAP_ID, 
       DESCRITPION, 
       FLG_DEFAULT 
  FROM SA_CHANNEL_MAP 
 WHERE COD_DATE = ${hiveconf:COD_DATE}; 

 

SS_GROUP 

CREATE TABLE IF NOT EXISTS SS_GROUP 
( 
  GROUP_ID        VARCHAR(100), 
  CHANNEL_MAP_ID  VARCHAR(100), 
  INTERNAL_ID     VARCHAR(100) 
 ) 
PARTITIONED BY (COD_DATE INT) 
STORED AS ORC 
LOCATION '/user/hrd/dw/ss_group' 
TBLPROPERTIES ('orc.compress'='NONE'); 

Data loading 

INSERT OVERWRITE TABLE SS_GROUP PARTITION (COD_DATE = ${hiveconf:COD_DATE}) 
SELECT GROUP_ID, 
       CASE WHEN CHANNEL_MAP_ID = '' THEN NULL ELSE CHANNEL_MAP_ID END, 
       CASE WHEN INTERNAL_ID = '' THEN NULL ELSE INTERNAL_ID END 
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  FROM SA_GROUP 
 WHERE COD_DATE = ${hiveconf:COD_DATE}; 

 

SS_PROGRAM 

CREATE TABLE IF NOT EXISTS SS_PROGRAM 
( 
  PROGRAM_ID  VARCHAR(100),  
  DESCRIPTION VARCHAR(300),  
  SERVICE_ID  VARCHAR(100) 
) 
COMMENT 'Program list' 
PARTITIONED BY (COD_DATE INT) 
STORED AS ORC 
LOCATION '/user/hrd/dw/ss_program' 
TBLPROPERTIES ('orc.compress'='NONE'); 

Data loading 

INSERT OVERWRITE TABLE SS_PROGRAM PARTITION (COD_DATE = ${hiveconf:COD_DATE}) 
SELECT CASE WHEN PROGRAM_ID = '' THEN NULL ELSE PROGRAM_ID END, 
       CASE WHEN DESCRIPTION = '' THEN NULL ELSE DESCRIPTION END, 
       CASE WHEN SERVICE_ID = '' THEN NULL ELSE SERVICE_ID END 
  FROM SA_PROGRAM 
 WHERE COD_DATE = ${hiveconf:COD_DATE}; 

 

-- Manually insert the 'Program Measures Totalizer' that is used to aggregate global 
values from all the Programs 
INSERT INTO TABLE SS_PROGRAM  
PARTITION (COD_DATE = ${hiveconf:COD_DATE}) 
  (program_id, description, service_id) 
VALUES  
  ('0', 'Program Measures Totalizer', 'GlobalIPTVTVService'); 

 

SS_SERVICE 

CREATE TABLE SS_SERVICE 
( 
  SERVICE_ID            VARCHAR(100), 
  DESCRIPTION           VARCHAR(100), 
  VIEW_MODE             VARCHAR(100), 
  INTENT                VARCHAR(100), 
  TYPE                  VARCHAR(100), 
  MULTICAST_GRP_IP_ADDR VARCHAR(100), 
  VIDEO_BITRATE         VARCHAR(100), 
  AUDIO_BITRATE         VARCHAR(100), 
  AUDIO_CODEC           VARCHAR(100), 
  PROCESS_ID            VARCHAR(100), 
  PROCESS_ID_CODE       VARCHAR(100) 
) 
PARTITIONED BY (COD_DATE INT) 
STORED AS ORC 
LOCATION '/user/hrd/dw/ss_service' 
TBLPROPERTIES ('orc.compress'='NONE'); 

Data loading 

INSERT OVERWRITE TABLE SS_SERVICE PARTITION (COD_DATE = ${hiveconf:COD_DATE}) 
SELECT CASE WHEN SERVICE_ID = '' THEN NULL ELSE SERVICE_ID END, 
       CASE WHEN DESCRIPTION = '' THEN NULL ELSE 
RTRIM(TRANSLATE(REGEXP_REPLACE(DESCRIPTION, '(pip)|(PIP)|(main)|(Main)', ''), '_', ' '))  
END, 
       CASE WHEN VIEW_MODE = '' THEN NULL ELSE VIEW_MODE END, 
       CASE WHEN INTENT = '' THEN NULL ELSE INTENT END, 
       CASE WHEN TYPE = '' THEN NULL ELSE TYPE END, 
       CASE WHEN MULTICAST_GRP_IP_ADDR = '' THEN NULL ELSE MULTICAST_GRP_IP_ADDR END, 
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       CASE WHEN VIDEO_BITRATE = '' THEN NULL ELSE VIDEO_BITRATE END, 
       CASE WHEN AUDIO_BITRATE = '' THEN NULL ELSE AUDIO_BITRATE END, 
       CASE WHEN AUDIO_CODEC = '' THEN NULL ELSE AUDIO_CODEC END, 
       CASE WHEN PROCESS_ID = '' THEN NULL ELSE PROCESS_ID END, 
       CASE WHEN PROCESS_ID_CODE = '' THEN NULL ELSE PROCESS_ID_CODE END 
  FROM SA_SERVICE 
 WHERE COD_DATE = ${hiveconf:COD_DATE}; 

 

-- Manually insert the Global IPTV TV Service that is used to aggregate global values 
from all the TV Service channels 
INSERT INTO TABLE SS_SERVICE  
PARTITION (COD_DATE = ${hiveconf:COD_DATE}) 
  (service_id, description) 
VALUES  
  ('GlobalIPTVTVService', 'Global TV Service'); 

 

SS_SERVICE_COLLECTION 

CREATE TABLE SS_SERVICE_COLLECTION 
( 
  SERVICE_COLLECTION_ID VARCHAR(100), 
  EPG_ID                VARCHAR(100), 
  DESCRIPTION           VARCHAR(100), 
  ID                    VARCHAR(100) 
) 
PARTITIONED BY (COD_DATE INT) 
STORED AS ORC 
LOCATION '/user/hrd/dw/ss_service_collection' 
TBLPROPERTIES ('orc.compress'='NONE'); 

Data loading 

INSERT OVERWRITE TABLE SS_SERVICE_COLLECTION PARTITION (COD_DATE = ${hiveconf:COD_DATE}) 
SELECT CASE WHEN SERVICE_COLLECTION_ID = '' THEN NULL ELSE SERVICE_COLLECTION_ID END, 
       CASE WHEN EPG_ID = '' THEN NULL ELSE EPG_ID END, 
       CASE WHEN DESCRIPTION = '' THEN NULL ELSE DESCRIPTION END, 
       CASE WHEN ID = '' THEN NULL ELSE ID END 
  FROM SA_SERVICE_COLLECTION 
 WHERE COD_DATE = ${hiveconf:COD_DATE}; 

 

SS_SERVICE_COLLECTION_MAP 

CREATE TABLE SS_SERVICE_COLLECTION_MAP 
( 
  SERVICE_COLLECTION_ID VARCHAR(100), 
  SERVICE_ID            VARCHAR(100), 
  TYPE                  VARCHAR(100), 
  SERVICE_ORDER         SMALLINT 
) 
PARTITIONED BY (COD_DATE INT) 
STORED AS ORC 
LOCATION '/user/hrd/dw/ss_service_collection_map' 
TBLPROPERTIES ('orc.compress'='NONE'); 

Data loading 

INSERT OVERWRITE TABLE SS_SERVICE_COLLECTION_MAP PARTITION (COD_DATE = 
${hiveconf:COD_DATE}) 
SELECT CASE WHEN SERVICE_COLLECTION_ID = '' THEN NULL ELSE SERVICE_COLLECTION_ID END, 
       CASE WHEN SERVICE_ID = '' THEN NULL ELSE SERVICE_ID END, 
       CASE WHEN TYPE = '' THEN NULL ELSE TYPE END, 
       SERVICE_ORDER 
  FROM SA_SERVICE_COLLECTION_MAP 
 WHERE COD_DATE = ${hiveconf:COD_DATE}; 
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SS_STB 

CREATE TABLE IF NOT EXISTS SS_STB  
( 
  STB_ID VARCHAR(100), 
  EXTERNAL_ID VARCHAR(100), 
  SUBSCRIBER_ID VARCHAR(100), 
  STATUS VARCHAR(100), 
  VERSION VARCHAR(100) 
) 
PARTITIONED BY (COD_DATE INT) 
STORED AS ORC 
LOCATION '/user/hrd/dw/ss_stb' 
TBLPROPERTIES ('orc.compress'='NONE'); 

Data loading 

INSERT OVERWRITE TABLE SS_STB PARTITION (COD_DATE = ${hiveconf:COD_DATE}) 
SELECT CASE WHEN CLIENT_ID = '' THEN NULL ELSE CLIENT_ID END STB_ID, 
       CASE WHEN EXTERNAL_ID = '' THEN NULL ELSE EXTERNAL_ID END, 
       CASE WHEN SUBSCRIBER_ID = '' THEN NULL ELSE SUBSCRIBER_ID END, 
       CASE WHEN STATUS = '' THEN NULL ELSE STATUS END, 
       CASE WHEN VERSION = '' THEN NULL ELSE VERSION END 
  FROM SA_STB 
 WHERE COD_DATE = ${hiveconf:COD_DATE}; 

 

SS_STB_GROUP_MAP 

CREATE TABLE IF NOT EXISTS SS_STB_GROUP_MAP 
( 
  STB_ID VARCHAR(100), 
  GROUP_ID  VARCHAR(100) 
) 
PARTITIONED BY (COD_DATE INT) 
STORED AS ORC 
LOCATION '/user/hrd/dw/ss_stb_group_map' 
TBLPROPERTIES ('orc.compress'='NONE'); 

Data loading 

INSERT OVERWRITE TABLE SS_STB_GROUP_MAP PARTITION (COD_DATE = ${hiveconf:COD_DATE}) 
SELECT SUBSCRIBER_ID STB_ID, 
       GROUP_ID 
  FROM SA_SUBSCRIBER_GROUP_MAP m 
 WHERE EXISTS (SELECT 1  
                 FROM SS_STB s  
                WHERE m.SUBSCRIBER_ID = s.STB_ID 
                  AND s.COD_DATE = ${hiveconf:COD_DATE}) 
   AND m.COD_DATE = ${hiveconf:COD_DATE}; 

 

SS_SUBSCRIBER_GROUP_MAP 

CREATE TABLE IF NOT EXISTS SS_SUBSCRIBER_GROUP_MAP 
( 
  SUBSCRIBER_ID VARCHAR(100), 
  GROUP_ID      VARCHAR(100) 
) 
PARTITIONED BY (COD_DATE INT) 
STORED AS ORC 
LOCATION '/user/hrd/dw/ss_subscriber_group_map' 
TBLPROPERTIES ('orc.compress'='NONE'); 

Data loading 

INSERT OVERWRITE TABLE SS_SUBSCRIBER_GROUP_MAP PARTITION (COD_DATE = 
${hiveconf:COD_DATE}) 
SELECT m.SUBSCRIBER_ID, 
       m.GROUP_ID 
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  FROM SA_SUBSCRIBER_GROUP_MAP m, 
       (SELECT DISTINCT SUBSCRIBER_ID  
          FROM SS_STB  
         WHERE COD_DATE = ${hiveconf:COD_DATE} 
       ) s 
 WHERE m.SUBSCRIBER_ID = s.SUBSCRIBER_ID 
   AND m.COD_DATE = ${hiveconf:COD_DATE}; 

 

SS_TV_CHANNEL 

CREATE TABLE SS_TV_CHANNEL 
( 
  TUNER_POSITION        INT, 
  CHANNEL_MAP_ID        VARCHAR(100), 
  SERVICE_COLLECTION_ID VARCHAR(100) 
) 
PARTITIONED BY (COD_DATE INT) 
STORED AS ORC 
LOCATION '/user/hrd/dw/ss_tv_channel' 
TBLPROPERTIES ('orc.compress'='NONE'); 

Data loading 

INSERT OVERWRITE TABLE SS_TV_CHANNEL PARTITION (COD_DATE = ${hiveconf:COD_DATE}) 
SELECT TUNER_POSITION, 
       CASE WHEN CHANNEL_MAP_ID = '' THEN NULL ELSE CHANNEL_MAP_ID END, 
       CASE WHEN SERVICE_COLLECTION_ID= '' THEN NULL ELSE SERVICE_COLLECTION_ID END 
  FROM SA_TV_CHANNEL 
 WHERE COD_DATE = ${hiveconf:COD_DATE}; 

 

SS_MAP_CHANNEL_MAP_SERVICE 

CREATE TABLE SS_MAP_CHANNEL_MAP_SERVICE 
( 
  CHANNEL_MAP_ID VARCHAR(100),  
  TUNER_POSITION INT,  
  SERVICE_ID VARCHAR(100),  
  SERVICE_TYPE VARCHAR(100) 
) 
PARTITIONED BY (COD_DATE INT) 
STORED AS ORC 
LOCATION '/user/hrd/dw/ss_map_channel_map_service' 
TBLPROPERTIES ('orc.compress'='NONE'); 

Data loading 

INSERT OVERWRITE TABLE SS_MAP_CHANNEL_MAP_SERVICE PARTITION (COD_DATE = 
${hiveconf:COD_DATE})  
SELECT r.CHANNEL_MAP_ID,  
       r.TUNER_POSITION,  
       r.SERVICE_ID,  
       r.SERVICE_TYPE 
  FROM (SELECT ch.CHANNEL_MAP_ID, 
               ch.TUNER_POSITION, 
               svc.SERVICE_ID, 
               svc.TYPE SERVICE_TYPE, 
               ROW_NUMBER()  
               OVER (PARTITION BY ch.CHANNEL_MAP_ID, ch.TUNER_POSITION 
                         ORDER BY CASE m.TYPE 
                                    WHEN 'FULLSCREEN_PRIMARY'   THEN 1 
                                    WHEN 'FULLSCREEN_SECONDARY' THEN 2 
                                  END, 
                                  m.SERVICE_ORDER 
                    ) RN 
          FROM SS_TV_CHANNEL ch, 
               SS_SERVICE_COLLECTION col, 
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               SS_SERVICE_COLLECTION_MAP m, 
               SS_SERVICE svc 
         WHERE ch.SERVICE_COLLECTION_ID = col.ID 
           AND col.SERVICE_COLLECTION_ID = m.SERVICE_COLLECTION_ID 
           AND m.SERVICE_ID = svc.SERVICE_ID 
           AND svc.VIEW_MODE = 'FULLSCREEN' 
           AND ch.COD_DATE = ${hiveconf:COD_DATE} 
           AND col.COD_DATE = ${hiveconf:COD_DATE} 
           AND m.COD_DATE = ${hiveconf:COD_DATE} 
           AND svc.COD_DATE = ${hiveconf:COD_DATE} 
      ) r 
 WHERE r.RN = 1 
 ORDER BY r.CHANNEL_MAP_ID,  
          r.TUNER_POSITION; 

 

SS_MAP_STB_CHANNEL_MAP 

CREATE TABLE SS_MAP_STB_CHANNEL_MAP 
( 
  STB_ID VARCHAR(100), 
  CHANNEL_MAP_ID VARCHAR(100) 
) 
PARTITIONED BY (COD_DATE INT) 
STORED AS ORC 
LOCATION '/user/hrd/dw/ss_map_stb_channel_map' 
TBLPROPERTIES ('orc.compress'='NONE'); 

Data loading 

WITH w_stb 
  AS (SELECT STB_ID, 
             SUBSCRIBER_ID 
        FROM SS_STB  
       WHERE COD_DATE = ${hiveconf:COD_DATE}) 
INSERT OVERWRITE TABLE SS_MAP_STB_CHANNEL_MAP PARTITION (COD_DATE = ${hiveconf:COD_DATE}) 
SELECT uni.STB_ID,  
       COALESCE(m2.CHANNEL_MAP_ID, d.CHANNEL_MAP_ID) CHANNEL_MAP_ID 
  FROM w_stb uni 
  LEFT OUTER  
  JOIN (SELECT m1.STB_ID,  
               MAX(m1.CHANNEL_MAP_ID) CHANNEL_MAP_ID 
          FROM (SELECT stb.STB_ID, 
                       COALESCE(c.CHANNEL_MAP_ID, s.CHANNEL_MAP_ID) CHANNEL_MAP_ID 
                  FROM w_stb stb 
                  LEFT OUTER  
                  JOIN (SELECT sgm.SUBSCRIBER_ID, 
                               sgm.GROUP_ID, 
                               g.CHANNEL_MAP_ID 
                          FROM SS_SUBSCRIBER_GROUP_MAP sgm, 
                               SS_GROUP g 
                         WHERE sgm.GROUP_ID = g.GROUP_ID 
                           AND g.CHANNEL_MAP_ID IS NOT NULL 
                           AND sgm.COD_DATE = ${hiveconf:COD_DATE} 
                           AND g.COD_DATE = ${hiveconf:COD_DATE} 
                        ) s 
                    ON (stb.SUBSCRIBER_ID = s.SUBSCRIBER_ID) 
                  LEFT OUTER  
                  JOIN (SELECT cgm.STB_ID, 
                               cgm.GROUP_ID, 
                               g.CHANNEL_MAP_ID 
                          FROM SS_STB_GROUP_MAP cgm, 
                               SS_GROUP g 
                         WHERE cgm.GROUP_ID = g.GROUP_ID 
                           AND g.CHANNEL_MAP_ID IS NOT NULL 
                           AND cgm.COD_DATE = ${hiveconf:COD_DATE} 
                           AND g.COD_DATE = ${hiveconf:COD_DATE} 
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                       ) c 
                    ON (stb.STB_ID = c.STB_ID) 
                 WHERE (c.CHANNEL_MAP_ID IS NOT NULL OR s.CHANNEL_MAP_ID IS NOT NULL) 
                 GROUP BY stb.STB_ID, 
                          COALESCE(c.CHANNEL_MAP_ID, s.CHANNEL_MAP_ID) 
               ) m1 
         GROUP BY STB_ID 
           HAVING COUNT(*) = 1 -- To prevent Mediaroom configurations that have the same 
STB in more than one Channel Map 
       ) m2 
    ON (uni.STB_ID = m2.STB_ID) 
 CROSS  
  JOIN (SELECT MAX(CHANNEL_MAP_ID) CHANNEL_MAP_ID 
          FROM SS_CHANNEL_MAP 
         WHERE FLG_DEFAULT = 1 
           AND COD_DATE = ${hiveconf:COD_DATE}) d; -- Default Channel Map to STBs without 

Channel Map or wrong configuration 

 

Appendix E.5. FACT TABLES 

FACT_ACTIVITY_EVENTS 

CREATE TABLE FACT_ACTIVITY_EVENTS 
( 
  COD_DATE_GP           BIGINT, 
  COD_START_GP          INT, 
  SOURCE_TIMESTAMP      TIMESTAMP, 
  STB_ID                VARCHAR(100), 
  STB_TYPE              VARCHAR(100), 
  SERVICE_TYPE          VARCHAR(100), 
  CHANNEL_ID            VARCHAR(100), 
  CHANNEL_NBR           INT, 
  CONTENT_ID            VARCHAR(100), 
  STATION_ID            VARCHAR(100), 
  VIEW_MODE             VARCHAR(100), 
  DURATION              SMALLINT, 
  EXPIRATION_DATE       TIMESTAMP, 
  ACTION                VARCHAR(100), 
  ACTION_TIMESTAMP      TIMESTAMP, 
  ACTION_STATE          VARCHAR(100), 
  CATEGORY              VARCHAR(100), 
  APP_NAME              VARCHAR(100), 
  MENU_ID               VARCHAR(100), 
  RESOLUTION            VARCHAR(100), 
  CULTURE               VARCHAR(100), 
  DYNAMIC               VARCHAR(100), 
  RECURRING             VARCHAR(100), 
  INSTANCE_OF_RECURRING VARCHAR(100), 
  FREQUENCY             VARCHAR(100), 
  MANUAL_DELETION       VARCHAR(100), 
  BYTES                 SMALLINT, 
  TUNE_ID               VARCHAR(100) 
) 
PARTITIONED BY (COD_DATE INT, EVENT_TYPE SMALLINT) 
STORED AS ORC 
LOCATION '/user/hrd/dw/fact_activity_events' 
TBLPROPERTIES ('orc.compress'='NONE'); 

Data loading – Event 100 

ALTER TABLE FACT_ACTIVITY_EVENTS DROP IF EXISTS PARTITION (COD_DATE = 
${hiveconf:COD_DATE}, EVENT_TYPE = 100) PURGE; 
 
-- Channel Tune Event 
INSERT INTO FACT_ACTIVITY_EVENTS 
  PARTITION (COD_DATE = ${hiveconf:COD_DATE}, EVENT_TYPE = 100) 



175 

SELECT CAST(FROM_UNIXTIME((UNIX_TIMESTAMP(SOURCE_TIMESTAMP, 'yyyy-MM-dd HH:mm:ss') - 
(UNIX_TIMESTAMP(SOURCE_TIMESTAMP, 'yyyy-MM-dd HH:mm:ss') % 300)), 'yyyyMMddHHmm') AS 
BIGINT) COD_DATE_GP, 
       CAST(FROM_UNIXTIME((UNIX_TIMESTAMP(SOURCE_TIMESTAMP, 'yyyy-MM-dd HH:mm:ss') - 
(UNIX_TIMESTAMP(SOURCE_TIMESTAMP, 'yyyy-MM-dd HH:mm:ss') % 300)), 'HHmm') AS INT) 
COD_START_GP, 
       sa.SOURCE_TIMESTAMP, 
       --==================== STB ID ====================-- 
       sa.STB_ID, 
       --==================== STB TYPE ====================-- 
       sa.STB_TYPE, 
       --==================== SERVICE TYPE ====================-- 
       srv.SERVICE_TYPE, 
       --==================== CHANNEL ID ====================-- 
       srv.SERVICE_ID, 
       --==================== CHANNEL NBR ====================-- 
       sa.CHANNEL_NBR, 
       --==================== CONTENT ID ====================-- 
       NULL, 
       --==================== STATION ID ====================-- 
       sa.STATION_ID, 
       --==================== VIEW MODE ====================-- 
       sa.VIEW_MODE, 
       --==================== DURATION ====================-- 
       sa.DURATION, 
       --==================== EXPIRATION_DATE ====================-- 
       NULL, 
       --==================== ACTION ====================-- 
       'Channel Tune', 
       --==================== ACTION TIMESTAMP ====================-- 
       NULL, 
       --==================== ACTION STATE ====================-- 
       sa.ACTION_STATE, 
       --==================== CATEGORY ====================-- 
       NULL, 
       --==================== APP NAME ====================-- 
       NULL, 
       --==================== MENU ID ====================-- 
       NULL, 
       --==================== RESOLUTION ====================-- 
       NULL, 
       --==================== CULTURE ====================-- 
       NULL, 
       --==================== DYNAMIC ====================-- 
       NULL, 
       --==================== RECURRING ====================-- 
       NULL, 
       --==================== INSTANCE OF RECURRING ====================-- 
       NULL, 
       --==================== FREQUENCY ====================-- 
       NULL, 
       --==================== MANUAL DELETION ====================-- 
       NULL, 
       --==================== BYTES ====================-- 
       NULL, 
       --==================== TUNE ID ====================-- 
       sa.TUNE_ID 
  FROM (SELECT evt.*, 
               chanmap.CHANNEL_MAP_ID 
          FROM SA_ACTIVITY_EVENTS evt 
          LEFT OUTER 
          JOIN SS_MAP_STB_CHANNEL_MAP chanmap 
            ON (evt.STB_ID = chanmap.STB_ID AND 
                chanmap.COD_DATE = CAST(${hiveconf:COD_DATE_INV} AS INT) 
        ) 
         WHERE evt.EVENT_TYPE = 100 
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           AND evt.COD_DATE = CAST(${hiveconf:COD_DATE} AS INT) 
       ) sa 
  LEFT OUTER 
  JOIN SS_MAP_CHANNEL_MAP_SERVICE srv 
    ON (sa.CHANNEL_NBR = srv.TUNER_POSITION AND 
        sa.CHANNEL_MAP_ID = srv.CHANNEL_MAP_ID AND 
        srv.COD_DATE = CAST(${hiveconf:COD_DATE_INV} AS INT) 
       ); 

Data loading – Event 101 

ALTER TABLE FACT_ACTIVITY_EVENTS DROP IF EXISTS PARTITION (COD_DATE = 
${hiveconf:COD_DATE}, EVENT_TYPE = 101) PURGE; 
 
-- Set-top Box Power (On/Off) Event 
INSERT INTO FACT_ACTIVITY_EVENTS 
  PARTITION (COD_DATE = ${hiveconf:COD_DATE}, EVENT_TYPE = 101) 
SELECT  
       CAST(FROM_UNIXTIME((UNIX_TIMESTAMP(sa.SOURCE_TIMESTAMP, 'yyyy-MM-dd HH:mm:ss') - 
(UNIX_TIMESTAMP(sa.SOURCE_TIMESTAMP, 'yyyy-MM-dd HH:mm:ss') % 300)), 'yyyyMMddHHmm') AS 
BIGINT) COD_DATE_GP, 
       CAST(FROM_UNIXTIME((UNIX_TIMESTAMP(sa.SOURCE_TIMESTAMP, 'yyyy-MM-dd HH:mm:ss') - 
(UNIX_TIMESTAMP(sa.SOURCE_TIMESTAMP, 'yyyy-MM-dd HH:mm:ss') % 300)), 'HHmm') AS INT) 
COD_START_GP, 
       sa.SOURCE_TIMESTAMP, 
       sa.STB_ID, 
       sa.STB_TYPE, 
       --==================== SERVICE TYPE ====================-- 
       NULL, 
       --==================== CHANNEL ID ====================-- 
       NULL, 
       --==================== CHANNEL NBR ====================-- 
       NULL, 
       --==================== CONTENT ID ====================-- 
       NULL, 
       --==================== STATION ID ====================-- 
       NULL, 
       --==================== VIEW MODE ====================-- 
       NULL, 
       --==================== DURATION ====================-- 
       NULL, 
       --==================== EXPIRATION_DATE ====================-- 
       NULL, 
       --==================== ACTION ====================-- 
       sa.ACTION, 
       --==================== ACTION TIMESTAMP ====================--        
       sa.SOURCE_TIMESTAMP, 
       --==================== ACTION STATE ====================-- 
       1, 
        --==================== CATEGORY ====================-- 
       NULL, 
       --==================== APP NAME ====================-- 
       NULL, 
       --==================== MENU ID ====================-- 
       NULL, 
       --==================== RESOLUTION ====================-- 
       NULL, 
       --==================== CULTURE ====================-- 
       NULL, 
       --==================== DYNAMIC ====================-- 
       NULL, 
       --==================== RECURRING ====================-- 
       NULL, 
       --==================== INSTANCE OF RECURRING ====================-- 
       NULL, 
       --==================== FREQUENCY ====================-- 
       NULL, 
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       --==================== MANUAL DELETION ====================-- 
       NULL, 
       --==================== BYTES ====================-- 
       NULL, 
       --==================== TUNE ID ====================-- 
       NULL 
  FROM SA_ACTIVITY_EVENTS sa 
 WHERE sa.EVENT_TYPE = 101 
   AND sa.COD_DATE = CAST(${hiveconf:COD_DATE} AS INT); 

Data loading – Event 104 

ALTER TABLE FACT_ACTIVITY_EVENTS DROP IF EXISTS PARTITION (COD_DATE = 
${hiveconf:COD_DATE}, EVENT_TYPE = 104) PURGE; 
 
-- Event 104: Trick State 
INSERT INTO FACT_ACTIVITY_EVENTS 
  PARTITION (COD_DATE = ${hiveconf:COD_DATE}, EVENT_TYPE = 104) 
( 
  cod_date_gp, 
  cod_start_gp, 
  source_timestamp, 
  stb_id, 
  stb_type, 
  service_type, 
  content_id, 
  action, 
  action_timestamp, 
  action_state 
) 
SELECT  
       CAST(FROM_UNIXTIME((UNIX_TIMESTAMP(sa.SOURCE_TIMESTAMP, 'yyyy-MM-dd HH:mm:ss') - 
(UNIX_TIMESTAMP(sa.SOURCE_TIMESTAMP, 'yyyy-MM-dd HH:mm:ss') % 300)), 'yyyyMMddHHmm') AS 
BIGINT) COD_DATE_GP, 
       CAST(FROM_UNIXTIME((UNIX_TIMESTAMP(sa.SOURCE_TIMESTAMP, 'yyyy-MM-dd HH:mm:ss') - 
(UNIX_TIMESTAMP(sa.SOURCE_TIMESTAMP, 'yyyy-MM-dd HH:mm:ss') % 300)), 'HHmm') AS INT) 
COD_START_GP, 
       sa.SOURCE_TIMESTAMP, 
       sa.STB_ID, 
       sa.STB_TYPE, 
       CASE WHEN vod.ASSET_ID IS NOT NULL  
         THEN 'VOD' 
         ELSE typ.SERVICE_TYPE 
       END SERVICE_TYPE, 
       sa.CONTENT_ID, 
       sa.ACTION, 
       sa.SOURCE_TIMESTAMP ACTION_TIMESTAMP, 
       1 ACTION_STATE 
  FROM SA_ACTIVITY_EVENTS sa 
  LEFT OUTER 
       JOIN SS_ASSET vod 
    ON (sa.CONTENT_ID = vod.ASSET_ID AND 
        vod.COD_DATE = CAST(${hiveconf:COD_DATE_INV} AS INT))     
  LEFT OUTER 
       JOIN (SELECT col.ID,  
                    MAX(svc.TYPE) SERVICE_TYPE 
               FROM SS_SERVICE_COLLECTION col, 
                    SS_SERVICE_COLLECTION_MAP m, 
                    SS_SERVICE svc 
              WHERE col.COD_DATE = CAST(${hiveconf:COD_DATE_INV} AS INT) 
                AND col.SERVICE_COLLECTION_ID = m.SERVICE_COLLECTION_ID 
                AND m.COD_DATE = CAST(${hiveconf:COD_DATE_INV} AS INT) 
                AND m.SERVICE_ID = svc.SERVICE_ID 
                AND svc.COD_DATE = CAST(${hiveconf:COD_DATE_INV} AS INT) 
                AND svc.VIEW_MODE NOT LIKE 'PIP%' 
              GROUP BY col.ID 
            ) typ 
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    ON (sa.CONTENT_ID = typ.ID) 
 WHERE sa.EVENT_TYPE = 104 
   AND sa.COD_DATE = CAST(${hiveconf:COD_DATE} AS INT); 

Data loading – Event 114 

ALTER TABLE FACT_ACTIVITY_EVENTS DROP IF EXISTS PARTITION (COD_DATE = 
${hiveconf:COD_DATE}, EVENT_TYPE = 114) PURGE; 
 
-- Program Transition Event 
INSERT INTO FACT_ACTIVITY_EVENTS 
  PARTITION (COD_DATE = ${hiveconf:COD_DATE}, EVENT_TYPE = 114) 
SELECT         
       CAST(FROM_UNIXTIME((UNIX_TIMESTAMP(sa.SOURCE_TIMESTAMP, 'yyyy-MM-dd HH:mm:ss') - 
(UNIX_TIMESTAMP(sa.SOURCE_TIMESTAMP, 'yyyy-MM-dd HH:mm:ss') % 300)), 'yyyyMMddHHmm') AS 
BIGINT) COD_DATE_GP, 
       CAST(FROM_UNIXTIME((UNIX_TIMESTAMP(sa.SOURCE_TIMESTAMP, 'yyyy-MM-dd HH:mm:ss') - 
(UNIX_TIMESTAMP(sa.SOURCE_TIMESTAMP, 'yyyy-MM-dd HH:mm:ss') % 300)), 'HHmm') AS INT) 
COD_START_GP, 
       sa.SOURCE_TIMESTAMP, 
       sa.STB_ID, 
       sa.STB_TYPE, 
       --==================== SERVICE TYPE ====================-- 
       COALESCE(fact.SERVICE_TYPE, vod.TYPE), 
       --==================== CHANNEL ID ====================-- 
       -- CHANNEL_ID for EVENT_TYPE 114 is the SERVICE_ID of the matching EVENT_TYPE 100 
       fact.SERVICE_ID, 
       --==================== CHANNEL NBR ====================-- 
       NULL, 
       --==================== CONTENT ID ====================-- 
       sa.CONTENT_ID, 
       --==================== STATION ID ====================-- 
       NULL, 
       --==================== VIEW MODE ====================-- 
       COALESCE(sa.VIEW_MODE, fact.VIEW_MODE), 
       --==================== DURATION ====================-- 
       sa.DURATION, 
       --==================== EXPIRATION_DATE ====================-- 
       NULL, 
       --==================== ACTION ====================-- 
       'Program Transition', 
       --==================== ACTION TIMESTAMP ====================-- 
       NULL, -- SOURCE_TIMESTAMP, 
       --==================== ACTION STATE ====================-- 
       1, -- Success 
       --==================== CATEGORY ====================-- 
       NULL, 
       --==================== APP NAME ====================-- 
       NULL, 
       --==================== MENU ID ====================-- 
       NULL, 
       --==================== RESOLUTION ====================-- 
       NULL, 
       --==================== CULTURE ====================-- 
       NULL, 
       --==================== DYNAMIC ====================-- 
       NULL, 
       --==================== RECURRING ====================-- 
       NULL, 
       --==================== INSTANCE OF RECURRING ====================-- 
       NULL, 
       --==================== FREQUENCY ====================-- 
       NULL, 
       --==================== MANUAL DELETION ====================-- 
       NULL, 
       --==================== BYTES ====================-- 
       NULL, 
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       --==================== TUNE ID ====================-- 
       sa.TUNE_ID 
  FROM SA_ACTIVITY_EVENTS sa 
  LEFT OUTER -- STB_ID/TUNE_ID is unique for each event 100 
  JOIN (SELECT STB_ID, TUNE_ID, CHANNEL_ID SERVICE_ID, SERVICE_TYPE, VIEW_MODE 
          FROM FACT_ACTIVITY_EVENTS 
         WHERE EVENT_TYPE = 100 -- Channel Tune 
           AND COD_DATE BETWEEN CAST(${hiveconf:COD_DATE_PREV} AS INT) AND 
CAST(${hiveconf:COD_DATE} AS INT) 
       ) fact 
    ON (sa.STB_ID = fact.STB_ID AND sa.TUNE_ID = fact.TUNE_ID) 
  LEFT OUTER -- Joining with VoDs to get a better definition of the service type for VoDs 
  JOIN SS_ASSET vod 
    ON (vod.COD_DATE = CAST(${hiveconf:COD_DATE_INV} AS INT) AND 
        sa.CONTENT_ID = vod.ASSET_ID) 
 WHERE sa.EVENT_TYPE = 114 -- Program Transition 
   AND sa.COD_DATE = CAST(${hiveconf:COD_DATE} AS INT); 

Data loading – Event DVR 

-- Hive session parameters 
SET hive.exec.dynamic.partition.mode=nonstrict; 
 
ALTER TABLE FACT_ACTIVITY_EVENTS DROP IF EXISTS PARTITION (COD_DATE = 
${hiveconf:COD_DATE}, EVENT_TYPE = 115) PURGE; 
ALTER TABLE FACT_ACTIVITY_EVENTS DROP IF EXISTS PARTITION (COD_DATE = 
${hiveconf:COD_DATE}, EVENT_TYPE = 116) PURGE; 
ALTER TABLE FACT_ACTIVITY_EVENTS DROP IF EXISTS PARTITION (COD_DATE = 
${hiveconf:COD_DATE}, EVENT_TYPE = 117) PURGE; 
ALTER TABLE FACT_ACTIVITY_EVENTS DROP IF EXISTS PARTITION (COD_DATE = 
${hiveconf:COD_DATE}, EVENT_TYPE = 118) PURGE; 
ALTER TABLE FACT_ACTIVITY_EVENTS DROP IF EXISTS PARTITION (COD_DATE = 
${hiveconf:COD_DATE}, EVENT_TYPE = 119) PURGE; 
ALTER TABLE FACT_ACTIVITY_EVENTS DROP IF EXISTS PARTITION (COD_DATE = 
${hiveconf:COD_DATE}, EVENT_TYPE = 120) PURGE; 
 
-- DVR Events 
INSERT INTO FACT_ACTIVITY_EVENTS 
  PARTITION (COD_DATE, EVENT_TYPE) 
SELECT  
       CAST(FROM_UNIXTIME((UNIX_TIMESTAMP(sa.SOURCE_TIMESTAMP, 'yyyy-MM-dd HH:mm:ss') - 
(UNIX_TIMESTAMP(sa.SOURCE_TIMESTAMP, 'yyyy-MM-dd HH:mm:ss') % 300)), 'yyyyMMddHHmm') AS 
BIGINT) COD_DATE_GP, 
       CAST(FROM_UNIXTIME((UNIX_TIMESTAMP(sa.SOURCE_TIMESTAMP, 'yyyy-MM-dd HH:mm:ss') - 
(UNIX_TIMESTAMP(sa.SOURCE_TIMESTAMP, 'yyyy-MM-dd HH:mm:ss') % 300)), 'HHmm') AS INT) 
COD_START_GP, 
       sa.SOURCE_TIMESTAMP, 
       sa.STB_ID, 
       sa.STB_TYPE, 
       --==================== SERVICE TYPE ====================-- 
       sm.SERVICE_TYPE, 
       --==================== CHANNEL ID ====================-- 
       sm.SERVICE_ID, 
       --==================== CHANNEL NBR ====================-- 
       NULL, 
       --==================== CONTENT ID ====================-- 
       sa.CONTENT_ID, 
       --==================== STATION ID ====================-- 
       sa.STATION_ID,        
       --==================== VIEW MODE ====================-- 
       NULL, 
       --==================== DURATION ====================-- 
       CASE 
         WHEN sa.EVENT_TYPE IN (115, 118, 120) THEN 
           sa.DURATION 
       END DURATION, 
       --==================== EXPIRATION_DATE ====================-- 
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       NULL, 
       --==================== ACTION ====================-- 
       CASE 
         WHEN sa.EVENT_TYPE = 115 THEN 'DVR Start Recording' 
         WHEN sa.EVENT_TYPE = 116 THEN 'DVR Abort Recording' 
         WHEN sa.EVENT_TYPE = 117 THEN 'DVR Playback Recording' 
         WHEN sa.EVENT_TYPE = 118 THEN 'DVR Schedule Recording' 
         WHEN sa.EVENT_TYPE = 119 THEN 'DVR Delete Recording' 
         WHEN sa.EVENT_TYPE = 120 THEN 'DVR Cancel Recording' 
       END ACTION, 
       --==================== ACTION TIMESTAMP ====================-- 
       CASE 
         WHEN sa.EVENT_TYPE IN (116, 118, 119, 120) THEN 
           sa.ACTION_TIMESTAMP 
         ELSE 
           sa.SOURCE_TIMESTAMP 
       END ACTION_TIMESTAMP, 
       --==================== ACTION STATE ====================-- 
       1, 
        --==================== CATEGORY ====================-- 
       NULL, 
       --==================== APP NAME ====================-- 
       NULL, 
       --==================== MENU ID ====================-- 
       NULL, 
       --==================== RESOLUTION ====================-- 
       NULL, 
       --==================== CULTURE ====================-- 
       NULL, 
       --==================== DYNAMIC ====================-- 
       CASE 
         WHEN sa.EVENT_TYPE IN (115, 118, 120) THEN 
           sa.DYNAMIC 
       END DYNAMIC, 
       --==================== RECURRING ====================-- 
       CASE 
         WHEN sa.EVENT_TYPE IN (115, 118, 120) THEN 
           sa.RECURRING 
       END RECURRING, 
       --==================== INSTANCE OF RECURRING ====================-- 
       CASE 
         WHEN sa.EVENT_TYPE IN (120) THEN 
           sa.INSTANCE_OF_RECURRING 
       END INSTANCE_OF_RECURRING, 
       --==================== FREQUENCY ====================-- 
       CASE 
         WHEN sa.EVENT_TYPE IN (118, 120) THEN 
           sa.FREQUENCY 
       END FREQUENCY, 
       --==================== MANUAL DELETION ====================-- 
       CASE 
         WHEN sa.EVENT_TYPE IN (119) THEN 
           sa.MANUAL_DELETION 
       END MANUAL_DELETION, 
       --==================== BYTES ====================-- 
       CASE 
         WHEN sa.EVENT_TYPE IN (119) THEN 
           sa.BYTES 
       END BYTES, 
       --==================== TUNE ID ====================-- 
       NULL, 
       sa.COD_DATE, -- Partition column 
       sa.EVENT_TYPE -- Partition column 
  FROM SA_ACTIVITY_EVENTS sa 
  LEFT OUTER 
       JOIN (SELECT svc.SERVICE_ID, 
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                    svc.TYPE SERVICE_TYPE, 
                    e.EPG_ID 
               FROM SS_SERVICE svc 
              INNER JOIN (SELECT col.EPG_ID, 
                                 MAX(svc2.SERVICE_ID) SERVICE_ID 
                            FROM SS_SERVICE svc2, 
                                 SS_SERVICE_COLLECTION_MAP scm, 
                                 SS_SERVICE_COLLECTION col 
                           WHERE svc2.COD_DATE = CAST(${hiveconf:COD_DATE_INV} AS INT) 
                             AND svc2.VIEW_MODE = 'FULLSCREEN' 
                             AND svc2.SERVICE_ID = scm.SERVICE_ID 
                             AND scm.COD_DATE = CAST(${hiveconf:COD_DATE_INV} AS INT) 
                             AND scm.SERVICE_COLLECTION_ID = col.SERVICE_COLLECTION_ID 
                             AND col.COD_DATE = CAST(${hiveconf:COD_DATE_INV} AS INT) 
                           GROUP BY col.EPG_ID) e 
                 ON (svc.SERVICE_ID = e.SERVICE_ID) 
              WHERE svc.COD_DATE = CAST(${hiveconf:COD_DATE_INV} AS INT) 
            ) sm   
    ON (sa.STATION_ID = sm.EPG_ID) 
 WHERE sa.EVENT_TYPE IN (115, 116, 117, 118, 119, 120) -- DVR related events 
   AND sa.COD_DATE = CAST(${hiveconf:COD_DATE} AS INT); 

 

FACT_EVT_SEGMENTED 

CREATE TABLE FACT_EVT_SEGMENTED 
( 
  COD_DATE_GP      BIGINT, 
  COD_START_GP     INT, 
  COD_GP_DURATION  SMALLINT, 
  SERVICE_TYPE     VARCHAR(20), 
  SERVICE_ID       VARCHAR(100), 
  CONTENT_ID       VARCHAR(100), 
  STB_ID           VARCHAR(100), 
  SOURCE_TIMESTAMP TIMESTAMP, 
  DURATION         INT, 
  TOTAL_DURATION   INT 
) 
PARTITIONED BY (COD_DATE INT, EVENT_TYPE SMALLINT) 
STORED AS ORC 
LOCATION '/user/hrd/dw/fact_evt_segmented' 
TBLPROPERTIES ('orc.compress'='NONE'); 

Data loading 

SET EVENT_TYPE = 100; -- The process can also be executed for event 114 
 
ALTER TABLE FACT_EVT_SEGMENTED DROP IF EXISTS PARTITION (COD_DATE = ${hiveconf:COD_DATE}, 
EVENT_TYPE = ${hiveconf:EVENT_TYPE}) PURGE; 
 
INSERT OVERWRITE TABLE FACT_EVT_SEGMENTED 
  PARTITION (COD_DATE = ${hiveconf:COD_DATE}, EVENT_TYPE = ${hiveconf:EVENT_TYPE}) 
SELECT *  
  FROM (SELECT  
               gp.COD_DATE_GP, 
               gp.COD_START_GP, 
               gp.COD_GP_DURATION, 
               evt.SERVICE_TYPE, 
               evt.CHANNEL_ID SERVICE_ID, 
               evt.CONTENT_ID, 
               evt.STB_ID, 
               evt.SOURCE_TIMESTAMP, 
               CAST(LEAST(CAST(300 AS BIGINT), UNIX_TIMESTAMP(MY_END_DATE) - 
UNIX_TIMESTAMP(gp.DATE_GP)) 
                     - 
                    GREATEST(CAST(0 AS BIGINT), UNIX_TIMESTAMP(MY_START_DATE) - 
UNIX_TIMESTAMP(gp.DATE_GP)) 
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               AS INT) DURATION, 
               evt.DURATION TOTAL_DURATION 
          FROM (SELECT CAST(FROM_UNIXTIME((UNIX_TIMESTAMP(e1.MY_START_DATE, 'yyyy-MM-dd 
HH:mm:ss') - (UNIX_TIMESTAMP(e1.MY_START_DATE, 'yyyy-MM-dd HH:mm:ss') % 300)), 
'yyyyMMddHHmm') AS BIGINT) MY_START_DATE_GP, 
                         CAST(FROM_UNIXTIME((UNIX_TIMESTAMP(e1.MY_END_DATE, 'yyyy-MM-dd 
HH:mm:ss') - (UNIX_TIMESTAMP(e1.MY_END_DATE, 'yyyy-MM-dd HH:mm:ss') % 300)), 
'yyyyMMddHHmm') AS BIGINT) MY_END_DATE_GP, 
                         e1.* 
                   FROM (SELECT  
                                GREATEST(fi.SOURCE_TIMESTAMP, 
CAST(CAST(FROM_UNIXTIME(UNIX_TIMESTAMP('${hiveconf:COD_DATE}', 'yyyyMMdd'), 'yyyy-MM-dd') 
AS DATE) AS TIMESTAMP)) MY_START_DATE, 
                                
LEAST(CAST(FROM_UNIXTIME(UNIX_TIMESTAMP(fi.SOURCE_TIMESTAMP) + DURATION) AS TIMESTAMP),  
CAST(CAST(DATE_ADD(FROM_UNIXTIME(UNIX_TIMESTAMP('${hiveconf:COD_DATE}', 'yyyyMMdd'), 
'yyyy-MM-dd HH:mm:ss'), 1) AS DATE) AS TIMESTAMP) ) MY_END_DATE, 
                                fi.* 
                           FROM FACT_ACTIVITY_EVENTS fi 
                          WHERE fi.COD_DATE BETWEEN ${hiveconf:COD_DATE_PREV} AND 
${hiveconf:COD_DATE} 
                            AND fi.EVENT_TYPE IN (${hiveconf:EVENT_TYPE}) 
                            AND fi.VIEW_MODE NOT LIKE 'PIP%' 
                        ) e1 
                  ) evt, 
                  (SELECT y.COD_DATE, 
                          CAST(y.COD_DATE AS BIGINT) * 10000 + y.COD_START_GP 
COD_DATE_GP,  
                          y.COD_START_GP, 
                          y.COD_GP_DURATION, 
                          FROM_UNIXTIME(UNIX_TIMESTAMP(CAST((y.COD_DATE * 10000 + 
y.COD_START_GP) AS VARCHAR(20)), 'yyyyMMddHHmm'), 'yyyy-MM-dd HH:mm:ss') DATE_GP 
                    FROM (SELECT CAST(${hiveconf:COD_DATE_PREV} AS BIGINT) COD_DATE, 
                                 COD_START_GP,  
                                 COD_GP_DURATION, 
                                 ROW_NUMBER() OVER (PARTITION BY NULL ORDER BY 
COD_START_GP) RN  
                            FROM LU_START_GP 
                           WHERE COD_GP_DURATION = 5 
                         ) y -- Previous day. We only need 3 hours of GPs because the 
events are truncated to a maximum of 3 hours 
                   WHERE y.RN >= (1440 / y.COD_GP_DURATION) - (180 / y.COD_GP_DURATION - 
1) 
                   UNION ALL 
                  SELECT t.COD_DATE, 
                         CAST(t.COD_DATE AS BIGINT) * 10000 + t.COD_START_GP COD_DATE_GP, 
                         t.COD_START_GP, 
                         t.COD_GP_DURATION, 
                         FROM_UNIXTIME(UNIX_TIMESTAMP(CAST((CAST(t.COD_DATE AS BIGINT) * 
10000 + t.COD_START_GP) AS VARCHAR(20)), 'yyyyMMddHHmm'), 'yyyy-MM-dd HH:mm:ss') DATE_GP 
                    FROM (SELECT CAST(${hiveconf:COD_DATE} AS INT) COD_DATE,  
                                 COD_START_GP,  
                                 COD_GP_DURATION        
                            FROM LU_START_GP 
                           WHERE COD_GP_DURATION = 5 
                         ) t -- Current day 
                  ) gp                   
         WHERE gp.COD_DATE_GP >= evt.MY_START_DATE_GP 
           AND gp.COD_DATE_GP <= evt.MY_END_DATE_GP 
       ) f 
 WHERE f.DURATION > 0; 
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Appendix E.6. AGGREGATION TABLES 

AG_LIVE_RATING_DY 

CREATE TABLE AG_LIVE_RATING_DY 
( 
  SERVICE_ID  VARCHAR(100),  
  PROGRAM_ID  VARCHAR(100),    
  RNK_PROGRAM BIGINT, 
  AVG_VIEWERS BIGINT 
)   
PARTITIONED BY (COD_DATE INT) 
LOCATION '/user/hrd/dw/ag_live_rating_gp'; 

Data loading 

SET MAX_RANK = 100; 
 
ALTER TABLE AG_LIVE_RATING_DY DROP IF EXISTS PARTITION (COD_DATE = ${hiveconf:COD_DATE}) 
PURGE; 
   
WITH dat  
  AS (SELECT COD_DATE,  
             CASE WHEN GRP_ID > 9 THEN SERVICE_ID ELSE 'GlobalIPTVTVService' END 
SERVICE_ID,  
             CASE WHEN GRP_ID > 9 THEN CONTENT_ID ELSE '0' END PROGRAM_ID,  
             GRP_ID, 
             ROUND(AVG(NBR_STBS)) AVG_VIEWERS 
        FROM (SELECT COD_DATE,  
                     COD_DATE_GP,  
                     COD_START_GP,  
                     COD_GP_DURATION,  
                     SERVICE_ID,  
                     CONTENT_ID,  
                     GROUPING__ID GRP_ID, 
                     COALESCE(COUNT(DISTINCT STB_ID), 0) NBR_STBS 
                FROM FACT_EVT_SEGMENTED 
               WHERE COD_DATE = ${hiveconf:COD_DATE} 
                 AND EVENT_TYPE = 114 -- Program Transition 
                 AND SERVICE_TYPE = 'LIVE' -- Just Live TV 
               GROUP BY COD_DATE,  
                     COD_DATE_GP,  
                     COD_START_GP,  
                     COD_GP_DURATION,  
                     SERVICE_ID,  
                     CONTENT_ID 
               GROUPING SETS ((COD_DATE, COD_DATE_GP, COD_START_GP, COD_GP_DURATION, 
SERVICE_ID, CONTENT_ID),  
                                       (COD_DATE, COD_GP_DURATION)) 
             ) f1 
       GROUP BY COD_DATE,  
                SERVICE_ID,  
                CONTENT_ID,  
                GRP_ID 
     ) 
INSERT INTO AG_LIVE_RATING_DY 
PARTITION (COD_DATE = ${hiveconf:COD_DATE}) 
     ( service_id, 
       program_id, 
       rnk_program, 
       avg_viewers)   
SELECT  *  
  FROM (SELECT f.SERVICE_ID,  
               f.PROGRAM_ID,  
               DENSE_RANK() OVER (PARTITION BY GRP_ID ORDER BY AVG_VIEWERS DESC) 
RNK_PROGRAM, 
               AVG_VIEWERS 
          FROM dat f 
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         INNER JOIN SS_SERVICE s -- Excluding non-existent TV Channels 
            ON (f.SERVICE_ID = s.SERVICE_ID AND 
                s.COD_DATE = ${hiveconf:COD_DATE_INV})   
         INNER JOIN SS_PROGRAM p -- Excluding non-existent Programs 
            ON (F.PROGRAM_ID = P.PROGRAM_ID AND 
                P.COD_DATE = ${hiveconf:COD_DATE_INV}) 
       ) f 
 WHERE f.RNK_PROGRAM <= ${hiveconf:MAX_RANK}; 

 

AG_LIVE_REACH_DY 

CREATE TABLE AG_LIVE_REACH_DY 
( 
  SERVICE_ID  VARCHAR(100),  
  RNK_SERVICE BIGINT, 
  NBR_VIEWERS BIGINT 
)   
PARTITIONED BY (COD_DATE INT) 
LOCATION '/user/hrd/dw/ag_live_reach_gp'; 

Data loading 

ALTER TABLE AG_LIVE_REACH_DY DROP IF EXISTS PARTITION (COD_DATE = ${hiveconf:COD_DATE}) 
PURGE; 
 
INSERT INTO AG_LIVE_REACH_DY 
PARTITION (COD_DATE = ${hiveconf:COD_DATE}) 
     ( service_id, 
       rnk_service, 
       nbr_viewers)                  
SELECT f.SERVICE_ID, 
       DENSE_RANK() OVER (PARTITION BY f.GRP_ID ORDER BY f.NBR_VIEWERS DESC) RNK_SERVICE, 
       f.NBR_VIEWERS 
  FROM (SELECT CASE WHEN GROUPING__ID = 1 THEN 'GlobalIPTVTVService' ELSE CHANNEL_ID END 
SERVICE_ID,  
               GROUPING__ID GRP_ID, 
               COUNT(DISTINCT STB_ID) NBR_VIEWERS 
          FROM FACT_ACTIVITY_EVENTS 
         WHERE EVENT_TYPE = 100 -- Channel Tune 
           AND SERVICE_TYPE = 'LIVE' 
           AND ((COD_DATE = ${hiveconf:COD_DATE}) OR  
                (COD_DATE = ${hiveconf:COD_DATE_PREV} AND 
TO_DATE(FROM_UNIXTIME(UNIX_TIMESTAMP(SOURCE_TIMESTAMP) + DURATION, 'yyyy-MM-dd')) >  
TO_DATE(SOURCE_TIMESTAMP)))                
         GROUP BY COD_DATE, CHANNEL_ID 
         GROUPING SETS ((COD_DATE, CHANNEL_ID), (COD_DATE)) 
       ) f; 

 

AG_LIVE_SHARE_GP 

CREATE TABLE AG_LIVE_SHARE_GP 
( 
  COD_START_GP    INT,  
  COD_GP_DURATION SMALLINT,  
  SERVICE_ID      VARCHAR(100),  
  NBR_SUBSCRIBERS BIGINT,  
  NBR_VIEWERS     BIGINT,  
  DUR_VIEWING     BIGINT 
)   
PARTITIONED BY (COD_DATE INT) 
LOCATION '/user/hrd/dw/ag_live_share_gp'; 

Data loading 

ALTER TABLE AG_LIVE_SHARE_GP DROP IF EXISTS PARTITION (COD_DATE = ${hiveconf:COD_DATE}) 
PURGE; 
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INSERT INTO AG_LIVE_SHARE_GP 
PARTITION (COD_DATE = ${hiveconf:COD_DATE}) 
     ( cod_start_gp, 
       cod_gp_duration, 
       service_id, 
       nbr_subscribers, 
       nbr_viewers, 
       dur_viewing)                  
SELECT fact.COD_START_GP, 
       fact.COD_GP_DURATION, 
       CASE WHEN GROUPING__ID = 7 THEN 'GlobalIPTVTVService' ELSE fact.SERVICE_ID END 
SERVICE_ID, 
       COALESCE(COUNT (DISTINCT stb.SUBSCRIBER_ID), 0) NBR_SUBSCRIBERS, 
       COALESCE(COUNT (DISTINCT fact.STB_ID), 0) NBR_VIEWERS, 
       COALESCE(SUM(fact.DURATION), 0) DUR_VIEWING 
  FROM FACT_EVT_SEGMENTED fact 
 INNER JOIN SS_STB stb 
    ON (fact.STB_ID = stb.STB_ID AND 
        stb.COD_DATE = CAST(${hiveconf:COD_DATE_INV} AS INT) 
       ) 
 WHERE fact.COD_DATE = CAST(${hiveconf:COD_DATE} AS INT) 
   AND fact.EVENT_TYPE = 100  -- Channel Tune Event 
   AND fact.SERVICE_TYPE = 'LIVE' 
 GROUP BY fact.cod_date, 
          fact.cod_start_gp, 
          fact.cod_gp_duration, 
          fact.service_id 
GROUPING SETS ((fact.cod_date, fact.cod_start_gp, fact.cod_gp_duration, fact.service_id), 

(fact.cod_date, fact.cod_start_gp, fact.cod_gp_duration)); 

 

The aggregation tables were created as text files in order to facilitade their export into the RDBMS, 

even though Apache Sqoop can export tables stored with the ORC file format. 
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Appendix E.7. TRANSFORMATION PROCESSES DAGS 

 
Figure 9.6. Channel Tune transformation DAG 

 

 
Figure 9.7. Program Watched transformation DAG 
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Figure 9.8. DVR Events transformation DAG 
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Figure 9.9. Event Segmentation DAG 

 

 
Figure 9.10. Audiences Aggregation DAG  
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Appendix F.  PERFORMANCE EXECUTION STATISTICS 

This appendix covers the data transformations detailed execution statistics. Note that the ‘Avg.’ 

column refers to the average execution time of the three executions that remain after the removal of 

the best and worst executions. Also, the ‘Rows/sec.’ column considers the rows in the source table for 

the first four processes and the number of rows, in the destination table, for the last process, the 

aggregation. 

Appendix F.1. CHANNEL TUNE 

Source table Destination table Execution time (seconds) 

# Records MB # Records MB E. #1 E. #2 E. #3 E. #4 E. #5 Avg. Rows/sec. 

1 020 892 200 1 020 892 120 17 16 15 16 16 16 63 806 

2 041 947 400 2 041 947 232 30 31 32 31 32 31 65 169 

3 062 851 600 3 062 851 352 46 46 48 47 45 46 66 105 

4 083 343 800 4 083 343 472 59 58 56 59 58 58 70 000 

5 103 459 1 000 5 103 459 584 74 71 70 71 72 71 71 544 

6 123 392 1 200 6 123 392 704 86 84 84 83 85 84 72 609 

7 143 332 1 400 7 143 332 816 99 99 103 101 101 100 71 196 

8 163 314 1 600 8 163 314 936 113 114 113 114 112 113 72 029 

9 183 370 1 800 9 183 370 1 088 134 127 130 128 128 129 71 373 

10 203 293 2 000 10 203 293 1 216 149 144 143 141 141 143 71 518 

Table 9.48. Channel Tune execution statistics in the RDBMS 

Source table Destination table Execution time (seconds) 

# Records MB # Records MB E. #1 E. #2 E. #3 E. #4 E. #5 Avg. Rows/sec. 

1 020 892 200 1 020 892 41 46 53 58 50 50 51 20 017 

2 041 947 400 2 041 947 78 68 66 69 64 73 68 30 177 

3 062 851 600 3 062 851 114 72 63 74 66 69 69 44 389 

4 083 343 800 4 083 343 149 72 80 93 79 82 80 50 830 

5 103 459 1 000 5 103 459 184 103 98 94 99 88 97 52 613 

6 123 392 1 200 6 123 392 219 112 124 108 105 123 114 53 557 

7 143 332 1 400 7 143 332 254 140 118 141 127 122 130 55 090 

8 163 314 1 600 8 163 314 289 126 124 137 135 138 133 61 533 

9 183 370 1 800 9 183 370 314 133 135 145 139 151 140 65 752 

10 203 293 2 000 10 203 293 360 149 147 150 156 145 149 68 632 

Table 9.49. Channel Tune execution statistics in Hive 

 

Appendix F.2. PROGRAM WATCHED 

Source table Destination table Execution time (seconds) 

# Records MB # Records MB E. #1 E. #2 E. #3 E. #4 E. #5 Avg. Rows/sec. 

1 132 195 200 1 132 195 104 21 20 21 23 22 21 53 072 

2 264 301 400 2 264 301 216 46 46 45 46 46 46 49 224 
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3 396 478 600 3 396 478 336 68 67 67 67 69 67 50 443 

4 528 743 800 4 528 743 448 94 93 95 94 92 94 48 350 

5 661 056 1 000 5 661 056 560 117 112 114 113 114 114 49 804 

6 793 380 1 200 6 793 380 680 129 126 131 125 127 127 53 351 

7 925 560 1 400 7 925 560 808 146 145 149 143 144 145 54 659 

9 057 613 1 600 9 057 613 920 176 173 177 185 178 177 51 173 

10 189 579 1 800 10 189 579 1 088 213 214 204 208 207 209 48 676 

11 321 493 2 000 11 321 493 1 216 238 240 237 240 239 239 47 370 

Table 9.50. Program Watched execution statistics in the RDBMS 

Source table Destination table Execution time (seconds) 

# Records MB # Records MB E. #1 E. #2 E. #3 E. #4 E. #5 Avg. Rows/sec. 

1 132 195 200 1 132 195 54 88 84 84 77 79 82 13 751 

2 264 301 400 2 264 301 105 84 92 93 91 90 91 24 882 

3 396 478 600 3 396 478 156 109 109 111 106 123 110 30 971 

4 528 743 800 4 528 743 208 120 112 118 125 114 117 38 597 

5 661 056 1 000 5 661 056 259 139 134 137 132 148 137 41 422 

6 793 380 1 200 6 793 380 314 175 166 149 140 146 154 44 209 

7 925 560 1 400 7 925 560 366 164 167 192 162 164 165 48 034 

9 057 613 1 600 9 057 613 418 181 185 287 193 175 186 48 610 

10 189 579 1 800 10 189 579 470 187 186 185 192 244 188 54 104 

11 321 493 2 000 11 321 493 521 189 188 191 213 191 190 59 482 

Table 9.51. Program Watched execution statistics in Hive 

 

Appendix F.3. DVR EVENTS 

Source table Destination table Execution time (seconds) 

# Records MB # Records MB E. #1 E. #2 E. #3 E. #4 E. #5 Avg. Rows/sec. 

1 000 000 201 1 000 000 128 18 15 16 16 15 16 63 830 

2 000 000 402 2 000 000 224 31 31 31 30 31 31 64 516 

3 000 000 603 3 000 000 320 50 48 46 45 44 46 64 748 

4 000 000 804 4 000 000 424 61 59 62 60 61 61 65 934 

5 000 000 1 005 5 000 000 528 75 75 75 76 78 75 66 372 

6 000 000 1 206 6 000 000 616 84 85 86 86 86 86 70 039 

7 000 000 1 407 7 000 000 720 101 100 100 98 98 99 70 470 

8 000 000 1 608 8 000 000 808 114 112 112 116 112 113 71 006 

9 000 000 1 809 9 000 000 920 131 127 128 129 128 128 70 130 

10 000 000 2 010 10 000 000 1 008 142 140 140 140 141 140 71 259 

Table 9.52. DVR Events transformation execution statistics in the RDBMS  
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Source table Destination table Execution time (seconds) 

# Records MB # Records MB E. #1 E. #2 E. #3 E. #4 E. #5 Avg. Rows/sec. 

1 000 000 201 1 000 000 34 42 44 41 41 43 42 23 810 

2 000 000 402 2 000 000 68 58 54 46 52 49 52 38 710 

3 000 000 603 3 000 000 102 53 74 55 56 71 61 49 451 

4 000 000 804 4 000 000 136 57 97 64 65 68 66 60 914 

5 000 000 1 005 5 000 000 169 69 67 80 98 87 79 63 559 

6 000 000 1 206 6 000 000 203 96 109 97 92 92 95 63 158 

7 000 000 1 407 7 000 000 237 107 112 104 108 99 106 65 831 

8 000 000 1 608 8 000 000 271 118 118 110 111 109 113 70 796 

9 000 000 1 809 9 000 000 305 117 116 116 117 120 117 77 143 

10 000 000 2 010 10 000 000 339 129 139 128 119 126 128 78 329 

Table 9.53. DVR Events transformation execution statistics in Hive 
 

Appendix F.4. EVENT SEGMENTATION 

Source table Destination table Execution time (seconds) 

# Records MB # Records MB E. #1 E. #2 E. #3 E. #4 E. #5 Avg. Rows/sec. 

1 020 892 120 7 003 222 488 116 112 110 114 112 113 62 159 

2 041 947 232 14 382 135 1 000 203 199 200 199 204 201 71 672 

3 062 851 352 21 295 751 1 536 294 293 295 289 294 294 72 517 

4 083 343 472 28 282 050 1 984 366 368 366 371 369 368 76 923 

5 103 459 584 35 766 254 2 496 446 444 445 445 449 445 80 313 

6 123 392 704 43 472 987 3 008 529 537 541 528 534 533 81 512 

7 143 332 816 51 199 355 3 520 619 615 617 621 638 619 82 713 

8 163 314 936 58 820 755 4 096 695 705 706 710 717 707 83 198 

9 183 370 1 088 66 387 314 4 608 781 787 780 793 828 787 84 355 

10 203 293 1 216 73 915 173 5 120 841 855 842 850 864 849 87 061 

Table 9.54. Event Segmentation execution statistics in the RDBMS 

Source table Destination table Execution time (seconds) 

# Records MB # Records MB E. #1 E. #2 E. #3 E. #4 E. #5 Avg. Rows/sec. 

1 020 892 120 7 003 222 81 163 159 171 167 162 164 42 703 

2 041 947 232 14 382 135 162 183 187 199 200 197 194 74 008 

3 062 851 352 21 295 751 238 253 190 208 244 227 226 94 090 

4 083 343 472 28 282 050 314 230 252 249 225 273 244 116 069 

5 103 459 584 35 766 254 393 315 304 302 320 372 313 114 269 

6 123 392 704 43 472 987 475 413 345 396 360 346 367 118 348 

7 143 332 816 51 199 355 557 448 423 398 445 425 431 118 792 

8 163 314 936 58 820 755 638 494 425 444 456 486 462 127 318 

9 183 370 1 088 66 387 314 719 501 484 471 497 524 494 134 387 

10 203 293 1 216 73 915 173 800 575 517 517 548 530 532 139 025 

Table 9.55. Event Segmentation execution statistics in Hive  
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Appendix F.5. AUDIENCES AGGREGATION 

Source table Destination table Execution time (seconds) 

# Records MB # Records MB E. #1 E. #2 E. #3 E. #4 E. #5 Avg. Rows/sec. 

7 003 222 488 41 215 8 94 91 92 91 92 92 76 399 

14 382 135 1 000 54 979 8 233 204 208 203 202 205 70 157 

21 295 751 1 536 62 332 8 400 395 365 380 374 383 55 602 

28 282 050 1 984 66 730 8 647 588 714 602 708 652 43 355 

35 766 254 2 496 67 361 8 840 897 851 910 868 872 41 016 

43 472 987 3 008 67 618 8 1 199 932 1 170 937 1 186 1 098 39 605 

51 199 355 3 584 67 730 8 1 306 1 303 1 308 1 306 1 322 1 307 39 183 

58 820 755 4 096 67 982 8 1 483 1 529 1 491 1 536 1 496 1 505 39 075 

66 387 314 4 608 68 086 8 1 762 1 662 1 934 1 651 1 814 1 746 38 023 

73 915 173 5 120 68 253 8 1 933 2 052 1 896 2 070 1 848 1 960 37 705 

Table 9.56. Audiences Aggregation execution statistics in the RDBMS 

Source table Destination table Execution time (seconds) 

# Records MB # Records MB E. #1 E. #2 E. #3 E. #4 E. #5 Avg. Rows/sec. 

7 003 222 488 41 215 1 144 152 136 141 176 146 48 077 

14 382 135 1 000 54 979 1 210 202 261 218 166 210 68 486 

21 295 751 1 536 62 332 1 301 242 286 270 247 268 79 561 

28 282 050 1 984 66 730 1 404 350 331 380 342 357 79 148 

35 766 254 2 496 67 361 1 386 388 414 400 415 401 89 267 

43 472 987 3 008 67 618 2 431 458 467 474 495 466 93 223 

51 199 355 3 584 67 730 1 507 495 617 481 469 494 103 573 

58 820 755 4 096 67 982 3 590 550 525 560 516 545 107 928 

66 387 314 4 608 68 086 1 625 619 642 621 590 622 106 789 

73 915 173 5 120 68 253 1 807 734 742 691 724 733 100 793 

Table 9.57. Audiences Aggregation execution statistics in Hive 
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Appendix G.  SCALABILITY EXECUTION STATISTICS 

This appendix contains the execution statistics of the scaled systems. Note that the first three scenarios 

of the tests, performed in Hive, are using the results previously collected before the cluster was scaled-

out. Only with the fourth scenario we can start experiencing performance benefits, since it is at this 

stage that the executions start to use at least four tasks and, therefore, possibly the full capabilities of 

the cluster. 

Appendix G.1. CHANNEL TUNE 

Source table Destination table Execution time (seconds) 

# Records MB # Records MB E. #1 E. #2 E. #3 E. #4 E. #5 Avg. Rows/sec. 

1 020 892 200 1 020 892 41 46 53 58 50 50 51 20 017 

2 041 947 400 2 041 947 78 68 66 69 64 73 68 30 177 

3 062 851 600 3 062 851 114 72 63 74 66 69 69 44 389 

4 083 343 800 4 083 343 149 69 79 60 70 61 67 61 250 

5 103 459 1 000 5 103 459 184 79 84 79 77 77 78 65 151 

6 123 392 1 200 6 123 392 219 98 86 87 86 94 89 68 802 

7 143 332 1 400 7 143 332 254 109 99 93 97 106 101 70 960 

8 163 314 1 600 8 163 314 289 114 112 116 121 111 114 71 608 

9 183 370 1 800 9 183 370 314 129 126 125 129 122 127 72 500 

10 203 293 2 000 10 203 293 360 130 131 132 135 135 133 76 909 

Table 9.58. Channel Tune execution statistics in Hive (scaled-out) 

 

Appendix G.2. EVENT SEGMENTATION 

Source table Destination table Execution time (seconds) 

# Records MB # Records MB E. #1 E. #2 E. #3 E. #4 E. #5 Avg. Rows/sec. 

1 020 892 120 7 003 222 488 110 108 109 108 108 108 64 645 

2 041 947 232 14 382 135 1 000 199 198 200 199 202 199 72 151 

3 062 851 352 21 295 751 1 536 290 270 274 272 279 275 77 439 

4 083 343 472 28 282 050 1 984 348 351 346 349 354 349 80 960 

5 103 459 584 35 766 254 2 496 443 453 446 448 441 446 80 253 

6 123 392 704 43 472 987 3 008 531 521 531 527 534 530 82 076 

7 143 332 816 51 199 355 3 520 611 604 602 610 609 608 84 256 

8 163 314 936 58 820 755 4 096 682 684 681 680 689 682 86 205 

9 183 370 1 088 66 387 314 4 608 787 789 797 781 794 790 84 035 

10 203 293 1 216 73 915 173 5 120 846 848 853 841 843 846 87 405 

Table 9.59. Event Segmentation execution statistics in the RDBMS (scaled-up) 

Source table Destination table Execution time (seconds) 

# Records MB # Records MB E. #1 E. #2 E. #3 E. #4 E. #5 Avg. Rows/sec. 

1 020 892 120 7 003 222 81 163 159 171 167 162 164 42 703 

2 041 947 232 14 382 135 162 183 187 199 200 197 194 74 008 
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3 062 851 352 21 295 751 238 253 190 208 244 227 226 94 090 

4 083 343 472 28 282 050 314 229 209 238 209 215 218 129 933 

5 103 459 584 35 766 254 393 282 276 275 264 251 272 131 655 

6 123 392 704 43 472 987 475 332 341 295 328 314 325 133 900 

7 143 332 816 51 199 355 557 398 411 411 323 318 377 135 687 

8 163 314 936 58 820 755 638 445 419 417 455 428 431 136 581 

9 183 370 1 088 66 387 314 719 469 455 459 468 470 465 142 666 

10 203 293 1 216 73 915 173 800 502 499 507 409 519 503 147 046 

Table 9.60. Event Segmentation execution statistics in Hive (scaled-out) 

 

Appendix G.3. AUDIENCES AGGREGATION 

Source table Destination table Execution time (seconds) 

# Records MB # Records MB E. #1 E. #2 E. #3 E. #4 E. #5 Avg. Rows/sec. 

7 003 222 488 41 215 8 88 88 89 91 88 88 79 282 

14 382 135 1 000 54 979 8 185 183 197 184 186 185 77 741 

21 295 751 1 536 62 332 8 263 258 261 258 264 261 81 697 

28 282 050 1 984 66 730 8 356 360 360 359 364 360 78 634 

35 766 254 2 496 67 361 8 503 471 470 481 483 478 74 773 

43 472 987 3 008 67 618 8 638 631 608 617 624 624 69 668 

51 199 355 3 584 67 730 8 895 804 867 823 840 843 60 711 

58 820 755 4 096 67 982 8 898 1 017 949 917 1 012 959 61 314 

66 387 314 4 608 68 086 8 1 167 1 135 1 193 1 187 1 158 1 171 56 709 

73 915 173 5 120 68 253 8 1 224 1 359 1 216 1 243 1 286 1 251 59 085 

Table 9.61. Audiences Aggregation execution statistics in the RDBMS (scaled-up) 

Source table Destination table Execution time (seconds) 

# Records MB # Records MB E. #1 E. #2 E. #3 E. #4 E. #5 Avg. Rows/sec. 

7 003 222 488 41 215 1 144 152 136 141 176 146 48 077 

14 382 135 1 000 54 979 1 210 202 261 218 166 210 68 486 

21 295 751 1 536 62 332 1 301 242 286 270 247 268 79 561 

28 282 050 1 984 66 730 1 249 255 242 235 299 249 113 735 

35 766 254 2 496 67 361 1 299 340 301 308 329 313 114 391 

43 472 987 3 008 67 618 2 404 375 348 377 407 385 112 819 

51 199 355 3 584 67 730 1 451 450 482 466 447 456 112 361 

58 820 755 4 096 67 982 3 521 517 564 512 533 524 112 325 

66 387 314 4 608 68 086 1 571 604 629 566 544 580 114 395 

73 915 173 5 120 68 253 1 647 612 628 625 686 633 116 708 

Table 9.62. Audiences Aggregation execution statistics in Hive (scaled-out) 
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Appendix H.  VISUALIZATION 

In this appendix we extend the visualization layer presented in section 5.6.1 with a set of reports, 

developed on top of the produced aggregation tables, with the purpose of communicating visually the 

insights gathered from the raw data originated in Mediaroom. These reports are merely examples of 

what we can extract from the information generated by our data warehouse. For demonstration 

purposes, we are focusing our attention around some of the best-known metrics in the field of 

television audiences, like the Reach, the Rating and the Share of Live television, but not to focus solely 

on Live TV, we also present some simple measurements related to Video-on-Demand. 

One of the most relevant television metrics is the Share of each channel. In Figure 9.11 we present a 

report that shows the Share of the top channels throughout an entire day, in slices of five minutes. The 

calculation of the Share here is the percentage of viewers, of a given channel, during each slot of five 

minutes and the percentage considers, as universe, only the people that were watching live television 

in each five-minute period. Using information as granular as this can help us determine, for example, 

the time slots where advertising would be exposed to the largest number of viewers. From this report, 

and on a more specific view, we can observe that the channel that has the most Share throughout the 

day is not the one that leads during a period of about two hours. By relating channel and program 

information we could assess that during the mentioned period, a football match was being 

broadcasted and from there we can even understand, in a visual manner, the period that reflects the 

half-time where many viewers navigated away from the channel. 

 
Figure 9.11. Intraday Television Share (%) report 

The next report, presented in Figure 9.12, shows the daily Reach of the top ten channels during a 

chosen set of days. In this report, the metric Reach consists of the percentage of individuals, from the 

entire population, that visualized any given channel at least once during the entire day. The calculation 

of Share considers as population just the customers utilizing the Live Television service, whereas the 

Reach considers as its universe the entire population of the IPTV service, no matter if they are active 

or not during the analysis period. 
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Figure 9.12. Television Channel Reach (%) report 

Moving to a lower granularity level, the television program, we are able to capture and deliver the 

Rating of each program for any given day. Figure 9.13 presents us the top ten programs with the 

highest rating during an entire day. The Rating is calculated here as a percentage of the average 

population that watched the program during its broadcast time. Like the Reach, the calculation of the 

Rating considers as its universe the entire population of the IPTV service. This report also includes two 

more visual components the quickly communicate to the user which are the channels broadcasting the 

programs with the highest Ratings and which percentage of the population watched, on average, these 

programs. 

 
Figure 9.13. Daily Program Rating (%) report 
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Understanding the behaviors of the IPTV service can also be done using other dimensions beyond Live 

Television. In Figure 9.14 we depict an example of how we can use the raw data from the Mediaroom 

platform to capture insights related to the visualization of Video-on-Demand, by their genre and video 

provider, during different days of the week. 

 

Figure 9.14. Weekly VoD Visualizations report 
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10. ANNEXES 

Annex A. RDBMS INSTALLATION 

This annex covers the installation of a virtual machine that supports a database instance using Oracle 

12c on Oracle Linux Server 7.2 under Oracle VirtualBox 5.1.18. 

Annex A.1. VIRTUAL MACHINE CONFIGURATION 

 

 

Annex A.2. OPERATING SYSTEM INSTALLATION 

Hostname: hrd-mt-dw.v.nexus 
 

Manual network configuration to have the exact desired IPs (configure -> IPv4 Settings): 

Address: 192.168.1.100 

Netmask: 255.255.255.0 

Default gateway: 192.168.1.254 

DNS: 8.8.8.8, 4.4.4.4 
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Software selection 

Base Environment: Server with GUI 

Add-Ons for selected environment: none selected 

 

Disk partitioning 

Manual to add a swap partition of 10GB 

 

After the installation perform the update of the operating system: 

$ su - 

$ yum update 

Install the VirtualBox Guest Additions. This requires the installation of the kernel development 

packages: 

$ su - 

$ yum install kernel-uek-devel-$(uname -r) 

Now insert the Guest Additions CD Image and install it. After its completion, reboot. 

Update /etc/hosts so that the database host knows the other machines in the network: 

$ su - 

$ gedit /etc/hosts 

 

Contents of /etc/hosts: 

192.168.1.100 hrd-mt-dw.v.nexus hrd-mt-dw 

192.168.1.101 hrd-mt-h01.v.nexus hrd-mt-h01 

192.168.1.102 hrd-mt-h02.v.nexus hrd-mt-h02 

192.168.1.103 hrd-mt-h03.v.nexus hrd-mt-h03 

192.168.1.104 hrd-mt-h04.v.nexus hrd-mt-h04 

 

For this exercise, we will disable the firewall to facilitate the communication between the different 

machines in the network: 

$ su - 

$ systemctl stop firewalld 

$ systemctl disable firewalld 

 

At this point the operating system is ready for the installation of the database software. 

Hostname: hrd-mt-dw 

IP: 192.168.1.100 
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Annex A.3. OPERATING SYSTEM CONFIGURATION 

After the installation of the operating system we need to proceed with the configuration of several 

parameters before we can install the database. Before installing Oracle 12c itself, there is a set of pre-

requisites that should be validated, and some configurations that need to be assured. In order to 

facilitate this step, the following package was used: “How I Simplified Oracle Database 12c and 11g 

Installations on Oracle Linux 6”21. 

$ su - 

$ yum install oracle-rdbms-server-12cR1-preinstall 

 

Another important step that must be performed, before installing Oracle, is the creation of the users: 

$ su - 

$ /usr/sbin/groupadd oinstall 

$ /usr/sbin/groupadd dba 

$ /usr/sbin/useradd -g oinstall -G dba oracle 

$ passwd oracle 

 

The operating system parameter definition is related to the system resources and their correct setting 

is important to maximize the database performance. 

Parameter definition in ‘/etc/sysctl.conf’: 

fs.aio-max-nr = 1048576 

fs.file-max = 6815744 

kernel.shmall = 838860 

kernel.shmmax = 4294967296 

kernel.shmmni = 4096 

kernel.sem = 250 32000 100 128 

net.ipv4.ip_local_port_range = 9000 65500 

net.core.rmem_default = 262144 

net.core.rmem_max = 4194304 

net.core.wmem_default = 262144 

net.core.wmem_max = 1048586 

 

For ‘kernel.shmall’ Oracle recommends to be 40% of the physical memory in pages: 8GB * 40% -> 3,2GB 

* 1014 * 1024 * 1024 / 4096 (page size). For ‘kernel.shmmax’ Oracle recommends setting it to half of 

the physical memory in bytes. The other parameters are correctly set by the execution of the pre-

requisites package. 

After making the changes in the file ‘/etc/sysctl.conf’, to make them active reboot the system or 

perform the following command: 

$ /sbin/sysctl -p 

 

                                                           
21 http://www.oracle.com/technetwork/articles/servers-storage-admin/ginnydbinstallonlinux-488779.html  

(Accessed on 2016-10-13) 

http://www.oracle.com/technetwork/articles/servers-storage-admin/ginnydbinstallonlinux-488779.html
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With the use of the ‘ulimit’ command we need to reconfigure some system-wide specific limits: 

$ su – 

$ vi /etc/security/limits.conf 

 

oracle soft nofile 4096 

oracle hard nofile 65536 

oracle soft nproc 2047 

oracle hard nproc 16384 

oracle soft stack 10240 

oracle hard stack 32768 

oracle soft memlock 7633635 

oracle hard memlock 7633635 

 

The definition of these limits should also be present in the shell environment of the user that owns 

and executes the database instance (oracle). So, the following commands are to be added to the user 

oracle ‘.bashrc’ file: 

ulimit -Hn 65536 

ulimit -Sn 4096 

ulimit -Hu 16384 

ulimit -Su 2047 

ulimit -Hs 32768 

ulimit -Ss 10240 

 

During the configuration of the Oracle instance, if the MEMORY_TARGET feature is used, we will need 

to define the system available shared memory to be at least the value defined by the 

MEMORY_TARGET parameter22. To allow this, we will increase the available shared memory and set it 

to 6 gigabytes: 

$ su – 

$ umount tmpfs 

$ mount -t tmpfs shmfs -o size=6G /dev/shm 

 

To make this change permanent add the following command to the file /etc/fstab: 

tmpfs /dev/shm tmpfs defaults,size=6G 0 0 

 

To make this change active reboot the system or execute: 
$ umount tmpfs 

$ mount -a 

 

The final step, before we can start the installation of the database software and the configuration of 

the instance, is the creation of the directories that will support the software and the data. 

  

                                                           
22 http://oraclesivaram.blogspot.pt/2015/09/ins-35172-target-database-memory-xxxmb.html (Accessed on 

2016-10-13) 

http://oraclesivaram.blogspot.pt/2015/09/ins-35172-target-database-memory-xxxmb.html
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Software: 

$ su - 

$ mkdir -p /app/ 

$ chown -R oracle:oinstall /app/ 

$ chmod -R 775 /app/ 

Data: 

$ su - 

$ mkdir -p /mnt/sdb/oradata/ 

$ chown -R oracle:oinstall /mnt/sdb/oradata/ 

$ chmod -R 775 /mnt/sdb/oradata/ 

 

At this point we can proceed with the database installation since all the requirements are met. 

 

Annex A.4. DATABASE INSTALLATION 

With the user that will be owner the installation (oracle) execute the installer: 

$ . runInstaller 

 

During the installation wizard, the following options were selected: 

Install Option: Create and configure a database 

System Class: Server class 

Grid Installation Options: Single instance database installation 

Install Type: Advanced install 

Database Edition: Enterprise Edition 

Configuration Type: Data Warehousing 

Database identifiers: 
 Global database name: dw.v.nexus 
 SID: dw 

Uncheck the “Create as Container database” 

Configuration Options: 
 Memory: 5120 (~66% of 8GB) and enable Automatic Memory Management 
 Sample schemas: uncheck ‘Create database with sample schema’ 

Database storage: Filesystem. Change to match the folder on /mnt/sdb/oradata 

Operating System Groups: all dba 
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Annex B. HADOOP CLUSTER INSTALLATION 

This annex guide us through the installation of a Hadoop cluster using Hortonworks Data Platform 2.5, 

in a virtual environment manage by Oracle VirtualBox 5.1.18. 

Annex B.1. VIRTUAL MACHINE CONFIGURATION 

The resources available on the host computer are limited and, therefore, we need to distribute them, 

among the nodes, carefully. The table below shows us the nodes that will be part of our cluster. 

Hostname IP Address Functions Memory # CPUs Operating System 

hrd-mt-h01.v.nexus 192.168.1.101 
NameNode 

DataNode 
10 240 MB 2 Oracle Linux 7.2 

hrd-mt-h03.v.nexus 192.168.1.102 DataNode 6 144 MB 2 Oracle Linux 7.2 

hrd-mt-h04.v.nexus 192.168.1.103 DataNode 6 144 MB 1 Oracle Linux 7.2 

hrd-mt-h04.v.nexus 192.168.1.104 DataNode 6 144 MB 1 Oracle Linux 7.2 

 

Due to the limitation of the host’s resources, only the first node, that will be accumulating the functions 

of both DataNode and NameNode, will have installed a graphic user interface for the sake of facilitating 

some management operations. 

 

Above is the configuration of the virtual machines hosting our cluster’s nodes. The network interfaces 

for the virtual machines are configured as ‘bridged network’ so that all the nodes are easily accessible 
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throughout the network, not only amongst themselves but also to any other computers that might 

want to connect directly to them. 

 

Annex B.2. OPERATING SYSTEM INSTALLATION 

The installation of the operating systems and their configurations is divided in two different steps, 
aligned with the different configurations of the virtual machines. In the first step, we will install the 
main node that will accumulate several roles and from where we will coordinate the cluster 
deployment, and in the second step we will install the other nodes mostly devoted to the roles of 
DataNode and NodeMaster. 
 
Installation of hrd-mt-h01 

Manual network configuration to have the exact desired IPs (Configure -> IPv4 Settings): 

Address: 192.168.1.101 

Netmask: 255.255.255.0 

Default gateway: 192.168.1.254 

DNS: 8.8.8.8, 4.4.4.4 

 

Component installation: 

Base Environment: Server with GUI 

Add-Ons for selected environment: None selected 

 

 

Installation of hrd-mt-h02 

Manual network configuration to have the exact desired IPs (Configure -> IPv4 Settings): 

Address: 192.168.1.102 

Netmask: 255.255.255.0 

Default gateway: 192.168.1.254 

DNS: 8.8.8.8, 4.4.4.4 

 

Component installation: 

Base Environment: Minimum install 

Add-Ons for selected environment: None selected 

 

There is no need to install the remaining nodes since they’ll be generated by cloning the hard disk of 

hrd-mt-h02 after its configuration is finalized. 
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Annex B.3. OPERATING SYSTEM CONFIGURATION 

Configuration of hrd-mt-h01 

After the installation perform the update of the operating system: 

$ su - 

$ yum update 

Install the VirtualBox Guest Additions. This requires the installation of the kernel development 

packages: 

$ su - 

$ yum install kernel-uek-devel-$(uname -r) 

Now insert the Guest Additions CD Image and install it. After its completion reboot. 

Update /etc/hosts so that the database host knows the other machines in the network: 

$ su - 

$ gedit /etc/hosts 

 

Contents of /etc/hosts: 

192.168.1.100 hrd-mt-dw.v.nexus hrd-mt-dw 

192.168.1.101 hrd-mt-h01.v.nexus hrd-mt-h01 

192.168.1.102 hrd-mt-h02.v.nexus hrd-mt-h02 

192.168.1.103 hrd-mt-h03.v.nexus hrd-mt-h03 

192.168.1.104 hrd-mt-h04.v.nexus hrd-mt-h04 

 

For this exercise, we will disable the firewall to facilitate the communication between the different 

machines in the network: 

$ su - 

$ systemctl stop firewalld 

$ systemctl disable firewalld 

 

In order to deploy the cluster via Ambari, the Hadoop management tool used by Hortonworks Data 

Platform, we need to install the Network Time Protocol Daemon service (NTPD). 

Install NTP service: 

$ su - 

$ yum install ntp 

 

Start the NTPD service and set it to launch automatically upon boot: 

$ service ntpd start 

$ chkconfig ntpd on 
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Ambari, the tool responsible for the cluster installation and deployment, recommends the following 

maximum open file descriptors configuration: 

$ ulimit -Sn 

$ ulimit -Hn 

 

# if the output is not greater than 10000, run the following command: 

$ ulimit -n 10000 

 

The definition of these limits should also be present in the shell environment of the user that will 

execute Ambari. So, the following command is to be added to the ‘.bashrc’ file: 

ulimit -n 10000 

 

Configuration of hrd-mt-h02 

After the installation perform the update of the operating system: 

$ su - 

$ yum update 

 

Update /etc/hosts so that the database host knows the other machines in the network: 

$ su - 

$ gedit /etc/hosts 

 

Contents of /etc/hosts: 

192.168.1.100 hrd-mt-dw.v.nexus hrd-mt-dw 

192.168.1.101 hrd-mt-h01.v.nexus hrd-mt-h01 

192.168.1.102 hrd-mt-h02.v.nexus hrd-mt-h02 

192.168.1.103 hrd-mt-h03.v.nexus hrd-mt-h03 

192.168.1.104 hrd-mt-h04.v.nexus hrd-mt-h04 

 

For this exercise, we will disable the firewall to facilitate the communication between the different 

machines in the network: 

$ su - 

$ systemctl stop firewalld 

$ systemctl disable firewalld 

 

In order to deploy the cluster via Ambari, the Hadoop management tool used by Hortonworks Data 

Platform, we need to install the Network Time Protocol Daemon service (NTPD). 

Install NTP service: 

$ su - 

$ yum install ntp 
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Start the NTPD service and set it to launch automatically upon boot: 

$ service ntpd start 

$ chkconfig ntpd on 

 

Ambari, the tool responsible for the cluster installation and deployment, recommends the following 

maximum open file descriptors configuration: 

$ ulimit -Sn 

$ ulimit -Hn 

 

# if the output is not greater than 10000, run the following command: 

$ ulimit -n 10000 

 

The definition of these limits should also be present in the shell environment of the user that will 

execute Ambari. So, the following command is to be added to the ‘.bashrc’ file: 

ulimit -n 10000 

 

Set Up password-less SSH 

In hrd-mt-h01: 

Generate the key: 

$ ssh-keygen 

 

Create .ssh dir in each machine: 

$ mkdir /root/.ssh 

 

Copy the key from hrd-mt-h01 to hrd-mt-h02: 

$ scp /root/.ssh/id_rsa.pub root@hrd-mt-h02:/root/.ssh  

 

In hrd-mt-h01 and hrd-mt-h02: 

Add the SSH public key to the ‘authorized_keys’ file on each of the target hosts: 

$ cat /root/.ssh/id_rsa.pub >> /root/.ssh/authorized_keys 

 

In hrd-mt-h01: 

Validate if each host is accessible from hrd-mt-h01: 

$ ssh root@hrd-mt-h02.v.nexus 

$ ssh root@hrd-mt-h02.v.nexus 

 

The configuration is finished for hrd-mt-h01 and hrd-mt-h02. Shutdown hrd-mt-h02 so that it can be 

cloned and originate hrd-mt-h03 and hrd-mt-h04.  
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Annex B.4. NODE CLONING 

With the node hrd-mt-h02 powered down, copy its virtual disk to be assigned to hrd-mt-h03 and hrd-

mt-h04 virtual machines or simply clone the entire virtual machine twice to create the remaining 

nodes. Note that this operation can be performed as many times as needed if we just want to add 

more nodes beyond the four that are the scope of this guide. 

After the clone creation, reinitialize the MAC address of the network cards in each of the new nodes 

that were just created. 

 

Start each of the new nodes in order to adjust some configurations. The following actions are to be 

performed in each of the new machines. 

Change the hostname to the corresponding new name (from hrd-mt-h02 to hrd-mt-hnn): 

$ vi /etc/hostname 

 

Generate new UUIDs to the cloned machines (one to each): 

$ uuidgen enp0s3 

 

With the new UUIDs update the network configuration by replacing the UUID and the IP address: 

$ vi /etc/sysconfig/network-scripts/ifcfg-enp0s3 

 

At this stage, all the nodes that will be a part of the cluster are fully configured and we can begin with 

the cluster installation, deployment and configuration. 
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Annex B.5. CLUSTER PRE-INSTALLATION 

The first step in installing Hortonworks HDP 2.5 is to install its provisioning and management tool, the 

Apache Ambari, and in this specific case the version 2.4. 

Ambari will be installed on hrd-mt-h01 since this is the node with more resources available and also 

from this node we will deploy the software to the other nodes. 

Starting Ambari installation 

1. Login into hrd-mt-h01 as root. 

 

2. Download the Ambari repository file to a directory in the installation host: 

$ wget -nv http://public-repo-

1.hortonworks.com/ambari/centos7/2.x/updates/2.4.1.0/ambari.repo -O 

/etc/yum.repos.d/ambari.repo 

 

3. Download the Ambari repository file to a directory in the installation host: 

$ yum repolist 

 

4. Install the Ambari server. This also installs the default PostgreSQL Ambari database: 

$ yum install ambari-server 

 

Setup the Ambari server 

Execute the Ambari setup: 

$ ambari-server setup 

 

Answer to all the prompts with the default option. 

 

Start the Ambari server 

Execute the Ambari server: 

$ ambari-server start 

 

At this point we are ready to begin the installation of Hortonworks Data Platform and the creation of 

the Hadoop cluster. 
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Annex B.6. CLUSTER INSTALLATION 

From anywhere in the network we can access the Ambari site and begin the cluster installation. 

1. Log in into the Ambari server: 

URL: http://hrd-mt-h01:8080 

Credentials: admin/admin 

2. Launch Install Wizard 

3. Name cluster: HRD 

4. Select version: HDP 2.5. 

 

 

5. Install options: 

Add the hosts to where you want to deploy the cluster and to do that use the SSH Private Key 

previously created and installed (/root/.ssh/id_rsa). 

 

 

http://hrd-mt-h01:8080/
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6. Confirm the hosts that will be part of the cluster: 

Note that even though we have prepared four nodes to be part of the cluster, we will only install 

the first three at this stage. The fourth node can be added with the cluster already up and running. 

 

 
 

7. Choose the services that will be installed in the cluster: 

On this installation, besides the basic services necessary for the cluster like HDFS and Yarn, we are 

going to install Hive and Tez. Service selection at this point is not important since services can be 

added or removed at any given time. 
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8. Assign the masters: 

The distribution of services, by the nodes, should be performed according to the resources of each 

node and bearing in mind the interdependences among the services. Balancing the services by the 

nodes can and should be done at a later time according to the workload in each node when we 

have the cluster running the intended processes. 

 

9. Assigning Clients and Slaves: 

Since every node will be a DataNode they will all be slaves. The selection of a node to install the 

client software depends if we intend to execute jobs of a given service from a specific node. This 

configuration can also be changed after the cluster is installed and running. 
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10. Customize Services: 

Each service has its own configuration and they can be set at this stage. In this installation, we are 

using all the default configurations at this stage. Specific configurations to certain services will be 

applied after we collect some information about the cluster performance while running jobs. 

 

11. Install, Start and Test: 

In this step Ambari deploys the selected services to the corresponding nodes according to our 

previous configurations. 

 

When this step is complete, our cluster is finally installed and running. 
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Annex B.7. ISSUES FOUND 

Ambari server does not start at system startup 

After the installation, the Ambari server is not being executed automatically at system startup. This 

known issue (AMBARI-1452623) can be solved by adding the following code marked in bold to the file 

‘/sbin/ambari-server’: 

export ROOT=`dirname $(dirname $SCRIPT_DIR)` 

ROOT=`echo $ROOT | sed 's/\/$//'` 

 

# RHEL 7.2 places script under /etc/rc.d/init.d, which makes ROOT=/etc 

if [ ! -d "$ROOT/usr/lib/ambari-server" ]; then 

  export ROOT=`dirname $ROOT` 

  ROOT=`echo $ROOT | sed 's/\/$//'` 

fi 

 

# If for any reason the ROOT is still not correct fail here 

if [ ! -d "$ROOT/usr/lib/ambari-server" ]; then 

  echo "Can't locate Ambari lib folder under: $ROOT/usr/lib/ambari-server" 

  exit 1 

fi 

 

export PATH=$ROOT/usr/lib/ambari-server/*:$PATH:/sbin/:/usr/sbin 

export AMBARI_CONF_DIR=$ROOT/etc/ambari-server/conf 

 

 

DataNodes fail to install 

This is a HDP known issue (BUG-4130824) and can be easily solved by rollbacking the snappy version in 

the machine hosting the DataNode with the following instructions: 

$ yum remove snappy 

$ yum install snappy-devel 

 

 

Zeppelin Notebook does not start 

After the cluster installation, the Zeppelin Notebook service failed to start due to permission issues. To 

fix this perform the following instructions in the node hosting the service: 

$ mkdir -p /var/run/zeppelin-notebook 

$ chown -R zeppelin:zeppelin /var/run/zeppelin-notebook 

$ mkdir -p /var/run/zeppelin 

$ chown -R zeppelin:zeppelin /var/run/zeppelin 

 

                                                           
23 https://issues.apache.org/jira/browse/AMBARI-14526 (Accessed on 2016-10-24) 
24 https://docs.hortonworks.com/HDPDocuments/Ambari-2.1.0.0/bk_releasenotes_ambari_2.1.0.0/

content/ambari_relnotes-2.1.0.0-known-issues.html (Accessed on 2016-10-27) 

https://issues.apache.org/jira/browse/AMBARI-14526
https://docs.hortonworks.com/HDPDocuments/Ambari-2.1.0.0/bk_releasenotes_ambari_2.1.0.0/content/ambari_relnotes-2.1.0.0-known-issues.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.1.0.0/bk_releasenotes_ambari_2.1.0.0/content/ambari_relnotes-2.1.0.0-known-issues.html
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