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Abstract 

As the volume of available data increases exponentially, traditional data warehouses struggle to 

transform this data into actionable knowledge. This study explores the potentialities of Hadoop 

as a data transformation tool in the setting of a traditional data warehouse environment. 

Hadoop’s distributed parallel execution model and horizontal scalability offer great capabilities 

when the amounts of data to be processed require the infrastructure to expand. 

Through a typification of the SQL statements, responsible for the data transformation processes, 

we were able to understand that Hadoop, and its distributed processing model, delivers 

outstanding performance results associated with the analytical layer, namely in the aggregation 

of large data sets. We demonstrate, empirically, the performance gains that can be extracted 

from Hadoop, in comparison to a Relational Database Management System, regarding speed, 

storage usage, and scalability potential, and suggest how this can be used to evolve data 

warehouses into the age of Big Data. 

Keywords: Data Warehousing; Big data; Hadoop 

 

1. INTRODUCTION 

The amount of information collected as of 2012 is astounding; around 2.5 Exabytes of data are 

created every day, and this number is doubling every forty months (McAfee & Brynjolfsson, 2012). 

Nowadays technologies under the umbrella of Big Data contribute decisively to the Analytics world 

(Henry & Venkatraman, 2015), and the availability of huge amounts of data opened the possibility 

for a myriad of different kinds of analyses that ultimately feed and enable decision support systems 

(Ziora, 2015). Understanding then the importance of Big Data and its contribution to Analytics can 

be viewed under the simple concept that more is just better since in data science having more data 

outperforms having better models (Lycett, 2013). 

1.1. Background and problem identification 

In traditional systems, when more processing capabilities are required, we are forced to expand their 

processing power by adding more and better resources, namely processors, memory or storage. This 

approach, known as vertical scalability, has high costs associated and it is constrained by the 

architectural design that cannot evolve beyond the finite capabilities of one single node, the server 

(Lopez, 2012). In the Big Data world, scalability is horizontal –  instead of growing the capabilities 
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of the individual servers, the Big Data infrastructure grows by simply adding more nodes to the 

cluster; the set of computers that work together in a distributed system (Ghemawat, Gobioff, & 

Leung, 2003). This scalability, when compared to the vertical scalability, offers infinite growth 

potential while the costs remain linear (Marz & Warren, 2015). Nowadays, due to the amount and 

speed of information generated from a multiplicity of sources, traditional Data Warehousing tools 

for data extraction, transformation and loading are, in many cases, at the limit of their capabilities 

(Marz & Warren, 2015). Under these circumstances, the aim of this study is to explore and assess 

the value of Big Data technologies in the transformation of data, with the purpose of integrating 

them into traditional Data Warehousing architectures. The goal is not to replace data warehouses by 

Big Data infrastructures, but instead to put both worlds working together by harnessing the best 

features of each of them. 

Adoption of Big Data technologies is a hot topic nowadays, and the potential benefits are significant 

but, due to its young age, many challenges need to be carefully addressed (Jagadish et al., 2014).  

1.2. Study objectives 

The main goal of this study is to assess and validate the feasibility of Hadoop, a software framework 

for storing and processing large data sets in a distributed environment of commodity hardware 

clusters (White, 2015), as a data transformation tool that can be integrated as part of a traditional 

data warehouse (DW). It is also an objective of this study to assess the horizontal scalability potential 

that is offered by Hadoop clusters.  

A comparative study is performed with the purpose of assessing the benefits of incorporating Big 

Data technologies in traditional data warehouse architectures, typically supported by a Relational 

Database Management System (RDBMS). For comparison purposes, the required transformation 

processes were implemented in both an RDBMS and Hadoop environments. 

2. METHODOLOGY 

A design-oriented approach was selected as the guiding methodology, considering the goals, nature 

and the body of knowledge of our research, since it focuses on understanding, explaining, improving 

and innovating Information Systems (Hevner & Chatterjee, 2010). 

From the identification of the problem, previously described, we moved to an exploratory phase 

concerned with the knowledge acquisition regarding Big Data technologies and how they can be 

integrated into traditional Data Warehousing architectures. 

For the experimental phase of our research we decided to use a concrete instance of the more generic 

problem – the issues created by the volume and velocity of data are instantiated in a set of processes 

that aim to produce television audience metrics, regarding Live Television, Digital Video Recording 
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(DVR) and Video-On-Demand (VoD). These metrics are extracted from the raw data collected from 

the Internet Protocol Television (IPTV) Mediaroom platform (Architecture of Microsoft Mediaroom, 

2008). To support this data, and extract insights from it, we designed a data warehouse and 

implemented it in a RDBMS (using Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 – 

64bit Production with the Partitioning, OLAP, Advanced Analytics and Real Application Testing 

options) and a Hadoop cluster (using Hive on Tez available in the Hortonworks Data Platform 2.5.3). 

These two environments were created in a virtual setting supported by Oracle VirtualBox 5.1.30 and 

the used operating system was an Oracle Linux Server 7.2 with Unbreakable Enterprise Kernel 

(3.8.13-118.13.2.el7uek.x86_64). The hardware information used in our research is available in 

Table 1. 

COMPONENT SPECIFICATIONS 

Processor Intel Core i7-4770S, 3100 MHz (QuadCore) 

Motherboard Asus Z87-Pro (4 PCI-E x1, 3 PCI-E x16, 4 DDR3 DIMM, Gigabit LAN) 

Memory 32 GB (4 x Kingston HyperX KHX1866C9D3/8GX) 

Graphic card MSI NVIDIA GeForce GTX 750 Ti (2 GB) 

Storage 
Samsung SSD 840 EVO 120GB (120 GB, SATA-III) 

WDC WD10EZEX-00BN5A0 (1000 GB, 7200 RPM, SATA-III) 

WDC WD30EZRX-00SPEB0 (3000 GB, 5400 RPM, SATA-III) 

WDC WD20EZRZ-00Z5HB0 (1863 GB, 5400 RPM, SATA-III) 

ST2000DM006-2DM164 (1863 GB, 7200 RPM, SATA-III) 

Network Intel Ethernet Connection I217-V 

Operating System Windows 10 Professional 64-bit 

Table 1. Hardware used in the project 

With the same data model and transformation processes created in the two systems, we executed a 

series of comparative benchmarking tests. The data was fed to these two systems via compressed 

text files, each containing 200,000 records and the timings gathered report a trimmed mean where 

the best and worst execution times were excluded. Our tests allowed us to evaluate performance, 

scalability and storage requirements. 

3. THEORETICAL FRAMEWORK 

The theoretical framework that supported this study crosses a wide range of theories and techniques. 

Invariably, there was the need to go back to the origins of relational databases and from there expand 

the knowledge towards the focal point of the work, the current paradigms around the explosion of 

information under the umbrella of Big Data. There are many theories and emerging technologies 

that needed to be analyzed before we could start the implementation phase of this study. 

Since the first ideas for the relational databases, proposed by Codd in 1970, the Relational Database 

Management Systems (RDBMS) have been the norm. With Codd’s ideas as a foundation, Online 
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Transaction Processing (OLTP) systems proliferated within organizations; their features multiplied, 

and their applicability allowed for a big dissemination and adoption in a wide range of Information 

Systems. Relational databases, managed in OLTP systems, became the core of information in 

organizations, no matter their business purposes (Krishnan, 2013). 

With the purpose of creating a more systemic view of the organizations’ activities, the first concepts 

of Data Warehousing emerged in the late 1970s and early 1980s (Krishnan, 2013). The need for the 

transformation of data from many sources into useful insights paved the road for the importance of 

Business Intelligence and Enterprise Data Warehouses (EDW). Bill Inmon, with a top-down 

approach where the DW is a centralized repository that acts as a single version of the truth (W. H. 

Inmon, 1992), and Ralph Kimball, through a bottom-up approach supported by the dimensional 

modelling (Kimball, 1996), defined most of the concepts of Data Warehousing architectures. 

The explosion of the amount of generated data, and the quest for the most up-to-date information to 

base decisions upon, created challenges in the traditional Information Systems. Internet giants like 

Google and Facebook had to change their Information Systems architectures. In 2004, the 

information regarding the Map-Reduce paradigm was publicly released (Dean & Ghemawat, 2004). 

Map-Reduce is among one of the changes in how information is processed but, of course, it is not 

the only one. A plethora of databases that intended to break the barriers of Codd’s relational model 

were created, and as a result, the NoSQL (Not only Structured Query Language) paradigm gained 

popularity and momentum. NoSQL options, when compared with the traditional RDBMSs, are very 

simple in their sophistication levels.  

The purpose of data warehouses and Big Data, within organizations, is seen through different eyes 

by several authors. While data warehouses provide a source of clearly defined and unified 

information that can then be used by systems like Business Intelligence tools (Kimball & Ross, 

2013), some authors state that purpose of Big Data is to provide cheap solutions to store raw data 

that hasn’t any predefined structure (Boulekrouche, Jabeur, & Alimazighi, 2015). This idea is even 

emphasized by authors advocating that there is no correlation between data warehouses and Big 

Data, since the latter is only seen as a technology for storing data (B. Inmon, 2013). Moreover, on 

the opposite side, some defend that Big Data itself consists of both technologies and architectures 

(Maria, Florea, Diaconita, & Bologa, 2015). Russom (2014) strongly believes that Hadoop cannot 

replace a traditional data warehouse since, for example, enterprise data reporting requirements 

cannot be satisfied by Hadoop as well as they can be by an RDBMS-based data warehouse. 

Technologies have completely different levels of maturity, and in the end, the most important aspect 

is which approach can better suit the specific objectives. 

Hadoop can be seen as the next step in the development of data warehouses and especially in the 

Extract-Transform-Load (ETL) phase, even though Hadoop is not an ETL tool (Šubić, Poščić, & 
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Jakšić, 2015). Combining new technology as an integrator of data in a traditional data warehouse 

was explored in our study so that its advantages and shortcomings could be assessed in an empirical 

way beyond the theory and the so many contradictory opinions in the world of data science. 

4. DESIGN AND DEVELOPMENT 

In this paper, we considered a specific problem that portrays a practical case of a traditional data 

warehouse system that simply can no longer produce answers due to the increase of data. A data 

warehouse that processes television viewing events, reflecting the users’ behaviors, and transforms 

them into useful insights for the business area. This DW has a critical value for any service television 

provider, but for the system to maintain its validity, it must adapt to the increase of data it has to 

process. 

The data model that constitutes the basis of our data warehouse was implemented in both the 

RDBMS and Hive. At a logical level, the two implementations are identical but at a physical level 

there are some differences. These differences are in the definition of the data types, and in the 

definition of the storage options – for the Oracle database the tables are stored using the row store 

basic compression, and for Hive we are using the Optimized Row Columnar (ORC) format without 

any extra compression. 

4.1. Process identification and description 

From the several processes that take part in the shaping of data extracted from the Mediaroom 

platform into the information concerning television Audiences, we selected five that, according to 

their characteristics, portray a diverse and representative set of data transformation tasks. These 

processes are briefly described in Table 2. 

PROCESS DESCRIPTION 

Channel Tune Mediaroom event that happens when an end user tunes away from a 

television channel 

Program 

Transition 

Mediaroom event that happens when there is a change in the program 

being watched 

DVR Events Mediaroom events related to the use of the Digital Video Recording, 

namely: start, abort, playback, schedule, delete and cancel 

Event 

Segmentation 

Transformation process that multiplies each Channel Tune event by the 

number of 5-minute slots it traverses 

Audiences 

Aggregation 

Calculation of analytical metrics (sum and count) that reflect TV 

Audiences measurements, namely the Share. This process uses as input 

the data generated by the Event Segmentation 

Table 2. Process identification 

The main characteristic discerning the processes is the type of data transformation they enable. We 

identified and classified the data transformation tasks into three types. They are:  
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1) One-to-One (1:1): transformation processes that take one input record and also generate 

one record as output; 

2) One-to-Many (1:M): transformation process that multiplies each input record into one or 

more output records; 

3) Many-to-One (M:1): aggregation process that generates small analytical results from 

large data sets. 

The process distinction, promoted by their categorization, plays a pivotal role in the study of their 

performance, but other factors are considered in their understanding, namely the volumes of data 

involved, and also how the data itself is processed. In Table 3 we expand the process 

characterization. 

PROCESS TYPE DESCRIPTION 

Channel Tune 
1:1 

Transformation process that takes one input record and also 

generates one record as output (uses medium-sized joins) 

Program 

Transition 
1:1 

Transformation process that takes one input record and also 

generates one record as output (uses a large-sized join) 

DVR Events 
1:1 

Transformation process that takes one input record and also 

generates one record as output (uses multiple small-sized joins) 

Event 

Segmentation 
1:M 

Multiplies each input record into one or more output records. 

The average ratio of this multiplication is around 1 to 7 

Audiences 

Aggregation 
M:1 

Aggregates large number of records to produce a single output 

record and performs analytical operations as well as roll-ups 

Table 3. Process classification and description 

From the more general process description of the studied processes, we move to a more detailed 

analysis and, for that purpose, we present the Data Flow Diagrams (DFDs) that capture the individual 

characteristics of each process. These diagrams show the flow of data as solid lines, while the dashed 

lines represent data that is used to complement the input but do not influence the number of rows 

generated by the process. The volume of data of each table is represented between squared brackets. 

Please note that the data volumes of the entities that support the process (the ones connected by 

dashed lines) never change throughout our test scenarios, while the volumes of the main entities (the 

ones connected to the processes by the solid lines) vary between one and ten million.  

When we analyze the subscriber events transformation (Channel Tune, Program Transition and 

DVR Events), it is important to point out that these processes are purely transformation processes, in 

the sense that the number of records at the input is the same as the one at the output. The 

transformation rules are responsible for enriching these events in the data warehouse context so that 

afterward we can extract the desired insights. 

The transformation of the Channel Tune event, depicted in Figure 1, uses as source the input files 

extracted from the Mediaroom platform and adds to these records extra information like the 

television channel that they are reporting. This is only possible by joining the events with the 
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mappings between the Set-Top Boxes (STBs) and their associated Channel Maps that relate them to 

the TV channels. 

Events (SA) 
[10M]

STBs – Channel 
Mappings [1.4M]

Channel Mappings – 
Services [< 1K]

Events (FACT)
[10M]

Channel Tune
 

Figure 1. Channel Tune event transformation DFD 

This process can transform ten million records that are enriched through a join with a medium size 

table, containing more than a million records, and also with a small table populated with less than 

one thousand records. 

The Program Transition event, depicted in Figure 2, follows the same principle of the event Channel 

Tune but adds an extra complexity layer due to the amount of data used in its transformation. To 

identify to which channel the program watched belongs, we need to perform a join between the raw 

Program Transition events and the already transformed Channel Tune events. 

Events (SA)
[10M]

Events (FACT) : 
Channel Tune [10M]

VoD Assets
[< 1K]

Events (FACT)
[10M]

Program 
Transition

 

Figure 2. Program Transition event transformation DFD 

In this case, we are joining two big sets of data containing, up to ten million records each. A third 

table is also used, containing the information about the VoDs, but the size of this table is minimal. 

Volume-wise, the process in Figure 3, is similar to the Channel Tune transformation, but here we 

have an extra layer of complexity associated with the use of multiple joins with several dimension 

tables. 

Events (SA)
[10M]

Services
[< 1K]

Service Collections
[< 1K]

Events (FACT)
[10M]

DVR Events

Service Collection 
Mappings [< 1K]

Join

 

Figure 3. DVR Events transformation DFD 
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This transformation, unlike the previous ones, is using multiple event types and performing different 

transformations in the same iteration, this according to the particularity of each event type. 

The Event Segmentation purpose is to facilitate the aggregation that will report viewing 

measurements in five-minute intervals. Channel Tune and Program Transition events are facts that 

have a start time and a duration and, from the combination of these two attributes, we can place them 

in a time interval. 

Knowing which users were tuned to a specific channel in a given five-minute interval, from millions 

of records, requires a carefully designed process. The followed method took a phased approach 

where firstly we create segments of the events for each five-minute slot. The result has as many 

segments as many five-minute slots are crossed by the event since its beginning until its end, having 

in consideration the start time and the duration. 

Granularity Periods
[< 1K]

Segmented Events
[72M]

Segmentation
Events (FACT)

[10M]

Dates
[< 1K]

Segmentation
 

Figure 4. Event Segmentation DFD 

This process has the particularity that it multiplies the number of records used as input by their 

duration, or more precisely, by the number of five-minute slots it traverses. The challenge here is 

once again volume but in a different perspective; this process, illustrated in Figure 4, is responsible 

for the creation of new facts that increase the level of granularity and the volume of data. From an 

already big input, we generate an output approximately seven times bigger. 

The final process, unlike the previous ones, is not a transformation process, but instead an 

aggregation one that generates a small analytical result from a huge input, containing millions of 

facts. 

Aggregation processes are not part of the transformation layer in data warehouses, but many times 

can represent interesting challenges motivated by the complexity of their calculations or by the 

amount of data involved. In this specific case, the process depicted in Figure 5, we are using a large 

amount of information, the segmented events, and calculating television viewing metrics that 

represent an amount of information more than one thousand times smaller than its input. 
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Segmented Events
[72M]

Audiences Metrics
[68K]

Audiences 
Aggregation

Set-Top Boxes
[1.4M]

Aggregation
 

Figure 5. Audiences Aggregation DFD 

With the process classification and analysis, we can represent different processes, mainly discerned 

by the differences of input size versus output size and, of course, the volumes of data involved. It is 

through this distinction, that we can better understand where performance advantages can be gained, 

and with this information, we are able to determine which processes are the best candidates to be 

moved out from the RDBMS and into the Hadoop cluster, to maximize the overall efficiency of the 

data warehouse. 

5. RESULTS AND DISCUSSION 

In this section, we present the results gathered from our tests. These tests were performed on four 

different systems, two Hadoop clusters running Hive on Tez, and two relational databases running 

Oracle. Initially, we intended to compare the performance of a Hadoop cluster against a RDBMS 

and, on a second phase, the potential performance improvements of scaling both systems. The 

relational databases are represented by the acronym RDB and RDB-X, being the latter the scaled-

up system, and the Hadoop clusters are represented by the acronyms Tez-3N and Tez-4N, where the 

numeric part indicates the number of nodes in the cluster. 

5.1. Batch performance and scalability 

The performance tests cover the transformation processes previously described and implemented on 

the RDBMS and the Hadoop cluster. The diversification of the processes, subject to our 

benchmarking, allowed us to deepen the understanding of how distinct scenarios behave in both our 

environments. Our generic goal was to assess if the Hadoop cluster could outperform the RDBMS 

in a set of transformation processes. However, beyond that, we were trying to understand which 

processes fit better under the distributed architecture of a Hadoop cluster and from these conclusions 

collect valuable information that will support an efficient evolution of data warehouse architectures 

through the inclusion of Big Data technologies. 

Each of the five transformation processes benchmarked has a total of ten scenarios that correspond 

to the different number of data rows being fed to the transformation (i.e., one million, two million, 

up until ten million) and, for each scenario, a total of five iterations were performed. The reported 

results were then calculated using a trimmed mean where the best and worst results were removed. 
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The first transformation process, the Channel Tune, uses as input the raw files and performs two 

joins with two dimension tables, one small and another classified as medium. Also, due to its 

simplicity, this process does not use any Reducer tasks when executed in Hive. 

 

Figure 6. Channel Tune transformation benchmarking 

From the analysis of the chart in Figure 6, we can gather that the execution in the RDBMS is, more 

or less, steady no matter the volume of data, while the same executions, in the Hadoop cluster, were 

progressively increasing the number of records processed per second as the volumes of data increase. 

When we compare the initial systems solely (before the scaling), we can observe that the Hadoop 

cluster is capable of outperforming the RDBMS at the second test that used two million records as 

input and, as the scenarios progressed, the difference increased. Regarding scalability, we obtained 

similar gains for both systems, but the scaled-up RDBMS is not capable of even getting near the 

initial Hadoop cluster. 

The next transformation process, the Program Transition, used similar amounts of data as input but 

also used the data transformed by the Channel Tune process as a lookup table. For this process, we 

considered not only a join with a small dimension table but also a join with a large fact table (with 

ten million rows), or partition of a fact table to be more exact. In this situation, we were reading and 

writing from the same table, but from different partitions. 

1 2 3 4 5 6 7 8 9 10

RDB 58 824 63 158 63 380 63 492 64 103 64 516 65 625 65 217 64 593 62 630

Tez-3N 45 455 69 767 77 586 78 431 80 645 82 949 83 004 83 333 83 851 86 705

RDB-X 68 182 74 074 76 923 70 175 73 171 70 313 70 946 73 171 69 409 71 259

Tez-4N 48 387 72 289 80 357 83 333 89 820 90 909 90 517 91 603 94 406 96 463
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Figure 7. Program Transition transformation benchmarking 

Figure 7 show us that, as expected, when we compare this process with the Channel Tune 

transformation, with the inclusion of a join with a large table, the transformation process gets its 

performance degraded. Once again, the performance of the RDBMSs remains stable throughout all 

the scenarios, while the performance of the clusters improves as the amounts of data increases. For 

this process, the scaling of the RDBMS gave us considerable improvements, and, in contrast, the 

gains obtained by the scaled-out cluster are minimal. Nevertheless, at the end of the test scenarios, 

the Hadoop clusters surpass their counterpart systems. 

The following test uses similar amounts of data as input, but globally the amount of data is far less 

since we are not performing any join with a large table. The DVR Events processing, when compared 

to the Program Transition transformation, decreases the amount of data used as lookup and, when 

compared with the Channel Tune process, adds more complexity to the transformation statement by 

including more joins. 

 

1 2 3 4 5 6 7 8 9 10

RDB 50 847 54 054 56 604 55 556 54 152 53 097 53 435 53 691 53 465 54 745
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Figure 8. DVR Events transformation benchmarking 

With just a quick glance at Figure 8, and especially if we compare it with the results in Figure 6, we 

can safely say that the extra complexity added to the transformation had no impact on the 

performance. With less data the RDBMS processes more records than the Hadoop cluster but, on 

the other hand, Hadoop can deliver better performance with higher volumes of data. Also, for this 

process, scaling both systems results in clear improvements and especially for the Hadoop cluster. 

These three transformation processes fit into the same category of processes that, in a simplistic 

view, take one input row, add information to it according to a set of rules, and finally output it to a 

fact table. The observations gathered for the RDBMS tell us that performance for these systems is, 

more or less, stable no matter the size of the input data, meaning that we can obtain excellent results 

with small amounts of data. On the other hand, the Hadoop cluster seems to thrive on the size of 

data.  

As stated, the tested processes fit into the same category, but the differences between them allow us 

to have a deeper level of understanding regarding their behavior in different settings. Straightforward 

transformations, no matter the complexity of the lookup component, displayed solid results for the 

RDBMS, but as the amounts of data increase, Hadoop is the clear winner. However, when facing a 

transformation that relies on large amounts of data to perform the lookup component (the Program 

Transition transformation), Hadoop only starts surpassing the RDBMS in test scenarios that process 

larger datasets. 

1 2 3 4 5 6 7 8 9 10

RDB 56 604 61 856 60 811 62 176 61 475 62 937 62 687 62 663 62 212 62 112

Tez-3N 30 000 68 966 79 646 73 171 70 423 82 569 82 353 79 470 75 419 73 529

RDB-X 71 429 72 289 76 923 72 289 72 115 75 314 77 778 68 376 76 056 68 650

Tez-4N 52 632 70 588 83 333 79 470 88 235 89 109 93 333 92 664 94 077 96 463
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The Event Segmentation, depicted in Figure 4, is not a very typical process in the sense it performs 

a cartesian product that multiplies the number of input rows, according to a set of rules, and produces 

an output far larger than the input. For this reason, the costly step associated with the execution of 

this process is the writing of the output to the storage. 

 

Figure 9. Event Segmentation benchmarking 

The input data used by this transformation is the output generated by the Channel Tune process. 

Contrary to the processes tested previously, here the input data, in Hadoop, is not stored in 

compressed files but instead is composed of files using the ORC format. Throughout all the test 

scenarios, reported in Figure 9, the RDBMS performance increases steadily, but slowly, never being 

able to get closer to the performance extracted from the cluster. The most visible conclusion enabled 

by this test was that the distributed processing of Hadoop enables enormous performance gains. 

Also, the gap between Hadoop and the RDBMS could not be attenuated by scaling-up the latter. 

Surprisingly, the enhancement of the RDBMS had almost zero impact on the performance, whereas 

the scaling-out of the cluster, once again, gave us visible performance improvements. 

The subject of our final test is not a process that is part of the ETL layer of a data warehouse, but 

instead, it belongs to the more analytical components. The concept of transformation still applies 

here but more in a literal sense than in a conceptual one. Data is indeed transformed, but that 

transformation is performed through analytical capabilities on top of an aggregation. The Audiences 

Aggregation process makes use of the data previously generated by the Event Segmentation 

transformation, and its purpose is to calculate aggregated measurements related to television 

audiences. 

7 14 21 28 35 43 50 58 65 72

RDB 54 373 62 762 64 513 66 616 69 240 72 890 74 513 76 335 75 590 77 599

Tez-3N 96 948 116 360 120 699 127 213 140 331 144 870 145 494 141 837 143 877 152 049

RDB-X 55 399 61 662 66 429 69 052 71 994 72 932 75 448 78 377 80 024 79 823
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0

20 000

40 000

60 000

80 000

100 000

120 000

140 000

160 000

180 000

# 
R

e
co

rd
s 

p
ro

ce
ss

e
d

 p
e

r 
se

co
n

d

Millions of records

Event Segmentation

RDB Tez-3N RDB-X Tez-4N



Dias & Henriques / Augmenting data warehousing architectures with Hadoop

 

 
19.ª Conferência da Associação Portuguesa de Sistemas de Informação (CAPSI’2019) 14 

 

Unlike the other processes analyzed so far, the depicted number of records per second in Figure 10 

reflects the number of input records instead of the number of output records. This process represents 

the case where the number of input rows is far greater than the number of output rows, as it is 

characteristic of aggregations. 

 

Figure 10. Audiences Aggregation benchmarking 

From the analyzed processes, this is the first where the amount of data significantly affects the 

performance of the RDBMS. From Figure 10 we can observe two opposite trends – the RDBMS 

performance degrades, with the increase of input data, while the performance of Hive improves. The 

scaling-up of the RDBMS gave us immediate and enormous performance gains for the first test 

scenarios, but quickly these gains faded as the amounts of data increased. On the other hand, the 

scaling-out of the cluster resulted in consistently better performances. At the end of the test 

scenarios, the scaled systems show similar gains, even though both systems display very different 

performances, being Hadoop, the obvious best performer. 

From the analysis of the scalability test results, one thing became clear – the scaling-out of the 

cluster, no matter the type of process, always gives us visible performance gains, while tangible 

improvements of scaling-up the RDBMS are dependent on the process. This final observation refers 

us to a potentially serious problem surrounding the capability of data warehouses to cope with the 

increase in the volumes of data. There may be processes that would require more costly and complex 

hardware improvements to retain their validity when facing larger volumes of data. 

Finally, scalability under the distributed architecture of Hadoop is not only easier to implement and 

more efficient in the resource utilization, but it is also virtually unlimited as it grows horizontally, 

7 14 21 28 35 43 51 59 66 73

RDB 79 355 60 169 59 264 52 810 47 134 47 641 45 061 46 920 44 778 47 670

Tez-3N 72 883 91 823 108 191 110 026 109 455 108 900 110 402 107 658 107 079 108 314

RDB-X 177 181 135 816 84 538 86 621 97 917 95 318 88 452 67 328 66 023 65 112
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through the inclusion of more nodes, instead of growing vertically under the hardware constraints 

of a single server. 

Hadoop was designed for parallel batch processing of large amounts of data (Barnes et al., 2016). 

On top of Hadoop, Hive offers a familiar SQL-like approach of implementing distributed data 

transformation tasks that fit the typical batch processing use cases (Grover, Malaska, Seidman, & 

Shapira, 2015). Also, at the storage level, there is a clear orientation towards batch processing since 

HDFS focuses on the overall throughput rather than the latency of individual operations (Shvachko, 

Kuang, Radia, & Chansler, 2010). Through our performance tests, we could effectively assess that 

the combination of these characteristics is, in fact, materialized in great performance gains during 

the execution of data transformation tasks. Figure 11 presents the cumulative execution time of the 

benchmarked processes during our research.  From a first look at this figure, the obvious conclusion 

is that the same data transformation tasks in Hive are completed in around half the time that takes 

them to be processed in the RDBMS. 

 

Figure 11. Data transformation tasks cumulative execution time 

Figure 11 also gives us other quick insights – our classification of transformation processes, as 

depicted in section 4.1 (1:1, 1:M and M:1), confirmed us that not all data transformations are the 

same. The processes that fit in the One-to-One category showed little improvement when processed 

by Hadoop. The One-to-Many and the Many-to-One processes are where Hadoop outperformed, 

without any doubt, the RDBMS. One aspect that is common to all the processes is that the more data 

we have to process, the bigger is the performance difference between Hadoop and the RDBMS. 
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5.2. Storage 

We observed enormous gains in storage usage with Hive’s ORC format in comparison to the 

compression used in Oracle. This is demonstrated in Figure 12, where we show the storage usage in 

each system for the different processes that were tested. 

 

Figure 12. Total storage usage comparison 

From the original size of data in Oracle, Hive’s format allowed us to save 78% of storage space1. It 

is important to state though that we are comparing two very different storage approaches – Oracle 

basic compression is a row compression method while Hive’s ORC file format uses columnar 

compression. We were forced to use row compression in Oracle because columnar compression is 

not available for the used database since such compression is only available in more high-end 

products like Exadata. 

In Figure 12 we are showing the storage usage for Hive’s ORC format without any extra 

compression, but if, for example, we added the Zlib compression, the default in Hortonworks Data 

Platform, the storage savings would improve from 78% to 90%. It is clear that Hive’s ORC format 

is extremely efficient for storing data and associated with this efficiency is the performance of any 

read/write operations, even though we need to account for extra CPU processing. 

 

1 We did not account for replication in the cluster nor for redundancy in the RDBMS. 
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6. CONCLUSIONS AND FUTURE RESEARCH  

Hive in conjunction with Tez, rather than with Map-Reduce, offers a very reliable and performant 

solution with which we can collect great benefits from the distributed processing model implemented 

by Hadoop. Hive also brings a familiar layer to data warehouse developers who are used to express 

their data access and manipulation tasks through SQL. During our research, we observed that lately 

SQL gained considerably more interest in the Big Data world and to attest that we can find many 

projects that rely on SQL as its primary language, like Hive, Impala, Drill, and Presto or even Spark 

that recently also started to support SQL. The SQL approach is extremely important when we 

analyze traditional Data Warehousing architectures that have at their core an RDBMS since it greatly 

facilitates the migration of processes and data from one technology to the other. 

As it was expected, we confirmed that Hadoop thrives with large volumes of data. Hadoop’s batch-

oriented data processing model, when compared to RDBMSs, is capable of processing larger 

amounts of data and in a much faster way. However, on this subject, we found out that not all 

transformation processes extract the same benefits from distributed processing. More than related to 

the transformation layer of data warehouses, we observed that Hadoop, through Hive on Tez, 

delivers outstanding performance results associated with the analytical layer, namely in the 

aggregation of large data sets that generate analytical measurements. 

Due to the already mentioned advantages of Hadoop, namely concerning performance, storage and 

scalability, we believe that its inclusion within a data warehouse architecture will result in great 

benefits that will not only enhance its current performance but will also add several new dimensions 

regarding data analytics, like more in-depth analyses. Data mining activities or machine learning 

algorithms can make use of the detailed data stored in the cluster without affecting the performance 

of the visualization layer, while the latter continues to be supported by the summarized data, 

previously calculated by Hadoop, but made available to the RDBMS. 
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