160 research outputs found

    Motion estimation and CABAC VLSI co-processors for real-time high-quality H.264/AVC video coding

    Get PDF
    Real-time and high-quality video coding is gaining a wide interest in the research and industrial community for different applications. H.264/AVC, a recent standard for high performance video coding, can be successfully exploited in several scenarios including digital video broadcasting, high-definition TV and DVD-based systems, which require to sustain up to tens of Mbits/s. To that purpose this paper proposes optimized architectures for H.264/AVC most critical tasks, Motion estimation and context adaptive binary arithmetic coding. Post synthesis results on sub-micron CMOS standard-cells technologies show that the proposed architectures can actually process in real-time 720 × 480 video sequences at 30 frames/s and grant more than 50 Mbits/s. The achieved circuit complexity and power consumption budgets are suitable for their integration in complex VLSI multimedia systems based either on AHB bus centric on-chip communication system or on novel Network-on-Chip (NoC) infrastructures for MPSoC (Multi-Processor System on Chip

    CABAC accelerator architectures for video compression in future multimedida : a survey

    Get PDF
    The demands for high quality, real-time performance and multi-format video support in consumer multimedia products are ever increasing. In particular, the future multimedia systems require efficient video coding algorithms and corresponding adaptive high-performance computational platforms. The H.264/AVC video coding algorithms provide high enough compression efficiency to be utilized in these systems, and multimedia processors are able to provide the required adaptability, but the algorithms complexity demands for more efficient computing platforms. Heterogeneous (re-)configurable systems composed of multimedia processors and hardware accelerators constitute the main part of such platforms. In this paper, we survey the hardware accelerator architectures for Context-based Adaptive Binary Arithmetic Coding (CABAC) of Main and High profiles of H.264/AVC. The purpose of the survey is to deliver a critical insight in the proposed solutions, and this way facilitate further research on accelerator architectures, architecture development methods and supporting EDA tools. The architectures are analyzed, classified and compared based on the core hardware acceleration concepts, algorithmic characteristics, video resolution support and performance parameters, and some promising design directions are discussed. The comparative analysis shows that the parallel pipeline accelerator architecture seems to be the most promising

    Video Compression from the Hardware Perspective

    Get PDF

    Survey of advanced CABAC accelarator architectures for future multimedia.

    Get PDF
    The future high quality multimedia systems require efficient video coding algorithms and corresponding adaptive high-performance computational platforms. In this paper, we survey the hardware accelerator architectures for Context-based Adaptive Binary Arithmetic Coding (CABAC) of H.264/AVC. The purpose of the survey is to deliver a critical insight in the proposed solutions, and this way facilitate further research on accelerator architectures, architecture development methods and supporting EDA tools. The architectures are analyzed, classified and compared based on the core hardware acceleration concepts, algorithmic characteristics, video resolution support and performance parameters, and some promising design directions are discussed

    Fast and Efficient Entropy Coding Architectures for Massive Data Compression

    Get PDF
    The compression of data is fundamental to alleviating the costs of transmitting and storing massive datasets employed in myriad fields of our society. Most compression systems employ an entropy coder in their coding pipeline to remove the redundancy of coded symbols. The entropy-coding stage needs to be efficient, to yield high compression ratios, and fast, to process large amounts of data rapidly. Despite their widespread use, entropy coders are commonly assessed for some particular scenario or coding system. This work provides a general framework to assess and optimize different entropy coders. First, the paper describes three main families of entropy coders, namely those based on variable-to-variable length codes (V2VLC), arithmetic coding (AC), and tabled asymmetric numeral systems (tANS). Then, a low-complexity architecture for the most representative coder(s) of each family is presented-more precisely, a general version of V2VLC, the MQ, M, and a fixed-length version of AC and two different implementations of tANS. These coders are evaluated under different coding conditions in terms of compression efficiency and computational throughput. The results obtained suggest that V2VLC and tANS achieve the highest compression ratios for most coding rates and that the AC coder that uses fixed-length codewords attains the highest throughput. The experimental evaluation discloses the advantages and shortcomings of each entropy-coding scheme, providing insights that may help to select this stage in forthcoming compression systems

    A comparison of CABAC throughput for HEVC/H.265 VS. AVC/H.264

    Get PDF
    The CABAC entropy coding engine is a well known throughput bottleneck in the AVC/H.264 video codec. It was redesigned to achieve higher throughput for the latest video coding standard HEVC/H.265. Various improvements were made including reduction in context coded bins, reduction in total bins and grouping of bypass bins. This paper discusses and quantifies the impact of these techniques and introduces a new metric called Bjontegaard delta cycles (BD-cycle) to compare the CABAC throughput of HEVC vs. AVC. BD-cycle uses the Bjontegaard delta measurement method to compute the average difference between the cycles vs. bit-rate curves of HEVC and AVC. This metric is useful for estimating the throughput of an HEVC CABAC engine from an existing AVC CABAC design for a given bit-rate. Under the common conditions set by the JCT-VC standardization body, HEVC CABAC has an average BD-cycle reduction of 31.1% for all intra, 24.3% for low delay, and 25.9% for random ac-cess, when processing up to 8 bypass bins per cycle

    Parallel algorithms and architectures for low power video decoding

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 197-204).Parallelism coupled with voltage scaling is an effective approach to achieve high processing performance with low power consumption. This thesis presents parallel architectures and algorithms designed to deliver the power and performance required for current and next generation video coding. Coding efficiency, area cost and scalability are also addressed. First, a low power video decoder is presented for the current state-of-the-art video coding standard H.264/AVC. Parallel architectures are used along with voltage scaling to deliver high definition (HD) decoding at low power levels. Additional architectural optimizations such as reducing memory accesses and multiple frequency/voltage domains are also described. An H.264/AVC Baseline decoder test chip was fabricated in 65-nm CMOS. It can operate at 0.7 V for HD (720p, 30 fps) video decoding and with a measured power of 1.8 mW. The highly scalable decoder can tradeoff power and performance across >100x range. Second, this thesis demonstrates how serial algorithms, such as Context-based Adaptive Binary Arithmetic Coding (CABAC), can be redesigned for parallel architectures to enable high throughput with low coding efficiency cost. A parallel algorithm called the Massively Parallel CABAC (MP-CABAC) is presented that uses syntax element partitions and interleaved entropy slices to achieve better throughput-coding efficiency and throughput-area tradeoffs than H.264/AVC. The parallel algorithm also improves scalability by providing a third dimension to tradeoff coding efficiency for power and performance. Finally, joint algorithm-architecture optimizations are used to increase performance and reduce area with almost no coding penalty. The MP-CABAC is mapped to a highly parallel architecture with 80 parallel engines, which together delivers >10x higher throughput than existing H.264/AVC CABAC implementations. A MP-CABAC test chip was fabricated in 65-nm CMOS to demonstrate the power-performance-coding efficiency tradeoff.by Vivienne. Sze.Ph.D

    System-on-Chip design of a high performance low power full hardware cabac encoder in H.264/AVC

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Parallel architectures for entropy coding in a dual-standard ultra-HD video encoder

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Includes bibliographical references (p. 97-98).The mismatch between the rapid increase in resolution requirements and the slower increase in energy capacity demand more aggressive low-power circuit design techniques to maintain battery life of hand-held multimedia devices. As the operating voltage is lowered to reduce power consumption, the maximum operating frequency of the system must also decrease while the performance requirements remain constant. To meet these performance constraints imposed by the high resolution and complex functionality of video processing systems, novel techniques for increasing throughput are explored. In particular, the entropy coding functional block faces the most stringent requirements to deliver the necessary throughput due to its highly serial nature, especially to sustain real-time encoding. This thesis proposes parallel architectures for high-performance entropy coding for high-resolution, dual-standard video encoding. To demonstrate the most aggressive techniques for achieving standard reconfigurability, two markedly different video compression standards (H.264/AVC and VC-1) are supported. Specifically, the entropy coder must process data generated from a quad full-HD (4096x2160 pixels per frame, the equivalent of four full-HD frames) video at a frame rate of 30 frames per second and perform lossless compression to generate an output bitstream. This block will be integrated into a dual-standard video encoder chip targeted for operation at 0.6V, which will be fabricated following the completion of this thesis. Parallelism, as well as other techniques applied at the syntax element or bit level, are used to achieve the overall throughput requirements. Three frames of video data are processed in parallel at the system level, and varying degrees of parallelism are employed within the entropy coding block for each standard. The VC-1 entropy encoder block encodes 735M symbols per second with a gate count of 136.6K and power consumption of 304.5 pW, and the H.264 block encodes 4.97G binary symbols per second through three-frame parallelism and a 6-bin cascaded pipelining architecture with a critical path delay of 20.05 ns.by Bonnie K. Y. Lam.S.M
    corecore