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Abstract: The compression of data is fundamental to alleviating the costs of transmitting and storing
massive datasets employed in myriad fields of our society. Most compression systems employ an
entropy coder in their coding pipeline to remove the redundancy of coded symbols. The entropy-
coding stage needs to be efficient, to yield high compression ratios, and fast, to process large amounts
of data rapidly. Despite their widespread use, entropy coders are commonly assessed for some
particular scenario or coding system. This work provides a general framework to assess and optimize
different entropy coders. First, the paper describes three main families of entropy coders, namely those
based on variable-to-variable length codes (V2VLC), arithmetic coding (AC), and tabled asymmetric
numeral systems (tANS). Then, a low-complexity architecture for the most representative coder(s) of
each family is presented—more precisely, a general version of V2VLC, the MQ, M, and a fixed-length
version of AC and two different implementations of tANS. These coders are evaluated under different
coding conditions in terms of compression efficiency and computational throughput. The results
obtained suggest that V2VLC and tANS achieve the highest compression ratios for most coding
rates and that the AC coder that uses fixed-length codewords attains the highest throughput. The
experimental evaluation discloses the advantages and shortcomings of each entropy-coding scheme,
providing insights that may help to select this stage in forthcoming compression systems.

Keywords: entropy coding; variable-to-variable length codes; arithmetic coding; asymmetric numeral
systems

1. Introduction

Our society is immersed in a flow of data that supports all kinds of services and
facilities such as online TV and radio, social networks, medical and remote sensing appli-
cations, or information systems, among others. The data employed in these applications
are different, from text and audio to images and videos, strands of DNA, or environmental
indicators, with a long etcetera. In many scenarios, these data are transmitted and/or
stored for a fixed period of time or indefinitely. Despite enhancements on networks and
storage devices, the amount of information globally generated increases so rapidly that
only a small part can be saved [1,2]. Data compression is the solution to relieve Internet
traffic congestion and the storage necessities of data centers.

The compression of information has been a field of study for more than a half-century.
Since C. Shannon established the bases of information theory [3], the problem of how
to reduce the number of bits to store an original message has been a relevant topic of
study [4–6]. Depending on the data type and their purposes, the compression regime may
be lossy or lossless. Image, video, and audio, for example, often use lossy regimes because
the introduction of some distortion in the coding process does not disturb a human observer
and achieves higher compression ratios [6]. Lossless regimes, on the other hand, recover
the original message losslessly but achieve lower compression ratios. Also depending on
the type and purpose of the data, the compression system may use different techniques.
There are many systems specifically devised for particular types of data. Image and video
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compression capture samples that are transformed several times to reduce their visual
redundancy [7–10]. Contrarily, compression of DNA often relies on a reference sequence
to predict only the dissimilarities between the reference and the source [11]. There are
universal methods like Lempel–Ziv–Welch [12,13] that code any kind of data, although
they do not achieve the high compression ratios that specifically devised systems yield. In
recent years, deep-learning techniques have been spread in many compression schemes to
enhance transformation and prediction techniques, obtaining competitive results in many
fields [14–17].

Regardless of the coding system and the regime employed, most compression schemes
rely on a coding stage called entropy coding to reduce the amount of information needed to
represent the original data. See in Figure 1 that this stage is commonly situated just after
the transformation and/or prediction stages. These stages prepare the data for the entropy
coder producing binary symbols x with a corresponding probability p(x). In general,
these symbols are (transformed to) binary, so x = {0, 1} is assumed in the following. The
estimated or real [18,19] probability p(x) depends on the amount of redundancy found
in the original data. Adjacent pixels in an image often have similar colors, for instance,
so their binary representation can be predicted with a high probability. Both x and p(x)
are fed to the entropy coder, which produces a compact representation of these symbols
attaining compression. As Shannon’s theory of entropy dictates, the higher the probability
of a symbol the lower its entropy, so higher compression ratios can be obtained. The main
purpose of entropy coders is to attain coding efficiency close to the entropy of the original
message while spending low computational resources, so large sets of data can be processed
rapidly and efficiently.

SENSOR
raw

data

TRANSFORM

TECHNIQUES

PREDICTION
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& HEADERSx
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Figure 1. Stages of a conventional compression system.

Arguably, there are three main families of entropy coders. The first employs techniques
that map one (or some) source symbols to codewords of different lengths. Such techniques
exploit the repetitiveness of some symbols to represent them with a short codeword.
The most complete theoretical model of such techniques is variable-to-variable length codes
(V2VLC) [20,21]. The first entropy-coding technique proposed in the literature, namely
Huffman coding [22], uses a similar technique that maps each symbol to a codeword
of variable length. Other techniques similar to V2VLC are Golomb-Rice coding [23,24],
Tunstall codes [25,26], or Khodak codes [27], among others [20,28], which have been
adopted in many scenarios [29–32]. The second main family of entropy coders utilizes a
technique called arithmetic coding (AC) [33]. The main idea is to divide a numeric interval
into subintervals of varying sizes depending on the probability of the source symbols. The
coding of any number within the latest interval commonly requires fewer bits than the
original message and allows the decoder to reverse the procedure. Arithmetic coding has
been widely spread and employed in many fields and standards [34–37] and there exist
many variations and architectures [38–43]. The latest family of entropy coders is based on
asymmetric numeral systems (ANS), which is a technique introduced in the last decade [44].
ANS divides the set of natural numbers into groups that have a size depending on the
probability of the symbols. The coding of the original message then traverses these groups
so that symbols with higher probabilities employ the groups of the largest size. The decoder
reverses the path from the last to the first group, recovering the original symbols. There
are different variants of ANS such as the range ANS or the uniform binary ANS, though
the tabled ANS (tANS) is the most popular [45–47] since it can operate like a finite-state
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machine achieving high throughput. tANS has been recently adopted in many compression
schemes [11,48,49], so it is employed in this work to represent this family of entropy coders.

The popularity of the aforementioned entropy-coding techniques has changed de-
pending on the trends and necessities of applications. Since entropy coding is at the core
of the compression scheme, efficiency, and speed are two important features. Before the
introduction of ANS, Huffman coding and variants of V2VLC were generally considered
the fastest techniques because they use direct mapping between source symbols and code-
words. Nonetheless, they are not the most efficient in terms of compression [50]. Arithmetic
coding was preferable in many fields due to its highest compression efficiency although it
was criticized since it commonly requires some arithmetic operations to code each symbol,
achieving lower computational throughput [51]. Recent works claim that tANS achieves
the efficiency of arithmetic coding while spending the computational costs of Huffman
coding [44,52]. Although these discussions and claims are well grounded, they are com-
monly framed for a specific scheme or scenario without considering and evaluating other
techniques. Unlike the previously cited references, this work provides a common frame-
work to appraise different entropy coders. It also provides simple software architectures
to test and optimize them using different coding conditions. The experimental evaluation
discerns the advantages and shortcomings of each family of coders. The result of this
evaluation is the main contribution of this work, which may help to select this coding stage
in forthcoming compression schemes.

The rest of the paper is organized as follows. Section 2 describes the entropy coders
evaluated in this work and proposes a software architecture for each. This section is
divided into three subsections, one for each family of entropy coders. Section 2.1 presents a
general method for V2VLC that uses pre-computed codes. Arithmetic coding is tackled in
Section 2.2 describing two coders widely employed in image and video compression and
an arithmetic coder that uses codewords of fixed length. Section 2.3 describes the tANS
coding scheme and proposes two architectures for its implementation. All these coders are
evaluated in terms of compression efficiency and computational throughput in Section 3,
presenting experimental results obtained with different coding conditions. The last section
discusses the results and provides conclusions.

2. Materials and Methods
2.1. Variable-to-Variable Length Codes (V2VLC)

Let m = x1x2x3 . . . x|m| be a message composed of a string of symbols, with |m| denot-
ing its length. V2VLC maps sequences of symbols in m to codewords wj = y1y2 . . . y|wj |,
with y = {0, 1}. When p(x = 0) is close to 1, the original message contains sequences with
many zeroes, so they can be mapped to a codeword of shorter length. The selection of
these pairs of sequences-codewords needs an approach that uniquely maps each sequence
to a codeword and inversely since otherwise, the coding process could not guarantee the
recovery of the original message. V2VLC are commonly represented with binary trees
like those depicted in Figure 2. Each level in the top tree represents the encoding of a
symbol, with left (right) branches being the coding of x = 0 (x = 1). Leaves represent
the end of each sequence and are mapped to a codeword. Codewords are represented
through the bottom tree in Figure 2 using the same structure as that in the top tree. Such
a representation produces prefix codes [21], so the encoding process generates a unique
compressed bitstream.

The determination of the optimal codewords for a fixed tree employs the well-known
procedure described by Huffman [22], progressively joining the leaves with the lowest
probabilities. Each leaf in the top tree of Figure 2 has a probability to occur that can be
determined by the probability of the sequence of symbols that it represents as

p(lk) = p(xi) · p(xi+1) · p(xi+2) · . . . · p(x|lk |) , (1)
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with lk denoting a leaf and |lk| the length of the sequence (or the depth level of the leaf).
The construction of the codewords begins by joining those two lk with the lowest p(lk).
This procedure is repeated until a single leaf is left, which is the root of the tree containing
the codewords. The toy example depicted in Figure 2 uses p(x = 0) = 0.8. The first leaves
joined by this procedure are l2 and l3 (deepest level of the bottom tree in Figure 2), then l4,
and finally l1. See in this figure that the sequence of original symbols m′ = 000 is mapped
to w1 = 0, coding three symbols with one bit. The compression efficiency achieved by such a
scheme is determined through the weighted length of the sequences of symbols and the
weighted length of the codewords according to

E =
∑j |wj| · p(wj)

∑k |lk| · p(lk)
. (2)

where p(wj) is the probability of codeword wj, which is the same to that lk mapped to
this codeword (e.g., p(w2) = p(l4) in Figure 2). The above expression divides the average
length of the codewords (considering their probability of appearance) by the average length
of the sequences (also considering their appearance probability). Otherwise stated, it
divides the length of the compressed data by the length of the original data, resulting in the
efficiency of the V2VLC scheme. The difference between E and the entropy of the source is
called redundancy and is determined as

R = E−∑
x

p(x) · log2
1

p(x)
. (3)

R is employed to assess the optimality of the coding scheme.
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Figure 2. Illustration of V2VLC through binary trees.

The main difficulty of V2VLC is to find a low-complexity algorithm that minimizes
the redundancy for a given p(x). This is an open problem in the field tackled in different
ways [21,28,53,54]. However, finding optimal V2VLC is not part of the compression pro-
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cedure, which can use codes determined a priori. This work utilizes pre-computed codes
created with trees of 16 leaves or less employing a brute-force approach to find the optimal
V2VLC scheme. The encoding procedure is described in Algorithm 1. This procedure
is called for each symbol of the message from a loop that is not included in this and the
following algorithms. It uses the table depicted in the top-right corner of Figure 2 denoted
by t[n][x]. Each row in this table is a node of the tree. The first and second columns contain
the next node when x = 0 or x = 1, respectively, except when reaching a leaf, in which
case a codeword is emitted. As seen in Algorithm 1, n = 0 at the beginning of the process,
and then the encoding of each symbol simply updates n (in line 2) except when emitting
a codeword. In this case, the codeword is emitted through the procedure described in
Algorithm 2, and n is reset. The procedure that emits the codeword uses variable T to store
a byte that is filled with the bits of the codeword and written to the disk (or transmitted)
when necessary. Decoding inverses the procedure using a table constructed with the tree
of codewords (not shown). Please note that these procedures do not require arithmetic
operations but only access to memory positions.

Algorithm 1 V2VLC; Parameters: x bit to code; Initialization: n← 0

1: if t[n] 6= w then
2: n← t[n][x]
3: else
4: emitCodeword(t[n][x])
5: n← 0
6: end if

Algorithm 2 emitCodeword; Parameters: w codeword to emit; Initialization: T ← 0, b← 8

1: for i ∈ [|w| − 1, 0] do
2: T ← (T � 1) OR ((w� i) AND 1)
3: if b > 0 then
4: b← b− 1
5: else
6: writeByte(T)
7: T ← 0
8: b← 8
9: end if

10: end for

2.2. Arithmetic Coding (AC)

Differently from V2VLC, the output of conventional arithmetic coders is a very
long codeword. Figure 3 depicts an example of the interval division procedure carried
out by arithmetic coding. It typically begins with interval I = (0, 1), which is split in
I′ = (0, p(x = 0)] and I′′ = (p(x = 0), 1) to code the first symbol. If x1 = 0, I′ is further
employed to code the following symbols, whereas x1 = 1 keeps I′′. In practice, the division
of the interval uses hardware registers of at most 64 bits, so the interval is computed
progressively. I is commonly represented as I = [L, U) with L and U being the lower and
upper bound of the interval, respectively. L and U are initialized to 0 and to the largest in-
teger available, respectively. The binary representation of L and U are completely different
at the beginning of coding but, as the interval is subsequently partitioned in I′′′ = [L′, U′),
some bits in the leftmost part of the binary representation of L′ and U′ become equal. This
happens because the interval becomes smaller in each new partition, with L′ and U′ being
closer. These bits do not change in further partitions so they can be emitted as a segment of
the codeword before the end of coding. Once they are emitted, the remaining bits in L′ and
U′ are shifted to the left as many positions as bits have been emitted. The emission of these
bits that partially belong to the codeword is a procedure called renormalization.
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Figure 3. Illustration of the interval division carried out by arithmetic coding.

Three arithmetic coders are evaluated in the following due to their widespread use and
popularity. The MQ coder [55] is a descendant of the Q coder [56]. It is used in JPEG [29],
JBIG2 [57] and JPEG2000 [34] standards due to its high efficiency and low computational
complexity. It incorporates many computational optimizations. It is not detailed herein
since it has been thoroughly described in the literature (see [58] for a comprehensive
description). The M coder [59] employs lookup tables and a reduced range of interval sizes.
Variants of such coder are employed in popular video standards such as H.264/AVC [35]
and H.265/HEVC [36] (see [59] for a review).

The main particularity of the third arithmetic coder evaluated is that it obviates
renormalization. Renormalization is useful to employ all bits of the integer registers during
the coding process, but it takes significant computational resources since it is intensively
executed. The method proposed in [51,60–64] eliminates the use of renormalization by
employing arithmetic coding with fixed-length codewords (ACFLW). It splits intervals as
previously described but it does emit partial segments of the final codeword. Instead, when
the interval size is 0, it dispatches a codeword and begins with a new one. This may cause
an efficiency loss when the interval size is small and p(x) is high because the interval is
split with poor precision. Nonetheless, it is shown in [51] that intervals of moderate size
penalize efficiency only slightly. Our implementation uses intervals of a size ofW = 32 bits
as recommended in [51]. ACFLW uses variables L and S to represent the lower bound of
the interval and its size, respectively. At the beginning of the coding process L = 0 and
S = 2W − 1. The coding of x = 0 requires the following operation

S← (S · P)� B , (4)

with� being a bit shift operation to the right and P denoting the probability p(x = 0)
expressed in the range [0, 2B − 1] (i.e., P = bp(x = 0) · 2Bc with b·c being the floor
operation). B is the number of bits to express the symbol’s probability. Our implementation
uses B = 15 since it provides high precision requiring few computational resources [51].
The coding of x = 1 requires the following operations

S← S− ((S · P)� B)− 1 ,
L← L + ((S · P)� B) + 1 .

(5)

These operations employ an integer multiplication to split the interval. Such an operation
requires a single clock cycle in modern CPUs, so it does not penalize throughput signifi-
cantly. Algorithm 3 details the procedure to encode symbols. The procedure to emit the
codeword is the same as that in Algorithm 2 (with L being the codeword). Decoding uses
a similar procedure (not shown). The compression efficiency of arithmetic coders cannot
be determined a priori like with V2VLC schemes but it must be appraised experimentally.
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The next section proposes a series of tests that assess their performance compared to the
other coders.

Algorithm 3 ACFLW; Parameters: x bit to code, P probability; Initialization: L ← 0,
S← 2W − 1

1: if x = 0 then
2: S← (S · P)� B
3: else
4: q← ((S · P)� B) + 1
5: L← L + q
6: S← S− q
7: end if
8: if S = 0 then
9: emitCodeword(L)

10: L← 0
11: S← 2W − 1
12: end if

2.3. Tabled Asymmetric Numeral Systems (tANS)

tANS represents the message with a state denoted by Z that is progressively increased
during the encoding of symbols. Coding requires a pre-computed table. For a probability
distribution of p(x = 0) = 2/3, for instance, this table is like that shown at the top of
Figure 4. The first row of the table represents the current state Z, whereas the second and
third rows are the next Z when coding x = 0 and x = 1, respectively. The cells filled
in the second and third rows have the distribution of p(x), creating asymmetric groups
of numbers. Z can be set to any position of the table at the beginning of the encoding
procedure. If the next symbol to encode is x = 0, the procedure then advances to that
column of the table indicated in the second row. If the symbol is x = 1, the procedure is
the same but using the third row of the table. The top table in Figure 4 depicts an example
(in orange) in which the message m′′ = 001 is encoded. State Z is initialized at Z = 5
and then transitions to Z = 7 because the first symbol is x = 0 and this is the column in
which the second row of the table has a 5 too. The next symbol is also x = 0, so the state
is transitioned to Z = 10. Since the last symbol is x = 1, the state 10 is found in the third
row of the table at the column in which Z = 23. 23 is the codeword emitted to the decoder.
The decoding process starts with the last state (i.e., the emitted codeword) and reverses the
procedure. Unlike the entropy coders previously described, decoding the message begins
with the latest symbol coded and goes backward as if they were put in a stack. The key to
achieving compression is that coding symbols with higher probabilities advance Z more
slowly than coding symbols with lower probabilities, so the final state can be represented
with fewer bits than the original message. In the extreme case of p(x = 0) ≈ 1, for instance,
a final state Z = 10 may represent the coding of a message with 10 consecutive 0s but
requiring only 4 bits (since 10 = 1010(2).

tANS cannot use an infinite number of states in practice, so Z is represented with
a fixed number of bits. To this end, the top table depicted in Figure 4 is transformed
into a finite-state machine, with the coding of each symbol being state transitions. There
exist many different automatons for each distribution [46], so a key K that represents a
unique scheme needs to be chosen first. A suitable key for the distribution of the above
example might be K = 001001 since it strictly respects p(x = 0) = 2/3. The table shown
in Figure 4 (bottom-left) is generated with this key. The first column of this table is Z.
Although the range of Z is Z ∈ [1, 11], only those rows from |K| to |K| · 2− 1 belong to the
automaton (depicted in gray in the figure). The construction of this table begins filling the
rows of the fourth column from state Z = 6 (i.e., |K|) to Z = 11 (i.e., |K| · 2− 1), which
contains the decoding tuple D. The first element of the tuple is filled with the symbols
of the key in the same order. The second element of the tuple is the first empty cell for
that symbol in the second or third columns of the table. These columns contain the state
transitions for symbols x = 0 and x = 1, respectively. They are denoted by X0 and X1.
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Xx is only filled from |Kx| to |Kx| · 2− 1, with |Kx| denoting the number of 0s or 1s in K.
Following our example, the second element in tuple D for Z = 6 is 4 since |K0| = 4. The
cell X0 for the row Z = 4 is then filled with 6 since this is the state from which it comes.
This process is repeated for each state resulting in the table depicted in Figure 4.

0

x=0

Z

x=1

     4   5        6     7          8    9        10  11        12  13        14  15        16  17 

               5               6                 7                8                9              10              11

5   6   7   8   9   10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26 

X 1X D
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  2                8

  3              11

  4       6

  5       7

  6       9             (0,4)

  7     10             (0,5)

  8                      (1,2)

  9                      (0,6)

10                      (0,7)

11                      (1,3)

 6  7  8  9 10 11

0
1

0
1

-
-

00

01
10

11
1

0

K = 001001

Z

Figure 4. Illustration of tANS via asymmetric groups of numbers (top), a tabled automaton (bottom-
left) and a state machine (bottom-right).

The table generated with key K aids the coding of symbols. Coding x removes as
many least significant bits as possible of the binary representation of the current Z until
Z ∈ [|Kx|, |Kx| · 2− 1]. These removed bits are emitted by the coder forming the compressed
bitstream. The next stage of the automaton is given in column Xx. This process is automated
via the state machine depicted in the bottom-right part of Figure 4, which is generated with
the bottom-left table of Figure 4. Transitions in the upper part of this automaton represent
the coding of x = 0 whereas those in the lower part represent x = 1. The emission of bits in
each transition, if necessary, is depicted in the middle of each arrow. As with V2VLC, the
selection of the key that achieves the lowest redundancy uses a full search approach since
this process is carried out before coding. Some strategies to accelerate the selection of K can
be found in [46].

The implementation of such a coding scheme may consider two different architectures.
The first is embodied in Algorithm 4. This procedure removes bits from Z and emits them
until Z is in the range [|Kx|, |Kx| · 2− 1] (lines 2 and 3). The next state is set employing Xx in
the last line of the algorithm. The operations from lines 4 to 10 write a byte to the disk when
it is filled, similarly to the procedure described in Algorithm 2. The second architecture
proposed for tANS is detailed in Algorithm 5. Instead of computing the next state by
progressively removing bits from Z, this architecture stores the transitions and emitted bits
of the automaton in tables constructed a priori. Table S[Z][x] stores the transition to the
next state for the current Z and symbol codes. Table W[Z][x] contains the bits emitted when
coding x in the state Z. These tables can be constructed using the automaton of Figure 4.
The first three lines in Algorithm 5 emit the bits for the state transition and write a full byte
in the disk when necessary. The last line of the algorithm updates Z. Decoding uses similar
algorithms for both architectures.

Please note that all entropy coders described above recover the original message
losslessly. This is a characteristic of entropy coding, but it does not entail the compression
system to use a lossless regime. Lossy regimes commonly introduce distortion in the
transformation or prediction stages.
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Algorithm 4 tANS; Parameters: x bit to code; Initialization: Z ← |k|, Tr ← 0, b← 7

1: while Z > |kx| · 2− 1 do
2: Tr ← Tr OR ((Z AND 1)� b)
3: Z ← Z � 1
4: if b = 0 then
5: writeByte(Tr)
6: Tr ← 0
7: b← 7
8: else
9: b← b− 1

10: end if
11: end while
12: Z ← Xx[Z]

Algorithm 5 tANSAuto; Parameters: x bit to code; Initialization: Z ← |k|, Tr ← 0, b← 7

1: for i ∈ [|W[Z][x]| − 1, 0] do
2: Tr ← Tr � 1
3: Tr ← Tr OR ((W[Z][x]� i) AND 1)
4: if b = 0 then
5: writeByte(Tr)
6: Tr ← 0
7: b← 7
8: else
9: b← b− 1

10: end if
11: end for
12: Z ← S[Z][x]

3. Results
3.1. Data and Metrics

The data employed in the following tests are produced artificially given a probability
distribution. The symbols are generated assuming independence and identical distribution.
The range of the probability distribution evaluated is p(x = 0) = [0.5, 1) because the same
results are obtained for probabilities biased toward x = 1. The probability is fed directly to
the coder, disregarding the estimation mechanisms that some coders use. This provides a
common framework for all coders. Also, the same artificially generated data are employed
for all coders, with sequences of 228 symbols. All coders are programmed in Java and tests
are executed with an Intel Core i7-3770 @ 3.40 GHz. Except when otherwise stated, the
V2VLC scheme employed in the tests uses trees of 16 leaves and the tANS scheme uses
an automaton with 16 states. Both are set to the same number of leaves/states so that the
tables employed by such coders have similar sizes. As seen in the experiments below, using
16 leaves or states achieves near-optimal compression efficiency. Compression results are
reported via the redundancy achieved by the coder (as defined in Equation (3)), whereas
computational throughput is evaluated in terms of mega symbols coded per second (MS/s).

3.2. Tests

The first test evaluates compression efficiency. Figure 5 depicts the results for all
coders and the full range of probabilities. The vertical axis of the figure is the redundancy
produced by the coder, reported in bits per symbol (bps). The horizontal axis reports the
probability distribution. The efficiency achieved by tANS (Algorithm 4) and tANSAuto
(Algorithm 5) is the same, so only the first is depicted. The results reported in this figure
indicate that the MQ coder penalizes the coding efficiency when the probability is low,
especially at p(x = 0) ≈ 0.62. V2VLC and tANS achieve an efficiency that is very close
to entropy for most probabilities, followed by the M coder and ACFLW. These coders
yield a redundancy of less than 0.01 bps for most probabilities, suggesting that they are
highly efficient.
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Figure 5. Compression efficiency evaluation of all coders.

The second test appraises the coding efficiency of V2VLC and tANS depending on the
number of leaves and states, respectively. Figure 6 depicts the redundancy on the vertical
axis and the number of leaves/states employed by the coder on the horizontal axis. Only
a representative set of probabilities is depicted in the figure, though results hold for the
rest. The redundancy achieved by the V2VLC scheme (Figure 6a) decreases smoothly as
more leaves are employed, regardless of p(x). As seen in the Figure, the use of 16 leaves
is enough to achieve competitive performance. The tANS automaton (Figure 6b) obtains
redundancy results that increase and decrease depending on the number of states, except
when using a high p(x). These irregularities are caused because p(x) does not fit well for
some number of states, reducing the efficiency of the coder. 16 states seems to be enough to
obtain near-optimal efficiency.
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Figure 6. Compression efficiency evaluation depending on the number of: (a) leaves of the V2VLC
scheme and (b) states of the tANS automaton.

The third test analyzes computational throughput. Figure 7 reports the obtained results
for all coders when encoding and decoding. Again, only a significant set of probabilities
is depicted in the figure, though results hold for the rest. The figure indicates that higher
probabilities lead to higher throughput. This is because a higher p(x) obtains higher
compression efficiency, requiring the emission of fewer bits and therefore accelerating the
coding process. Regardless of the probability, ACFLW obtains the highest throughput
followed by the MQ coder for most probabilities. The V2VLC and both architectures of
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tANS attain lower throughput, with tANSAuto being the slowest. The results also suggest
that decoding is generally faster than encoding, which is a common feature of all entropy
coders because decoding requires slightly simpler operations.

 0

 50

 100

 150

 200

 250

 300

 350

 400

p(x=0) = 0.7 p(x=0) = 0.8 p(x=0) = 0.9 p(x=0) = 0.95

A
C

FL
W

M
Q M V
2V

LC
tA

N
S

tA
N

S
A

ut
o

th
ro

ug
hp

ut
 (i

n 
M

S
/s

)

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

p(x=0) = 0.7 p(x=0) = 0.8 p(x=0) = 0.9 p(x=0) = 0.95

A
C

FL
W

M
Q

M V
2V

LC
tA

N
S

tA
N

S
A

ut
o

th
ro

ug
hp

ut
 (i

n 
M

S
/s

)

(b)

Figure 7. Computational throughput evaluation of all coders when (a) encoding and (b) decoding.

The last test evaluates the computational throughput achieved by the V2VLC scheme
and tANS depending on the number of leaves/states. Figure 8 reports the results obtained,
which suggest that the number of leaves/states does not significantly affect the throughput
achieved. This holds for both the encoding and decoding process.



Technologies 2023, 11, 132 12 of 15

 0

 50

 100

 150

 200

 250

 300

 350

 400

p(x=0) = 0.7 p(x=0) = 0.8 p(x=0) = 0.9 p(x=0) = 0.95

4 
le

av
es

8 
le

av
es

12
 le

av
es

16
 le

av
es

th
ro

ug
hp

ut
 (i

n 
M

S
/s

)

 0

 50

 100

 150

 200

 250

 300

 350

 400

p(x=0) = 0.7 p(x=0) = 0.8 p(x=0) = 0.9 p(x=0) = 0.95

4 
st

at
es

8 
st

at
es

12
 s

ta
te

s
16

 s
ta

te
s

th
ro

ug
hp

ut
 (i

n 
M

S
/s

)

(a) (b)

Figure 8. Computational throughput evaluation depending on the number of: (a) leaves of the V2VLC
scheme and (b) states in the tANS automaton. Columns in the front (back) are for the encoding
(decoding) process.

4. Discussion

Entropy coding is at the core of most compression systems and it must be chosen and
implemented carefully to obtain high compression efficiency while using few computa-
tional resources. The techniques employed by each family of entropy coders use different
mechanisms to attain compression, so comparison requires a common framework. This
paper presents software architectures for the most representative coder(s) of each family
and evaluates them in terms of efficiency and throughput. Table 1 summarizes the re-
sults obtained in the experimental tests depicting the coding efficiency and computational
throughput of each coder at low, medium, and high rates. These results suggest that when
coding efficiency is the most important aspect of the system, V2VLC, tANS, or the M coder
are the best options. ACFLW or the MQ coder seems to be the fastest despite the use of some
arithmetic operations to code symbols. For the two architectures of tANS, the one that re-
computes the state for each coded symbol (instead of using pre-computed tables) achieves
higher throughput. Both for V2VLC and tANS, using more leaves/states significantly
reduces the redundancy of the system and slightly improves throughput. Future research
may adapt and appraise the presented coders in dedicated hardware architectures such as
commodity GPUs or ASICs, which may help to further accelerate the compression process.

Table 1. Summary of the obtained experimental results. ⇓, ≈ and ⇑ indicate low, medium and high
performance, respectively.

Low Rates Medium Rates High Rates
Coding Comput. Coding Comput. Coding Comput.

Efficiency Through. Efficiency Through. Efficiency Through.

V2VLC ≈ ≈ ⇑ ≈ ⇑ ≈

MQ ⇓ ≈ ≈ ⇑ ⇑ ⇑
M ⇑ ≈ ≈ ≈ ⇓ ≈

ACFLW ⇑ ⇑ ≈ ⇑ ⇓ ⇑

tANS ≈ ≈ ⇑ ⇓ ⇑ ≈
tANSAuto ≈ ⇓ ⇑ ⇓ ⇑ ⇓
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