2,128 research outputs found

    Analysis of the discontinuous Galerkin method for elliptic problems on surfaces

    Get PDF
    We extend the discontinuous Galerkin (DG) framework to a linear second-order elliptic problem on a compact smooth connected and oriented surface. An interior penalty (IP) method is introduced on a discrete surface and we derive a-priori error estimates by relating the latter to the original surface via the lift introduced in Dziuk (1988). The estimates suggest that the geometric error terms arising from the surface discretisation do not affect the overall convergence rate of the IP method when using linear ansatz functions. This is then verified numerically for a number of test problems. An intricate issue is the approximation of the surface conormal required in the IP formulation, choices of which are investigated numerically. Furthermore, we present a generic implementation of test problems on surfaces.Comment: 21 pages, 4 figures. IMA Journal of Numerical Analysis 2013, Link to publication: http://imajna.oxfordjournals.org/cgi/content/abstract/drs033? ijkey=45b23qZl5oJslZQ&keytype=re

    An adaptive Cartesian embedded boundary approach for fluid simulations of two- and three-dimensional low temperature plasma filaments in complex geometries

    Get PDF
    We review a scalable two- and three-dimensional computer code for low-temperature plasma simulations in multi-material complex geometries. Our approach is based on embedded boundary (EB) finite volume discretizations of the minimal fluid-plasma model on adaptive Cartesian grids, extended to also account for charging of insulating surfaces. We discuss the spatial and temporal discretization methods, and show that the resulting overall method is second order convergent, monotone, and conservative (for smooth solutions). Weak scalability with parallel efficiencies over 70\% are demonstrated up to 8192 cores and more than one billion cells. We then demonstrate the use of adaptive mesh refinement in multiple two- and three-dimensional simulation examples at modest cores counts. The examples include two-dimensional simulations of surface streamers along insulators with surface roughness; fully three-dimensional simulations of filaments in experimentally realizable pin-plane geometries, and three-dimensional simulations of positive plasma discharges in multi-material complex geometries. The largest computational example uses up to 800800 million mesh cells with billions of unknowns on 40964096 computing cores. Our use of computer-aided design (CAD) and constructive solid geometry (CSG) combined with capabilities for parallel computing offers possibilities for performing three-dimensional transient plasma-fluid simulations, also in multi-material complex geometries at moderate pressures and comparatively large scale.Comment: 40 pages, 21 figure

    Parallel accelerated cyclic reduction preconditioner for three-dimensional elliptic PDEs with variable coefficients

    Full text link
    We present a robust and scalable preconditioner for the solution of large-scale linear systems that arise from the discretization of elliptic PDEs amenable to rank compression. The preconditioner is based on hierarchical low-rank approximations and the cyclic reduction method. The setup and application phases of the preconditioner achieve log-linear complexity in memory footprint and number of operations, and numerical experiments exhibit good weak and strong scalability at large processor counts in a distributed memory environment. Numerical experiments with linear systems that feature symmetry and nonsymmetry, definiteness and indefiniteness, constant and variable coefficients demonstrate the preconditioner applicability and robustness. Furthermore, it is possible to control the number of iterations via the accuracy threshold of the hierarchical matrix approximations and their arithmetic operations, and the tuning of the admissibility condition parameter. Together, these parameters allow for optimization of the memory requirements and performance of the preconditioner.Comment: 24 pages, Elsevier Journal of Computational and Applied Mathematics, Dec 201

    A fast immersed boundary method for external incompressible viscous flows using lattice Green's functions

    Get PDF
    A new parallel, computationally efficient immersed boundary method for solving three-dimensional, viscous, incompressible flows on unbounded domains is presented. Immersed surfaces with prescribed motions are generated using the interpolation and regularization operators obtained from the discrete delta function approach of the original (Peskin's) immersed boundary method. Unlike Peskin's method, boundary forces are regarded as Lagrange multipliers that are used to satisfy the no-slip condition. The incompressible Navier-Stokes equations are discretized on an unbounded staggered Cartesian grid and are solved in a finite number of operations using lattice Green's function techniques. These techniques are used to automatically enforce the natural free-space boundary conditions and to implement a novel block-wise adaptive grid that significantly reduces the run-time cost of solutions by limiting operations to grid cells in the immediate vicinity and near-wake region of the immersed surface. These techniques also enable the construction of practical discrete viscous integrating factors that are used in combination with specialized half-explicit Runge-Kutta schemes to accurately and efficiently solve the differential algebraic equations describing the discrete momentum equation, incompressibility constraint, and no-slip constraint. Linear systems of equations resulting from the time integration scheme are efficiently solved using an approximation-free nested projection technique. The algebraic properties of the discrete operators are used to reduce projection steps to simple discrete elliptic problems, e.g. discrete Poisson problems, that are compatible with recent parallel fast multipole methods for difference equations. Numerical experiments on low-aspect-ratio flat plates and spheres at Reynolds numbers up to 3,700 are used to verify the accuracy and physical fidelity of the formulation.Comment: 32 pages, 9 figures; preprint submitted to Journal of Computational Physic

    Adaptive multiscale methods for 3D streamer discharges in air

    Get PDF
    We discuss spatially and temporally adaptive implicit-explicit (IMEX) methods for parallel simulations of three-dimensional fluid streamer discharges in atmospheric air. We examine strategies for advancing the fluid equations and elliptic transport equations (e.g. Poisson) with different time steps, synchronizing them on a global physical time scale which is taken to be proportional to the dielectric relaxation time. The use of a longer time step for the electric field leads to numerical errors that can be diagnosed, and we quantify the conditions where this simplification is valid. Likewise, using a three-term Helmholtz model for radiative transport, the same error diagnostics show that the radiative transport equations do not need to be resolved on time scales finer than the dielectric relaxation time. Elliptic equations are bottlenecks for most streamer simulation codes, and the results presented here potentially provide computational savings. Finally, a computational example of 3D branching streamers in a needle-plane geometry that uses up to 700 million grid cells is presented.Comment: 17 pages, 5 figure

    Nonlinear potential analysis techniques for supersonic-hypersonic configuration design

    Get PDF
    Approximate nonlinear inviscid theoretical techniques for predicting aerodynamic characteristics and surface pressures for relatively slender vehicles at moderate hypersonic speeds were developed. Emphasis was placed on approaches that would be responsive to preliminary configuration design level of effort. Second order small disturbance and full potential theory was utilized to meet this objective. Numerical pilot codes were developed for relatively general three dimensional geometries to evaluate the capability of the approximate equations of motion considered. Results from the computations indicate good agreement with higher order solutions and experimental results for a variety of wing, body and wing-body shapes for values of the hypersonic similarity parameter M delta approaching one. Case computational times of a minute were achieved for practical aircraft arrangements

    A Fast Parallel Poisson Solver on Irregular Domains Applied to Beam Dynamic Simulations

    Full text link
    We discuss the scalable parallel solution of the Poisson equation within a Particle-In-Cell (PIC) code for the simulation of electron beams in particle accelerators of irregular shape. The problem is discretized by Finite Differences. Depending on the treatment of the Dirichlet boundary the resulting system of equations is symmetric or `mildly' nonsymmetric positive definite. In all cases, the system is solved by the preconditioned conjugate gradient algorithm with smoothed aggregation (SA) based algebraic multigrid (AMG) preconditioning. We investigate variants of the implementation of SA-AMG that lead to considerable improvements in the execution times. We demonstrate good scalability of the solver on distributed memory parallel processor with up to 2048 processors. We also compare our SAAMG-PCG solver with an FFT-based solver that is more commonly used for applications in beam dynamics

    Developments and trends in three-dimensional mesh generation

    Get PDF
    An intense research effort over the last few years has produced several competing and apparently diverse methods for generating meshes. Recent progress is reviewed and the central themes are emphasized which form a solid foundation for future developments in mesh generation

    Cumulative reports and publications through December 31, 1990

    Get PDF
    This document contains a complete list of ICASE reports. Since ICASE reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when it is available
    • ā€¦
    corecore