research

Nonlinear potential analysis techniques for supersonic-hypersonic configuration design

Abstract

Approximate nonlinear inviscid theoretical techniques for predicting aerodynamic characteristics and surface pressures for relatively slender vehicles at moderate hypersonic speeds were developed. Emphasis was placed on approaches that would be responsive to preliminary configuration design level of effort. Second order small disturbance and full potential theory was utilized to meet this objective. Numerical pilot codes were developed for relatively general three dimensional geometries to evaluate the capability of the approximate equations of motion considered. Results from the computations indicate good agreement with higher order solutions and experimental results for a variety of wing, body and wing-body shapes for values of the hypersonic similarity parameter M delta approaching one. Case computational times of a minute were achieved for practical aircraft arrangements

    Similar works