307 research outputs found

    Shared Arrangements: practical inter-query sharing for streaming dataflows

    Full text link
    Current systems for data-parallel, incremental processing and view maintenance over high-rate streams isolate the execution of independent queries. This creates unwanted redundancy and overhead in the presence of concurrent incrementally maintained queries: each query must independently maintain the same indexed state over the same input streams, and new queries must build this state from scratch before they can begin to emit their first results. This paper introduces shared arrangements: indexed views of maintained state that allow concurrent queries to reuse the same in-memory state without compromising data-parallel performance and scaling. We implement shared arrangements in a modern stream processor and show order-of-magnitude improvements in query response time and resource consumption for interactive queries against high-throughput streams, while also significantly improving performance in other domains including business analytics, graph processing, and program analysis

    Three Highly Parallel Computer Architectures and Their Suitability for Three Representative Artificial Intelligence Problems

    Get PDF
    Virtually all current Artificial Intelligence (AI) applications are designed to run on sequential (von Neumann) computer architectures. As a result, current systems do not scale up. As knowledge is added to these systems, a point is reached where their performance quickly degrades. The performance of a von Neumann machine is limited by the bandwidth between memory and processor (the von Neumann bottleneck). The bottleneck is avoided by distributing the processing power across the memory of the computer. In this scheme the memory becomes the processor (a smart memory ). This paper highlights the relationship between three representative AI application domains, namely knowledge representation, rule-based expert systems, and vision, and their parallel hardware realizations. Three machines, covering a wide range of fundamental properties of parallel processors, namely module granularity, concurrency control, and communication geometry, are reviewed: the Connection Machine (a fine-grained SIMD hypercube), DADO (a medium-grained MIMD/SIMD/MSIMD tree-machine), and the Butterfly (a coarse-grained MIMD Butterflyswitch machine)

    Performance Debugging and Tuning using an Instruction-Set Simulator

    Get PDF
    Instruction-set simulators allow programmers a detailed level of insight into, and control over, the execution of a program, including parallel programs and operating systems. In principle, instruction set simulation can model any target computer and gather any statistic. Furthermore, such simulators are usually portable, independent of compiler tools, and deterministic-allowing bugs to be recreated or measurements repeated. Though often viewed as being too slow for use as a general programming tool, in the last several years their performance has improved considerably. We describe SIMICS, an instruction set simulator of SPARC-based multiprocessors developed at SICS, in its rôle as a general programming tool. We discuss some of the benefits of using a tool such as SIMICS to support various tasks in software engineering, including debugging, testing, analysis, and performance tuning. We present in some detail two test cases, where we've used SimICS to support analysis and performance tuning of two applications, Penny and EQNTOTT. This work resulted in improved parallelism in, and understanding of, Penny, as well as a performance improvement for EQNTOTT of over a magnitude. We also present some early work on analyzing SPARC/Linux, demonstrating the ability of tools like SimICS to analyze operating systems

    Mixing multi-core CPUs and GPUs for scientific simulation software

    Get PDF
    Recent technological and economic developments have led to widespread availability of multi-core CPUs and specialist accelerator processors such as graphical processing units (GPUs). The accelerated computational performance possible from these devices can be very high for some applications paradigms. Software languages and systems such as NVIDIA's CUDA and Khronos consortium's open compute language (OpenCL) support a number of individual parallel application programming paradigms. To scale up the performance of some complex systems simulations, a hybrid of multi-core CPUs for coarse-grained parallelism and very many core GPUs for data parallelism is necessary. We describe our use of hybrid applica- tions using threading approaches and multi-core CPUs to control independent GPU devices. We present speed-up data and discuss multi-threading software issues for the applications level programmer and o er some suggested areas for language development and integration between coarse-grained and ne-grained multi-thread systems. We discuss results from three common simulation algorithmic areas including: partial di erential equations; graph cluster metric calculations and random number generation. We report on programming experiences and selected performance for these algorithms on: single and multiple GPUs; multi-core CPUs; a CellBE; and using OpenCL. We discuss programmer usability issues and the outlook and trends in multi-core programming for scienti c applications developers

    Automatic contention detection and amelioration for data-intensive operations

    Full text link

    Engineering Aggregation Operators for Relational In-Memory Database Systems

    Get PDF
    In this thesis we study the design and implementation of Aggregation operators in the context of relational in-memory database systems. In particular, we identify and address the following challenges: cache-efficiency, CPU-friendliness, parallelism within and across processors, robust handling of skewed data, adaptive processing, processing with constrained memory, and integration with modern database architectures. Our resulting algorithm outperforms the state-of-the-art by up to 3.7x
    • …
    corecore