
E N G I N E E R I N G A G G R E G AT I O N O P E R AT O R S

F O R R E L AT I O N A L I N - M E M O RY D ATA B A S E S Y S T E M S

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

I N G O M Ü L L E R

aus Breisach am Rhein.

Tag der mündlichen Prüfung: 11. Februar 2016

Erster Gutachter: Prof. Dr. rer. nat. Peter Sanders
Zweiter Gutachter: Prof. Dr.-Ing. Wolfgang Lehner

This document is licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0): http://creativecommons.org/
licenses/by/4.0/.

Ingo Müller: Engineering Aggregation Operators for Relational In-Memory
Database Systems, 11. Februar 2016

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

It is the supreme art of the teacher
to awaken joy in creative expression and knowledge.

— Albert Einstein

To my teachers.

A B S T R A C T

Relational Aggregation is one of the major means to analyze large
data sets since the creation of the first database systems. Available
hardware performance continues to grow at an exponential rate, but
increasingly so through specialization, which makes it non-trivial to
leverage in software. At the same time, application demands grow
at an even higher pace. This puts database systems in a continuous
race for hardware-conscious system architectures, more efficient al-
gorithms, and better implementations—with Aggregation being a
fundamental building block.

In this thesis we study the design and implementation of Aggrega-
tion operators in the context of modern database systems. In particu-
lar, we identify and address the following challenges: cache-efficiency,
CPU-friendliness, parallelism within and across processors, robust
handling of skewed data, adaptive processing, processing with con-
strained memory for intermediate results, and integration with state-
of-the-art database architectures. While many of these challenges
have been studied in isolation, we are the first to address them at
the same time.

To guide our algorithm design, we study cache-efficiency of Ag-
gregation in several external memory models. The lower bounds
we derive show that for many realistic machine parameters, Aggre-
gation has the same cache-complexity as MultisetSorting, even if
non-comparison-based techniques such as hashing are allowed. This
proves a long-standing folklore conjecture of the database community.
Furthermore, we show that linear speed-up is optimal and how it can
be achieved in this model using any realistic number of processors.
Our lower bounds also identify situations where Aggregation has a
lower complexity than MultisetSorting and we provide algorithms
that make our bounds tight for many parameter ranges.

We use these insights to design and implement a practical algo-
rithm. It has the anatomy of a sort algorithm in order to achieve
cache-efficiency, but sorts by hash value for better load balancing. Fur-
thermore, the algorithm can adaptively decide to use hashing as a
subroutine to benefit from high data locality. Low level tuning en-
sures that all routines make efficient use of modern hardware. The
result is a novel relational Aggregation algorithm that is cache-ef-
ficient—independently and without prior knowledge of input skew
and output cardinality—, highly parallelizable on modern multi-core
systems, and operating at a speed close to the memory bandwidth,
thus outperforming the state-of-the-art by up to 3.7×.

v

P U B L I C AT I O N S

Some ideas and figures have appeared previously in the following
publications:

[61] Franz Färber, Norman May, Wolfgang Lehner, Philipp Große,
Ingo Müller, Hannes Rauhe, and Jonathan Dees. “The SAP
HANA Database – An Architecture Overview.” In: IEEE Data
Eng. Bull. 35.1 (2012), pp. 28–33

[159] Peter Sanders, Sebastian Schlag, and Ingo Müller. “Commu-
nication efficient algorithms for fundamental big data prob-
lems.” In: IEEE Big Data Conf. 2013

[195] Thomas Willhalm, Ismail Oukid, Ingo Müller, and Franz Faer-
ber. “Vectorizing Database Column Scans with Complex Pred-
icates.” In: ADMS. 2013

[134] Ingo Müller, Peter Sanders, Robert Schulze, and Wei Zhou.
“Retrieval and Perfect Hashing using Fingerprinting.” In: SEA.
2014

[132] Ingo Müller, Cornelius Ratsch, and Franz Faerber. “Adaptive
String Dictionary Compression in In-Memory Column-Store
Database Systems.” In: EDBT. 2014

[83] Lorenz Hübschle-Schneider, Peter Sanders, and Ingo Müller.
“Communication Efficient Algorithms for Top-k Selection Prob-
lems.” In: CoRR abs/1502.0 (2015)

[133] Ingo Müller, Peter Sanders, Arnaud Lacurie, Wolfgang Leh-
ner, and Franz Färber. “Cache-Efficient Aggregation: Hash-
ing Is Sorting.” In: SIGMOD. 2015

vii

If I have seen further
it is by standing on the shoulders of giants.

— Jean-Pierre Maury [128]

A C K N O W L E D G M E N T S

This thesis has been a long, hard, and instructive, but also beautiful
journey, which would not have been possible without the many peo-
ple who accompanied me. This is an attempt to express my gratitude
towards them. It is doomed to fail—what I feel I owe to my fellow
travelers is infinitely more than what words can say.

I would first like to thank my supervisors, who were most impor-
tant for the scientific aspects of my work. It was Peter Sanders who
introduced me to algorithm engineering and complexity theory, but
also to our industry partner SAP many years ago when I was an un-
dergraduate student. Since the first days, his brilliance, creativity, and
integrity have amazed and inspired me and this thesis is but a hum-
ble attempt to follow his footsteps. Wolfgang Lehner complemented
him perfectly, with his unparalleled ability to motivate me to work,
his visionary ideas for the greater picture, and his devotion to make
every story a great story. Without Wolfgang as my helmsman, none
of my projects would have been of use for the database community.

I would also like to thank their counterparts at SAP. First, there is
Franz Färber, my supervisor. He is the personification of the force
of innovation and has been the visionary, restless initiator and god-
father of countless projects in the company, this thesis being only
one of many. Its impact on products would not have been the same,
wouldn’t it be for Franz’ thrive for productization and support of all
kind. And then there is Arne Schwarz, head of the database campus,
like a mighty knight leading and protecting an army of students. He
made me feel welcome and appreciated and gave me many opportu-
nities to develop myself—thank you!

My most compassionate thoughts are with my fellow PhD students
in the SAP HANA Campus. Like every ordeal in life that one goes
through in a group, this time has created a bond among us that
we will never forget. Together, we were a great team: Thomas Bach,
Robert Brunel, Jan Finis, Philipp Große, Matthias Hauck, Martin Kauf-
mann, David Kernert, Ismail Oukid, Iraklis Psaroudakis, Marcus Para-
dies, Hannes Rauhe, Michael Rudolf, Abdallah Issa Salama, Francesc
Trull, Elena Vasilyeva, Florian Wolf, and Mathias Wilhelm. In partic-
ular, I would like to thank Hannes for the consistently positive and
inclusive spirit he brought to the group, which lasted until long af-
ter he had gone. I would also like to thank Michael, for helping ev-
eryone, unconditionally, always, with everything. Thank you for the

ix

many times you helped me! Thank you also, Jonathan, for the great
technical and non-technical discussions we had, as controversial as
they may have been at times, and the great time we had, at work and
afterwards. Last but not least, I want to thank Ismail, for being like
my small brother: looking up to me, but surprising me time and again
by doing things better than me (although for a long time, there is no
reason to be surprised anymore).

A special role for my thesis was played by Arnaud Lacurie. He
joined SAP after doing his master thesis under my supervision and
since then took over more and more of the code of this project. With-
out his moral support, his development effort, and the interesting
conversations—related to work or not—I could not have completed
my PhD. Thank you!

I would also like to thank my co-authors, without whom none of
my publications could have been completed: Jonathan Dees, Franz
Färber, Philipp Große, Lorenz Hübschle-Schneider, Arnaud Lacurie,
Wolfgang Lehner, Norman May, Ismail Oukid, Cornelius Ratsch, Han-
nes Rauhe, Peter Sanders, Sebastian Schlag, Robert Schulze, Thomas
Willhalm, and Wei Zhou. I owe particular to Nodari Sitchinava, for
working on the external memory problem with me.

Maybe to their surprise, I also owe many things to the students I su-
pervised. Cheng Chen, Arnaud Lacurie, Cornelius Ratsch, Sebastian
Schlag, Andreas Schuster, and Wei Zhou. In this role I have learned
so many things about myself! It was a pleasure to work with you.

Essential was also the support of the numerous people at our indus-
try partner, including Frank Benkstein, Alexander Böhm, Nico Bohn-
sack, Nurten Celik, Roman Dementiev, Gordon Gaumnitz, Anil Goel,
Arnaud Lacurie, Norman May, Kai Stammerjohann, Carsten Thiel,
Frederik Transier, Robert Schulze, and Reza Sherkat.

Furthermore, I would like to thank my “second family” at the
faculty: Yaroslav Akhremtsev, Julian Arz, Michael Axtmann, Tomáš
Balyo, Timo Bingmann, Daniel Funke, Simon Gog, Lorenz Hübschle-
Schneider, Moritz Kobitzsch, Tobias Maier, Sebastian Schlag, Chris-
tian Schulz, Jochen Speck, Darren Strash, Sascha Witt, G. Veit Batz,
Johannes Fischer, Dennis Luxen, Vitaly Osipov, and Dennis Schiefer-
decker. It was always great to come to visit you in Karlsruhe and get
a fresh point of view on my work and the rest of the world.

Finally, I would like to thank my family for giving me the best
mental support one can hope for. To my parents for giving fostering
my curiosity since I am on this world. And to Glòria, my future wife,
for tolerating all of the countless times when finishing something at
work took longer than expected. This thesis is really your merit.

x

C O N T E N T S

1 introduction 1

1.1 Context and Motivation 1

1.2 Challenges . 2

1.3 Contributions and Thesis Outline 3

i state of the art 5

2 foundations 7

2.1 Grouping with Aggregation 7

2.1.1 Example and Formal Definition 7

2.1.2 Real-World Workload Study 9

2.2 Relational Database Management Systems 11

2.3 Modern Hardware . 13

2.4 Algorithm Engineering 16

3 related work 19

3.1 Overview: Challenges of Aggregation Operators 19

3.2 Cache Efficiency . 21

3.2.1 I/O Efficiency . 22

3.2.2 Cache Efficiency 23

3.3 CPU Friendliness . 25

3.4 Parallelism . 26

3.4.1 Early Parallel Database Systems 26

3.4.2 Multi-Core Parallelism 27

3.5 Communication Efficiency 29

3.5.1 NUMA Awareness 29

3.5.2 Clusters & High-Speed-Networks 30

3.6 Skew Handling . 31

3.7 Adaptivity . 33

3.8 Memory Constraint . 35

3.9 Processing Models . 36

3.10 Summary . 37

ii theory 43

4 external aggregation and related problems 45

4.1 Introduction . 45

4.1.1 Motivation . 45

4.1.2 Known Results and Challenges 50

4.1.3 Contributions . 54

4.2 Analysis in the External Memory Turing Machine Model 56

4.2.1 Overview . 56

4.2.2 The External Memory Turing Machine Model
with Payload Extension 57

4.2.3 Lower Bound . 60

4.2.4 Upper Bound . 62

xi

contents xii

4.2.5 Discussion . 62

4.3 Analysis in the Parallel External Memory Model 63

4.3.1 Machine Model and Problem Definitions 63

4.3.2 Lower Bounds . 66

4.3.3 Upper Bounds . 71

4.3.4 Discussion . 77

4.4 Practical Considerations 78

4.5 Related Work . 81

4.5.1 Work on External Memory Algorithms 81

4.5.2 Work on External Memory Data Structures . . . 82

4.5.3 Cache-Oblivious Model 82

4.5.4 Work on (RAM) Lower Bounds of other Rela-
tional Operators 83

4.6 Conclusion . 83

iii practice 85

5 cache-efficient aggregation : hashing is sorting 87

5.1 Introduction . 87

5.2 Review of State-of-the-Art Sorting Techniques 90

5.3 Algorithmic Framework 91

5.3.1 Mixing Hashing and Sorting 91

5.3.2 Parallelization . 94

5.3.3 System Integration 95

5.4 Minimizing Computations 97

5.4.1 Minimizing CPU costs of Hashing 98

5.4.2 Minimizing CPU costs of Partitioning 98

5.5 Adaptation to Locality 100

5.5.1 Adaptation Mechanism 100

5.5.2 Tuning of Algorithm Constants 104

5.6 Adaptation to the Output Size 106

5.6.1 Motivation and Adaptation Mechanism 106

5.6.2 Evaluation . 108

5.7 Extension to NUMA and Remote Memory 109

5.8 Evaluation . 112

5.8.1 Test Setup . 112

5.8.2 Scalability with the Number of Cores 113

5.8.3 Scalability with the Number of Columns 114

5.8.4 Comparison with Prior Work 115

5.8.5 Skew Resistance 118

5.9 Summary and Conclusion 121

6 memory-constrained aggregation using pipelin-
ing 123

6.1 Motivation . 123

6.2 Intra-Operator Pipelining 125

6.2.1 Overview . 125

6.2.2 Ensuring Efficient Progress 127

contents xiii

6.2.3 Columnwise Processing 129

6.3 Intra-Operator Scheduling 130

6.3.1 Choosing a Partition Within a Pipeline Level . . 130

6.3.2 Choosing a Pipeline Level 132

6.3.3 Malleable Execution 136

6.4 Implementation Details 136

6.5 Experimental Evaluation 138

6.5.1 Experimental Setup 138

6.5.2 Aggregation under Memory Constraint 138

6.5.3 Trade-Off between Performance and Memory
Constraint . 140

6.6 Summary and Conclusion 141

7 discussion 143

iv appendix 147

a proofs 149

a.1 From Multiplicities to the Number of Groups 149

a.2 Algebraic Transformations of Section 4.3.2 150

a.2.1 Equation 14 . 150

b probabilistic counting algorithms 153

bibliography 155

zusammenfassung 169

curriculum vitae 175

L I S T O F F I G U R E S

Figure 1 Example aggregation query: “What is the sum
of the prices of all sold items per store?” 8

Figure 2 Characteristics of the aggregations in the TPC-
H and customer queries. 10

Figure 3 Compute and memory hierarchy of modern
hardware . 14

Figure 4 The cycle of algorithm engineering [158] 17

Figure 5 The external memory model [3] 46

Figure 6 Comparison of aggregation algorithms in the
external memory model for N = 232, M = 216,
and B = 16. 47

Figure 7 The parallel external memory model [12] . . . 64

Figure 8 Recursive run-production of our algorithmic
framework . 93

Figure 9 Column-wise processing. 95

Figure 10 Microbenchmark of degenerated partitioning
routines. 99

Figure 11 Breakdown of passes of illustrative Aggrega-
tion strategies using P = 20 threads. 101

Figure 12 Adaptive strategy 103

Figure 13 Adaptive strategy in comparison with Hash-
ingOnly and PartitionAlways (2 and 3 passes)
using P = 20 threads. 104

Figure 14 Determining the cross-over of HashingOnly

and PartitionOnly. 105

Figure 15 Impact of tuning constant c on the run time of
Adaptive. 106

Figure 16 Impact of output size estimation on Adaptive

using P = 20 threads. 108

Figure 17 Speedup of Adaptive compared to single core
performance. 113

Figure 18 Scalability of Adaptive with the number of
columns using P = 20 threads. 114

Figure 19 Comparison with prior work of Cieslewicz and
Ross [42] and Ye et al. [199] using P = 20 threads.116

Figure 20 Adaptive on different distributions using P =

20 threads. 119

Figure 21 Intra-operator pipelining. 126

Figure 22 Extended pipelining stage with internal buffer. 130

Figure 23 Memory consumption and thread activity over
time using different naive scheduling strategies. 133

Figure 24 Memory consumption and thread activity over
time using the MemoryTarget (50%) schedul-
ing strategy. 135

xiv

Figure 25 Comparison of intra-operator scheduling strate-
gies under a memory constraint of 256MiB. . 139

Figure 26 Impact of the amount of available memory on
different intra-operator scheduling strategies
for K = 223 groups. 141

L I S T O F TA B L E S

Table 1 Comparison of existing Aggregation algorithms 39

Table 2 Results of upper and lower bounds of Aggre-
gation and related problems in different ex-
ternal memory models. 53

L I S T O F A L G O R I T H M S

Algorithm 1 Example query expressed in SQL 9

Algorithm 2 PEM algorithm for MultisetSorting and Or-
deredAggregation 73

Algorithm 3 Building blocks of PemMultisetSort 73

Algorithm 4 Algorithmic Building Blocks 91

Algorithm 5 Aggregation Framework 92

Algorithm 6 ProbabilisticCounting 153

Algorithm 7 ProbabilisticCounting with stochastic aver-
aging . 154

L I S T O F L I S T S

List of Figures . xiv
List of Tables . xv
List of Algorithms . xv
List of Lists . xv
List of Lists that do not contain themselves xv

L I S T O F L I S T S T H AT D O N O T C O N TA I N
T H E M S E LV E S [1 8 9]

LaTeX Warning: Label(s) may have changed. Rerun to get cross-

references right

xv

1
I N T R O D U C T I O N

1.1 context and motivation

For decades our society has been experiencing an increasing digi-
talization of almost all of its aspects: business processes, financial
transactions, governance, online shopping, research in all disciplines,
medicine, personal communication, transport, and living, and many
more. Mankind produces and collects unprecedented amounts of
data that are difficult to apprehend; and at the same time, the ability
to extract meaning out of it becomes more important and technically
challenging. A large variety of software applications has emerged
with that goal—sometimes grouped under the term business intelli-
gence—, offering concepts, such as data analytics and reporting, online
analytical processing (OLAP), data mining, et cetera, and are contin-
uously being extended.

This trend is paralleled by technological advances in computing
hardware. Processing power and storage space have sustained expo-
nential growth since their early days half a century ago and promise
to continue to do so in the future. For a long time, this development
was completely transparent to software, but now advances often can
only be achieved by specializing and explicitly exposing more and
more hardware components. Software can thus benefit from the full
computational power only if it is conscious about the inner workings
of the hardware. This means that more and more responsibility is
shifted to the software level, making software increasingly complex
and difficult to develop.

To handle the confluence of these two trends, special software has
been developed as abstraction layer: relational database management sys-
tems. By providing a logical, structured view of the data, they relieve
applications from many technical aspects of data management so that
they can focus on what should be done, while the systems take care
about how to do it. In particular, it is the task of database manage-
ment systems to process application requests such that the hardware
is used at its fullest potential. Building database management systems
is therefore a continuous race of adapting to every new hardware
generation in order to process faster and faster the ever increasing
amounts of data.

At the heart of this race lies a set of operators—algorithmic build-
ing blocks that the system combines to carry out computations upon
application requests. One of the most important operators is Aggre-
gation. It consists in summarizing a collection of records by dividing

1

1.2 challenges 2

them into groups, each of which is aggregated into a single value. For
example, the entries of all sold products in the book of a retail chain
could be summarized by the total number of items sold by each store.
Virtually all analytical applications require this functionality and a
typical database system spends a large fraction of its processing time
with this operator. The goal of the present thesis is to engineer a new
generation of Aggregation operators that advances database man-
agement systems in their race to leverage modern hardware.

1.2 challenges

Building Aggregation operators is challenging for a number of rea-
sons. Starting with the aforementioned hardware consciousness, con-
crete challenges are the following: First, it is important that the op-
erators reduce costly data movement. In modern database systems
that keep almost all data in main memory, this concerns vertical data
movement between the main memory and processor caches, but also
horizontal data movement between different processing units. Fur-
thermore, modern processors can execute certain types of computing
instructions faster than others, so algorithms should be implemented
such that they use efficient instruction sequences as often as possi-
ble. Finally, today’s computers consist of numerous computing units
running in parallel—as multiple components inside a single chip, as
several chips inside the same computer, or as several computers clus-
tered together. Software can thus only use all compute resources if it
can split its work into pieces that can be executed in parallel by inde-
pendent processing units and communication between them is kept
low. In short, to leverage modern hardware, Aggregation operators
need to be built such that they are cache-efficient, CPU-friendly, highly
parallelizable, and communication-efficient.

Another group of challenges is related to the desired generality of
database operators. They should provide good performance indepen-
dently of properties of the input data. For Aggregation, different
strategies work best with modern hardware depending on the num-
ber of groups in the data. This is a property that is difficult to know
in advance. Therefore, it is attractive for Aggregation operators to
automatically adapt their strategy to the data during execution. Simi-
larly, a situation where more records in the data belong to a certain
group than to others is difficult to handle. In order to work robustly
for all applications, we need mechanisms to deal with skewed distribu-
tions of groups. Both adaptivity and skew resistance are thus desirable
properties, but challenging to achieve.

A final group of challenges stems from the fact that Aggregation

operators are part of a larger system. First, this means that they need
to share hardware resources with other software components. In the
context of in-memory database systems, this is particularly difficult to

1.3 contributions and thesis outline 3

achieve with the resource main memory. Operators need main mem-
ory to store intermediate results, but, depending on the system, the
amount available for that purpose may be limited. Finally, different
types of database management systems have different interfaces be-
tween operators, which may affect choices in the algorithm design.
For the design of Aggregation algorithms, it is thus important to
make sure that they are capable to run even under constrained memory
and are integrable into state-of-the-art architectures of database man-
agement systems.

Each of these challenges is difficult enough to achieve in isolation.
Matters are further complicated if all of them should be addressed
at the same time. Each design decision to improve a certain property
may negatively affect how well the resulting operator performs in a
different dimension. The task of engineering complete Aggregation

operators is therefore also challenging because it consists of balancing
trade-offs that lead to an overall good solution.

1.3 contributions and thesis outline

In this thesis we take on the challenges of engineering Aggregation

operators in the context of in-memory database systems.
In a first part, we study Aggregation from a theoretical point of

view. We analyze the problem in several external memory machine
models in order to understand its limits in cache efficiency. We are
able to show that for many realistic parameters of these machine mod-
els, Aggregation has the same lower bound as MultisetSorting.
This proves a long-standing folklore conjecture of the database com-
munity, which implies that the best strategy for Aggregation de-
pends on how many groups there are in the input and that using a
sort-based algorithm is optimal if the number of groups is large. The
insights gained from this theoretical analysis form a timeless guide-
line for designing cache-efficient Aggregation algorithms.

In a second part, we iteratively engineer a practical algorithm that
meets all challenges mentioned earlier. With the first iteration we chal-
lenge the commonly accepted view that the two traditional strategies,
HashAggregation and SortAggregation, are completely opposite.
Instead, we design a single algorithm that inherits features of both
strategies. A simple, cheap mechanism lets our operator adapt its be-
havior to the data, during execution and without relying on external
information given in advance. It is therefore at least as cache-efficient
as any of the two static choices. Furthermore, the careful integration
of a probabilistic streaming algorithm provides our operator with an
accurate estimate of the number of groups in the input, which avoids
potentially prohibitive resizing costs of the data structure that will
hold the result. We also use a number of low-level tuning techniques
to make our algorithm CPU-friendly and ensure that it can be inte-

1.3 contributions and thesis outline 4

grated with state-of-the-art execution models of database systems. Fi-
nally, we show how to parallelize our operator both within and across
processors and despite skewed input distribution such that it executes
fully in parallel at all times.

With the second iteration we take away the common, but unrealistic
assumption that memory available for intermediate results is unlim-
ited. We develop techniques that allow executing different phases of
a recursive algorithm in a pipeline and apply them to our Aggrega-
tion operator. They ensure that intermediate results after a phase can
quickly be consumed by the next phase and their memory can be re-
leased. The more frequent switching of tasks inherent to pipelining is
a potential source of overhead, but with clever intra-operator schedul-
ing we are able to sustain performance close to the one of the original
version while fully preserving its adaptivity and skew resistance.

We confirm the viability of our algorithm design with extensive
experiments. In comparison with several state-of-the-art competitors
our implementation is the fastest in almost all situations, with large
speed-ups in many situations, peaking at a 3.7 times lower execution
time for large numbers of groups. Our operator runs at the speed of
the memory bandwidth, scales to a high number of processing units,
and achieves the same performance even for extremely skewed in-
puts. Our cardinality estimator effectively eliminates resizing costs
of the result data structure with very low overhead, thus saving up
to half of the execution time. If memory for intermediate results is
constrained to a mere 1.6% of the original memory usage, our opera-
tor experiences an overhead of just 20% to 47% and can be tuned to
higher performance by increasing the constraint.

In summary, by combining a thorough theoretical analysis, clever
algorithmic design, and a series of engineering techniques, we build a
single, versatile Aggregation operator that is state-of-the-art with re-
spect to all challenges that arise in the context of in-memory database
systems.

The rest of the thesis is organized as follows: In Chapter 2 and 3,
we review the foundations of this thesis and prior work on Aggre-
gation, respectively. In Chapter 4 we present the theoretical study
of Aggregation in external memory models. The two design itera-
tions of our practical operator are presented in Chapter 5 (combining
Hashing and Sorting) and Chapter 6 (memory constraint) respec-
tively. Finally, Chapter 7 concludes the thesis with a discussion of
limits and possible extensions of our work.

Part I

S TAT E O F T H E A RT

The condition of scientific or technical knowledge, particu-
larly the peak or highest level thereof, at a particular time.

— Wiktionary [193]

2
F O U N D AT I O N S

In this chapter, we lay the foundations of our work: First, we introduce
the problem of Aggregation and present how it is used in real-world
applications. Second, we review relational database management sys-
tems, the abstraction layer that most applications use for storing data
and computing Aggregation and other operations. Then we summa-
rize the most important features of modern hardware that database
systems use to carry out application requests. Finally, we review the
scientific method of algorithm engineering, which allows us to build
an Aggregation operator that efficiently uses modern hardware and
guides all other chapters of this thesis. Readers familiar with some or
all of these topics may skip the respective sections.

2.1 grouping with aggregation

2.1.1 Example and Formal Definition

Aggregation is a common means to summarize a large collection of
data records such that a particular characteristic of the collection can
be understood easily by a human. It consists in assigning each record
to a group and to aggregate each group to a single record. Some-
times it is therefore called GroupingWithAggregation, which may
be shortened to Grouping or Aggregation. Except where a distinc-
tion is needed, we use the latter abbreviation in this thesis.

Figure 1 shows a simple example of Aggregation in the context
of a European office supply chain. It answers the question: “What is
the sum of the prices of all sold items per store?”. In this example,
the entries of sold items are grouped into one group per store and
the prices of the rows of each group are aggregated to their sum. This
allows understanding which articles generated the highest revenue
according to the books of the company.

This concept can be formalized [99, 37] as part of the relational al-
gebra. The relational algebra is an algebra of operators on sets of tu-
ples called relations. The operator Aggregation is defined as a func-
tion1 γ on relations, parametrized with a set of grouping attributes
A1, . . . ,Ag and a list of aggregation functions f2(A), . . . , fC(A), where
A is the set of all attributes of R. It is often noted as follows [95]:

γA1,...,Ag f2(A),...,fC(A)(R) (1)

1 Sometimes Γ , g, G, or F are used in the literature rather than γ.

7

2.1 grouping with aggregation 8

Input

Store Item Price

Berlin pen 1.00 €

Berlin paper 3.00 €

Paris ruler 2.00 €

Berlin pen 1.00 €

Paris pen 1.00 €

Vienna paper 3.00 €

Aggregation

Output

Store Sum

Paris 3.00 €

Vienna 3.00 €

Berlin 5.00 €

Figure 1: Example aggregation query: “What is the sum of the prices of all
sold items per store?”

For simplicity of exposition, we assume g = 1 in this thesis, i.e.,
we assume that a single attribute determines the group of each row,
like in the example in Figure 1. This is not a real limitation since
multiple attributes can be (logically) concatenated to a single one. For
a similar reason, we also assume that every remaining attribute is the
single input of exactly one function. This implies that both input and
output relation have C attributes or columns. Our simplified definition
of Aggregation has the following formal semantics:

γA1 f2(A2),...,fC(AC)
(R) =

{
(a1, s2, . . . , sC) |a1 ∈ πA1

(R),

s2 = f2 (πA2
(σA1=a1

(R))) ,

. . . ,

sC = fC (πAC
(σA1=a1

(R)))
}

,

(2)

where σ is the relational operator that selects the rows of a relation
given a predicate, π is the relational operator that projects a relation
to a subset of its attributes, and A1 is the grouping attribute.

Applications typically express their requests to the database sys-
tems with the Structured Query Language (SQL) which is based on the
relational algebra. However, while strict relational algebra is defined
on sets, SQL’s default is to work on multisets, i.e., duplicate rows are
not eliminated. We interpret Equation 2 in this way and adopt this in-
terpretation throughout the thesis. In SQL Aggregation is expressed
with a Group By clause. With accordingly defined tables, the above
example query would be expressed in SQL like shown in Algorithm 1.

The most common aggregate functions in SQL are Count, Sum (as
in the example in Figure 1), Avg (average), Min, and Max. The SQL
standard [86, Section 4.16.4] also defines a range of other, less com-
mon aggregate functions and different vendors have added others as
proprietary extensions. For a classification of aggregate functions, see

2.1 grouping with aggregation 9

Algorithm 1 Example query expressed in SQL

1: Select Store, Sum(Price) As Sum
2: From Sales
3: Group By Store

Gray et al. [78]. Furthermore, each aggregate function has a Distinct

variant, which only works on the distinct values of the attribute, but
this is out of the scope of this thesis.

There are two problems that are considered to be similar to Aggre-
gation: Join and DuplicateRemoval. In a Join, tuples of two (po-
tentially different) relations have to be brought together, i.e., “joined”,
if they have the same (join) key. Aggregation can be seen as a Join

with only one relation. In DuplicateRemoval we are asked to keep
exactly one tuple of each group of tuples where all attributes are the
same. This is equivalent to an Aggregation where all attributes are
grouping attributes and no aggregates are computed. We discuss as-
pects of Join and DuplicateRemoval throughout the thesis where
insights can be transferred to Aggregation.

2.1.2 Real-World Workload Study

Aggregation plays an important role in analytical workloads. In this
section, we present a workload study of a real-world business appli-
cation, which initially motivated the project of this thesis. While it
confirms many well known usage patterns of the Aggregation oper-
ator, our study also reveals some insights that contrast the textbook
descriptions of typical workloads.

The workload of the study consists of two sizes of a pre-sales bench-
mark of business analytics on ERP data of a customer of SAP. The
queries are particularly long running and difficult queries of an exist-
ing system of the customer for performance comparison with the SAP
HANA Database. For reference we include the queries of the TPC-H
benchmark [172] with scale factor 100. We run the queries on the SAP
HANA Database [61] and trace the statistics of the Aggregation op-
erator.

Our first observation is illustrated in Figure 2a, suggesting that the
queries are complicated enough so that the execution plan contains
more than one Aggregation operator. While the TPC-H query set
consists mostly of rather simple queries with one or two Aggrega-
tions, our business use case is more complex and has queries with
up to 16 instances of Aggregation operators.

Our second observation concerns the distribution of input size and
output size (denoted N and K respectively) and is illustrated in Fig-
ure 2b. While the TPC-H data sets consist rather of two distinct types
of queries, one where the output relation is of small, fixed size and
one where the output is almost as large as the input, all combinations

1− 2 3− 4 5− 10 > 10
0%

20%

40%

60%

80%

100%

Number of Aggregations

Pe
rc

en
ta

ge
of

qu
er

ie
s

customer (small)
customer (big)
TPC-H SF100

(a) Aggregations per query.

20 24 28 212 216 220 224 228

25

210

215

220

225

Number of input rows (N)

N
um

be
r

of
ou

tp
ut

ro
w

s
(K

) customer (small)
customer (big)
TPC-H SF100

input = output

(b) Input and output size.

1− 5 6− 19 20− 40 > 40
0%

20%

40%

60%

80%

100%

Number of aggregate columns

Pe
rc

en
ta

ge
of

A
g

g
r

e
g

a
t
i
o

n
s customer (small)

customer (big)
TPC-H SF100

(c) Aggregate columns.

Figure 2: Characteristics of the aggregations in the TPC-H and customer
queries.

2.2 relational database management systems 11

exist in our real-life queries. This means that algorithms have to per-
form well on all combinations of N and K. Particularly interesting are
queries with a large number of groups K, which has not been in the
focus of optimization in most prior work. As Figure 2b shows, out-
put sizes of several million groups are not uncommon. We observed
that this often happens in legacy applications that “misuse” Aggre-
gation to ensure uniqueness properties not ensured by constraints
in the schema. This is something that a general purpose database sys-
tem needs to support efficiently, but literature does not offer good
solutions for.

Our final observation is illustrated in Figure 2c. It shows that the
number of aggregation columns is high in analytical workload. The
TPC-H queries consist mostly of less than five columns with a max-
imum of ten. Again, our business query set is more complex, with
many queries having more than 20 aggregates and some up to more
than 50. We conclude that benchmarks with a small number of col-
umns are not realistic and that it is important to test Aggregation

algorithms with a large number of columns.

2.2 relational database management systems

We now review the relevant aspects of a typical database management
system (DBMS) in order to understand what role the Aggregation

operator has. Most if not all of this section is taught in every intro-
ductory course on database systems, so we refer to accompanying
textbooks such as [95, 166] for more details.

A database management system provides a clear, abstract, and sim-
ple interface for storage, manipulation, and access of data, thus reliev-
ing application developers from these common tasks. By separating
the logical representation of the data from the physical representation, ap-
plications only need to care about the former and the latter can be
changed—manually or automatically—independently from the appli-
cation. In this work we concentrate on the relational data model [45],
where all data is stored in relations (or tables). A DBMS manages da-
tabases or—more accurately— database instances, which are collections
of relations. Each relation is an instance of a precisely defined schema,
a set of named attributes, possibly with a constrained domain. Appli-
cations store, manipulate, and query data through a data manipulation
language (DML). For relational database systems, the declarative Struc-
tured Query Language (SQL) [86] is by far the most common one. It is
theoretically backed up by the relational algebra, an algebra of operators
on sets of tuples called relations, although it does not strictly adhere
to it for efficiency reasons.

The physical representation of the relations is handled by a stor-
age manager. The storage manager stores at least one copy of each
relation on some durable storage medium, traditionally on disk. In

2.2 relational database management systems 12

these disk-based systems, often-used parts of the data is kept in faster
main memory in a buffer pool. Query processing may write large in-
termediate results to disk, which has virtually unlimited capacity. In
contrast, in in-memory database systems, the disk is only used for back-
ups. All working data is stored instead in the faster, but smaller main
memory, thus making RAM the “slow” storage medium vis-a-vis the
CPU caches and limiting the capacity available for intermediate re-
sults. There are two main physical storage layouts: row-major order
or row-wise storage and column-major order or column-wise storage,
which are chosen depending on the dominant access pattern to the
data. Transactional workload rather consists of queries that only touch
a few rows, but most attributes of them, so the row-wise format is
used for this workload. Analytical workload often consists of queries
that only involve a few attributes, but many rows of a relation, so the
column-wise format is used instead. By increasing locality for typical
access patterns, choosing the right storage format increases efficiency
of access to storage media. For details about the storage layer, we refer
to [166, Chapter 10] or [95, Chapter 7].

Queries of the data manipulation language are first parsed into a
logical query plan by a DML compiler. This plan consists of logical op-
erators similar to the relational operators, such as Selection, Projec-
tion, Join, or Aggregation. An optimizer then transforms the logical
plan into a physical query plan. This allows choosing among several al-
ternatives the execution plan that is best suited for a particular query
on a particular relation. Typical transformations are changing the or-
der of operators, using a series of physical operators for a relational
operator, using a physical operator that computes the combination of
several relational operators, adding operators that reduce the amount
of work for later operators, and selecting one among several physical
operators, some of them possibly using indices. For example Selec-
tion could be translated into IndexScan or LinearSearch or Join

could be translated to HashJoin or SortMergeJoin.
In order to select the best possible execution plan, many query op-

timization techniques have been developed. Most optimizers have a
set of equivalence rules in order to generate equivalent plans for the
same query. They use a combination of heuristics, pruning, and dy-
namic programming to efficiently select the best of them. A cost mod-
els of the operators, for example modelling the number of I/Os or
cache misses caused by a plan, then allows selecting the cheaper of
the two. A simple rule is selection push-down, where Selection operators
are pushed down to the leaves, filtering out data early on in the query
thus reducing the amount of work for later queries. Plans may also
be transformed to contain interesting orderings: For example, a Sort-
MergeJoin followed by a special Aggregation optimized for sorted
inputs could be faster than a HashJoin followed by HashAggrega-
tion. The costs of a plan depend to a large degree on the number

2.3 modern hardware 13

of tuples, so it is important to have size estimates of intermediate re-
sults. Depending on the operators, sizes can be predicted based on
selectivity estimates or distinct value estimates, which in turn can be pro-
duced using sampling, histograms, and other techniques. More details
about query processing and query optimization can be found in [166,
Chapters 12 and 13] and [95, Chapter 8].

Once the physical plan is created, it is executed by the query execu-
tion engine. The execution engine follows one of several processing mod-
els, i.e., physical ways to pass data between the operators of a query
plan. For one, intermediate results may be represented row-wise or
column-wise, which may or may not be the same representation as
for the original relations. Furthermore, traditional systems often fol-
low a pull model, where operators recursively ask their children to
produce the next row (or batch of rows). Several operators are thus
connected to pipelines, eliminated the need to materialize many inter-
mediate results, separated by pipeline breakers, such as most Join or
Aggregation operators. In contrast to that, particularly in systems
with column-wise processing, sometimes a push model is used, which
means that operators produce their complete result and give it to their
parent(s) at once. Both models are implemented with an abstract in-
terface, where operators call each other with virtual function calls. Be-
cause this can be prohibitively slow, a trend to overcome this problem
has emerged recently: just-in-time compilation of the query plan of each
query into machine code [140, 67, 138].

Many of these aspects have an influence on the design choices or at
least the implementation of an Aggregation operator. We will come
back to them in more detail when we discuss prior work in Chapter 3

and our operator in Chapter 5.

2.3 modern hardware

One main task of database management systems is to ensure that
computations carried out for applications fully utilize the potential of
modern hardware in order to achieve the best possible performance.
For that purpose, database systems in general and their implementa-
tion of operators in particular need to be designed with the hardware
architecture in mind. In this section we review the most important
aspects of modern hardware relevant for this process.

Today’s computer hardware architecture is characterized by a com-
plex hierarchy of specialized components, each designed to maximize
performance of the software running on it, while keeping the inter-
face to software as simple as possible. However, in the last decades,
software has had to become more and more conscious of the inner
workings of hardware in order to fully utilize it and database sys-
tems are no exception to this trend [41, 1, 20, 204, 124]. In this section
we briefly review the most important features of modern hardware

2.3 modern hardware 14

L1I L1D

L2 cache

(vector)
registersALU

hardware threads

L3 cache

core

core

core

core

(a) core (b) CPU

network

node

node

node

node

disk

disk

disk

disk

CPU

CPU

CPU

CPU

RAM

RAM

RAM

RAM

(d) cluster (c) node

Figure 3: Compute and memory hierarchy of modern hardware

relevant for today’s in-memory database systems. This review is nec-
essarily simplified. Furthermore, we concentrate on large servers with
Intel processors, which are dominant in our industry context. For a
more in-depth coverage of the topic and other architectures, we rec-
ommend more specialized literature [145, 58, 49].

The shift in hardware architecture was mainly caused by the fact
that three physical limitations were reached, which made performance
improvements less automatic than previously [145, 147]. First, the
so-called “power wall” prevents a further increase of processor fre-
quency; second, the “ILP wall” (instruction level parallelism, see be-
low) limits performance improvements of deeper pipelines; and third,
the “memory wall”, caused by the fact that processing speed increases
at a faster pace than memory bandwidth, turns data access more and
more into a bottleneck.

Modern hardware overcomes these limits through a hierarchy of
compute resources and memory, illustrated by Figure 3. In short, a
node has one or several CPUs (central processing units, usually one
per socket), a certain amount of main memory or RAM (random access
memory), and possibly one or several hard disks. Each CPU consists

2.3 modern hardware 15

of several cores each of which has one or two levels of cache, which may
make the distinction between instructions and data (like the first level
in Figure 3 (a)) or be used for both (like the second level in the figure).
Often the cores of one CPU share another level of cache. Furthermore,
one core can often execute several threads at the same time, i.e., the
hardware supports simultaneous multithreading. Making a single node
larger is called “scale-up”. It is also possible to connect several nodes
to a cluster using high-speed networks, thus doing “scale-out”.

The memory hierarchy within a node (usually excluding disks) is
functionally transparent for software in the sense that programs use
memory through a single virtual address space and the hardware
moves the data through the different levels as needed. The closer
the memory is to a compute resource, the faster it is, but also the
smaller its capacity is. This allows hiding, at least in parts, the access
costs of the next slower, but larger memory level. Different levels of
the memory hierarchy are organized in blocks of different sizes and
only entire blocks can be transferred between levels (cache lines in
case of cache/RAM transfer and pages in case of RAM/disk transfer).
The hardware decides which cache lines to place into which level of
the cache based on the access pattern of the software using different
cache replacement policies. Furthermore, a sequential access pattern is
usually faster than random access thanks to a prefetching unit in the
hardware. The hardware also keeps copies of the same cache line
in different caches coherent through clever cache coherency protocols
between the caches. In a multi-socket environment, each part of the
main memory is only directly connected to one socket and accesses
from one socket to memory of a different socket (remote accesses)
are slower than memory access within a socket (local accesses). We
speak of Non-Uniform Memory Access (NUMA). Disks and memory
of different nodes in a cluster are usually addressed through file or
message passing APIs respectively, although the operating system can
also map them into the program’s virtual address space.

The compute hierarchy of modern hardware is more explicit to the
software than the memory hierarchy. Software can only run on differ-
ent nodes, CPUs, or cores if it expresses coarse-grained parallelism (or
thread level parallelism) through independent threads of control flow.
Many modern CPUs also offer more fine-grained levels of parallelism:
data parallelism (or vectorization) and instruction level parallelism. Vec-
torization consists of special instructions executing the same logical
operation on multiple adjacent values stored in vector registers, simi-
lar to operations on vectors. Compilers can generate code using these
instructions only in some situations; in general vector instructions
need to be used explicitly for best performance. Instruction level par-
allelism consists in executing several instructions of the same thread
at the same time, thus doing super-scalar execution. This is possible
by breaking instructions up into many small stages, each executed by

2.4 algorithm engineering 16

a dedicated unit inside the core arranged in a pipeline. Slow units,
such as arithmetic logic units (ALUs), may be duplicated and the core
may rearrange instructions without dependencies for better resource
usage (we speak of out-of-order execution). Branches in the control flow
can only be executed in the pipeline if a branch prediction unit correctly
predicts them. If a CPU executes several threads simultaneously, in-
structions of different threads are executed in an interleaved fashion,
thus allowing to use the resources inside the core to a fuller extent.

This hierarchy poses fundamental challenges to software architec-
ture. A software system can only use all compute resources if it ex-
plicitly expresses coarse-grained parallelism as independent threads
of control flow. This in turn makes synchronization [49] and work
balancing necessary. Software also needs to be aware of the memory
hierarchy, e.g., by favoring access patterns with locality. Finally, the
performance critical paths of software have to be written in a “CPU-
friendly” way, e.g., by avoiding control flow and data dependencies
and by using vectorized instructions. One main theme of this thesis
is to propose solutions for these challenges faced during the design
and implementation of a relational Aggregation operator.

2.4 algorithm engineering

In order to leverage the power of modern hardware to the fullest,
we follow the philosophy of algorithm engineering in this thesis. Algo-
rithm engineering is a methodology for designing and implementing
usable algorithms with provable properties on real-world computer
hardware. It has emerged from the community of algorithm theory in
order to improve applicability of theoretical results and forms now a
field of research of its own. Because many aspects of database systems
research, in particular in query processing, concern the performance
of algorithms and data structures on real systems, we think that it is
interesting to see our work as an algorithm engineering show case.

In short, algorithm engineering can be explained as illustrated by
Figure 4 (for details we refer to literature dedicated to the topic [158,
135]). The main idea is to see the engineering of algorithms as an
inductive, iterative cycle of design, analysis, implementation, and exper-
iments (the blue boxes in Figure 4): The design yields a concise, ab-
stract description of the algorithm in question, possibly written in
pseudo-code, and is usually based on realistic models of the machine
and the problem. This algorithm can be formally analyzed to deduce
performance guarantees in the given models. Traditional algorithm
theory often ends at this point. In algorithm engineering however,
falsifiable hypotheses about the algorithm behavior are formulated,
and tested with a careful implementation and extensive experiments.
Possible discrepancies between the expected and actual behavior are
reduced in subsequent iterations of the whole cycle. Since the im-

2.4 algorithm engineering 17

falsifiable
hypotheses

induction

design

analysis

implementation

experiments

realistic
models

performance
guarantees

algorithm
libraries

real
inputs

algorithm
engineering

applicationsdeduction

Figure 4: The cycle of algorithm engineering [158]

plementation of the algorithm is not seen as a detail, but as a first-
class outcome of the engineering process, it is often materialized in
a library, where it can be used by other algorithms, as well as appli-
cations. Applications also drive other aspects of the process: Exper-
iments and their inputs are defined by the application, and the ma-
chine model and the algorithm design should be compatible with the
requirements of the application as well, in order to ensure that the
resulting algorithm can actually be used.

This methodology applies very naturally to query processing: As
a very practical field, the database systems community has a strong
tradition in implementing and conducting experiments with real in-
puts derived from real applications or realistic benchmarks—a tradi-
tion that we also apply in this work. In a way, a database system can
even be seen as a library that makes storage and processing technol-
ogy reusable for applications.2 Furthermore, in query optimization,
the performance of algorithms is often quantified by a cost model
in order to let the system choose the most efficient way to execute a
given query. In algorithm engineering, models play a slightly differ-
ent role: they are used by a human—not a machine. They enable the
algorithm engineer to drive the engineering process by explaining the
interaction of the algorithm, the underlying hardware, and the appli-
cation. In this work for example, we use the external memory model
to understand the cache behavior of Aggregation algorithms (see
next section and Chapter 4).

2 However, from the point of view of the Aggregation operator, the database system
can also be seen as part of the application, since many aspects of the architecture of
the system are immutable facts that have to be taken into account for its design.

3
R E L AT E D W O R K

In this chapter, we summarize the most important work on Aggre-
gation operators, a line of work that spans almost four decades. We
structure our review around eight challenges that we find reoccur-
ring in the work of most authors: I/O efficiency or cache efficiency,
CPU friendliness, parallelism within processing units and communi-
cation efficiency across them, robust handling of skewed data, adap-
tive strategies to handle locality, execution with constrained memory,
and integration of algorithms into processing models. Most of this
work was done in the context of disk-based architectures, the tradi-
tional storage medium of database systems, which we review briefly.
We concentrate on work on in-memory database systems, which have
got a lot of attention in the last one to two decades. As we argue
throughout our review, the work on dask-based systems cannot be
applied directly to the in-memory architecture, but many of the in-
sights gained from disk-based algorithms are intrinsic to the problem
of Aggregation and have necessarily influenced more recent work.
Other insights have rather been forgotten, so reconsidering them in
the context of in-memory systems may be worthwhile. For a more
detailed summary, we refer to surveys on the topic, which exist in the
context of disk-based [76, 77, 187, 186] and in-memory systems [203].

3.1 overview : challenges of aggregation operators

Before examining previous work of other authors about Aggregation

in detail, we give an overview of the challenges that they faced. This
allows us to structure our study of prior work around these chal-
lenges. The challenges also serve as a check list that we use for a
comparison of the most promising existing solutions and as require-
ments for the solutions we propose. The challenges themselves are
well-known: many solutions were proposed for each of them. How-
ever, most authors concentrated on one or a few of them and, as we
will see in our final comparison, no solution proposed so far solves
all of them. We thus consider that naming all challenges explicitly is
a contribution of us by its own right.

The challenges for the implementation of an Aggregation operator
in in-memory database systems are the following:

cache efficiency. As a data-intensive operation, the performance
of an Aggregation operator heavily depends on how it uses the mem-
ory subsystem. Our review of modern hardware shows that efficient

19

3.1 overview : challenges of aggregation operators 20

usage of caches is required to overcome the bottleneck to slow main
memory, i.e., vertical communication should be reduced. Furthermore,
our workload study shows that different queries have a large variance
in the number of groups, which is the determining factor of the size
of the output and thus the cache footprint. Aggregation operators
have to use the caches efficiently—independently of the number of
groups.

cpu friendliness . While data movement between main mem-
ory and caches is expensive, the amount of computations that can
be completely overlapped with memory access (thus being de facto
free) is very small on modern CPUs. This may make I/O-efficient so-
lutions proposed for disk-based systems unsuited for the in-memory
setup, if they are too intricate and complex. Our review of processors
in the previous chapter rather shows that modern CPUs consist of
sophisticated components such as deep instruction pipelines, vector
instruction units, and branch predictors. To reduce the costs of com-
putations, Aggregation algorithms thus need to be conscious about
these inner workings of the hardware, i.e., be CPU-friendly.

parallel execution. As discussed in Section 2.3, parallelism at
several levels is fundamental for increasing performance on modern
hardware. Because analytical queries such as those from our work-
load study in Section 2.1.2 have a large fraction of long-running Ag-
gregations, parallelization of this operator is important. Within a
CPU, the challenge consists in splitting up the work among multiple
cores while keeping synchronization costs low.

communication efficiency. Another challenge arises as par-
allelization is scaled up to scenarios with several CPUs and non-
uniform memory access or—to an even more extreme degree—as
it is scaled out to scenarios with slow access to remote memory. In
these cases horizontal communication, i.e., communication among the
compute units, becomes the bottleneck. Aggregation operators that
should scale to large nodes or even clusters thus have to be designed
such that they minimize communication across compute units. In
other words, they should be NUMA-aware and communication efficient.

skew resistance . Another challenge for Aggregation opera-
tors to handle of skew. Skew refers to a non-uniform distribution of
grouping attributes and may have negative effects on the performance
of some algorithms, for example due to contention during concur-
rent access to frequent groups or uneven distribution of work among
threads. Aggregation operators should preserve robust performance
independently of the distribution of the input.

3.2 cache efficiency 21

adaptivity. As we discuss in Section 2.2, the traditional approach
to achieve cache efficiency for all numbers of groups is to implement
two algorithms and let an optimizer decide which one to choose. Sim-
ilarly, some algorithms depend on a tuning parameter from the opti-
mizer. However, we also discuss the consequent problem of bad opti-
mizer decisions. An Aggregation operator can remove this decision
by automatically adapting its behavior to the query and data in order
to provide optimal performance in all situations and without inter-
vention of an optimizer.

constrained memory usage . While the previous challenges
aim at reducing execution time, it is also important that Aggregation

operators do not use excessive amounts of memory for intermediate
results. This aspect is often ignored when designing algorithms for
performance benchmarks, but is fundamental for productive use in
commercial systems. The challenge is of particular importance for in-
memory database systems, where all intermediate results have to be
kept in the limited main memory. It is therefore important that Ag-
gregation operators continue to work at a high performance if their
available memory is constrained in size.

system integratability. Finally, an Aggregation operator is
always part of a system and has to integrate with specificities of the
system’s architecture. Relevant aspects include the storage format of
relations and intermediate results or the functional interface between
operators. Not all algorithms lent themselves equally well for all archi-
tectures. As the dominating processing models for business analytics
are column-wise processing and Just-in-Time compiled query plans,
we focus on integration with these two models.

After seeing a sketch of each challenge, we now present prior work
for solving each of them. We concentrate on solutions that solve the
challenges inside the Aggregation operator, but also review alterna-
tives of this approach along with their advantages and disadvantages.
Some proposed solutions appear several times, as they make major
contributions to solving several of above challenges. In the end of
this chapter, we summarize the most complete solutions and which
of them solves which of the challenges.

3.2 cache efficiency

We start with the efficient usage of caches. We argue that this challenge
for main memory systems is very similar to efficiently using main
memory for disk-based systems. Consequently, we expect some as-
pects of I/O-efficient algorithms to be transferable to cache-efficient
algorithms, so we review prior work in both areas.

3.2 cache efficiency 22

3.2.1 I/O Efficiency

The main driver of system and algorithm design in the disk-based
world is the reduction and hiding of I/O costs, which dominate al-
most all other costs. While storage space of disk is virtually unlim-
ited, fast main-memory is rather small, so algorithms may be forced
to write and read intermediate results to and from disk, possibly re-
peatedly, if they do not fit into main-memory. To what extend this is
necessary primarily depends on the number of groups.

On the one hand side, several variants of SortAggregation were
suggested. Epstein [60] was the first to use I/O-efficient sort algo-
rithms to preprocess the input relation. This made it possible to bene-
fit from the many known optimizations of Sorting. Maybe the most
prominent example is ReplacementSelection [101, 76]. Depending
of the data distribution, this technique improves the initial run pro-
duction of MergeSort and reduces thus the number of required
merge levels.

On the other hand side, Kitsuregawa et al. [98] proposed what is
now known as GraceJoin (named after the system it was built in),
which consists in recursively partitioning the input relation(s) until
each partition can be processed in memory using a hash-based algo-
rithm. DeWitt et al. [54] further improved this approach with their
HybridJoin: By producing fewer partitions—just enough to enable
in-memory processing of each of them—, they make space for a hash
table where a certain fraction of the tuples can be processed immedi-
ately, thus smoothing the transition to additional levels of recursion.
Both approaches also work for Aggregation and make HashAggre-
gation usable for large output sizes.

Another important insight, specific to Aggregation, is the bene-
fit of “early aggregation”, first introduced by Bitton and DeWitt [27].
They modified the comparison operator of MergeSort such that it
collapses (aggregates) the two compared tuples if they compare equal.
Later Larson [111] extended this idea to other algorithms. Depend-
ing on the distribution, early aggregation reduces the amount of data
written to disk for later merging considerably. If the output is small
enough to fit into memory, only a single run is produced, so the input
only needs to be read once. This makes SortAggregation usable for
small output sizes.

Larson [112] also suggested a form of early aggregation on a query
plan level (which he calls “partial pre-aggregation”): If Aggregation

is preceded by a Join, some tuples may already be aggregated before or
during the Join at almost no additional cost, thus reducing the input
size of the subsequent Join and final Aggregation.

In parallel, theory was developed to analyze problems and their so-
lutions in the disk-based setup: a variety of “external memory” mod-
els [3, 13, 14, 70]. In these models, the only cost of an algorithm is

3.2 cache efficiency 23

the number of block transfers between main memory and disk. Most
upper bound analyses in the work cited above are carried out in this
model, even if the original authors did not explicitly state so. For
some problems lower bounds have been found—a minimal number
of block transfers any algorithm necessarily has to do. For example,
any algorithm for MultisetSorting requires a number of passes over
the input that is proportional to a logarithm of the number of distinct
keys [127]. Lower bounds are a useful tool to evaluate or design al-
gorithms: When such a bound is known for a certain problem, algo-
rithms with a matching upper bound are known to be optimal in a
provable sense.

To the best of our knowledge, no lower bound exists for Aggrega-
tion that allows algorithms to use Hashing. In Chapter 4, we show
that the long standing folklore conjecture is true: Aggregation re-
quires a number of passes over the input that is proportional to a
logarithm of the number of groups in the general worst case. This
proves the asymptotic optimality (or “efficiency”) of most practical
algorithms presented above.

3.2.2 Cache Efficiency

We now turn our attention to prior work about the equivalent of I/O
efficiency for Aggregation operators in in-memory database systems.
As discussed before, in this type of systems, envisioned as early as in
1984 by DeWitt et al. [54], main memory is the primary storage and
disks are only used for recovery. The first popular system was Mon-
etDB [31], later extended to MonetDB/X100 [32], but many systems
followed from both research [140] and industry [61, 57, 108, 154] and
extend to many other approaches for in-memory data management
and processing than traditional relational database systems.

From the point of view of early disk-based systems, doing pure
in-memory processing looks like the “easy case”. However, several
authors have noted [163, 4, 39] that even in disk-based systems, mem-
ory access can account for a major part of the processing time be-
sides I/O and have developed cache-conscious algorithms and data
structures. In in-memory database systems, this effect is even more
extreme: main memory is considered to be the new bottleneck and
many architectural aspects are designed to work around this bottle-
neck [123, 32]. This means that, to a certain extent, the problem of
efficient data access has not changed fundamentally, but only shifted
up one level in the memory hierarchy.

It is therefore not surprising that algorithms optimized for cache
efficiency have certain similarity with the I/O-efficient algorithms
discussed before. For example, Shatdal et al. [163] propose an in-
memory version of the GraceJoin. Manegold et al. [123] extended
this approach: they observe that not only cache-misses are costly, but

3.2 cache efficiency 24

that TLB misses also play an important role. They propose Radix-
(Cluster)Join: multiple passes of partitioning on both sides of the
join using radices of the join keys as partitioning criterion such that
each partition can be processed in cache. The partitioning degree of
every pass is kept low enough to avoid cache and TLB misses, but
high enough to keep the number of passes low.

Subsequent work has brought variants and extensions of the Radix-
ClusterJoin [96, 6, 20], all optimizing for various bottlenecks of the
main memory. Other follow-up work include studies of cache-efficient
partitioning [43, 149, 162], confirming it as an important building
block for cache-efficient algorithms.

Cieslewicz and Ross [42] and Ye et al. [199] studied various hash-
based Aggregation algorithms in the in-memory setup. With respect
to cache efficiency, they find that hashing works well as long as there
are few enough groups such that the hash table fits into cache. If the
number of groups is huge, partitioning first can be better. They also
show how partitioning can be combined with early aggregation: their
algorithm Plat (Partition with a Local Aggregation Table) [199] uses a
small hash table for as many groups as the cache can hold while hash
partitioning those tuples that belong to the other groups. In a second
pass, the partitions are aggregated. DB2 BLU [154] and HyPer [113]
use algorithms very similar to Plat.

While the authors also study other aspects, which we discuss be-
low, their findings with respect to cache efficiency shows the similar-
ity to prior work in disk-based systems: the number of groups is a
determining factor and early aggregation can reduce the amount of
work in multi-pass algorithms. However, as pointed out before, disk-
based algorithms used recursive partitioning in order to achieve I/O
efficiency for large numbers of groups. What is therefore surprising
is that none of the in-memory Aggregation algorithms above is re-
cursive, which suggests that they handle large numbers of groups in
a sub-optimal way.

Krikellas et al. [104] also study the effect of pre-processing on the
cache efficiency of Aggregation (although they focus on the integra-
tion with Just-in-Time query compilation). They observe that the best
way to pre-process depends on the number of groups: MapPartition-
ing, where each group is mapped to a partition only for itself, is best
if the number of groups is small enough such that the map fits into
cache. For large number of groups, Sorting is better. They also pro-
pose HybridPartitioning, where the input is first hash-partitioned,
then each partition is sorted, which is slightly faster than plain Sort-
ing. While the resulting HybridHashSortAggregation is recursive,
the fact that Partitioning is used as pre-processing independently of
the Aggregation logic means that the algorithm misses the potential
of early aggregation.

3.3 cpu friendliness 25

As database practitioners shifted up one level in the hierarchy, the-
oreticians observed that the external memory models [3, 13, 14, 70]
could also be used to study cache efficiency [70, 51, 12, 178, 11]. This
means that I/O efficiency lower bounds found in these models are
also cache efficiency lower bounds. This makes the lower bound for
Aggregation that we present in Chapter 4 interesting for both the
disk-based and the in-memory setting, and emphasizes the sub-opti-
mality of the fixed-pass algorithms presented above.

3.3 cpu friendliness

While the main memory / disk bottleneck and the cache / main mem-
ory bottleneck have certain things in common, there are also a few
differences. One difference is the amount of computation that can be
done per access to the slower level of the memory hierarchy, i.e., per
I/O and per cache-line transfer respectively, which is much smaller
in the in-memory setup. Many authors have thus studied ways to re-
duce computation for in-memory algorithms and data structures, and
to make them more “CPU-friendly”, which is the focus of this section.
In Section 3.9, we also discuss how processing models evolved to be-
come more CPU-friendly.

To the best of our knowledge, Zhou and Ross [205] were the first to
suggest to use vector instructions for the implementation of database
operators. This allowed them to increase data parallelism and elimi-
nate branches in Scan, ScalarAggregation, NestedLoopJoin, and
several types of indices. Follow-up work on the theme of vectorized
operators is plentiful and includes the work of Willhalm et al. [196,
195], Lemire and Boytsov [114], and Li and Patel [117] for Scan, the
work of Feng and Lo [64] on ScalarAggregation, the work of Kim
et al. [96] and Balkesen et al. [20, 19, 21] on Join, as well as the work of
Polychroniou et al. [148] on Scan, Hashing, Partitioning, Sorting,
and Join. But also the importance of branch elimination for optimal
use of super-scalar CPUs was confirmed by others: For example [206]
study various compression schemes and their ability to keep the CPU
pipeline busy.

The process of making algorithms CPU-friendly is difficult to the
point that what could be seen as “implementation details” may invert
the outcome of experiments: Blanas et al. [28] compared different Join

algorithms and came to the conclusion that the simplest approach, a
single hash table without partitioning, had a superior performance
to sophisticated partitioning techniques. However, Balkesen et al. [20]
were later able to improve the implementation of the latter algorithms
by factor three “just” by making the inner loops more CPU-friendly.
They thus arrived to the opposite conclusion, namely that partitioning
with its increased cache efficiency is superior.

3.4 parallelism 26

All these techniques aim at reducing CPU costs by implementing
algorithms and data structures in a way that modern CPUs can han-
dle them efficiently. The trend of ever increasing vector width and
other specialized CPU features will probably make this statement
even more true in the future.

Substantial lines of work have studied the implementation of data-
base systems, algorithms, and data structures on even more special-
ized hardware, such as GPUs (Graphic Processing Units, for example
by Govindaraju et al. [72]) and FPGAs (Field-Programmable Gate Array,
for example by Mueller et al. [131]). While these research directions
are somewhat related to our work, we consider them as out of scope,
and concentrate on current mainstream server hardware instead.

3.4 parallelism

As we discuss in Section 2.3, parallelism plays a fundamental role
in efficiently using modern hardware on several levels. But paral-
lelism was already studied in very early database systems and the
main ideas developed there are still used today. We thus review work
on early parallel database systems in Section 3.4.1, before reviewing
more recent work on multi-core parallelism in Section 3.4.2. The sub-
sequent Section 3.5 then continuous with work on even larger sys-
tems.

3.4.1 Early Parallel Database Systems

Database systems were one of the main users of parallel computers
since the early days: In order to overcome the slow disks, more disks
were used in parallel (along with compute resources to control them)
in order to increase their aggregated bandwidth. Although this made
systems more complex, parallel database systems became widespread
in academia and industry, with early systems such as Gamma [56],
Bubba [33], Grace [98], Volcano [73], and others. We briefly summa-
rize the insights of that time and refer to surveys and books on the
topic [55, 76, 143] for more details.

Parallelism can be achieved in different ways for query processing:
different queries can be executed at the same time (inter-query paral-
lelism), which is easy to achieve in a multi-user system and mainly
helps to hide waiting time for I/O; different operators can be exe-
cuted at the same time, either in a pipelined fashion (vertical intra-
query parallelism) or among different branches of the query plan (hor-
izontal intra-query parallelism); and several instances of the same oper-
ator may be run on partitions of the input (intra-operator parallelism).
A popular means of achieving intra-operator parallelism in early sys-
tems was the use of a meta-operator that encapsulated the parallelism
such as the Exchange operator in Volcano [73]. This allows using un-

3.4 parallelism 27

modified relational operators, which are instantiated multiple times
and connected via Exchange operators, which take care of schedul-
ing and partitioning. The various forms of parallelism are mostly or-
thogonal and most systems support several or even all of them at the
same time, however it is non-trivial to balance the different forms (for
example Mehta and DeWitt [129] discuss this challenge). In this work
we concentrate on intra-operator parallelism because it is the only
form that achieves scalable response time.

Different parallel computer architectures are conceivable, which
come with different advantages and disadvantages. Stonebraker [170]
compared the most prevalent ones and concluded that shared memory
(or shared everything) had a limited scalability, shared disk had difficulty
with interference of nodes, and shared nothing, though depending on
good load balancing, was the overall most cost-effective. For a long
time, shared nothing was the prevailing architecture, but as we dis-
cuss below, the distinction between them become blurry on modern
hardware.

Several parallel Aggregation algorithms were proposed for the
shared nothing architecture. DeWitt et al. [56] introduced TwoPhase-
Aggregation, where every node computes Aggregation of the lo-
cal data using a sequential algorithm. All intermediate results are
then sent to a central node, which aggregates them to the final out-
put. Graefe [76] later improved upon this algorithm by partitioning
the intermediate results among the nodes based on the groups, such
that the final aggregation could be computed in parallel by all nodes.
Both algorithms work well if the number of groups is rather small.
Graefe [76] also proposed to Repartition the input by groups among
the nodes without local aggregation, which saves overhead in case the
number of groups is very large. This complementary behavior is sim-
ilar to the one of I/O-efficient algorithms discussed above, where dif-
ferent strategies are preferable depending on the number of groups.

3.4.2 Multi-Core Parallelism

As discussed in Section 2.3, there is abundant parallelism on several
levels in modern hardware. We start with discussing multi-core par-
allelism, which is nowadays present in computers of all sizes. While
we argue that there are strong similarities with the parallel systems
built in earlier decades, there are also fundamental differences both
in the hardware and the processing models of the database systems.

The first parallel processors to become main-stream could run sev-
eral threads in a single core in an interleaved fashion (symmetric multi-
threading or SMT). Consequently, early work by Garcia and Korth [71]
studied the use of SMT to hide the latency of cache misses. This was
achieved by executing build and probe phase of a Join simultane-
ously. More recent work took the increasing number of cores into ac-

3.4 parallelism 28

count: Kim et al. [96] showed how to scale the—initially sequential—
RadixJoin [123] to multiple CPU cores by decomposing each phase of
the algorithm into synchronization-free, thus easy to parallelize, sub-
phases. This “bulk-synchronous” approach was subsequently used by
other authors for Join [6, 20, 148], Sorting [93, 152, 92, 91, 160, 182,
149], and Aggregation [42, 199], which we discuss in more detail
below. The NoPartitionJoin by Blanas et al. [28] constitutes an ex-
ception in that it uses a shared hash table for probing instead of bulk-
synchronous, independent processing phases, but it was later found
out not to be competitive [21]. Since Partitioning is an important
building block for decomposing work for different cores, it was also
studied in isolation [43, 149, 162].

The work of Cieslewicz and Ross [42] and Ye et al. [199] about Ag-
gregation also studies multi-core parallelism. Their algorithm In-
dependent is essentially the same as TwoPhaseAggregation [76],
while PartitionAndAggregate is an in-memory equivalent of the
Repartition algorithm by Graefe [76]. Another proposed algorithm
is Atomic—an algorithm where all threads perform HashAggrega-
tion using a shared hash table made thread-safe with atomic instruc-
tions. While this works great on uniform data, it may create contention
on skewed input. We discuss the remedies proposed by the authors
below.

We find it interesting to observe that most algorithms reviewed
above use the multiple cores of modern CPUs in a way earlier shared
nothing database systems had used the nodes in a network: they split
the problem into smaller, independent sub-problems in order to min-
imize synchronization and maximize the time efficient sequential al-
gorithms can be used. Only a few algorithms (NoPartitionJoin and
Atomic) use shared data structures and thus rather resemble solu-
tions for the shared everything database architecture.

With modern hardware, we thus have the architectural choice: we
can use the shared last level cache (or, to a degree, main memory) to
build shared everything solutions, or private caches (or NUMA local
memory) to build shared nothing solutions. The consequences seem
to be similar as in distributed systems: Shared everything database
systems may suffer from interference (except that it is called “con-
tention” nowadays) while shared nothing systems have the challenge
of work balancing. What makes multi-core systems different from dis-
tributed systems is the fact that we have the architectural choice on
the same hardware, since modern CPUs have both private and shared
levels of memory. This also makes it possible to mix both models into
the same algorithm: Hybrid [42] for example has both a hash table in
the private cache of each core and a global one in the shared cache
level.

On the software side, the preferred processing model also seems to
have changed: the algorithms reviewed above depart from the strict

3.5 communication efficiency 29

“open-next-close” pipelining model of Volcano [73], where all paral-
lelism is encapsulated in the Exchange operator. Instead, the opera-
tor itself is responsible for parallelizing work and synchronizing dif-
ferent threads among each other. This gives the operator more control
and thus enables more sophisticated scheduling techniques, such as
the ones we employ as well. At the same time, other recent work de-
part from the Volcano model into a different direction: Leis et al. [113]
propose morsel-driven parallelism with flexible degrees of parallelism
and dynamic scheduling of work during runtime as opposed to the
traditional plan-driven parallelism.

Finally, theoreticians have extended the external memory model to
account for multi-core hardware: Arge et al. [12] proposed the par-
allel external memory model (PEM), where each of several processors
has its own private internal memory and an algorithm is charged for
rounds of (parallel) block transfers from any internal memory to exter-
nal memory. Greiner [79] showed a lower bound for Sorting in this
model. The proof we show in Chapter 4 is an extension of his proof,
and shows that Aggregation is asymptotically as hard as Sorting in
the parallel external memory model.

3.5 communication efficiency

As we discuss in Section 2.3, parallelizing systems and algorithms
beyond the scale of a single processor has the additional challenge
of slow communication across the involved compute units. In this
section, we study prior work addressing this issue on two levels in
the hierarchy of the hardware: Section 3.5.1 presents work on NUMA
awareness, while Section 3.5.2 reviews work on parallel database sys-
tems in clusters and high-speed-networks.

3.5.1 NUMA Awareness

As main-memory becomes larger and the number of sockets it is
connected to becomes higher, access latency and bandwidth become
more and more non-uniform. This gave rise to work on NUMA-aware
algorithms and systems in the recent years. The general goal of these
algorithms is to reduce the amount of data that it transferred across
NUMA boundaries: Wassenberg and Sanders [182] propose to imple-
ment RadixSort with a first pass on the highest radix that crosses
NUMA boundaries, such that the subsequent passes can be done lo-
cally on every NUMA node. This was later extended by Polychroniou
and Ross [149] to better support non-uniform distributions. Similarly,
Albutiu et al. [6] built a NUMA-aware SortMergeJoin that carefully
pre-processes both relations such that they can be shuffled with only
sequential reads and such that the subsequent join phase is local and
balanced among the nodes. Li et al. [116] showed that data shuffling

3.5 communication efficiency 30

across NUMA regions can be up to three times faster if it is care-
fully scheduled compared to a naive implementation, and use the im-
proved shuffling to improve the Join of Albutiu et al. [6].

Lang et al. [109] follow a different approach: they make the NoPar-
titionJoin of Blanas et al. [28] “NUMA-aware” by partitioning the
input relations so that they are read only locally, and by interleaving
the global shared hash table among all NUMA regions. They claim to
achieve a two-fold speed-up compared to the hardware-conscious im-
plementation of the parallel RadixClusterJoin of Balkesen et al. [20].
This somewhat contradicts what the findings of other authors sug-
gest, and may be due to imperfect tuning of the competitor: Balkesen
et al. [19] later published numbers of their algorithm on a NUMA
system that are up to almost four times higher than those reported by
Lang et al.

Most of this work on Join only applies to Aggregation in case
of large numbers of groups, i.e., when the Repartition algorithm is
better than TwoPhaseAggregation. This is also confirmed by the
findings of Li et al. [116]: their approach of migrating the output to
the socket of the respective partitions instead of migrating the parti-
tions is very similar to TwoPhaseAggregation, and clearly superior
to partitioning for small number of groups.

Leis et al. [113] incorporate NUMA awareness into the processing
framework of HyPer: relations as well as intermediate results are par-
titioned and every partition is processed NUMA-locally. Aggrega-
tion is done like in Plat: tuples are pre-aggregated as long as the
result fits into cache and partitioned (across NUMA regions) other-
wise. This makes the system behave like TwoPhaseAggregation for
small outputs and like Repartition for large ones, which is similar to
Shatdal’s Adaptive algorithm [164]. However, it misses potential for
medium sized output just larger than the cache, where TwoPhaseAg-
gregation would probably be beneficial as well.

3.5.2 Clusters & High-Speed-Networks

At an even larger scale, distributed database systems were built: Prob-
ably, the most popular distributed, disk-based processing system is
MapReduce by Dean and Ghemawat [50], which is built for hundreds
or even thousands of nodes. It inspired a series of other systems such
as an open source implementation called Apache Hadoop [165] and
systems with more expressive programming models such as Apache
Spark [202]. MapReduce was also used for SQL-like workload: for ex-
ample Blanas et al. [30] compared different Join algorithms on Map-
Reduce. Other systems combining MapReduce and relational query
processing include the Greenplum Database [179] and Cloudera’s Im-
pala [102].

3.6 skew handling 31

More traditional distributed database systems are usually built for
a slightly smaller scale, typically not more than ten or twenty nodes,
which are connected with a high-speed network only slightly slower
than NUMA interconnects. Distributed in-memory database systems
include VectorWise Vortex [47] and HyPer [155].

Query processing algorithms thus aim at reducing network traffic
while balancing it with other costs such as main memory access and
CPU costs [24]. Polychroniou et al. [150] propose TrackJoin, which,
in a first phase, tracks where the different joining tuples reside, in or-
der to decide heuristically, for the second phase, which side of each
match to transfer over the network in order to reduce the total amount
of transferred data. NeoJoin by Rödiger et al. [156] has a similar ap-
proach, but with a larger granularity: the algorithm first partition both
relations on each node and then formulate a mixed integer linear pro-
gram that finds the partition-to-node assignment with minimal trans-
fer cost. Frey et al. [69, 68] on the other hand built CycloJoin, which
rotates partitions of the smaller relation over a ring of nodes in order
to join each partition with stationary partitions of the other relation.
They observe that, against intuition, the network is not the bottleneck
of their algorithm, but the memory bandwidth.

As with NUMA-aware algorithms, the above work on Join only ap-
plies to Aggregation if the output is very large and misses the poten-
tial of pre-aggregation otherwise. Some systems such as HyPer [155]
and Impala [102] solve this problem on a query plan level by adding
PreAggregation operators. However, as discussed before, the way it
is done either misses potential for output sizes just larger than the
cache (in case of HyPer) or adds overhead without benefit if no pre-
aggregation happens (in case of Impala).

Finally, as Rödiger et al. [155] point out, high-speed networks and
multiple NUMA sockets constitute a network hierarchy, and algo-
rithms have to take both of them into account for optimal performance.

3.6 skew handling

Until here we have only seen different strategies to deal with different
numbers of groups, i.e., with different output sizes. However, also the
distribution of the groups may affect runtime and techniques have
been developed to handle negative effects or even benefit from certain
distributions.

We start again with work in early disk-baded systems. In these sys-
tems the so-called placement skew, the fact that the order of the tuples
is in some way non-uniform, may be problematic. For example stan-
dard ReplacementSelection presented above has no benefit at all if
the input is in reverse order, although it is able to produce runs twice
the size of main memory if the groups are distributed uniformly at
random. Follow-up work has fixed this problem in several ways: One

3.6 skew handling 32

possibility suggested by Graefe [74] is to use “poor man’s normalized
keys”, i.e., to sort by hash values instead of by the grouping attributes.
The hash values then behave like uniformly distributed random val-
ues, so runs are again double the size of main memory. Martinez-
Palau et al. [126] recently proposed TwoWayReplacementSelection,
which is able to benefit from both ascending and descending trends
in key values and therefore handles placement skew in a more robust
way as well.

Value skew, the fact that some groups occur more frequently than
others, in particular if it is combined with placement skew, can be ex-
ploited by early aggregation techniques presented above. This is true
for SortAggregation style algorithms such as the modified merge
sort of Bitton and DeWitt [27], as well as for HashAggregation style
algorithms such as HybridAggregation [54]. The more tuples of the
same group occur close to each other in the input, the more tuples
can be aggregated early on to save work for later processing. Recently
Helmer et al. [82] went a step further and designed an algorithm sim-
ilar to HybridAggregation specifically to benefit from skew: They
maintain a hash table with an LRU replacement strategy in order to
keep “hot” groups available for early aggregation and partition the
other groups for recursive processing.

Skew was also discussed for parallel database systems starting
from early work (see Walton et al. [181] for a taxonomy of types of
skew for parallel join algorithms). DeWitt et al. [53] compared dif-
ferent Join algorithms for different skew types and degrees. One of
the proposed techniques consist in sampling the inner relation to
find “splitters” that split the relation into equal pieces. The winner
for the high-skew case however was virtual processor partitioning. In
this technique, much more tasks than processors are created and a
heuristic called “Largest Processing Time First” is used for distribut-
ing partitions of virtual processors to physical ones. Similarly, Wolf et
al. present a parallel SortMergeJoin [197] that subdivides too large
tasks until they can be evenly distributed (using the same heuristic
as Dewitt et al.), as well as a parallel HashJoin [198], approximates
equal work distribution based on partition size estimates. Interest-
ingly, similar techniques were revived in modern disk-based paral-
lel systems such as MapReduce [153, 106, 107]. In short, the main
challenge for shared-nothing disk-based algorithms posed by skew
is work balancing and the proposed solutions are different ways of
clever work distribution.

Since most algorithms proposed for the multi-core setup in the last
years adopted a shared nothing design (see discussion above), they
also include solutions to the work balancing challenge similar to the
ones of parallel disk-based algorithms. First, there are solutions based
on splitters: Polychroniou and Ross [149] determine splitters for the
first pass of a parallel sorting pass and use sequential RadixSort for

3.7 adaptivity 33

the subsequent passes on each resulting partition. Similarly, Albutiu
et al. [6, 5] create histograms of both sides of a Join in order to find
splitters that balances the subsequent partitioning and join costs.

In the main-memory setup, algorithms based on task queuing or
work stealing become possible: The parallel RadixJoin of Kim et al. [96]
creates more partitions than there are threads in the partitioning
phase, such that in subsequent phases, threads can take tasks from
a queue of partitions until the work is done, which balances the work
dynamically. Polychroniou and Ross [149] use a similar mechanism
for their RadixSort. The scheme was later improved by Balkesen at
al. [20], who add the possibility of task decomposition in order to split
tasks that would otherwise be too large and thus dominant. Note
that task queuing and work stealing benefit from the fact that mov-
ing a task from one core to the other has virtually no costs since no
data needs to be moved, and its application to NUMA or distributed
systems may be limited.

Let us turn our attention to algorithms for Aggregation specifi-
cally. The Atomic algorithm of Cieslewicz and Ross [42] is also vul-
nerable to contention on frequently accessed groups. The authors pro-
pose two remedies: one is detecting contended groups and duplicat-
ing them [44]. The other one is a Hybrid algorithm, where each thread
has a private, cache-sized hash table and only overflowing elements
are spilled to a globally shared hash table. Since only infrequently
occurring elements are spilled out of the private tables, accesses to
the global table do not contend. Since the private hash tables enable
early aggregation, the Hybrid algorithm actually benefits from skew
as discussed above. The other algorithms of Cieslewicz and Ross [42]
and Ye et al. [199] may experience unbalanced work depending on
how well they aggregate in the first pass: Independent produces
perfectly aggregated intermediate results, which is trivial to split up
equally; Plat may aggregate frequent groups in the local hash tables,
but this mechanism may not work in “unlucky” distributions, so in
corner cases work may not be split up equally; and PartitionAnd-
Aggregate does no aggregation in the first pass and is therefore very
exposed to skew.

3.7 adaptivity

The work reviewed above suggests that the question of which algo-
rithm performs the best often depends on various factors, including
characteristics of the input data. The traditional approach to build a
static execution plan based on estimates of these characteristics has
limitations that are known since a long time [119], and which are still
not solved today [118]: for a variety of reasons, cost models and esti-
mates may be wrong and thus lead to query plans orders of magni-
tude worse than the optimum. An important negative result is due to

3.7 adaptivity 34

Ioannidis and Christodoulakis [87], who established that estimation
errors propagate exponentially with the number of joins. To allevi-
ate this and other problems, several forms of adaptive query processing
were proposed. We now present the major results related in this field
and refer to surveys of Babu et al. [18] and Deshpande et al. [52] for
a more detailed discussion of motivations for and forms of adaptive
query processing.

One major line of work studied ways to adapt the query plan dur-
ing execution. For example Kabra and DeWitt [94], Markl et al. [125],
and Babu et al. [17] propose different variations of dynamic query re-
optimization. The basic common idea is to collect statistics during ex-
ecution and to compare them with previously made estimates, such
that plans can be re-optimized if the difference becomes too large.
Similarly, the learning optimizer LEO of Stillger et al. [169] uses statis-
tics of previously executed queries to improve estimates. A different
approach was proposed by Avnur et al. [16] who dynamically change
the order in which tuples are routed through the operators depending
on which order turns out to be faster.

Another line of work, to which we count our own, studied adaptiv-
ity within a single operator to make it more robust and thus to ease
the decision of the optimizer. For example did the original GraceJoin

and HybridJoin algorithms rely on information about the output size
from the optimizer to know into which partitions to split the input
and how much memory to allocate for the hash table. Nakayama et
al. [139] and Kitsuregawa et al. [97] extended HybridJoin with a dy-
namic way to allocate memory to partitions, which make the informa-
tion from the optimizer unnecessary.

A more principled way was taken recently by Graefe [75], who de-
signed a sort-based Aggregation algorithm called G-Aggregation

or GeneralizedAggregation. The core of the algorithm consists of a
clever scheduling of disk pages that makes the algorithm behave like
hash-based aggregation for small cardinalities while keeping its ad-
vantage of recursive processing for large cardinalities. The algorithm
was later implemented by Albutiu et al. [6, 5]. As a single, robust op-
erator for all situations, this may be the closest prior work to what we
present in this thesis, but as we discuss below, its I/O-centered design
makes it unclear how to transfer it to the in-memory setting.

Shatdal and Jeffrey [164] proposed adaptive algorithms for parallel
processing in shared nothing systems. They exploit the complemen-
tary behavior of the two algorithms discussed above: TwoPhaseAg-
gregation works well if the number of groups is small, while Repar-
tition works better if the number of groups is large. They either sam-
ple to decide on the algorithm beforehand or switch from TwoPhase-
Aggregation to Repartition when the number of groups observed
by the algorithm crosses some threshold. The latter mechanism is
quite similar to ours, though less robust in some situations, and we

3.8 memory constraint 35

use it for both cache efficiency and communication efficiency. Like us,
they also observe that adaptivity can improve skew handling, since
nodes with a small number of groups may pre-aggregate, while those
with high number of groups do not have to.

While the above work was presented in the disk-based setting, we
argue that the main ideas also apply for main-memory algorithms.
However, there is also more recent work specifically for the main-
memory setup. Chen et al. [40] for example propose InspectorJoin,
which collects statistics about the input during its partitioning phase
in order to select the most suited strategy for the join phase.

Cieslewicz and Ross [42] also propose an adaptive Aggregation

operator: As discussed above, their Atomic algorithm with a sin-
gle shared hash table and their Hybrid algorithm with an additional
small hash table per core have complementary behavior vis-a-vis skew.
If a short sampling phase detects skew, the skew-resistent Hybrid is
chosen, otherwise Atomic. Furthermore, their algorithms activates
optimizations for long runs of the same group as well as Aggrega-
tion with Min/Max if they are beneficial respectively.

Finally, it is interesting to note that the Reduce phase of MapRe-
duce is very similar to Aggregation. It is therefore not surprising
that Vernica et al. [175] study cache efficiency and adaptation mecha-
nisms for the MapReduce framework [50] remotely similar to ours.

3.8 memory constraint

In the era of disk-based systems, it was a typical behavior of pipeline-
breaking operators to spill out intermediate results to disk. A Sort-
MergeJoin for example would first create sorted runs, which would
then be merged recursively, with all runs being written to disk. As dis-
cussed above, this is (sometimes provably) unavoidable, but thanks to
large sizes of disks, it was not a big problem. Note that no material-
ization is needed between pipelinable operators in an iterator-based
processing model like Volcano [73].

In in-memory systems however, intermediate results are stored in
main memory, which is much more limited. This is a problem in par-
ticular for the push-based column-wise processing model, where all
intermediate results are materialized. Volcano-style pipelining on vec-
tors of tuples like in MonetDB/X100 [32] reduces this problem, but
only for pipelinable operators.

Blanas and Patel [29] study several Join algorithms, with respect
to performance and memory footprint. They observe that HashJoin

has the lowest memory usage of all algorithms, since it does not have
intermediate results. With their implementations they also observe
that it is faster than all other compared algorithms. This somewhat
contradicts the finding of Balkesen et al. [20], which we suspect to be
due to implementation differences.

3.9 processing models 36

Zukowski et al. [207] propose BestEffortPartitioning, a pipelin-
able Partitioning operator. By interleaving the Partitioning opera-
tor with its consumers, partial intermediate results can be processed
before the entire input has been consumed. As a pre-processing step
for Join, Sort, and Aggregation, this can help to reduce memory
consumption of other operators. However, as a separate operator, in-
teraction with its consumers is limited, and as we show, integrating
pipelined Partitioning with Aggregation more closely can be bet-
ter in some cases.

Begley et al. [25] propose McJoin (for MemoryConstrainedJoin),
which is a BlockNestedLoopJoin: For every block of one relation,
they iterate over blocks of the other relation and join the pair of
blocks using RadixClusterJoin. This limits the memory usage to
the two blocks. McJoin furthermore uses compression to increase
the effective capacity of the blocks. Similar to the latter theme, Barber
et al. [23] devise a ConciseHashTable in order to reduce memory
consumption during Join.

3.9 processing models

Changes in hardware and dominant workloads have caused major
shifts in the processing models of prevailing database architectures.
Some of these models pose restrictions on the implementation of op-
erators, which have often been ignored in the discussion of opera-
tors in the past. Until the late 90s, the classical iterator model on
single records, introduced first in Volcano [73], was used in almost
every system. With a shift from mainly transactional workload ac-
cessing single entire records to mainly analytical workloads accessing
few attributes of whole tables, column stores became popular rather
than row stores.1 Early research systems include MonetDB [31, 124],
MonetDB/X100 [32], and C-Store [171] and nowadays all major ven-
dors offer column-store products: Sybase IQ [121], SAP HANA data-
base [61], IBM Blink [22] and IBM BLU [154], Microsoft Apollo/SQL
Server [110], and Oracle TimesTen [108].

Another shortcoming of the Volcano model is the interpretation
overhead on modern hardware, which was identified by Ailamaki et
al. [4] among the first. This insight was another driver for the column-
store architecture, where the interpretation overhead is only done
once per column and thus completely amortized by the CPU-friendly
column-wise processing in tight loops.

In recent years, several authors [104, 140, 67, 138] suggested going
a step further by compiling each query into native machine code, i.e.,

1 Our real-world workload study of Section 2.1.2 shows that while indeed only a part
of the attributes are typically accessed, the absolute number of columns that this rep-
resents is often much larger than textbook scenarios suggest. This does not question
the motivation of column stores, but emphasizes the importance of supporting large
numbers of columns.

3.10 summary 37

to use “Just-in-Time compilation” (JiT). This eliminates the need for
interpretation entirely. The resulting code only contains the CPU in-
structions that are strictly necessary for the computation of the query
result and is thus very efficient.

Finally, as discussed before, processing models were also affected
by the way parallelism is handled: the classical Exchange operator is
mainly abandoned in favor for intra-operator or morsel-driven [113,
155] parallelism.

When authors present Join algorithms, they most often concentrate
on joining the two join attributes, producing a set of row identifiers of
matching pairs of rows. However, as Manegold et al. [124] found out,
the (late) materialization of the result can outweigh the costs of the
Join. This is mainly due to random memory access in a naive materi-
alization scheme, which they improve with a cache-conscious scheme.
Abadi et al. [2] also compare different materialization schemes, find-
ing that sometimes early materialization is better than late material-
ization and sometimes vice versa.

What is different with Aggregation is the fact that we can do early
aggregation, and that this is necessary for optimal performance. How-
ever, early aggregation with early materialization necessarily implies
interpretation overhead with Volcano iterators. Late materialization
is not possible with early aggregation either. Furthermore, column
stores are based on the principle to process the different columns sep-
arately, so different attributes of the same tuple have to be aggregated
to the same group independently of each other. Therefore, the group
of a tuple has to be tracked when the key column is processed and
made available for the other columns. This is not possible with al-
gorithms were tuples make many fine-granular movements, such as
Hybrid of Cieslewicz and Ross [42] or sorting networks such as those
used by Balkesen et al. [20]. We discuss the issue in more detail in
Section 5.3.3.

With Just-in-Time compiled query plans, no restrictions seem to ap-
ply, but little work has been done on Aggregation specifically. Only
the work of Krikellas et al. [104] introduced earlier was carried out in
this processing model explicitly.

3.10 summary

As we discuss in this chapter, Aggregation is a very well understood
problem with many authors studying it for several decades. It comes
to no surprise that the main ideas reoccur: the groundwork was laid
by early, disk-based systems, and more recent work concentrated on
adapting solutions to new developments, such as new hardware or
different workloads. At the same time, these trends are also studied
in the context of other algorithms such as Join, as well as database sys-
tem architecture in general. Hence, general techniques to cope with

3.10 summary 38

new hardware are well understood as well. To summarize, the chal-
lenges of implementing an Aggregation operator are well-known
and solutions have been proposed for each of them, which we discuss
in isolation in the previous sections. However, the challenges have in-
teractions between them, which makes it hard to address them all
at the same time. In the remainder of this section, we show that no
solution proposed to date is complete in this sense.

To that aim, we summarize the discussion of this chapter in a back-
of-the-envelope comparison of the most complete solutions vis-à-vis
the challenges in Table 1. For the challenge of cache-efficient process-
ing, we distinguish between the behavior at high and low locality, and
assume that the algorithm gets perfect predictions from the optimizer.
Furthermore, we assume that known parallelization techniques are
applied to all algorithms, even if the original authors do not mention
parallelization. Finally, we only compare how well algorithms can be
integrated into column wise processing, since integrating them into
a Volcano-style model is a non-goal and integrating them into a JiT-
based model is easy for any algorithm.

We consider the following solutions for the comparison:

SortMerge: Textbook SortMergeAggregation without early aggre-
gation,

SortMerge+EA: SortMergeAggregation with early aggregation as
proposed by Bitton and DeWitt [27],

Grace: Textbook HashAggregation with prepartitioning (named
after the GraceJoin [98]),

AdaptiveSN: The adaptive parallel Aggregation operator of Shat-
dal and Naughton [164], based on TwoPhaseAggregation [56]
and Repartition [76],

Generalized: GeneralizedAggregation as proposed by Graefe [75],

Lru: The skew-aware algorithm based on a hash table with LRU-
eviction by Helmer et al. [82],

RadixCluster: A hypothetical Aggregation operator built on radix
clustering like the original RadixClusterJoin by Manegold et
al. [123] and parallelized like the parallel version of the Radix-
ClusterJoin of Kim et al. [96],

Atomic: The Atomic algorithm of Cieslewicz and Ross [42] (which
is very similar to NoPartitionAggregation built like NoPar-
titionJoin [28, 109]),

Atomic+ContDet.: The same Atomic algorithm extended by con-
tention detection [44],

Cache-Eff. CPU-Friendly Parallel Skew Adaptive Mem. Const. Col. Store

Algorithm High Loc. Low Loc.

SortMerge – – + + – + + – – – – – –

SortMerge+EA [27] + + + + – + + + + + + – – –

Grace [98] + + + + – + +/– +/– – – – +/– – + +

AdaptiveSN [164] + + + + – + + + +/– – + +

Generalized [75] + + + + – – + + + + + – –

Lru [82] + + + – – + + – – – –

RadixCluster [123, 96] + + + + + + + +/– – – – – – – + +

Atomic [42] + +/– – – + + + +/– +/– – – – + + +

Atomic+ContDet. [199] + + – + + + + + – + + –

Radix+Atomic + + + + + + + +/– +/– – + +/– – + +/–

Independent [42] + + – – + + + + + – – – – – + +

Part. & Agg. [199] – – + + + +/– – – – – – + +

Hybrid [42] + + +/– + + + + + +/– + + – –

AdaptiveCR [42] + + +/– + + + + + + +/– + + – –

Plat [199] + + +/– + + + + +/– – – –

HybridHashSort [103] + + +/– + + +/– + – – – + +

HwConscious [20, 19, 21] + + + + + + + + + + – – –

Mpsm [6] + + + + + + + + + + + + – – –

Shuffle [116] + + – – + + + + + – – – – + +

Table 1: Comparison of existing Aggregation algorithms

3.10 summary 40

Radix+Atomic: A hypothetical system with RadixCluster and Atomic

depending on an optimizer decision and using BestEffortPar-
titioning [207],

Independent: The Independent algorithm of Cieslewicz et al. [42]
(which is really a modern TwoPhaseAggregation [56]),

Hybrid: The Hybrid algorithm of Cieslewicz and Ross [42],

AdaptiveCR: The Adaptive algorithm of Cieslewicz and Ross [42],

Part. & Agg.: The PartitionAndAggregate algorithm of Ye et al. [199]
(which is really a modern version of Graefe’s Repartition [76]),

Plat: The Plat algorithm (Partition with a Local Aggregation Table) of
Ye et al. [199] (which is now used in DB2 BLU [154] and Hy-
Per [113, 155] and really a modern version of HybridJoin [54]),

HybridHashSort: The HybridHashSortAggregation algorithm of
Krikellas et al. [103],

HwConscious: A hypothetical SortMergeAggregation with early
aggregation built with hardware-conscious techniques like the
SortMergeAggregation of Balkesen et al. [20, 19, 21],

Mpsm: A hypothetical Aggregation algorithm built like the Mpsm-
Join of Albutiu et al. [6] augmented with early aggregation,

Shuffle: The Aggregation operator based on NUMA-aware shuf-
fling by Li et al. [116].

As Table 1 shows, some algorithms reviewed in this chapter are ei-
ther designed for high or low locality. However, many also perform
reasonably well with both. What is striking is that in particular new
algorithms often do not scale to large output sizes. Concerning the
CPU friendliness, it seems understandable that older algorithms de-
signed for the disk-based setup are less suited for modern hardware
than more recent proposals. Most algorithms can be reasonably well
parallelized, however a few suffer from either contention or unbal-
anced work in case of skew. Furthermore, most algorithms seem to
rely on external components such as the optimizer to employ them
only in situations where they work well, for only a few of them are
adaptive. Working under constrained memory does not seem to be a
highly investigated challenge, as most algorithms performing well in
this situation as a side effect of their simplicity rather than through
sophistication. Finally, many algorithms that are otherwise promising
do not fulfill the requirements of the—somewhat special—column-
store architecture.

The following algorithms are among the most complete; however
all of them leave at least one of the challenges unaddressed. General-
izedAggregation [75] is I/O-efficient for any input distribution and

3.10 summary 41

output cardinality, but the sophisticated mechanisms cannot be easily
adapted for cache efficiency (see Section 3.7). A hypothetical combi-
nation of Atomic and RadixClusterAggregation could cover small
and large output cardinalities, but would rely on good optimizer pre-
dictions to distinguish the two cases. The algorithms Hybrid, Adap-
tive, and Plat of Cieslewicz and Ross [42] and Ye et al. [199] address
most of the challenges we identified. However, they are not suited
for the column-store architecture (see Section 3.9) and lack efficient
handling of very large numbers of groups due to a fixed number
of passes. We prove that this is not optimal in Chapter 4 and com-
pare these algorithms with ours in Section 5.8. Finally, hypothetical
sort-based algorithms with early aggregation, for example built like
the Join algorithms Mpsm and HwConscious, address almost all our
challenges, but are still to be built and many of their low-level opti-
mizations do not work in column stores either (see Section 3.9).

To conclude, none of the Aggregation algorithms proposed to date
solve all the challenges at the same time in a satisfying way. Bridging
this gap is the main goal of this thesis.

Part II

T H E O RY

Theory is a contemplative and rational type of abstract or
generalizing thinking, or the results of such thinking.

— Wiktionary [194]

4
E X T E R N A L A G G R E G AT I O N A N D R E L AT E D
P R O B L E M S

Aggregation (or the Reduce of MapReduce) is a problem that is
very well understood in practice. The database community has devel-
oped a series of upper bounds, which often coincide with the Sorting

bound. It looks like there is a folklore conjecture that this is optimal
for cache-efficient processing, but no formal lower bounds are known.
At the same time, there are corner cases where these bounds are bro-
ken. In this chapter, we study several variants of Aggregation on
several slightly different external memory models and prove lower
bounds in all of them. In many cases, the Sorting bound is indeed
a lower bound of Aggregation, so we prove the long standing con-
jecture of the database community. In some models and in some pa-
rameter ranges however, we get lower bounds (and often matching
upper bounds) below the Sorting bound. Comparing these models
shows us what features practical algorithms need in order to beat
the Sorting bound, thus providing us in particular and the database
community in general with timeless implementation guides.

This chapter is partially based on work that we published previ-
ously in [133].

4.1 introduction

In the previous chapter, we have seen that a major challenge for im-
plementing relational operators including Aggregation is cache effi-
ciency (or I/O efficiency in disk-based systems). In this chapter we
study this challenge from a theoretical point of view. We use tools
that were developed to analyze the cache efficiency of problems and
algorithms, namely a variety of external memory models.

4.1.1 Motivation

We motivate the study with simple and well-known analyses of the
two textbook algorithms SortAggregation and HashAggregation.
This will make us familiar with the external memory model and give
some intuition for the complexity of the algorithms. More importantly
it will help us to understand the known bounds of related problems,
the subtle differences of the various models, and the implications of
their choice on the results, as well as the contributions in the subse-
quent main part of this chapter.

45

4.1 introduction 46

M
B cache lines

processor
with cache

main memory

∞ cache
lines

cache line

B records

Figure 5: The external memory model [3]

4.1.1.1 The External Memory Model

We use the original external memory model of Aggarwal and Vit-
ter [3] for this analysis, which is illustrated in Figure 5. In this model,
a computer consists of a cache with limited capacity and main mem-
ory with unlimited capacity. An algorithm can only do computations
with records that are in cache; and records can be transferred from
cache to main memory and vice versa only in form of entire cache
lines. For Aggregation the model has the following parameters for
the input data and the cache:

N = number of input records

K = number of groups in the input

M = number of records fitting into cache

B = number of records per single cache line

Note that the output will be of size K. The costs of an algorithm are
the number of cache line transfers in the worst case—computations
and access to the cache are free.

4.1.1.2 Analysis of Sort-Based Aggregation

We start with the analysis of SortAggregation. We use BucketSort

because the analysis is simple and the result is valid for any other
cache-efficient sort algorithm. BucketSort recursively partitions the
input into buckets until the data is sorted. Then a final pass over the
data aggregates the rows of the same group, which reside in consec-
utive memory locations in the sorted input.

We use the tree representing the recursive calls of the algorithm
for the analysis of SortAggregation, which we develop in three it-
erations. The first, simple iteration of the analysis works as follows:
Since we can sort each cache line for free before we write it, the recur-
sion stops when all partitions have size B, so there are as many leaves
in the call tree as there are cache lines in the input: N

B . Furthermore,

4.1 introduction 47

20 24 28 212 216 220 224 228 232
0

4

8

12

16

·NB M

Number of groups (K)

N
um

be
r

of
ca

ch
e

lin
e

tr
an

sf
er

s SortAgg

SortAggOpt

HashAgg

HashAggOpt

Figure 6: Comparison of aggregation algorithms in the external memory
model for N = 232, M = 216, and B = 16.

the tree has degree M
B since the number of partitions is limited by the

number of buffers that fit into cache. This means that if we assume
that the tree is somewhat balanced, it has a height of

⌈
logM

B

N
B

⌉
. Since

the input is read and written once per level of the tree and the sub-
sequent aggregation pass reads the input (NB) and writes the output
once (KB), the overall costs of SortAggregation are roughly:

SortAggStat(N,K) = 2 · N
B
·
⌈

logM
B

N

B

⌉
+

N

B
+

K

B
.

The analysis is slightly simplified because it assumes a static depth
of the call tree independently of K. In a second iteration, we can make
the analysis more precise by taking into account the fact that the keys
form a multiset in the cases where K < N. In this case the recursion
actually stops earlier than for the case where K = N. In fact, the call
tree only has min(NB ,K) leaves, at most one for each partition, so Sort-
Aggregation needs the following number of cache line transfers:

SortAgg(N,K) = 2 · N
B
·
⌈

logM
B

(
min

(
N

B
,K
))⌉

+
N

B
+

K

B
.

The analysis for DistributionSort, SampleSort, QuickSort, and
RadixSort all have (at least asymptotically) the same complexity with
an analysis very similar to the above, first shown by Aggarwal and
Vitter [3]. The same is true for variants of HeapSort [183] and Sort-
ing with buffer trees [10].

Figure 6 plots the number of cache line transfers as function of
K for N = 232, M = 216, and B = 16, which are typical values for
modern CPU caches. For small K, SortAggregation needs one pass

4.1 introduction 48

for sorting and one pass for aggregating. For larger K, the number
of passes only increases logarithmically. Due to the large base and
the rounding, the logarithm has only values ∈ {1, 2, 3} in our plot
(corresponding to the steps) and is never larger than four in most
realistic settings. Only for very large K, where K gets close to N, the
K
B cache line transfers for writing the output become noticeable.

In the third iteration of the analysis, we make a small modification
to SortAggregation: we merge the last BucketSort pass with the fi-
nal Aggregation pass, i.e., instead of writing a cache-line to memory
when the buffer of a partition runs full, we aggregate the elements of
this cache-line to make space. Since there are few enough groups left
in the last pass, this produces the final result of the current bucket in
cache and thus completely eliminates one pass over the entire data.
Furthermore, it allows us to hold a factor B more partitions (M in-
stead of M

B), so there are now only K
B leaves in the call tree of the al-

gorithm. With this analysis and a small reorganization of the formula,
the number of cache line transfers made by SortAggregationOpti-
mized is the following:

SortAggOpt(N,K) =
N

B
+ 2 · N

B

(⌈
logM

B

K

B

⌉
− 1

)
+

K

B
.

The first and the last term correspond to reading the input and writ-
ing the output respectively. The second term corresponds to writing
intermediate results and reading them again in the next level of re-
cursion.

Figure 6 plots the costs of SortAggregationOptimized. It shows
that the optimization eliminates an entire pass and slightly delays the
necessity of an additional pass due to better cache usage in the last
pass. In particular, for K < M, the algorithm just reads the data once
and calculates the result in cache.

4.1.1.3 Analysis of Hash-Based Aggregation

We now analyze the number of cache line transfers that HashAggre-
gation needs. Apart from the K

B cache lines for writing the result,
the algorithm just needs the N

B cache line transfers for reading the in-
put—as long as the resulting hash table fits into the cache, i.e., K < M,
and assuming that intermediate aggregates can be saved in a state of
size O(1) like above. In the other case, if K > M, even with a per-
fect cache and without hash collisions, only a fraction of M

K rows can
be in the cache at the same time, so every access to one of the other
rows produces a cache miss (= 1write + 1 read). The overall number
of cache line transfers is therefore:

HashAgg(N,K) =
N

B
+

⎧⎨⎩K
B if K < M,

2 ·
(
1− M

K

)
·N otherwise.

4.1 introduction 49

Figure 6 shows the costs of HashAggregation: As long as the
output K is small enough to fit into the cache, HashAggregation

is really fast. However, as soon as the cache cannot hold the output
anymore, HashAggregation triggers a cache miss for almost every
input row, so the number of cache line transfers explodes.

A common optimization to overcome this problem is to (recur-
sively) partition the input by hash value and to apply HashAggrega-
tion on each partition separately. Since each partition contains only
a part of the groups, i.e., since K is reduced, this makes the algorithm
work in cache. However, the partitioning also entails costs, which are
the same as the partitioning of bucket sort. Consequently, the analy-
sis works the same way as the one for SortAggregationOptimized:⌈

logM
B

K
B

⌉
− 1 partitioning passes plus the reading (NB) and writing

(KB) of the HashAggregation pass of the partitions. In total Hash-
AggregationOptimized needs the following number of cache line
transfers:

HashAggOpt(N,K) = 2 · N
B

(⌈
logM

B

K

B

⌉
− 1

)
+

N

B
+

K

B
.

Figure 6 shows that HashAggregationOptimized has the same
cost in terms of number of cache line transfers as the optimized sort-
based aggregation above.

4.1.1.4 From Upper Bounds to a Lower Bound

Our analysis shows that SortAggregation and HashAggregation

have indeed a complementary behavior if implemented naively: Hash-
Aggregation performs better if the number of groups is small, while
SortAggregation is more efficient in the other case. However, the re-
spective drawback of both algorithms can be removed if each of them
includes a simple, well-known optimization: doing the aggregation
pass together with the last sorting pass and recursive partitioning as
preprocessing respectively. This suggests that—at least on this level
of abstraction—there is no such thing as a duality between Hashing

and Sorting. In terms of cache line transfers, the two approaches are
actually the same.

Whether this is an intrinsic property of Aggregation itself rather
than being a property of specific algorithms, i.e., whether there is a
lower bound on the cache line transfers needed to compute an Aggre-
gation query, has long been an open question. Since most algorithms
proposed so far match the complexity of our analysis and no algo-
rithm is known to date that requires fewer cache line transfers, there
is an—at least implicit—folklore conjecture saying that there is indeed
such a bound and that it matches the bound of MultisetSorting. In
this chapter we prove that this long standing conjecture is actually
true in many relevant cases. In the rest of this section, we describe the
technical challenges in modelling and proving it.

4.1 introduction 50

4.1.2 Known Results and Challenges

The way we used the model in the motivating example was slightly
informal: In order to be able to prove lower bounds, Aggarwal and
Vitter [3] defined their model such that the only thing algorithms can
do is to move (or permute) records and the records to them are indi-
visible. It is therefore also referred to as the permutation model. This
restricted set of operations makes it possible to count the different
number of permutations achievable with a certain number of cache
line transfers and thus bound the progress any algorithm can make.
This way Aggarwal and Vitter showed that Permuting needs at least
the following number of cache line transfers in the worst case (using
the same parameters as before):

Θ

(
min

(
N

B
·
⌈

logM
B

N

B

⌉
,N
))

. (3)

Since Sorting is a permutation, Sorting has the same lower bound.
They also showed variants of DistributionSort and MergeSort that
fit this bound, i.e., the bound in Equation 3 is asymptotically tight.

The simplicity of the model makes it very general: Since many other
cache and I/O models also move indivisible records, the permutation
model is a subset of them and lower bounds found here also hold
in the other models. However, Aggarwal and Vitter only presented
results for problems on sets, where all elements are assumed to be
distinct. As we have seen in the motivating example, doing the same
for Aggregation would ignore an important aspect, namely the num-
ber of groups in the input.

Matias et al. [127] extended the analysis of Aggarwal and Vitter
to a variant of Sorting on multisets: They studied BundleSorting,
where an algorithm is asked to permute a multiset such that records
with equal keys are placed in “bundles", i.e., adjacent to each other,
but with an arbitrary order inside each bundle. For most parameter
ranges, they use a counting argument similar to Aggarwal and Vitter,
to show that BundlePermuting and thus BundleSorting need at
least the following number of cache line transfers in the worst case:

Θ

(
N

B
·
⌈

logM
B

K

B

⌉)
. (4)

Furthermore, they present a modified DistributionSort that matches
this bound, i.e., the bound in Equation 4 is asymptotically tight.

While this is a step closer to our problem at hand, it still has an
important shortcoming: Records cannot be combined (“aggregated”)
or even dropped. A way to overcome this limitation was recently pro-
posed by Jacob et al. [88]: They define an external memory model
where records are indivisible atoms, along with a (black box) semi-
group operation on these atoms. This makes it possible to model prob-
lems such as Aggregation, were records need to be combined, while

4.1 introduction 51

keeping the model simple enough to use counting arguments such as
those used in the permutation models reviewed above.

The external memory model of Aggarwal and Vitter was also ex-
tended to account for on-chip parallelism in the multi-core era: Arge
et al. [14] proposed the parallel external memory model (PEM), which
consists of P processors, each with a private cache of capacity M, and
a shared, unlimited main memory. They present parallel versions of
DistributionSort and MergeSort with an optimal speed-up (for
reasonable values of P), i.e., with the following number of cache line
transfers:

Θ

(
N

PB
·
⌈

logM
B

N

B

⌉)
. (5)

The original paper also derives the optimality of the complexity
in Equation 5 directly from the complexity of Sorting in Aggarwal
and Vitter’s model. This turned out to be erroneous [167], however
Greiner [79] provided a proof for the same bound using a counting
argument similar to the ones used before [3, 127]. Analogous analyses
in the PEM model for problems on multisets are not known to date.

Alternative external memory models were developed that are only
slightly more restrictive, but yield lower bounds for a large set of prac-
tical problems. Arge et al. developed two techniques [13, 14] to de-
rive a lower bound on cache line transfers from a lower bound of
comparisons. This makes many lower bounds in the external mem-
ory model folklore. For example the well-known n logn comparison
lower bound of Sorting translates into (the main term of) Equation 3

of Aggarwal and Vitter. Similarly, a bound for MultisetSorting can
be derived, where a sorted set is produced followed by the duplicates
in arbitrary order. Munro et al. [136] showed that it has a comparison
lower bound of

N logN−

K∑
i=1

Ni logNi +O(N), (6)

which translates into the following bound in the external memory
Turing machine model:

Θ

(
max

(
N

B
· logM

B

N

B
−

K∑
i=1

Ni

B
· logM

B
Ni,

N

B

))
. (7)

Arge et al. [13] give an analysis of a MergeSort that filters out dupli-
cate records during the merging and matches this bound for Multi-
setSorting and DuplicateRemoval. Farzan et al. [63] later match
this bound for BundleSorting as well with an algorithm called Fun-
nelSort, so the bound of Equation 7 is asymptotically tight for all
these problems.

Although the models proposed by Arge et al. look very general,
they are restricted in a very subtle way: The fact lower bounds are

4.1 introduction 52

derived from comparison lower bounds forces algorithms in these
models to sort the input—even if this is not actually required such
as with Aggregation. This is even true in the more general of the
two models, the external memory Turing machine model [14], where the
algorithm can make arbitrary calculations (by executing a Turing ma-
chine) based on the content of the cache in order to decide which
cache line to read or write next. However, the machine cannot store
anything else than input records; in particular, it cannot create new
records, which makes aggregating impossible—like in the permuta-
tion model. More importantly, the lack of storage space for non-input
records also makes it impossible to use hash functions in this model.1

In contrary to the permutation model, lower bounds in the external
memory Turing machine model thus do not necessarily hold for algo-
rithms using hashing, which could be more powerful (for example by
taking the hash function as “address”). Whether this is the case for
Aggregation was previously not known.

Finally, we note that some bounds given for problems on multisets
express the complexities in terms of how many groups there are (K)
while others express them in terms of how often each element occurs,
i.e., in terms of their multiplicities Ni, i = 1, . . . ,K. The bounds given
in the latter form are more precise and can be simplified to the for-
mer form as explained in Appendix A.1. A lower bound in terms of
K represents those multiplicities that incur the highest cost, i.e., it is
the maximization of the bound in terms of multiplicities, which is
the case where all Ni = N

K . Since analyses in terms of multiplicities
are more complicated, they have not been found for all problems and
models yet. This includes MultisetSorting and BundleSorting in
the permutation model, where the best known bound, due to Knud-
sen and Larsen [100], is only non-trivial for a restricted set of values
for N, M, and B.

Table 2 summarizes the known results discussed in this section in
various models. The seminal permutation lower bound by Aggarwal
and Vitter for Sorting of sets were extended by lower bounds for
problems on multisets, such as MultisetSorting, BundleSorting,
and DuplicateRemoval [63, 127]. However, in the latter bounds, com-
parison-based arguments were used in many cases, the bounds were
often not expressed in terms of the multiplicities of the records, and
no lower bound for Aggregation was given. In the multi-core setting,
only Sorting was studied [12, 79]; no formal bounds for problems on
multisets were given yet.

1 A hash function needs to be a random member of a family of functions, which needs
to be stored during the runtime of the algorithm. We discuss this issue in more detail
in Section 4.2.5.

Parallelism Input Bound Problem Multiplicities Comparisons Reference

sequential set upper & lower Sorting – no Aggarwal and Vitter [3]

sequential multiset

lower all except Aggregation yes yes
Arge et al. [13] +
Munro et al. [137]

upper
MultisetSorting

yes – Arge et al. [13]
DuplicateRemoval

upper & lower BundleSorting no no∗ Matias et al. [127]

lower BundleSorting yes# – Knudsen and Larsen [100]

upper BundleSorting yes – Farzan et al. [63]

upper Aggregation no – Section 4.1.1

upper Aggregation yes – Section 4.2.4

lower Aggregation yes yes Section 4.2

parallel set
upper

Sorting –
– Arge et al. [12]

lower no Greiner [79]

parallel multiset
upper†

all
yes‡ – Section 4.3.3

lower yes no Section 4.3.2
∗Except for small K. #Only for restricted N, M, and B. †The bounds are only tight for a moderate number of processors P. ‡Except for BundleSorting.

Table 2: Results of upper and lower bounds of Aggregation and related problems in different external memory models.

4.1 introduction 54

4.1.3 Contributions

In this chapter, we study Aggregation and related problems on mul-
tisets in two of the external memory models, namely the parallel exter-
nal memory (PEM) model and the external memory Turing machine
model. By comparing the bounds of different models and different
problems, we can get an intuition about what makes the problems
hard. Concretely, we make the following contributions.

• We extend the external memory Turing machine model such
that payloads can be attached to records while preserving the
property that bounds in the model can be derived from compar-
ison bounds. This allows the machine to run Aggregation and
enables us to derive a worst-case lower bound for Aggregation

in this extended model.

• We show how to model Aggregation, DuplicateRemoval, and
MultisetSorting where dropping records is allowed in the per-
mutation model in a way that allows proving lower bounds.

• We give an asymptotic worst-case lower bound in terms of
multiplicities for Aggregation, DuplicateRemoval, Multiset-
Sorting, and BundleSorting in the parallel external memory
model. While these bounds are completely new in the PEM
model, they are also more precise or—since they do not rely
on comparisons—stronger than previously known sequential
bounds if instantiated in the single processor case. Our bound
for BundleSorting also corrects a small erratum in the previ-
ously known bound [127].

• We present algorithms for Aggregation, DuplicateRemoval,
MultisetSorting, and BundleSorting in the parallel external
memory model that match the lower bounds for the interesting
parameter ranges of the model in terms of multiplicities (except
BundleSorting, where the bounds match only in terms of K).

• As some bounds are not tight for all parameter values or in
terms of multiplicities, we give a list of open problems for fur-
ther research.

As guideline for our practical implementation in the subsequent
chapters of this work in particular and for the database community
in general, we can gain the following concrete insights about Aggre-
gation:

• Under realistic assumptions, the folklore conjecture is true: Ag-
gregation is as difficult as MultisetSorting. This is true pre-
cisely in terms of multiplicities of the keys and either with one
or multiple processors. This implies that instances with a small

4.1 introduction 55

number of groups or with unevenly distributed keys are easier
than those with a large number of groups or uniform key distri-
bution. Furthermore, linear speed-up can be achieved by adding
processors and this is optimal.

• Algorithms can beat the MultisetSorting bound for very large
K—a hard case for a Sort algorithm—, but only if the order of
the output records fundamentally depends on their order in the
input. This is not the case for common hashing schemes, where
the output order is given by the hash function. However, there
are techniques that can achieve the better bound in practice.

• MultisetSorting is also not optimal on degenerated machines
where B and M are extremely small compared to N. This is rele-
vant in practice in situations where the external memory model
is basically not applicable. The better bound only holds in the
permutation model though, so techniques like integer sorting
or hashing become essential in these cases. Hashing can thus be
indeed more powerful than sorting.

• The bounds rely on the fact that records are indivisible, so they
do not apply if we give algorithms access to the “inner informa-
tion” of records. This can be exploited in practice for example
for aggregation functions like COUNT, MIN, MAX, and ANY.

• Grouping and Aggregation as well as MultisetSorting and
BundleSorting have the same cache complexity respectively.
Whether or not we keep duplicate records, or drop or aggregate
them does therefore not make an asymptotic difference. How-
ever, dropping and aggregating can not only be achieved with
simpler algorithms, but also reduces the amount of work by con-
stant factors in known algorithms.

• Our results are limited to aggregation functions that are com-
mutative semigroup operations on single records. Algorithms
for MEDIAN or for floating point numbers may thus be harder,
even asymptotically.

The rest of this chapter is organized as follows. We first show lower
and upper bounds of Aggregation in the external memory Turing
machine model in Section 4.2. Then we contrast this analysis with
upper and lower bounds in the parallel external memory model in
Section 4.3. We discuss practical implications of the models for real-
world implementations in Section 4.4 and related work in Section 4.5,
before concluding the chapter with Section 4.6.

4.2 analysis in the external memory turing machine model 56

4.2 analysis in the external memory turing machine

model

In this section we derive upper and lower bounds for the number
of cache lines transfers required by Aggregation algorithms using
comparison-based arguments and discuss the implications and limi-
tations of these bounds.

4.2.1 Overview

Arge and Milterson [14] developed the external memory Turing mach-
ing model along with a method that allows deriving lower bounds in
that model for a broad range of problems. The core of the method
is a theorem that relates the number of cache line transfers required
to solve a problem in their external memory model to the number of
comparisons required to solve the same problem. Since comparison
lower bounds are known for many problems, this yields many ex-
ternal memory lower bounds immediately, including Sorting Multi-
setSorting, BundleSorting, and DuplicateRemoval. To derive a
lower bound for Aggregation, we could argue for example that it
solves DuplicateRemoval and thus needs at least the same number
of comparisons (which is known), allowing us to derive a bound on
cache line transfers using the theorem of Arge and Milterson.

However, there are a few issues that make it questionable whether
we can even use the external memory Turing machine model for Ag-
gregation. The main problem lies in the way the external memory
Turing machine is defined: It mainly consists of an internal and exter-
nal tape, corresponding to cache and main memory, and a Turing ma-
chine that can make arbitrary calculations based on the content of the
internal tape in order to decide which records to move from internal
to external tape and vice versa. It cannot, however, otherwise modify
contents of either tape, i.e., it makes the so called indivisibility assump-
tion, which is required to derive lower bounds in the model. This
means that we cannot even run Aggregation out of the box: Unlike
DuplicateRemoval, Aggregation not only moves around records
without modifying them, but—by definition—creates new records by
aggregating existing ones.

On first sight one might think that the syntactic reductions from the
method of Arge and Milterson [14, Definition 13] might provide an al-
ternative: a syntactic reduction allows specifying a method to convert
records of one problem to those of another such that problems can be
reduced to each other even if their records are not of the same type.
This even allows associating additional information to the records,
such as associating values to keys like in Aggregation. Since we can
still not create new records, we would model Aggregation as a de-
cision problem: provided a multiset of records and their aggregated

4.2 analysis in the external memory turing machine model 57

set as input, decide whether the aggregated set contains the correct
result. However, since we can only make computations based on the
content of the internal tape, we could not compute aggregates of more
records than fit there, which is not enough in the general case.

In short, the external memory Turing machine model is not expres-
sive enough to allow Aggregation, due to the fact that it assumes
indivisible records. However, as we show in the remainder of this sec-
tion, only technical changes to the model are sufficient to reconcile
aggregating with the indivisibility assumption in a formal way.

To that aim we propose an extension to the external memory Turing
machine model. The key idea is to extend the machine by an internal
and an external payload tape along with a second control unit to pro-
cess the payload. The two new tapes cannot be accessed by the control
unit responsible for determining what records to move next. Records
on the two internal tapes and on the two external tapes have a one-to-
one correspondence respectively that is maintained when records are
moved. These extensions allow us to modify records using arbitrary
functions as long we only modify the payload. At the same time, they
do not alter any of the properties required for proving the central the-
orem of Arge and Milterson’s method, so it continues to work in the
extended version of the model and we can apply it to Aggregation.

Note that the general method for external memory lower bounds
based on I/O decision trees by Arge et al. [13] can probably also
extended in order to carry payload by doing only technical modifica-
tions. The resulting bounds would be the same as the ones obtained
in this section.

4.2.2 The External Memory Turing Machine Model with Payload Exten-
sion

We now review the original external memory Turing machine model
from Arge and Milterson [14] and present an extension to it that en-
ables us to run Aggregation.

4.2.2.1 Review of the External Memory Turing Machine Model

The external memory Turing machine model consist of four tapes—an
internal tape, an external tape, a work tape, and an instruction tape—
as well as a finite state machine as control unit. We now go through
the different components one by one.

The external tape represents main memory. The tape consists of L

cells (where L is an arbitrary number independent of w, which is
needed for proving the theorem). Each cell is either filled with records
from the domain {0, 1}w or with the “blank” symbol ⊥. The cells are
organized in blocks of B records, which represent cache lines. At the
beginning of the program, the tape is filled with N records constitut-
ing the input. We characterize the input by the number of distinct

4.2 analysis in the external memory turing machine model 58

records K and the multiplicities Ni, i = 1, . . . ,K of each record value.
There is no head on this tape, i.e., the finite state machine cannot read
from this tape.

The internal tape represents the cache. It consists of M cells orga-
nized in blocks of size B and containing either records or blanks as
the external tape. The tape has a read/write head that the finite state
machine can move and use to read and write records from and to the
tape. If the machine never writes to this tape, we say that it satisfy the
indivisibility assumption. Initially, the tape contains only blanks.

The work tape is an infinite tape that the finite control machine can
use to make arbitrary computations.

The instruction tape is used by the finite state machine to initiate
memory operations by writing instructions through a write-only head
to the tape. It can be thought of as the memory controller of the ma-
chine. When the instruction “Read i” is written to the tape, the first
block of the internal tape is replaced by the content of the ith block
of the external tape. The instruction “Write i” has the opposite ef-
fect. “Assign i to j” overwrites record j of the internal tape with the
record i of the internal tape. After every Read and Write instruction,
the work tape is erased and the head set to its initial position in order
to prevent the machine to use it as an “extended internal tape”.

The finite state machine controls the heads as described above. Fur-
thermore, it can end the execution by entering one of the special states
Accept, Reject (in case of decision problems), and Finish (in case of
construction problems).

The costs of solving a certain problem on a certain input is the
number of Read and Write instructions written to the instruction
tape. This corresponds to the number of cache line transfers.

An external memory Turing machine has to solve a given problem
for fixed parameters B < M < N < L, K, and Ni, as well as any w.
Since N is finite, the machine can remember where it has moved the
different records be encoding this information into its states. It is thus
quite powerful even though the work tape is erased after every Read

and Write instruction. However, since the same machine solves the
problem for any w, it cannot remember the content of the records the
same way, so the computations are indeed non-trivial. For a more
detailed motivation of the design choices of the machine model, see
the original paper [14].

4.2.2.2 Payload Extension

We now describe an extension of the external memory Turing ma-
chine model that is able to carry payload with the records and to
perform arbitrary computations with them.

First, we add an external payload tape and an internal payload tape.
The new tapes have properties similar to those of the internal and the
external tapes respectively: They consist of cells containing either pay-

4.2 analysis in the external memory turing machine model 59

load records or blanks and are organized in blocks of B cells. Payload
records are of the domain {0, 1}u; and the same machine has to work
for any u. Furthermore, the payload tapes have the same sizes as their
counterparts: the external payload tape has L cells, while the internal
payload tape has M of them. When the computations starts, every of
the N input records on the external tape has a payload input record
associated with it on the external payload tape at the same position.
Finally, the internal payload tape has a read/write head, while the ex-
ternal payload tape has none, like the original internal and external
tapes.

Second, we slightly modify the semantics of the instruction tape:
whenever a Read, a Write, or an Assign instruction is written to
the instruction tape and executed, not only the records are moved be-
tween the external and internal tapes, but also the associated records
on the external and internal payload tapes are moved accordingly.
This maintains the association of records and their payload.

Third, we add a second finite state machine with its own work tape that
can work on the internal payload tape. We use the terms “cache con-
trol” and “payload processing control” to denote the two different fi-
nite state machines. With some exceptions, the two control units have
no means to interact: only the cache control can use its work tape, the
internal tape, and the instruction tape, while only the payload pro-
cessing control can use the internal payload tape. None of them can
use the two external tapes (since they do not have heads). However,
both of them can control the head of the work tape of the payload
processing control, though not at the same time: While the cache con-
trol is operating, the payload processing control is idle. When the
cache control is in a special state “Compute”, the payload processing
control operates until it enters a special state “Done”. When this hap-
pens, the content of the work tape of the payload processing control
is erased and its head reset to the initial position and the cache con-
trols continues to operate. Arbitrary information can thus flow from
the cache control to the payload processing control, but none can flow
into the other direction.

It is clear that we can use an external memory Turing machine with
payload extension in order to solve a problem without payloads by
initially filling the external payload tape with blanks and ignoring its
content after the machine has finished. To formalize this observation,
we first define a relationship between the two types of problems:

Definition 1. Let P be a problem defined on (record, payload record) pairs
from the domain ({0, 1}w, {0, 1}u), P ′ a problem defined on records with-
out payload from the domain {0, 1}w, and r a mapping that maps every in-
stance x = ((k1, v1), . . . , (kN, vN)) of problem P to the instance r(x) =

(k1, . . . ,kN) of problem P ′, then we call P ′ the payload reduction of P if
for all instances x of P, x ∈ P ⇒ r(x) ∈ P ′.

4.2 analysis in the external memory turing machine model 60

For example, DuplicateRemoval is the payload reduction of Ag-
gregation, but also of any other problem where duplicate records
from the external tape are removed, no matter what happens to the
records on the payload tapes.

Now we establish a theorem about the impact of the payload exten-
sion on I/Os:

Theorem 2. If an external memory Turing machine with payload extension
satisfying the indivisibility assumption needs t I/Os to solve an instance of
P in the worst case and r is the payload reduction from P to P ′, then there
is an external memory Turing machine without payload extension satisfying
the indivisibility assumption that solves all instances of P ′ in t I/Os in the
worst case.

Proof. We construct an external memory Turing machine that solves
P ′: We take the external memory Turing machine with payload exten-
sion that solves P and remove the two payload tapes, the payload pro-
cessing control unit, and the Compute states of the cache control unit.
Note that this applies the payload reduction on the instance present
on the external tapes. The resulting machine fits the original defini-
tion of an external memory Turing machine: By design, none of the
remaining components could gain any information from those that
were removed, i.e., the cache control unit was in no way influenced
by the payload processing control unit or the content of the payload
tapes. Therefore, the sequence of Read and Write instructions issued
by the constructed machine has not changed, so it does solve r(x) ∈ P ′

and needs t I/Os to do so, like the original machine.

4.2.3 Lower Bound

With our payload extension and Theorem 2, we can now apply the
theorem of Arge and Milterson [14] to Aggregation in a straight-
forward manner. Concretely, the theorem says that for each external
memory Turing machine satisfying the indivisibility assumption and
solving an order invariant problem with t I/Os in the worst case,
there is a comparison based algorithm solving the problem using
less than N logB+ t

(
B log M−B

B + 3B
)

comparisons in the worst case.
This means that a lower bound of comparisons in the comparison
model implies a lower bound of I/Os in the external memory Turing
machine model. In particular, it implies the following:

Lemma 3. An order-invariant problem having a complexity of N logN−∑K
i=1Ni logNi − O(N) in the comparison model, has the following com-

plexity in the external memory Turing machine model:

Ω

(
max

(
N

B
,
N

B
logM

B

N

B
−

K∑
i=1

Ni

B
logM

B
Ni

))
.

4.2 analysis in the external memory turing machine model 61

Proof. The first term in the max comes from the fact that the external
memory Turing machine has to read the input. The second term can
be obtained by using said theorem of Arge and Milterson [14, Theo-
rem 4] and solving the following inequality for t:

N logB+ t ·B log
M−B

B
+ 3B > N logN−

K∑
i=1

Ni logNi −O(N)

Lemma 4. DuplicateRemoval requires at least the following number of
comparisons:

N logN−

K∑
i=1

Ni logNi −O(N).

Proof. We use an argument similarly used by Munro and Spira [136,
Theorem 3.4] and by Farzan [62, Theorem 2.2.1] before. We argue that
the total order of the elements must be known when the algorithm
has finished, so the bound for multiset sorting applies. In order to
determine whether there is a unique element by only using compar-
isons, we need to establish for every element in the input whether
there is also another, equivalent element. By trying to find equivalent
elements, we will also find out which elements are larger or smaller.
Thus, the algorithm also determines the total order of the multiset and
has consequently the lower bound of multiset sorting. This is known
to be the desired bound [137].

DuplicateRemoval is order invariant and can be solved by an al-
gorithm that uses only comparisons (and deletions). Hence, we can
put Lemmas 3 and 4 together to obtain the following corollary:

Corollary 5. DuplicateRemoval has the following complexity in the
External-Memory Turing Machine model:

Ω

(
max

(
N

B
,
N

B
logM

B

N

B
−

K∑
i=1

Ni

B
logM

B
Ni

))
.

Finally, since DuplicateRemoval is the payload reduction of Ag-
gregation, we can use Theorem 2 and Corollary 5 to establish the
following corollary:

Corollary 6. Aggregation has the following complexity in the External-
Memory Turing Machine model with payload extension:

Ω

(
max

(
N

B
,
N

B
logM

B

N

B
−

K∑
i=1

Ni

B
logM

B
Ni

))
.

Our payload extension to the external memory Turing machine
thus formalizes the intuition that doing work in addition to solving an
order-invariant problem does not make the problem easier. In partic-
ular, it allows us to show that Aggregation has the same complexity
as MultisetSorting in the external memory Turing machine model.

4.2 analysis in the external memory turing machine model 62

4.2.4 Upper Bound

We now show a matching upper bound for Aggregation in the exter-
nal memory Turing machine model with payload extension. We use
a standard MergeSort, but modify the Merge routine such that two
records are aggregated when they compare equal. In our machine
model, this works as follows: whenever the cache control unit finds
out that two records in cells i and j on the internal tape are identical,
it writes i and j to the work tape of the payload processing unit and
enters the Compute state. The payload processing control unit then
aggregates the payload records in cells i and j, stores the result in cell
i and enters the Done state. Finally, the cache control unit continues
running a standard MergeSort, but henceforth ignores the record in
cell j.

Arge et al. [13] show that a careful analysis of such an algorithm
leads to the desired bound. They use a standard MergeSort to solve
DuplicateRemoval by modifying the Merge routine similar to us.
Their algorithm needs the following number of cache line transfers:

O

(
max

(
N

B
,
N

B
· logM

B

N

B
−

K∑
i=1

Ni

B
· logM

B
Ni

))
. (8)

The same analysis leads to the same bound for Aggregation, so the
bound of Corollary 6 is tight.

4.2.5 Discussion

The analysis in this section gives a partial answer to the question
about whether or not the folklore conjecture about Aggregation is
true: in the external memory Turing machine model, using Multi-
setSorting is optimal to solve Aggregation. No algorithm in this
machine model can do better.

However, there are reasons not to be completely satisfied with this
result. First and foremost, the starting point of our analysis was the
observation that HashAggregation with recursive pre-partitioning
requires the same number of cache line transfers as MultisetSorting.
However, the model does not even allow hashing! As mentioned in
the introduction, for hash functions to be effective, we need to draw
a member of a family of hash functions at random, and remember it
during the runtime of the algorithm. However, the external memory
Turing machine has nowhere to remember it: the internal tape only
contains input records, the work tape is erased after every block trans-
fer, and the finite state has only constant memory with respect to w.2

2 A hash function needs to be a random member of a family of functions and the size
of the family depends on the size of the universe U (where |U| = 2w). Identifying
a member of the family thus needs a number of bits that depends on log |U| = w,
which is not constant with respect to w.

4.3 analysis in the parallel external memory model 63

In a way this is not surprising: Arge and Milterson prove the rela-
tionship between comparison-based problems and problems in their
external memory Turing machine model by emulating a Turing ma-
chine with comparisons [14, Lemma 1], so their model is not more
powerful than what comparisons can do by definition. The question
whether there is an algorithm faster than MultisetSorting is thus
still open, if it is allowed to use hashing.

Furthermore, the external memory Turing machine model with its
single cache and processing unit does not capture the on-chip par-
allelism omni-present in today’s hardware. Since several processors
have a larger combined cache than a single one, but may experience
overhead due to synchronization and load-balancing, neither upper
bounds nor lower bounds from sequential models may hold on this
hardware. By analysing Aggregation in the parallel external mem-
ory model in the next section, we overcome both limitations.

4.3 analysis in the parallel external memory model

In this section we analyse Aggregation and a set of related problems
in the parallel external memory model. By contrasting the results to
those from the previous section and comparing the results of different,
similar problems, we can get insights which aspects of the problem
and the machine model influence the bounds. Furthermore, we get
results applicable for modern multi-core processors.

4.3.1 Machine Model and Problem Definitions

We start with formal definitions of the machine model and the prob-
lems we want to study.

4.3.1.1 The Parallel External Memory Model

We make the analyses of this section in the atomic parallel external
memory model [88] (atomic PEM) of the CREW flavor (concurrent read
exclusive write), which is illustrated by Figure 7. Like the original
PEM model by Arge et al. [12], the atomic PEM consists of an infinite
main memory and P processors, each with a private cache that can hold
M records. We assume 1 6 B < M < N and N > PB, which is realistic
on real machines. Algorithms can only move, copy, or delete records,
and records from or to the caches can only be moved in cache lines, i.e.,
up to B at the time. The cost of an algorithm is the number of parallel
cache line transfers to or from up to P caches. Unlike the original PEM
however, in the atomic PEM, we are strict about records being indivis-
ible atoms, i.e., algorithms cannot gain any more information about
them except identifying them. Algorithms have complete knowledge
of the location of all records at all times, which implies that they can

4.3 analysis in the parallel external memory model 64

main memory

∞ cache
lines

M
B cache lines

M
B cache lines

M
B cache lines

..
.

P processors
with private cache

B records

Figure 7: The parallel external memory model [12]

determine the rank (of any order) of each record. In problems on mul-
tisets, we distinguish copies of records from records with the same key
(which is known to the algorithms).

When appropriate for the problem, algorithms can also do the com-
mutative semigroup operation ⊕, which allows the creation of new
records but does not reveal any other insight on the records (like Jacob
et al. [88] do in their semigroup PEM model). Semigroup operations
can only by applied to two records in the same cache. We assume
that semigroup operations are “deterministic” in the sense that if two
records and a copy of these records are added with the operation of
the semigroup, the resulting records are copies of each other as well.
In other words, copies are equivalent to each other and the semigroup
operation is defined on equivalence classes of records. Or formally: if
a ′ is a copy of a and b ′ a copy of b, then a⊕ b, a⊕ b ′, a ′ ⊕ b, and
a ′⊕b ′ are all considered copies of each other. In all our problems, we
only allow semigroup operations on records with the same key and
assume that the result has again that same key.

4.3.1.2 Problems

All problems in this section are defined on N records that initially
reside in contiguous locations in main memory. The records have one
of K different keys where key at rank i is used by Ni records, hence∑K

i=1Ni = N. The algorithms are asked to produce their result again
in contiguous memory locations.

The problems are defined as follows:

4.3 analysis in the parallel external memory model 65

BundleSorting: The algorithm is asked to reorder the records by the
rank of their keys. The relative order of elements with the same
key can be arbitrary.

Sorting: The special case of BundleSorting where K = N.

DuplicateRemoval: The algorithm is asked to remove all but one
record for each of the K keys. To restrict the power of the algo-
rithm, we only allow it to drop a record when another record of
the same key is in the same cache.

MultisetSorting: The same as DuplicateRemoval, except that the
remaining records are ordered by the rank of their keys.

Grouping: The algorithm is asked to reorder the input such that all
records with the same key reside in contiguous memory loca-
tions (i.e., in “groups”).

Aggregation: The algorithm is asked to compute
⨁

{e|e has rank i }

for i = 1, . . . ,K from the input records and store them in main
memory.

OrderedAggregation: The same as Aggregation, but the algorithm
is asked to order the result in an arbitrary, but a priori defined
order.

Note that with our definitions, DuplicateRemoval and Aggrega-
tion, as well as MultisetSorting and OrderedAggregation are re-
spectively equivalent in the sense that the algorithm needs to bring
records with the same key into the same cache in order to reduce the
number of records with that key. Furthermore, we could also define
OrderedGrouping as a special case of Grouping where we specify
an order, which would be exactly equivalent to BundleSorting.

Also note that MultisetSorting is sometimes defined differently.
In our definition, duplicate records can be dropped, while other au-
thors [63] have defined it like our definition of BundleSorting. With
our choice, we can reason about the impact of the ability to drop
records more easily. Furthermore, MultisetSorting and Duplicate-
Removal is sometimes defined such that duplicate records are to be
put into a dedicated memory zone instead of just dropping them. This
however does not make any asymptotic difference for neither upper
bounds nor lower bounds.3

3 For the upper bound, a single cache line is enough to “collect” duplicates and flush
them efficiently with only constant overhead. For the lower bound, the number of
equivalent input configurations does not increase, since any order of the duplicates is
a correct result (see discussion of Equation 11).

4.3 analysis in the parallel external memory model 66

4.3.2 Lower Bounds

In order to prove lower bounds, we use a counting argument similar
to what other authors have used before [3, 127, 79]: We bound the
number of different input configurations that can lead to a certain
output configuration with a given number of cache line transfers. This
number must be at least as large as the number of all different input
configurations that exist.

We first do the main part of the analysis common to all problems,
and then derive concrete results for each of them specifically.

4.3.2.1 Main Part

The analysis is an adaptation of the analysis of Greiner [79] (in turn
inspired by Bender et al. [26]) who calls the method “time backward
analysis”. It consists in counting the number of possible input con-
figurations an algorithm can derive a particular output configuration
from. This is done by looking at how an algorithm works backwards
and examining carefully how many different configurations can pre-
cede a given configuration by each cache line transfer. In this approach
semigroup operations are slightly easier to model than in a time for-
ward analysis.

Before starting the analysis, we need to make some initial observa-
tions and assumptions. First, we argue that we can forbid copies of
records without loosing generality: None of our problems requires
copies of records in the output. Hence, we can transform the exe-
cution of any algorithm into an execution with the same result but
without copies by working ourselves backwards through the execu-
tion of the algorithm and removing all records that do not participate
in the output. This transformation does not increase the number of
cache line transfers. In the same way, since every record either has a
unique key or participates in exactly one semigroup operation in our
problems, we can assume w.l.o.g. that the inputs of a semigroup op-
eration are removed after the operation. Note that the way we define
the dropping of elements behaves in all respects like semigroup op-
erations, so we only speak of the latter in the remainder of the proof.
With a similar argument, we assume that all possible semigroup op-
erations are done immediately when two records with the same key
are in the same cache together.

Second, only consider non-empty cache lines in main memory be-
cause two algorithm executions differing only by some empty cache
lines can be transformed into each other by adding or removing
empty cache lines. This does neither alter the number of cache line
transfers nor the output configuration, which is required to reside
contiguously in main memory.

Third, we also ignore the permutation of records within each cache
line for the moment. The algorithm can permute records in the output

4.3 analysis in the parallel external memory model 67

in the desired way the last time each cache line is written, which
is free. Permutations within cache lines of the input are taken into
account when we consider the different input configurations below.

These observations allow us to bound the number of input configu-
rations that any algorithm can transform to a given output configura-
tion using ℓ (parallel) cache line transfers. With ℓ = 0 there is exactly
1 configuration. By bounding the number of intermediate configura-
tions preceding a given configuration, we bound the factor by which
their total number increases with every cache line transfer.

First, we look at a single processor in isolation. We suppose that
to go from one configuration to another, i.e., to go from ℓ to ℓ + 1,
the processor reads a cache line from main memory, does some semi-
group operations and permutations in the cache, and writes a cache
line back to main memory.4 For the input, the processor might have
read from at most 2N+ 1 different cache lines to produce the current
configuration: since there are only N records in total and no copies
exists, there are at most N non-empty cache lines and N + 1 cache
lines around them, which may have been emptied by this input. This
increases the number of preceding configurations by a factor 2N+ 1.
Other processors might have read from the same cache line, but since
we assume that there are no copies, every record only ended up in
at most one processor cache. From the perspective of one processor,
each of the B records of the cache line might or might not have ended
up in its cache, so the input operation increases the number of preced-
ing configurations by another factor 2B. In total reading a cache line
from main memory increases the number of configurations by factor
2B(2N+ 1).

After reading the cache line, its content is placed into the processor
cache. Since all semigroup operations are done as soon as possible,
i.e., directly after reading them from main memory, the only possi-
ble semigroup operations are those involving the B new records from
this cache line. Since ⊕ is commutative, no other operations are pos-
sible afterwards. So if the cache of processor p contains Mp,l records
after l cache line transfers, only B of the Mp,l records have changed
with the current cache line transfer: each of them is either an input
record that has just been read or the result of a semigroup operation.
Hence, there are at most

(Mp,l
B

)
configurations preceding a given con-

figuration through placing an input cache line into cache and doing
all semigroup operations.

For the output, only one of the full N cache lines can have been
changed by the last cache line transfer.

4 This is equivalent up to a constant factor to counting the reading and writing sepa-
rately, but easier for the purpose of our analysis.

4.3 analysis in the parallel external memory model 68

In total, the number of configurations preceding a given configura-
tion by the cache line transfer of one processor is

2B(2N+ 1) ·
(
Mp,l

B

)
·N. (9)

By taking into account the effect of all P processors, ℓ cache line
transfers can turn at most the following number of different input
configurations into a given output configuration:⎛⎝ P∏

p=1

(
(2N2 +N)

(
Mp,l

B

)
2B
)⎞⎠ℓ

. (10)

We now quantify the number of possible input configurations. If
there are N different records in the input, they can be permuted in
N! different ways. Since we abstract from the permutations inside the
N
B output cache lines however, there are only N!/B!

N
B different con-

figurations of the input cache lines as discussed above. Furthermore,
in problems on multisets and those where the order of the records
in the output can be arbitrary, some input configurations are equiv-
alent.5 Let P be the number of equivalent configurations of a given
problem, then there are N!/B!

N
B /P possible input configurations.

The number of cache line transfers ℓ needed to turn any possi-
ble input configuration into a valid output configuration is therefore
bounded by the following inequality:⎛⎝ P∏

p=1

(
(2N2 +N)

(
Mp,l

B

)
2B
)⎞⎠ℓ

>
N!

B!
N
B ·P

. (11)

We can simplify the binomial coefficient by seeing that drawing all
P cache lines of B records from the union of all caches at the same
time does not reduce the number of preceding configurations. Fur-
thermore, there cannot be more records in the caches than there are
records in the input (N):

P∏
p=1

(
Mp,l

B

)
6

(∑P
p=1(Mp,l)

PB

)
6

(
min(MP,N)

PB

)
(12)

With this reflection and by making the first term slightly larger,
Equation 11 becomes

(
3N22B

)Pℓ(min(MP,N)

PB

)ℓ

>
N!

B!
N
B ·P

. (13)

5 The number of equivalent configurations would also be decreased if the semigroup
operation had inverses: two records with the same key that are inverses of each
other, do not need to contribute to the result and can thus be completely ignored.
All permutations of the records that can be ignored would thus be equivalent.

4.3 analysis in the parallel external memory model 69

By taking the logarithm on both sides and making the algebraic
transformations detailed in Appendix A.2.1, we obtain

ℓ >
N ln N

eB − lnP

Θ(P(lnN+B lnd))
, (14)

with d = max
(
2, min

(
M
B , N

PB

))
. We observe that lnN > B lnd, iff N >

dB, which is true, given that N > 2B, iff N >
(
M
B

)B
or P > N1− 1

B

B . This
means that the denominator of Equation 14 simplifies to Θ(PB logd)

except for ridiculously large N or P compared to M and B, and to
Θ(logN) otherwise.

4.3.2.2 Sorting

We now instantiate and simplify Equation 14 for different problems,
starting with the known result for Sorting of sets. In this case all
records have distinct keys, so all input configurations are different, i.e.,
P = 1. We can distinguish two cases, depending on which term dom-
inates the denominator. If lnN > B lnd, then lnN > B, so log N

B =

Ω(logN). This observation and the opposite case give the following,
well known [12, 79] bound:

ℓ = Ω

(
min

(
N

P
,
N

PB
logd

N

B

))
. (15)

4.3.2.3 Problems on Multisets with Specified Order

MultisetSorting, BundleSorting (or OrderedGrouping), and Or-
deredAggregation are all equivalent in the number of input differ-
ent configurations. In all three problems, only the key of the records
matters for the input configuration: Two input configurations where
two records with the same key are exchanged lead to the same output
by exactly the same sequence of cache line transfers. For each key at rank i,
we thus have Ni! equivalent input configurations, so P =

∏K
i=1(Ni!).

The problems only vary in how duplicates are treated. Bundle-
Sorting/OrderedGrouping keep all of them; OrderedAggrega-
tion combines them pairwise using the semigroup operation; and
MultisetSorting drops one of two duplicates when they are in the
same cache together. It is interesting to observe that whether or not
the number of records can be reduced (by dropping or aggregating)
does not change anything in the proof. However, it is important that
an algorithm for MultisetSorting is forced to have the duplicates in
cache when it drops one of them, as in our permissive model it could
otherwise just ignore duplicate records from the beginning.

4.3 analysis in the parallel external memory model 70

Hence, with P thus defined, we have

lnP = ln
K∏

i=1

(Ni!) =
K∑

i=1

ln(Ni!)

6
K∑

i=1

(
(Ni +

1

2
) lnNi −Ni + 1

)
6

K∑
i=1

Ni lnNi,

so Equation 14 becomes

ℓ =Ω

(
N ln N

eB −
∑K

i=1Ni lnNi

P(lnN+B lnd)

)

=Ω

(
1

P
·min

{
N logN

N
eB −

∑K
i=1Ni logNNi

N
B logd

N
eB −

∑K
i=1

Ni

B logdNi

})
. (16)

We can simplify Equation 16 by taking the multiplicities Ni that
maximize it, which happens for Ni = N

K . Similar to the transforma-
tions in Appendix A.1, Equation 16 then becomes

ℓ = Ω

(
min

(
N

P
logN

K

B
,
N

PB
logd

K

B

))
. (17)

Equation 17 is negative for K < B, which is not particularly useful
as a lower bound. However, if we assume that the algorithm has to
read the input,6 we get an additional lower bound of N

PB . The lower
bound on cache line transfers for MultisetSorting, BundleSorting,
OrderedGrouping, and OrderedAggregation is thus

Ω

(
N

PB
max

(
1, min

(
B logN

K

B
, logd

K

B

)))
. (18)

Note that Matias et al. [127] find the same bound, except that they
handle the case of negative values of the bound differently (namely
by falling back to an argument with comparisons). Furthermore, they
erroneously omit the first term in the minimum; however this has
no real consequences in practice: The first term of the bound only
matters for ridiculously large N or P as discussed above.

4.3.2.4 Problems on Multisets without Specified Order

DuplicateRemoval, Grouping, and Aggregation are all oblivious
to the order of records within each group like with the previous prob-
lems of the previous section. Furthermore, the algorithm is free to
choose any of the K! orders of the keys in the output. This is the same
as considering two input configurations equivalent if they only differ
by a renaming of the keys. Hence, P =

∏K
i=1(Ni!) ·K!.

6 This technically means that we leave the atomic PEM model, where the algorithms
knows where every element resides without even reading it. It thus might not have
to read the entire input if part of it is part of a correct result. However, for a practical
algorithm, this assumption is obviously realistic.

4.3 analysis in the parallel external memory model 71

Since ln(K!) 6 K lnK, Equation 14 becomes

ℓ = Ω

(
N ln N

eB −
∑K

i=1Ni lnNi −K lnK

P(lnN+B lnd)

)
. (19)

This is maximized by the multiplicities Ni =
N
K as above and thus

leads to the simplified bound

ℓ = Ω

(
(N−K) ln K

B +K lnB

P(lnN+B lnd)

)
. (20)

For the case of small K, i.e., N−K = Ω(N), and under the assump-
tion that B = dO(1), we cannot gain anything by ignoring the order of
the groups: With these assumptions, logN B = logd B = O(1), so the
last term in the numerator is dominated by the first and we get the
same bound as Equation 18:

Ω

(
N

PB
max

(
1, min

(
B logN K, logd

K

B

)))
. (21)

4.3.3 Upper Bounds

We now show that the bounds that we derive in the previous section
are tight for many parameter ranges, in particular those relevant in
practice.

4.3.3.1 Sequential Algorithms for Problems with Specified Order

In the single processor case, we can use the modified MergeSort

from Section 4.2.4 again for MultisetSorting and OrderedAggrega-
tion. For MultisetSorting, one of two records that compare equal
is simply dropped; for OrderedAggregation they are aggregated
using the semigroup operation. This algorithm achieves the non-de-
generated case of the lower bound in Equation 16, i.e., that bound is
tight for P = 1 and either N > (M/B)B or P > N1− 1

B/B.
For BundleSorting, we cannot use the same algorithm since its

analysis relies on the fact that the algorithm drops duplicate records.
However, as mentioned earlier, FunnelSort from Farzan et al. [63]
has the same asymptotic complexity, so in the non-degenerated case,
our bound is tight for BundleSorting as well.

4.3.3.2 Parallel BundleSorting

We adapt again an existing Sort algorithm. The PemMergeSort pre-
sented by Arge et al. [12] uses a sequential external memory sort al-
gorithm as the base case, which we replace by the BundleSort of
Matias et al. [127]. This allows us to build a parallel BundleSort. In
the worst case, a record of each of the K groups is present in the in-
put of each processor, so each base case of size N

P may need up to

4.3 analysis in the parallel external memory model 72

N
PB max

(
1, logd

K
B

)
I/Os. Hence, the algorithm requires at most the

following number of cache line transfers in the worst case (see Corol-
lary 3 of [12]):

O

(
N

PB
max

(
1, logM

B

K

B
+ logd P

))
. (22)

If we assume that the number of processors is not too large, namely
P = (M/B)O(1) and P < N

M , then logd P = logM
B
P = O(1), so a con-

stant number of merge passes across processors is enough and the
complexity of the algorithm is dominated by the base case. This as-
sumption restricts us to an easy case in the PEM model; however
it is not a restriction for current multi-core processors. Hence, in the
non-degenerated cases (i.e., if N < (M/B)B and P < N1− 1

B/B), the
algorithm matches the lower bound from Equation 18:

O

(
N

PB
max

(
1, logM

B

K

B

))
. (23)

Note that building a parallel algorithm that achieves the precise
bound in terms of multiplicities is not as trivial. If we just solved the
base case with an optimal algorithm we would not achieve our goal:
since the processors solve their base cases independently, it is suffi-
cient that a single processor gets a hard distribution of multiplicities
in order to slow the whole algorithm down. Instead, we present an
algorithm for MultisetSorting and Aggregation with more sophis-
ticated work balancing in the next section. Achieving the same for
BundleSorting is an open problem.

4.3.3.3 Parallel MultisetSorting and OrderedAggregation

In this section we present a refined version of the algorithm above that
balances the work of MergeSort in the base case of the algorithm.
Since the work can become unbalanced after every merge level, we
need to balance once per level.

The pseudo-code notation that we use in this section describes pro-
grams that are executed simultaneously on all processors; the current
processor is called p (with p ∈ {1, . . . ,P}). Processor-local variables
start with a lower case letter, while global variables start with an up-
per case letter. The shortcut Ap to a global array A gives access: Array
[1..n] gives access to p’s fraction of A split into P equal parts, i.e., to
A[

(p−1)n
P + 1..pnP].

Algorithm 2 shows the refined algorithm. Like the original algo-
rithm, we start with making runs of size M in a single pass, merge
them iteratively until there is only O(1) run left per processor, and
then use the cross-processor Merge algorithm of Arge et al. [12] to
produce the final result. With the appropriate inner Merge routine,
we can make the algorithm solve MultisetSorting or OrderedAg-
gregation as desired.

4.3 analysis in the parallel external memory model 73

Algorithm 2 PEM algorithm for MultisetSorting and OrderedAg-
gregation

1: func PemMultisetSort(S: Array [1..N] of Record)
2: runs← MakeRuns(Sp)
3: while PemReduce(∥runs∥, +) > P do
4: runs← PemBalancedMerge(runs)
5: return PemSampleMerge(runs)

The main mechanism for balancing the work is encapsulated in the
routine PemBalancedMerge, which is detailed by the pseudo-code
in Algorithm 3. In the pseudo-code, ∥S∥ refers to a metric defined
as the total number of records in a set of runs, i.e., ∥S∥ =

∑
s∈S |s|.

The processors start by computing the total number of runs R still
left in this merge level and the number of records N ′ in these runs.
This means that every processors should get O(RP) runs with O(N

′

P)

records. Each processor then filters out those runs that alone con-
tain more records than N ′

P records. Then each processor filters out
small runs, i.e., those runs that contain less than N ′

2R records, which
are then redistributed equally among the processors. The remaining
runs are put into bins of up to 2N ′

P records using GreedyBinPack-
ing, a 2-approximation of BinPacking with linear runtime. Finally,
each processor merges the runs of one bin and its small runs using a
sequential Merge algorithm.

Algorithm 3 Building blocks of PemMultisetSort

1: func PemConcat(S: Array of T)
2: l← Len[p]← |Sp| ◃ O(logB)

3: Len← PemPrefixSum(Len) ◃ O(logP)

4: return R with R[Len[p]..Len[p] + l]← Sp ◃ O(maxSi

B)

5: func PemBalancedMerge(runs: Array [1..rp] of Array of Record)
6: ⟨N ′,R⟩ ← PemReduce(⟨∥runs∥, rp⟩, +) ◃ O(logP)

7: ignored_runs←
{

run ∈ runs
⏐⏐⏐|run| > 2N ′

P

}
◃ O(max ri

B)

8: small_runs←
{

run ∈ runs
⏐⏐⏐|run| 6 N ′

2R

}
◃ O(max ri

B)

9: runs← runs \ (small_runs∪ ignored_runs) ◃ O(max ri
B)

10: Small_Runs← PemConcat(small_runs) ◃ O(max ri
B + logP)

11: bins← GreedyBinPacking(runs, 2N ′

P) ◃ O(max ri
B)

12: Bins← PemConcat(bins) ◃ O(max ri
B + logP)

13: return Merge(Bins[p]∪ Small_Runsp)∪ ignored_runs

In order to analyse the complexity of PemMultisetSort, we first
analyse PemBalancedMerge for the case where there are still at least
R > PM

B runs. As we show, PemBalancedMerge merges them into
O(R B

M) runs with at most O(N
′

PB) parallel I/Os.

4.3 analysis in the parallel external memory model 74

Initially, we assume that there are no large runs with more than
N ′

P records. Later we show that ignoring large runs does not affect
correctness of the algorithm or increase the number of I/Os.

We show that the number of runs and the number of records in
these runs is asymptotically balanced among the threads. We start
with the small runs, i.e., those that have less than N ′

2R records. Since
there are only R runs in total, there are also at most R small runs, so
each processor gets at most

⌈
R
P

⌉
of them when they are redistributed.

Each small run has at most
⌈
N ′

2R

⌉
records, so each processor gets at

most
⌈
R
P

⌉
·
⌈
N ′

2R

⌉
6 R

P ·
N ′

2R + R
P + N ′

2R + 1 6 N ′

2P + N ′

P + N ′

2P + 1 6 2N ′

P + 1

records (since R > P and R 6 N ′). When the remaining runs of each
processor are packed into bins, each bin has at most 2N ′

P records by
definition of the bins. Since we assume that no run has more than
2N ′

P records, every run can be put into a bin. The records in the bins

are in runs of at least N ′

2R runs, so there are at most 2N ′

P

(
N ′

2R

)−1
= 4R

P

runs per bin. Finally, since GreedyBinPacking is a 2-approximation,
there are at most P bins, so all bins can be processed in parallel by
the final call to Merge. In total, there are at most 4N ′

P + 1 records in
at most 5

P + 1 runs per processor. Since Merge needs O(nB + r) I/Os
to merge r runs with a total of n records on a single processor, the
last line needs at most O(N

′

PB + R
P) parallel I/Os. The values of R

P of all
merge levels form a geometric series, whose sum is smaller than the
reading costs of N

PB , so the last line has the desired bound.
All other lines only manage runs previously produced on the cur-

rent processor. All constant costs per run can thus be attributed to
the previous level of recursion making only a constant difference and
consequently ignored in the complexity analysis. The remaining lines
hence only contribute O(P) I/Os.

Now we show that PemBalancedMerge indeed reduces the num-
ber of runs by factor O(MB). Let ri be the number of runs assigned
to processor i for 1 6 i 6 P. Then R =

∑P
i=1 ri and each processor

creates ⌈ri/(M/B)⌉ runs, so the total number of runs produced by the
algorithm is:

P∑
i=1

⌈
ri
M
B

⌉
6

P∑
i=1

(
ri
M
B

+ 1

)
=

R
M
B

+ P = O(R
B

M
). (24)

The last equality comes from the assumption that R > PM
B , which

implies that P < R B
M .

With a similar argument, we can show that the algorithm produces
a correct output even if we ignore large runs: Runs are ignored if they
have more than N ′

P records, so there are at most P ignored runs in the
input of N ′ records. Adding these P runs to the final set of runs does
not increase their number asymptotically.

We have now everything at hand to determine the complexity of
PemMultisetSort: The initial run production takes O(N

PB) I/Os. As-

4.3 analysis in the parallel external memory model 75

ymptotically, the last line of the algorithm excluding the last iteration,
i.e., the last line of those iterations where R > PM

B , does the same
number of I/Os as the sequential DuplicateRemoval algorithm of
Arge [13] and has an optimal speed-up as shown above. It thus re-
quires the following number of I/Os:

O

(
max

(
N

PB
,
N

PB
logM

B

N

B
−

K∑
i=0

Ni

PB
logM

B
Ni

))
. (25)

There is only a single merge level where R < PM
B before the loop is

ended because O(P) runs are left, which contributes at most O(N
PB)

I/Os for the last line. The other lines of the main loop contribute
O(logP logM

B
K). Finally, there are at most logd P cross-processor passes

of PemSampleMerge. This makes up the following total number of
I/Os:

O

(
max

(
N

PB
,
N

PB
logM

B

N

B
−

K∑
i=0

Ni

PB
logM

B
Ni

)

+
N

PB
logd P+ logP logM

B
K

)
.

(26)

If we assume again that the number of processors is small enough
such that a constant number of PemSampleMerge passes is sufficient,
i.e., if we assume that P = (M/B)O(1) and P < N

M , then we can drop the
logd P term. With this assumption, it also holds that logP logM

B
K =

O
(

log M
B logM

B
K
)

, which corresponds to O
(
log M

B

)
I/Os per merge

level. We can also drop this term with the following observation: in
all but a constant number of merge levels, we still have R > PM

B runs,
so each processor has at least O

(
M
B

)
of them. Reading these runs

dominates log M
B , the term we want to drop.

We thus achieve the bound in Equation 16 for the non-degenerated
cases (i.e., if N < (M/B)B and P < N1− 1

B/B), making the bounds for
MultisetSorting and OrderedAggregation tight for these cases.

4.3.3.4 Parallel Problems on Multisets with Unspecified Order

The lower bound for DuplicateRemoval, Aggregation, and Group-
ing is the same as the one for the problems just discussed in the case
where K is small enough such that N− K = Ω(N). In these cases we
can use the same algorithm.

In the other case, i.e., if N−K = o(N), then K < N
2 , so there are Θ(K)

unique and Θ(N− K) non-unique records. Assuming that we know
which records are unique (for example using a pre-processing algo-
rithm that breaks the indivisibility assumption), we can first scan the
input in order to separate the former from the latter and then use the

4.3 analysis in the parallel external memory model 76

optimal MergeSort-based algorithm from above on the N− K non-
unique records. With the same assumptions as above, this requires
the following number of cache line transfers:

O

(
N

PB
+

N−K

PB
max

(
1, logM

B

N−K

B

))
. (27)

In the case where N−K 6 N
logM

B
N , it holds that

N

N−K
> logM

B
N > logM

B
N− logM

B

BN

N−K
= logM

B

N−K

B
, (28)

so the sorting of the non-unique elements is dominated by the prior
reading pass. The bound of Equation 27 is therefore equivalent to the
following, thus making the lower bound tight:

O

(
N

PB

)
. (29)

Narrowing the gap between upper and lower bound in the other
cases, i.e., for K such that N

logM
B

N 6 N−K = o(N), is an open problem.

4.3.3.5 Direct Shuffling

For above upper bounds, we assume that N < (M/B)B and P <

N1− 1
B/B, which are both realistic assumptions for real machines. For

the contrary case, Aggarwal and Vitter [3] had proposed DirectShuf-
fling in the sequential EM model: each record is moved directly
to its rank. This is not directly applicable in the PEM model with
CREW policy because possible write conflicts need to be resolved.
The worst conflict arises if all accesses go to the same location, i.e.,
K = 1, which can be resolved by local pre-processing in O(NP) and a
reduction in O(logP) accesses. So under the realistic assumption that
P logP = O(N), the conflict resolution is dominated by the overall
reading costs and can be ignored.7 However, DirectShuffling is not
sufficient to match our lower bounds, except for K large enough such
that K = NΩ(1), in which case the algorithm achieves the desired
bound:

O

(
N

P
max

(
1, logN K

))
= O

(
N

P

)
. (30)

Closing the gap between upper and lower bound for degenerated
machines with either smaller K or unspecified output order remains
an open, though practically probably irrelevant problem.

7 It is not possible to gather P records into the same cache line with less than logP

cache line transfers [12], so what follows is actually optimal even without our as-
sumption about P.

4.3 analysis in the parallel external memory model 77

4.3.4 Discussion

The analysis of this section gives us a series of insights. Most impor-
tantly it confirms the folklore conjecture that Aggregation is as hard
as MultisetSorting under many conditions. Unless N or P are un-
realistically large, we can say the following: OrderedAggregation

and MultisetSorting have the same complexity, so if we build an
Aggregation algorithm such that the order of the output does not
fundamentally depend on the order of the input, Sorting is optimal.
This is true for the precise bound in terms of multiplicities. In terms
of K, BundleSorting has also the same bound. If K is small enough
such that N−K = O(N), then the order of the output does not matter
and MultisetSorting is optimal again.

The analyses also show some cases where Aggregation is easier
than MultisetSorting. If N is large compared to B and M, Direct-
Shuffling is faster than Sorting. This is below the lower bound of
the external memory Turing machine model, which means that that
model misses some fundamental features that the PEM model has.
For Aggregation we identified one: in order to do DirectShuffling,
we need to take the record or a hash value of it as “address”, which
is not possible by doing only comparisons. Furthermore, if K is very
large and we assume that we can identify duplicates somehow, a con-
stant number of passes over the input is enough, which is better than
Sorting (at least for reasonably small P). Finally, we can also observe
that Grouping and DuplicateRemoval as well as MultisetSorting

and BundleSorting have the same tight bounds in terms of K. This
means that, somewhat counter-intuitively, dropping or aggregating
records, does not make problems asymptotically easier in the general
case.

We also identified a series of open problems. Most importantly our
upper bounds in the PEM model can still be improved: In some cases
we make quite strong assumptions, for example about P, and still do
not get exactly matching bounds for all parameter ranges or with the
desired precision. For the purpose of this work, in particular for prac-
tical algorithms on current, real-world hardware, our bounds are al-
ready very helpful, but from a theoretical perspective, we think that it
is interesting to have more complete answers. Concretely, the follow-
ing questions are still open:

• Is BundleSorting harder than MultisetSorting in terms of
multiplicities (in the EM or the PEM model)? We show that they
are the same in terms of K, but do not know of an algorithm for
BundleSorting that matches the bound of MultisetSorting

with the more precise analysis. In other words, are there input
distributions where the fact that we can drop records make the
problem asymptotically easier?

4.4 practical considerations 78

• Can we match the lower bounds for larger P? Here a better anal-
ysis of existing algorithms may already be enough, but maybe
it is rather the lower bound that needs to be improved using a
different proof technique.

• Can we close the gap (further) for order-independent problems—
both for the sort-based algorithms and direct shuffling? Again,
maybe a better analysis is already sufficient.

Furthermore, we only discuss worst-case complexities in our anal-
yses, but the average case can also be interesting. Aggarwal and Vit-
ter [3] and Greiner [79] obtain average case bounds for Sorting in the
EM and PEM model respectively that match their worst-case counter-
parts.

Finally, it would be interesting to study Aggregation with non-
commutative semigroup operations. Intuitively, this problem is still
easier than Sorting a complete set since the relative order among
the result records is arbitrary. However, within each group, the or-
der of the input records determines which pairs of records need to
be brought to cache together, so every group is an instance of the
ProximateNeighbor problem, which is known to have Permutation

bound [88]. This suggests that using non-commutative semigroup op-
erations makes Aggregation harder. Assuming that we can save all
K! permutations among the result records compared to an algorithm
that can produce any Permutation of the input leads to the follow-
ing conjecture:

Conjecture 7. Aggregation with non-commutative semigroup operations
need at least the following number of cache line transfers:

Ω

(
N ln N

eB −K lnK

P(lnN+B lnd)

)
.

4.4 practical considerations

In this section we discuss practical aspects of the way we model Ag-
gregation and the machine. This will help us to transfer the theoret-
ical insights of this chapter to the real-world implementations in the
subsequent chapters.

The external memory models that we use in this chapter were orig-
inally conceived for the analysis of algorithms on machines where
internal and external memory correspond to main memory and disk
respectively. The fact that CPU costs are ignored was undebatably
realistic in this setup, considering the high costs of I/Os. Database
query optimizers even used the number of I/Os as cost function for
rather precise performance predictions.

When applied to CPU caches, the external memory model does not
allow making as precise performance predictions. It is still widely

4.4 practical considerations 79

adopted [70, 51, 12, 178, 11] as a formal method to understand and
minimize memory access costs of algorithms and data structures. In
this case the implicit assumption holds that CPU costs can be reduced
or hidden in large parts thus making them close to “free”, for exam-
ple by making out-of-cache memory access sequential, eliminating
branches, and using out-of-order execution or vectorization. As we
show in the following chapters, this is not unrealistic for data inten-
sive algorithms such as those used in database systems.

Furthermore, the models that we use keep many benefits, even if
they differ from real-world hardware: For one the models are sim-
ple, so analyses in these models are intuitively understandable. Also,
only the simplicity makes it possible to prove lower bounds. This is
particularly interesting considering the fact that virtually all more so-
phisticated models are specializations of the permutation model (as
they assume that data transfer from slow to fast memory is done in
blocks), so the lower bounds proved in this model hold in the other
models as well. These lower bounds show the hard kernel of prob-
lems, the amount of data that any algorithm has to transfer—even if
the access pattern is optimal and CPU costs are negligible. It makes it
possible to speak of an optimal amount of memory access and exclude
non-optimal algorithms without implementing them.

In column-store database systems, cache efficiency is particularly
relevant. Since data is stored and processed in narrow columns of typ-
ically 1 to 4 or 8 bytes,8 we get relatively high values for parameter
B even though cache lines are much smaller than disk pages (64B in-
stead of 4KiB). The expectable speed-up through cache efficiency, B,
is thus relatively high. At the same time, the same algorithm is exe-
cuted repeatedly, once for the keys and then once for every aggregate
column. In particular, the processing of the aggregate columns then
only consists of moving data around. The benefit of cache efficiency
thus pays off once per column.

The column-store layout also has another implication: it removes
the necessity to load all data—the indivisibility assumption does not
hold for records! If by merely looking at the key column, the algorithm
can make some clever decisions, then this may make some problems
simpler. We can thus easily build the algorithm for Aggregation

on almost unique records, i.e., with K−N = o(N), that we sketched
in Section 4.3.3.4: Create a ⟨key, group⟩ vector with the key column
using full sort complexity, annotating those records that are unique;
then process the aggregate columns by removing the unique records
first and then sorting the remaining ones. For very large K, where
Sorting is the most expensive, we can thus get an effective one-pass
algorithm.

8 Sometimes columns are even less than a byte wide, namely when they are com-
pressed as in our work about bit packing [195].

4.4 practical considerations 80

Another question is whether we need a sorted output or not. In the
permutation model that we use, integer sorting techniques are cov-
ered by the sorting bound, even though they do not use comparisons.
Also, a standard hashing scheme, where the value of a hash function
of the key is taken as address in a data structure, is often very sim-
ilar to sorting by hash value, so our sorting bound also applies. We
estimate that this is true for the vast majority of Aggregation algo-
rithms in real-world database systems. In contrast, the algorithm we
just sketched leaves the order on the unique elements as in the input
and can thus beat the sorting lower bound. As mentioned before it is
an interesting open question to design other more sophisticated algo-
rithms whose output order fundamentally depend on the input order
in order to make the bound of Equation 19 tight for all values of K.

Similarly, we might ask whether aggregate functions are actually
semigroup operations on indivisible atoms. We argue that most real-
world Aggregation algorithms treat the aggregate function as black
box, where the function is given as parameter. In this case, at least
the attributes are indivisible, as the function can only be invoked on
two records that are in the cache, so it is indeed the responsibility
of the algorithm to permute the records around in an efficient way.
This is not without alternative though: Weidner et al. [185] and Pirk
et al. [146] present approaches where Aggregation is only run on
the most significant bits in order to reduce data transfer over network
or to co-processing devices respectively. The result in full precision is
then only computed for those records that are kept for the subsequent
processing step.

Furthermore, modeling aggregate functions as semigroups restricts
us to functions where intermediate results are of size O(1), which is
true for distributive and algebraic aggregation functions as defined by
Gray et al. [78]. This includes the most common ones like COUNT, SUM,
MIN, MAX, and AVG, but not MEDIAN for example. These functions are
also commutative and associative, but only on integer data types, not
on types with floating point precision. In this case additional aspects
of numerical stability may also have to be taken into account, which
probably leads to more costly algorithms.

Finally, we want to highlight an observation that we already make
in Section 4.1.1: on realistic machines, the term logM

B

K
B only takes

values 6 4. This means that asymptotic analyses are only of limited
interest. While we can “hide” an additional pre- or postprocessing
pass over the input “in the term of the reading costs”, in practice
this may mean intolerable extra costs. For example have we seen that
Grouping, where all N records from the input show up in the output,
has the same complexity as Aggregation, where records with the
same key are aggregated as soon as possible, at least in terms of K.
However, in practice, early aggregation is a technique that every serious
Aggregation algorithm uses to improve its constants.

4.5 related work 81

4.5 related work

In this section we briefly review prior work that is related to ours in
various ways: algorithms and data structures in the external memory
model, work on an extension to this model for hierarchical caches,
and lower bounds for other relational operators.

4.5.1 Work on External Memory Algorithms

External memory models have been studied by many authors for a
long time. We present the most relevant work in Section 4.1.2. In sum-
mary, Aggarwal and Vitter [3] introduced the most popular external
memory machine model with upper and lower bounds for Sorting.
Arge et al. [13, 14] developed two methods for deriving external mem-
ory lower bounds from comparison lower bounds and upper bounds
for MultisetSorting and DuplicateRemoval. Matias et al. [127]
proved upper and lower bounds for external BundleSorting, which
were improved by Farzan et al. Farzan2005 to multiplicities. The per-
mutation model was extended to multiple processors as the parallel
external memory model by Arge et. al [12], which was again extended
to incorporate semigroup operations by Jacob et al. [88]. For a more
detailed discussion including sorting and related problems, linear al-
gebra operations, data structures, problems on graphs, computational
geometry, searching, and string processing, we refer to surveys on the
topic [177, 176, 178].

Another type of problem bears some similarity to Aggregation

and has been studied in depth in the context of external memory
models: MatrixMultiplication can be expressed as a Join followed
by an Aggregation, and the sparsity of the matrices influences the
runtime similar to how the number of groups influences the costs
of Aggregation. First lower bounds date as far back as the work
of Hong and Kung [90] about dense matrices. Later lower bounds
were found for sparse matrix dense vector multiplication [26], sparse
matrix dense matrix multiplication [81, 79], and sparse matrix sparse
matrix multiplication [144]. Amossen and Pagh [7] even build an al-
gorithm that can be used for both Join-Project and MatrixMulti-
plication.

Finally, the Reduce step of MapReduce [50] can also be seen as
equivalent to Aggregation (though in practice with a more complex
function than a semigroup operation). Greiner et al. [79, 80] study
the complexity of MapReduce in the context of external memory and
find a tight lower bound with the technique we also use in our work.
Since they make some assumptions about the data layout of the input
(by modelling mappers such that each of them produces at most one
record per key value), their result cannot be immediately transferred
to Aggregation.

4.5 related work 82

4.5.2 Work on External Memory Data Structures

Sorting and similar problems are related to some data structures.
Probably, the most prominent example is Arge’s buffer tree [10]. N
batched insertions or queries to an initially empty buffer tree need
O(NB logM

B

N
B) I/Os and the inserted records can be read in sorted or-

der with O(NB) I/Os. The buffer tree can hence be used to solve online
Sorting optimally. This and the lower bound for Sorting also imply
a lower bound of O(logM

B

N
B) amortized I/Os for each operation. Ku-

mar and Schwabe [105] present an external memory heap with simi-
lar properties. To the best of our knowledge, it has not been studied
yet whether a (possibly improved) buffer tree needs fewer I/Os if the
records have K < N distinct keys.

The buffer tree started a line of research about dictionaries, data
structures that represent a set of ⟨key, value⟩ pairs and allow fast
look-up with keys. Dictionaries could be used to solve Aggregation.
Several authors studied the construction of dictionaries [157] and the
trade-off between costs of insertions and online member queries—in
external memory models making the indivisibility assumption [36,
35, 200], and in external memory models that do not [89, 184, 201,
174, 84]. Most of this work sees the dictionary rather as an index, so
their results are only remotely related to our work.

A more detailed overview about data structures for external mem-
ory is provided by several surveys on that topic [9, 176, 178].

4.5.3 Cache-Oblivious Model

Another extension of the external memory model is the cache-oblivious
model [70], where algorithms run on a machine with unknown cache
size. Optimal algorithms in this model are also optimal in the cache-
aware external memory model. What is more, they are particularly
suited to run on a hierarchy of caches (such as multi-level caches of
modern processors, see Section 2.3) because they exploit all of them
optimally at the same time. At the same time, lower bounds of the
cache-conscious model also hold in the cache-oblivious one.

The most relevant result for our work is the work on problems
on multisets of Farzan et al. [62, 63]. They provide an upper bound
for MultisetSorting, FunnelSort, which matches the cache-aware
bounds of Arge et al. [13], and show an extension that solves Du-
plicateRemoval with the same bound. Modifying the DuplicateRe-
moval logic similarly to what we do in Section 4.3.3 would turn that
algorithm into an optimal cache-oblivious Aggregation algorithm.
For more work on cache-oblivious algorithms and data structures we
refer again to surveys [11, 34].

4.6 conclusion 83

4.5.4 Work on (RAM) Lower Bounds of other Relational Operators

There is a line of research about lower bounds of a particular kind of
query in the RAM model: a series of Join operators in full conjunctive
queries. Atserias et al. [15] showed that there is a tight bound on the
result size of this type of queries. Subsequently, Ngo et al. [142], and
later Veldhuizen [173] built algorithms with a runtime proportional
to the result size. The lower bound was subsequently refined and
matched with an upper bound by Ngo et al. [141]. However, we do
not know of any external memory lower bound for other non-trivial
relational operators than Sorting.

4.6 conclusion

In this chapter we study Aggregation and related problems in two
external memory models: We first extend the external memory Tur-
ing machine model to make aggregating records compatible with the
indivisibility assumption. This allows us to derive a lower bound for
Aggregation in terms of the multiplicities of the records, which is the
same as MultisetSorting and can be achieved with an algorithm we
provide. We then analyse a family of problems related to Aggrega-
tion in the more powerful parallel external memory (PEM) model.
We are able to show that the same bound holds for many parameter
ranges of this model as well and extends to machines with multi-
ple processors. This proves the long-standing folklore conjecture of
the database community that HashAggregation and SortAggrega-
tion have the same cache complexity in many interesting situations.
At the same time, our bounds reveal configurations where the sort-
ing bound does not apply. We still provide lower bounds and often
matching upper bounds, at least for parameter ranges that are inter-
esting in practice. As a side product of our study, we contribute upper
and lower bounds of MultisetSorting, BundleSorting, and Dupli-
cateRemoval in the parallel external memory model and even im-
prove some previous bounds in the sequential case. The insights we
gain with this analysis shall serve as a design guideline for the subse-
quent practical chapters of this thesis and possibly for practical work
of other authors in the database community.

Part III

P R A C T I C E

Actual operation or experiment, in contrast to theory.

— Wiktionary [192]

5
C A C H E - E F F I C I E N T A G G R E G AT I O N : H A S H I N G I S
S O RT I N G

For decades researchers have studied the duality of Hashing and
Sorting for the implementation of relational operators, especially for
efficient Aggregation. Depending on the underlying hardware and
software architecture, the specifically implemented algorithms, and
the data sets used in the experiments, different authors came to differ-
ent conclusions about which is the better approach. In this chapter we
argue that in terms of cache efficiency, the two paradigms are actually
the same. Our claim is supported by the result of the previous chapter
stating that the complexity of Hashing is the same as the complexity
of Sorting in the external memory model. Furthermore, we make the
similarity of the two approaches obvious by designing an algorithmic
framework that allows switching seamlessly between Hashing and
Sorting during execution. The fact that we mix Hashing and Sort-
ing routines in the same algorithmic framework allows us to leverage
the advantages of both approaches and makes their similarity obvious.
On a more practical note, we also show how to achieve very low con-
stant factors by tuning both the Hashing and the Sorting routines to
modern hardware. Since we observe a complementary dependency of
the constant factors of the two routines to the locality of the input, we
exploit our framework to switch to the faster routine where appro-
priate. The result is a novel relational Aggregation algorithm that
is cache-efficient—independently and without prior knowledge of in-
put skew and output cardinality—, highly parallelizable on modern
multi-core systems, and operating at a speed close to the memory
bandwidth, thus outperforming the state of the art by up to 3.7×.

This chapter is based in large parts1 on work that we published
previously in [133]. The experimental results of that work were repro-
duced by a SIGMOD Review Committee and were found to support
the central results reported in the paper.2

5.1 introduction

As we have seen in Section 3.1, the dominant cost of Aggregation is,
as with most relational operators, the movement of the data. Since the
early days of disk-based database systems, relational operators have
been designed to reduce the number of I/Os needed to access the

1 The main additions are Sections 5.6 and 5.7.
2 See http://db-reproducibility.seas.harvard.edu/, under “SIGMOD 2015”.

87

http://db-reproducibility.seas.harvard.edu/

5.1 introduction 88

disk whereas access to main memory was considered free. In today’s
in-memory database systems, the challenge stays more or less the
same but moves one level up in the memory hierarchy [123]: How
should an Aggregation operator be designed such that it uses the
CPU caches efficiently to overcome the bottleneck of accessing the
much slower main memory?

Traditionally, there are the two opposite approaches to implement
this operator: Hashing and Sorting. HashAggregation inserts the
input rows into a hash table, using the grouping attributes as key
and aggregating the remaining attributes in-place. SortAggregation

first sorts the rows by the grouping attributes and then aggregates the
consecutive rows of each group. The question about which approach
is better has been debated for a long time and different authors came
to different conclusions about which is the better approach in which
context [6, 20, 76, 96]. The consensus is that HashAggregation is
better if the number of groups is small enough such that the output
fits into the cache, and SortAggregation is better if the number of
groups is very large. Many systems implement both operators and
decide a priori which one to use. In this chapter we argue that in
terms of data movement, the two paradigms are actually the same.
By recognizing the fact that Hashing is Sorting, we can construct a
single Aggregation operator with the advantages of both worlds.

As a first argument for our claim, we remind the reader of our result
of the previous Chapter 4 about the complexity of Aggregation in
terms of number of cache line transfers. The result is derived in a gen-
eral external memory model [12], which holds in the cache setting as
well as in the disk-based setting. As we show, there is a lower bound
on the number of cache line transfers that any algorithm needs to in-
cur under realistic assumptions, which matches the bounds of Multi-
setSorting in the common case. This means that the two textbook
algorithms HashAggregation and SortAggregation can only ex-
hibit a certain duality with respect to the number of groups if they are
implemented naively. However, with two simple, commonly known
optimizations, the respective drawbacks of both algorithms can be re-
moved. The two approaches then match the lower bound and have
exactly the same, inherent costs in terms of cache line transfers.

As a second argument for the similarity of the two approaches, we
design an algorithmic framework that allows seamless switching be-
tween Hashing and Sorting during execution. It is based on the
observation that Hashing is in fact equivalent to sorting by hash value.
Since Hashing is a special form of Sorting, intermediate results of a
Hashing routine can be further processed by a Sorting routine and
vice versa. This allows us to apply state-of-the-art optimizations to
both routines separately, but still combine them to benefit from their
respective advantages. Furthermore, is Sorting by hash value an easy
instance of Sorting, since Hashing makes the key domain dense and

5.1 introduction 89

eliminates value skew. We also discuss how to apply this framework
in the context of column-store database systems and just-in-time com-
piled query plans, which are the two most commonly used architec-
tures for analytical workloads.

Furthermore, we address the “CPU friendliness” and “Paralleliza-
tion” challenges (cf. Section 3.1) and show how to achieve very low
constant factors for both the Hashing and the Sorting routine by
tuning them to modern hardware. This also makes our analysis in
the external memory model from the previous chapter meaningful,
which assumes that computations are “free”. The main techniques are
wait-free parallelization, NUMA awareness, enabling super scalar in-
struction execution, and careful cache management. This is more im-
portant on modern in-memory database systems than on traditional
disk-based systems, since much fewer CPU instructions can be exe-
cuted in the time of a cache line transfer than in the time needed for
loading a page from disk. With our careful tuning however, we are
able to leave the memory access costs as the main remaining perfor-
mance bottleneck.

Despite all tuning, there is an intrinsic reason why Hashing and
Sorting have complementary performance vis-à-vis the locality of
keys in the input: Hashing allows for early aggregation while Sort-
ing does not. If several rows of the same group occur close to each
other, Hashing aggregates them immediately to a single row. By re-
ducing very early and possibly by large factors the amount of sub-
sequent work, Hashing is much faster than Sorting in this case. In
the other case however, i.e., in case of an input with few repeating
keys, the additional effort of trying to aggregate is in vain, so regu-
lar Sorting without early aggregation is faster here. Our framework
can exploit this complementarity by effectively detecting locality dur-
ing execution and switching to the faster routine when appropriate,
thus putting the insights of the theoretical analysis into practice. Fi-
nally, we carefully integrate an inexpensive cardinality estimator that
allows us to effectively eliminate the potentially prohibitive resizing
costs of the output data structure.

Putting everything together, we obtain a novel relational Aggre-
gation algorithm that solves most of the challenges we identified
in Section 3.1: It is optimal in terms of memory access complex-
ity—independently and without prior knowledge of input skew and
output cardinality—and has very low constant factors on modern
hardware. It is cache-efficient, highly parallelizable on modern multi-
core systems, and operating at a speed close to the memory band-
width. With our single, robust Aggregation operator, the possibly
error-prone decision of the optimizer before the query execution is
eliminated. We present extensive experiments on a variety of data
sets comparing our implementation to the state of the art, which we
are able to outperform by up to factor 3.7.

5.2 review of state-of-the-art sorting techniques 90

The rest of the chapter is organized as follows: In Section 5.2 we
review state-of-the-art Sorting techniques, followed by the presenta-
tion of our algorithmic framework inspired by them in Section 5.3. We
continue with tuning our routines to modern hardware in Section 5.4
and show how their advantages can be combined in Section 5.5. Sec-
tion 5.6 presents our approach of integrating a cardinality estimator
into our framework and Section 5.7 sketches how it can be extended to
NUMA setups. The resulting Aggregation operator is evaluated in
Section 5.8. Finally, we make some concluding remarks in Section 5.9.

5.2 review of state-of-the-art sorting techniques

In this section we review state-of-the-art Sorting techniques, from
which we draw inspiration for the algorithm design of this chapter.

As we have shown in Chapter 4, in many realistic cases, the lower
bound of Aggregation is the same as the one of MultisetSorting

and that the bound is tight, at least for moderate numbers of pro-
cessors. Consequently, using an optimal MultisetSorting algorithm
is also optimal for Aggregation as far as the number of cache line
transfers is concerned. Since Sorting is a very well-studied problem,
we can reuse well-known techniques that make Sorting also run fast
on real hardware. This is the underlying assumption of using exter-
nal memory models for CPU caches, which completely ignores CPU
costs: The model is only realistic if computations can be eliminated or
hidden in large parts in the final implementation; only then, the fact
is relevant that is provably impossible to reduce the memory accesses
below a given lower bound.

A large body of prior work suggests that special techniques for
sorting integers of dense domains outperform general purpose com-
parison-based sort algorithms and that the RadixSort family is the
dominant such technique (see [188] for an overview). The main tech-
nique is to avoid comparisons—an intrinsic advantage of non-compar-
ison based sort algorithms (although it is possible to eliminate the
CPU costs of branches even for comparison based algorithms [160]).
More recent literature studies tuning details such as fan-out, LSB vs
MSB (least/most significant bits first), architecture specificities and
parallelization [152, 92, 91, 182], rather than questioning their domi-
nance. When the results are compared to QuickSort as a reference,
RadixSort usually has a significant advantage (roughly 2x in [152],
up to more than 4x in [91]). The work of Polychroniou and Ross [149]
also comes to the conclusion that LSB RadixSort is the fastest known
sort algorithm when it comes to dense domains.

In the next chapter, we use the insight that IntegerSorting tech-
niques are often faster than comparison-based counterparts for the
design of our Aggregation operator. We make them usable for arbi-
trary keys by projecting them into the dense domain of hash values.

5.3 algorithmic framework 91

Algorithm 4 Algorithmic Building Blocks

1: func Partitioning(run: Seq. of Row, level)
2: for each row in run do
3: Rh ← Rh ∪ row with h = hash(row.key, level)

4: return (R1, . . . ,RF)

5: func Hashing(run: Seq. of Row, level)
6: for each row in run do
7: table.InsertOrAggregate(row.key, row, level)
8: if table.isFull() then
9: tables← tables∪ table ; table.Reset()

10: return (R1, . . . ,RF) with Ri ←
⋃

t∈tables
getRange(t,i)

5.3 algorithmic framework

In this section we present an algorithmic framework for an Aggre-
gation operator putting the theoretical insights of Chapter 4 into
practice. The main idea is to design the algorithm like an Integer-
Sorting algorithm on the dense hash values with Hashing as a spe-
cial case used for early aggregation. Furthermore, we show how to
achieve wait-free parallelization of the algorithm. Finally, we also dis-
cuss how to fit the framework into popular processing models of mod-
ern database systems. In other words, in this section, we address the
challenges for cache efficiency, parallelization, and system integration
from Section 3.1.

5.3.1 Mixing Hashing and Sorting

As presented in the previous chapter, sort-based and hash-based Ag-
gregation have the same complexity in the external memory model.
This is very intuitive considering the fact that the two algorithms
have the same high-level structure: they recursively partition the in-
put—either by the keys of the groups or by their hash values—until
there are few enough groups left to process each partition in cache.
However, the two approaches are even more similar: the process of
building up a hash table also partitions the input by hash value.

Consequently, we can define the following two partitioning rou-
tines, which will be the main building blocks of our framework and
which are shown in Algorithm 4: plain partitioning by hash value
called Partitioning (Line 1) and a partitioning routine based on the
creation of hash tables called Hashing (Line 5). Both routines pro-
duce partitions in form of “runs”:3 Partitioning produces one run
per partition by moving every row to its respective run. Hashing

3 We consciously use the term “run” from the disk-based era, which was commonly
used to denote temporary files for intermediate processing results on disk [76].

5.3 algorithmic framework 92

Algorithm 5 Aggregation Framework

1: Aggregate(SplitIntoRuns(input), 0) ◃ initial call
2: func Aggregate(input: Seq. of Seq. of Row, level)
3: if |input| == 1 and isAggregated(input[0]) then
4: return input[0]

5: for each run at index j in input do
6: ProduceRuns← HashingOrPartitioning()
7: Rj,1, . . . ,Rj,F ← ProduceRuns(run, level)

8: return
⋃F

i=1 Aggregate(
⋃

j Rj,i, level + 1)

starts with a first hash table of the size of the cache and replaces its
current hash table with a new one whenever it is full. Every full hash
table is split into one run per partition—merely a logical operation
since the hash values of one hash partition are stored in a consecutive
range in the hash table.

Note that the working set of both Hashing and Partitioning is
strictly limited to the CPU cache. The working set of Partitioning is
limited through its partitioning fan-out, while Hashing has a limited
working set because the size of the hash table is fixed to the size of
the cache.

We can now combine these two building blocks into a recursive
algorithm that is similar to both SortAggregation and HashAggre-
gation at the same time. The algorithm is shown in Algorithm 5:
The input is first split into runs. Then, each run of the input is pro-
cessed by one of the two routines selected by HashingOrPartition-
ing (line 6), which produces runs for the different buckets. Once the
entire input has been processed, the algorithm treats all runs of the
same partition as a single bucket and recurses into the buckets one
after each other. With every step of the recursive partitioning, more
and more hash digits are in common within a bucket, thus reducing
more and more the number of groups per bucket. The recursion stops
when there is a single run left for each bucket and in that run, all rows
of the same group have been aggregated to a single output row.

Figure 8 illustrates how the run production of our framework works.
The boxes represent runs and their background color the range of
hash values of the contained rows. The relevant bits of the hash val-
ues are also given by numbers inside the boxes. The bits not playing a
role for the placement within the box are marked as x; the underlined
bits of the hash values are common for the entire box. For illustrative
purposes, the runs in the figure are split in just two ranges by every
recursive call.

Using the hash values as partition criterion has the advantage that
it solves the problem of balancing the number of groups in the buck-
ets. The hash function distributes the groups uniformly—it makes the
key domain dense and hence the partitioning easier.

5.3 algorithmic framework 93

xxxx . . . xxxx xxxx . . . xxxx xxxx . . . xxxx

000x
. . . 011x

100x
. . . 111x

000x
. . . 011x

100x
. . . 111x 0xxx. . . 0xxx 1xxx . . . 1xxx

0000

. . . 0011

0100

. . . 0111

1000

. . . 1011

1100

. . . 1111

input:

intermediate
runs:

output:

Figure 8: Recursive run-production of our algorithmic framework

The way we use Hashing has also the advantage that it enables
early aggregation [76, 111]. In contrast to HashAggregation with pre-
partitioning or traditional SortAggregation, we can now aggregate
in all passes, not just the last. Since Hashing can aggregate rows
from the same group, the resulting hash tables and hence the output
runs are potentially much smaller than the input run, thus reducing
the amount of data for subsequent passes by possibly large factors.
It is important to understand that this does not change the number
of cache lines needed in the worst case, but it is very beneficial in
case of locality of the groups. So one might even wonder why we do
not use Hashing all the time, similarly to recent work on disk-based
systems [82]. As we show in the next section, on modern hardware,
Partitioning can be tuned to a four times higher throughput than
Hashing, which makes it the better routine in cases where early ag-
gregation is not helpful.

The fact that our framework supports Hashing and Partitioning

interchangeably not only makes the similarity between the two ap-
proaches obvious but also gives it the power to switch to the bet-
ter routine where appropriate: In presence of locality or clusters, our
framework can use Hashing, whose early aggregation reduces the
amount of work for later passes. In the absence of locality, we can
switch to the faster Partitioning instead. The switching can happen
spontaneously during runtime, without loosing work accomplished
so far, and without coordination or planning. Algorithm 5 still uses
HashingOrPartitioning as a black box, but in Section 5.5, we dis-
cuss several switching strategies.

We argue that the design of our framework resembles that of a sort
algorithm. While the similarity to BucketSort is obvious, our frame-
work has similarities with other sort algorithms as well: Since the
bucket of an element is determined by some bits of the hash value,
our algorithm is in fact a RadixSort rather than a BucketSort. This
is how hashing turns Aggregation into an instance of (approximate)

5.3 algorithmic framework 94

IntegerSorting to make it easier than Sorting in general. Further-
more, it repeatedly merges intermediate runs from different parts of
the input, so in a way the algorithm is also similar to MergeSort.
Finally, hashing can be seen as a variant of InsertionSort, which is
commonly used as base case in recursive sort algorithms [46].

An interesting interpretation is the following: The concatenation of
the final runs of our algorithm is a hash table like HashAggregation

would produce but it is built with a Sorting algorithm—which is ac-
tually much faster. This suggests that the optimal way to do Hashing

is Sorting.
Finally, the fact that we mix Hashing and Sorting requires some

technical attention: The buckets may contain rows that were just
copied from the input, but also rows that are already aggregates of
several rows from the input. In order to aggregate two aggregated
values, one needs to use the so-called super-aggregate function [78],
which is not always the same as the function that aggregates two
values from the input. For example the super-aggregate function of
COUNT is SUM. However, it is easy to keep some meta-information asso-
ciated with the intermediate runs indicating which aggregation func-
tion should be used.

5.3.2 Parallelization

Apart from cache efficiency, the design of our framework addresses
the challenge of multi-core parallelism inside operators, which we
identified in Section 3.1. We only give an overview of our solution in
this section and describe more details in Chapter 6.

Our framework allows for full parallelization of all phases of the al-
gorithm: First, the main loop that partitions the input in Line 5 of Al-
gorithm 5 can be executed in parallel without further synchronization
since neither the input nor the output are shared among the threads.
Second, the recursive calls on the different buckets in Line 8 can also
be done in parallel. Only the management of the runs between the
recursive calls (the

⋃
-operations in our pseudo-code) requires syn-

chronization, but this happens infrequently enough to be negligible.
We use user-level scheduling to balance the two axes of parallelism

as follows: we always create parallel tasks for the recursive calls,
which are completely independent from one another, while we use
work stealing to parallelize the loop over the input. It is important to
see that the latter form of parallelization implies that several runs per
bucket are produced (at least one per thread), which in turn implies
another level of recursion. By using work stealing, our framework lim-
its the creation of additional work to situations where no other form
of parallelism is available. At the same time, parallelizing the main
loop (Line 5) is required to achieve full parallelization. First, it is the
only way to parallelize the initial call of the algorithm and second

5.3 algorithmic framework 95

k1

k2

k0

k2

k3

k1

k0

k2

k1

k0

k1

k2

k3

1

2

0

2

3

1

0

2

1

v0

v1

v2

v3

v4

v5

v6

v7

v8

Σ0

Σ1

Σ2

Σ3

... ...

grouping column aggregate column 1
mapping

vector

Figure 9: Column-wise processing.

it allows for full parallelization even in presence of heavy skew: the
buckets after the first call can be of arbitrarily different sizes because
even an ideal hash function only distributes the groups evenly over the
buckets, but does not affect the distribution of rows into these groups
(which is given by the input). With work stealing in the main loop
however, our framework can schedule the threads to help with the
large buckets once they have finished their own recursive call.

5.3.3 System Integration

In Section 3.1 we identify system integration as a challenge for Ag-
gregation operators. Hence, we now discuss how to integrate our
framework into the two prevailing processing models of analytical
in-memory database systems, namely column-wise processing and
just-in-time compiled (JiT) query plans.

Column-wise processing is the traditional processing model of col-
umn-store database systems. It imposes some specific requirements
for the implementation of Aggregation operators. While our frame-
work fulfills these requirements, this is not true for all Aggregation

algorithms proposed in the past. In the column-store architecture, the
questions arise when and how the aggregate columns should be pro-
cessed with respect to the grouping columns. These questions have
been discussed in the literature for the column-store architecture in
general [31, 32, 124], but there are some additional aspects specific to
Aggregation.

One possibility for column-wise processing is to process all col-
umns at the same time, similarly to a row store. An Aggregation op-
erator would read the values of a single row from one column after an-

5.3 algorithmic framework 96

other, compute the aggregates, and then store them in their respective
result columns one after each other. This approach is known to have
the disadvantage that the data is not processed in tight loops [32],
which results in considerable performance deterioration on modern
hardware. Furthermore, it effectively decreases the size of the cache
during aggregation: Since all relevant attributes of a row together are
larger than just a single attribute, fewer elements fit into cache, so an
Aggregation operator needs more passes for cache-efficient process-
ing.

Another possibility is to do the processing one column at a time,
like it is done for example in MonetDB [31, 124]. With this approach,
Aggregation is split into two operators as illustrated by Figure 9:
The first operator processes the grouping column and produces a vec-
tor with identifiers of the groups and a mapping vector, which maps
every input row to the index of its group; the second operator applies
this mapping vector by aggregating every input value with the cur-
rent aggregate of the group as indicated by the mapping vector and is
executed once for each aggregate column. This approach is known to
have the disadvantage to require additional memory access to write
and read the mapping vector. Furthermore, it ignores the insights of
our analysis for cache-efficient Aggregation: if we aggregate the in-
put values directly to their group in the output column, we get the
same sub-optimal memory access pattern as HashAggregation, pro-
ducing close to one cache miss for every input row for large outputs.
Since there are often many more aggregate columns than grouping
columns, this would have a worse impact on performance than ineffi-
cient processing of the keys.4

The state-of-the-art column-wise processing model was introduced
in MonetDB/X100 [32] and combines the advantages of the above
two possibilities by interleaving the processing of the different col-
umns in blocks of the size of the cache. Applied to Aggregation,
this allows processing the columns in tight loops without material-
ization of the mapping vector to memory. However, we also need to
adopt this model inside the Aggregation operator to make it compat-
ible with our recursive run production. Consequently, our framework
operates as follows if used for column-wise processing: While produc-
ing a run of the grouping column, both Hashing and Partitioning

produce a mapping vector as depicted in Figure 9, but only for this run.
This mapping is then applied to the corresponding parts of the aggre-

4 Note that there are cases where this may be—contrary to our reasoning—the best
strategy: In a complicated query with many large Joins, it may be better to do all
Joins and the final Aggregation on the key columns alone, and then re-assemble
the rows in a final step of “late materialization” (cf. work by Abadi et al. [2]). The
re-assembly has a random access pattern with one cache miss per element, but this
may be faster than materializing all columns repeatedly after every Join. However,
deciding which strategy is better as well as handling Aggregation with late materi-
alization are out of the scope of this thesis.

5.4 minimizing computations 97

gate columns. When the corresponding runs of all columns have been
produced, the framework continues with the processing of the rest of
the input.

One important aspect of this discussion is that not all techniques for
Aggregation proposed in prior work are compatible with column-
wise processing. Our two routines, Hashing and Partitioning, move
every input element directly to its final location, so it is easy to cre-
ate the required mapping vector. However, it is unclear how to fit
some other routines into this scheme, for example vectorized sorting
networks recently used for Joins [20] or software-caching used for
cache-efficient Aggregation in row stores [42].

Recent work [140, 67, 138] promises to replace column-wise process-
ing by a processing model based on just-in-time compilation (JiT). In
this model, each pipeline of the execution plan of a query is compiled
into a fragment of machine code just before execution, thus enabling
processing in tight loops without decoupling the processing of dif-
ferent columns. It is straightforward to fit our framework into this
model: The main part of the operator, i.e., the initial call to the Aggre-
gate function of Algorithm 5, is compiled into the pipeline fragment
including (and ending with) the Aggregation operator. When this
pipeline ends, all data resides in intermediate runs in buckets of the
first level of the recursion. For the recursive function calls, a second
code fragment is compiled, which only contains the code to process
the buckets further. Both fragments contain the code path of both the
Partitioning and the Hashing routines from Algorithm 4. Since the
runtime decision between the two paths is the same for the entire
run, it is easy to predict by the hardware and does hence not hurt
performance.

5.4 minimizing computations

In this section we study the details of the two routines used in our
algorithm: Hashing and Partitioning. This addresses the challenge
of CPU friendliness from Section 3.1. The goal is to bring the behav-
ior of our implementation on real hardware as close as possible to
the idealized external memory machine model. Our analysis and the
algorithmic framework built upon it are only relevant if we turn the
movement of the data into the dominant part of the execution time
by reducing the computational overhead to a minimum (i.e., ideally
by making it “free”). We show that this is much more difficult in the
cache setting of modern hardware than it used to be in the disk set-
ting, since the gap between fast and slow memory is much narrower
and small differences in the implementation can change the perfor-
mance by factors.

The microbenchmarks in this section are run in the same experi-
mental setup as the experiments in Section 5.8.

5.4 minimizing computations 98

5.4.1 Minimizing CPU costs of Hashing

We conducted a performance comparison of several hash table imple-
mentations. It turned out that the simplest approach has the lowest
CPU overhead: a single-level hash table with linear probing, similar to
the state-of-the-art dense_hash_map of Google.5 We fix the size of hash
table to that of the L3 cache and consider it full at the very low fill rate
of 25%. With this configuration, collisions are very rare or even non-
existing with high probability if the number of groups is more than
two orders of magnitude smaller than the cache, so no CPU cycles
are lost for collision resolution. The apparent waste of memory is in
fact negligible because it is limited to one or very few hash tables per
thread in our final algorithm presented in the next section. Interest-
ingly, this is the opposite of what Barber et al. [23] recently proposed
for Joins, where denser storage increased performance. We tried out
many different hash functions that are popular among practitioners
and found that for small elements, MurmurHash2

6 is the fastest. On
a technical note, we adapted the linear probing to work within blocks,
such that we can cleanly split a table into ranges for the recursive calls.
The final insertion costs of our implementation are below 6ns per el-
ement. This is roughly four times more than an L1 cache access, but
more than an order of magnitude faster than out-of-cache insertion,
where CPU costs are dwarfed by the costs of cache misses and our
reasoning in the external memory model is meaningful.

5.4.2 Minimizing CPU costs of Partitioning

To minimize the CPU costs of the Partitioning routine, we use a
technique known from IntegerSorting for dense domains. As dis-
cussed in Section 5.2, this kind of sort algorithms is usually faster
than comparison-based sorting, except special cases such as sorting al-
most sorted data [38]. With Partitioning, IntegerSorting is made
branch-free and even comparison-free, which eliminates most CPU
costs of comparison-based sort algorithms.

The key idea is to use a technique called “software write-com-
bining”, first described by Intel [85] and used by various other au-
thors [20, 161, 182, 149, 162]. Software write-combining is designed to
avoid the read-before-write overhead and to reduce the number of TLB
misses inherent in partitioning [122], which writes to a high number
of memory pages. It consists in buffering one cache line per parti-
tion, which is flushed when it runs full using a non-temporal store
instruction that bypasses the cache. This scheme works best with 256

partitions, so we use this number to split runs into ranges in our
framework. Since the final size of the partitions is unknown before

5 https://code.google.com/p/sparsehash/

6 https://code.google.com/p/smhasher/

https://code.google.com/p/sparsehash/
https://code.google.com/p/smhasher/

5.4 minimizing computations 99

me
mc
py

naiv
e,

key

naiv
e,

has
h

sw
wc,

key

sw
wc,

has
h

sw
wc,

has
h, ooo

sw
wc,

has
h, ooo, 2lv

l

sw
wc,

m
ap

, 2lv
l

0

2

4

6

8

10

Th
ro

ug
hp

ut
[G

B
/
s]

memcpy partitioning

Figure 10: Microbenchmark of degenerated partitioning routines.

processing, most authors start with a counting pass to determine out-
put positions. Wassenberg et al. [182] eliminate this pass using a trick
with virtual memory by over-allocating every partition so that it can
hold the entire input. This is not possible with the memory manage-
ment of industry-grade database systems, but using a two-level data
structure, a list of arrays, has the same benefit and only very low over-
head, as we show below. We use this technique for processing not only
the grouping column but also the aggregate columns, as discussed in
Section 5.3.3, since their memory access pattern is equivalent.

We conducted a series of microbenchmarks to measure the im-
pact of our optimizations. Figure 10 shows the (payload) bandwidth
of different versions of the Partitioning routine on uniformly dis-
tributed random data. The first bar shows the bandwidth of a self-
implemented memcpy using non-temporal store instructions as a ref-
erence. It represents the maximum memory throughput achievable
in practice by using a sequential access pattern—Partitioning rou-
tines, with their inherently more difficult access pattern, can only be
slower. The next two bars show the throughput of a naive partition-
ing scheme, one partitioning according to some bits of the keys them-
selves (called key) one partitioning according to bits of the hash func-
tion (called hash). The difference between the two is only small as the
throughput is mainly limited by the inherent TLB misses mentioned
before. The next two bars show how software write-combining con-

5.5 adaptation to locality 100

siderably improves performance (called swwc): The key-variant is 2.9
times faster than the naive counterpart. The variant partitioning by
hash value seems to suffer from the computational overhead though.
However, we can benefit from out-of-order execution by manually un-
rolling the main loop into blocks of 16 elements, which are first all
hashed and then all put into their partition buffers. The next bar (de-
noted ooo) shows that we gain 24% throughput with this optimization,
thus achieving a 3.0 times higher throughput than the naive partition-
ing routine. Finally, we replace over-allocated output partitions by the
two-level data structure, which lowers performance by roughly 2%.
This final routine, swwc, hash, ooo, 2lvl, runs at 97% of the bandwidth
of our memcpy. The last bar shows the bandwidth of applying the map-
ping vector to an aggregate column using software write-combining
and our two-level data structure (denoted map). Since reading the
mapping vector adds memory traffic that we do not count as applica-
tion bandwidth, the bandwidth here is slightly lower than that of the
previous variant, namely 93% of our measured memory bandwidth.

To sum things up, like in the case of Hashing, Partitioning of
both grouping and aggregate columns can be tuned to modern hard-
ware such that the inevitable movement of the data remains the dom-
inant part of the processing time.

5.5 adaptation to locality

5.5.1 Adaptation Mechanism

In the previous sections, we describe an algorithmic framework for
designing an Aggregation operator similar to a Sorting algorithm
and how to reduce the CPU costs of two possible subroutines. In this
section, we answer the remaining question of when to select which
of the two. This addresses the challenge of adaptive processing from
Section 3.1.

To that aim we present a series of experiments with naive strategies
for selection of one of the two routines that illustrate their respective
performance characteristics. Figure 11 shows the results in terms of
element time, a metric that expresses the time a single core spends with
each element, which is formally defined in Section 5.8. We vary the
parameter that has the strongest impact on performance: the number
of groups K that the N input records belong to, which is the number
of records in the result.

In HashingOnly the only subroutine used is Hashing (Figure 11a),
whereas with PartitionAlways, the input is always preprocessed by
one or two passes of Partitioning before a final Hashing pass (Fig-
ure 11b and 11c). To keep our implementation simple, we only allow
a single Hashing pass by exceptionally letting its hash tables grow
larger than the cache. This prevents full parallelization for very small

20 24 28 212 216 220 224 228
0

50

100

150

200

cache 256·cache

Target output size (K)

“E
le

m
en

t
ti

m
e”

=
T
·P

/
N
/
C

[n
s] Pass 2 (Hashing)

Pass 1 (Hashing)
Pass 0 (Hashing)

(a) HashingOnly

20 24 28 212 216 220 224 228
0

50

100

150

200

cache 256·cache

Target output size (K)

“E
le

m
en

t
ti

m
e”

=
T
·P

/
N
/
C

[n
s] Pass 1 (Hashing)

Pass 0 (Partitioning)

(b) PartitionAlways (2 passes)

20 24 28 212 216 220 224 228
0

50

100

150

200

cache 256·cache

Target output size (K)

“E
le

m
en

t
ti

m
e”

=
T
·P

/
N
/
C

[n
s] Pass 2 (Hashing)

Pass 1 (Partitioning)
Pass 0 (Partitioning)

(c) PartitionAlways (3 passes)

Figure 11: Breakdown of passes of illustrative Aggregation strategies using
P = 20 threads.

5.5 adaptation to locality 102

K and cache misses for very large K, but these effects do not occur
in our final algorithm. The experiments are run on uniformly dis-
tributed data.

The first observation in this experiment is the fact that Hashing-
Only automatically does the right number of passes: If K < cache,
it computes the result in cache. The subsequent merging of the runs
of the different threads is insignificant due to their small size and
thus not visible in the plot. Once K > cache, Hashing recursively
partitions the input until the result is computed in cache and the re-
cursion stops automatically. For PartitionAlways this is not the case.
Since it does not aggregate during partitioning, it can only be used as
preprocessing and external knowledge is necessary to find the right
depth of recursion before the final Hashing pass.

The second observation is that Partitioning is much faster (by
more than factor four in our experiments) than Hashing if K > cache,
i.e., if the latter produces more than one run. In this case Hashing

suffers from its non-sequential memory access and wasted space and
hence wasted memory transfers intrinsic to hash tables. Furthermore,
as discussed in Chapter 4, as soon as there are only slightly more
groups than fit into one hash table, chances are very low to find two
elements with the same key, so the amount of data is not reduced
significantly. In contrast, Partitioning achieves a high throughput
independently of K thanks to the tuning from the previous section.

In the case of uniformly distributed data, the best strategy is ob-
vious: use Partitioning until the number of groups per partition is
small enough such that Hashing can do the rest of the work in cache.
However, it is not clear how to find out when this is the case if K is not
known. Furthermore, the best strategy is less obvious with other dis-
tributions: consider a clustered distribution with a high locality where
each key mostly occurs in one narrow region of the input. Hashing

is then able to reduce the amount of data significantly although the
entire partition has more groups than fit into cache. Hence, Hashing

can be the better choice even before the last pass if the ratio of input
data size to output data size high enough.

This leads us to defining an Adaptive strategy. Figure 12 illustrates
the idea. The algorithm starts with Hashing. When a hash table gets
full, the algorithm determines the factor α := nin

nout
by which the input

(run) has been reduced, where nin is the number of processed rows
and nout the size of the hash table. If α > α0 for some threshold α0,
Hashing was the better choice as the input was reduced significantly,
so the algorithm continues with Hashing. Otherwise, it switches to
Partitioning. The parameter α0 balances the performance penalty
of Hashing compared to Partitioning with its benefit of reducing
the work of later passes. We show how we determine this machine
constant later in this section. When enough data was processed with
the faster Partitioning routine such that the overhead of the (inad-

5.5 adaptation to locality 103

use
Hashing

for 1 run

reduced
data by fac-

tor > α0

use Parti-
tioning

for some
time

yesno

Figure 12: Adaptive strategy

equate) Hashing is amortized, i.e., when nin = c · |cache| for some
constant c, the algorithm switches back to its initial mode in case the
distribution has changed. In experiments below, we show how we can
find a good value for c that balances amortization effect and reactivity
to distribution changes.

Figure 13 shows the performance of Adaptive compared to the
illustrative strategies from Figure 11. It shows that Adaptive auto-
matically partitions the input using Partitioning until Hashing can
process each partition in cache—without knowing K in advance. Con-
sequently, its performance corresponds piecewise to the best of the
other strategies. If K < |cache| (or K/256i < |cache| for pass i), each
thread only works with a single hash table, which never runs full. If
however the input does not fit into one hash table, the input is par-
titioned with the faster Partitioning routine first. The fact that Par-
titioning is interleaved with occasional Hashing to check whether
the distribution has changed has only low overhead and is barely no-
ticeable for K < 256 · |cache|. In the following section, we show that
Adaptive not only works well on uniform data, but has a robust per-
formance on many distributions.

We see the main advantage of our approach in the fact that it com-
bines the respective advantages of two complementary routines by
switching between them based on a simple, local criterion. No com-
pleted work is ever thrown away; no extra work or preprocessing is
necessary; no potentially imprecise information from the optimizer
is needed; no synchronization is needed among the threads. In fact,
the different threads do not even need to take the same decision: they
can benefit from changing locality or clusteredness in the input by
aggregating where the locality is high and partitioning first where it
is low.

5.5 adaptation to locality 104

20 24 28 212 216 220 224 228
0

50

100

150

200

cache 256·cache

Target output size (K)

“E
le

m
en

t
ti

m
e”

=
T
·P

/
N
/
C

[n
s]

HashingOnly

PartitionAlways (2 passes)
PartitionAlways (3 passes)

Adaptive (passes 0, 1, 2 resp.)

Figure 13: Adaptive strategy in comparison with HashingOnly and Parti-
tionAlways (2 and 3 passes) using P = 20 threads.

5.5.2 Tuning of Algorithm Constants

In the remainder of this section, we show how we empirically deter-
mine the constants of the Adaptive algorithm.

5.5.2.1 Switching Threshold α0

The parameter α0 balances the performance penalty of Hashing

compared to Partitioning with its benefit of reducing the work of
later passes. In order to determine its value for our system, we run
both HashingOnly and PartitionAlways on data sets with varying
skew using our parameterized data generators, presented later in Sec-
tion 5.8.5. For every data set, we observe the value of α = nin

nout
in the

traces of HashingOnly. For unclustered distributions like uniform,
the transition from α = ∞, where all elements fit into the single hash
table, to the other extreme, α = 1, where all keys are distinct, is very
sharp and only small values of α occur at all. Almost any value of α0

works in these cases.
However, the three distributions moving-cluster, self-similar, and

heavy-hitter can be parameterized to a large range of degrees of spa-
tial locality. In Figure 14, we plot the run times of HashingOnly and
PartitionAlways on different data sets with these distributions as
function of the observed values of α. As expected, for high values of α
and any distribution, HashingOnly outperforms PartitionAlways.

5.5 adaptation to locality 105

HashingOnly

PartitionAlways

11020304050

10

15

20

25

30

35

moving-cluster

self-similar

heavy-hitter

Observed α

“E
le

m
en

t
ti

m
e”

=
T
·P

/
N
/
C

[n
s]

Figure 14: Determining the cross-over of HashingOnly and Parti-
tionOnly.

In these cases the input of the first pass can be reduced by large fac-
tors, so it exhibits enough spatial locality for the Hashing routine to
be beneficial. For values of α approaching 1, the order of the routines
is inverted: it is better to ignore low locality and use Partitioning

instead. The desired threshold α0 should separate the first case from
the latter. We observe that the respective lines of a particular distri-
bution all intersect in the range of α ∈ [7, 16] and use the α with the
smallest overall error as value for α0 in our system, which is roughly
11.

5.5.2.2 Hashing vs Partitioning (c)

The constant c in the Adaptive algorithm controls how long the Par-
titioning routine is run before the algorithm switches back to Hash-
ing, which happens after c · cache processed rows. Figure 15 shows
the impact of c on the run time of Adaptive for different K and the
uniform data set. For K < cache, such as K = 210 in the plot, the al-
gorithm never switches to Partitioning in the first place, so c does
not have any impact. In the extreme case of c = 0, the algorithm de-
generates into HashingAlways, which is quite slow for K > cache
(cf. Figure 13). The larger c gets, the more data is processed with the
faster Partitioning routine, so the more the performance of Adap-
tive approaches that of PartitionAlways. This suggests that c = ∞
is the best choice, i.e., to never switch back.

5.6 adaptation to the output size 106

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

c

“E
le

m
en

t
ti

m
e”

=
T
·P

/
N
/
C

[n
s]

K = 227

K = 220

K = 210

Figure 15: Impact of tuning constant c on the run time of Adaptive.

However, smaller c have the benefit to be able to adapt to changing
distributions, which are likely to occur after UNION ALL operators or as
an artifact of reordering of rows for compression purposes [115]. This
benefit is hard to quantify because it depends on the database system
and typical workloads. Because the benefit diminishes with growing
c, a smaller c seems affordable anyway: For c = 5, the difference to
PartitionAlways is 17% for K = 220 (19% for K = 227), while it is
5% (11%) for c = 10 and still 4% (5%) for c = 20.

In summary, c allows us to choose a trade-off between robustness
to changing distributions and maximum throughput. We choose a
rather performance-oriented value of c = 10 for the experiments of
this chapter, which are all done on data sets of a single distribution,
but suggest a slightly lower value for productive systems.

5.6 adaptation to the output size

5.6.1 Motivation and Adaptation Mechanism

While the Adaptive strategy presented in the last section automat-
ically chooses the most suited routine among Hashing and Parti-
tioning, there is still a final, subtle challenge for our operator before
it achieves complete independence from the optimizer. It is the chal-
lenge of knowing the size of the runs of Hashing when this routine
is used to produce the result, i.e., when it is used in the last level of
recursion. In the levels of recursion before the last the runs are fixed
to the size of the cache to ensure cache efficiency. However, using this

5.6 adaptation to the output size 107

approach in last level can lead to a considerable waste of memory if
the number of groups at that point of the recursion is much smaller
than the cache. The folklore approach of filling a hash table of un-
known size is to create a new data structure of twice the size of the
current one every time a certain fill ratio is reached and to transfer all
elements to the new copy. This process is called rehashing. However,
for an Aggregation query with K ≈ N, this effectively corresponds
to an additional pass over the input, which increases the run time
considerably. Hence, rehashing is not a viable solution either. Instead,
we would want to know the size of the run before we create it, such
that no resizing is necessary, but without require a priori information
from the optimizer.

We propose to solve this problem by using a streaming algorithm
that estimates the cardinality of the output during the first level of
recursion our algorithm. When the final runs need to be constructed,
which happens at the earliest just after the first level is completed,
we thus have an estimate of their size. An approximate answer is
perfectly suitable for this purpose: the sizes of our hash tables are
always powers of two in order to avoid modulo computations, and
occasional rehashing due to underestimations has only little impact
on performance if they are not too frequent.

Cardinality estimation of streams has been studied extensively in
the past. Appendix B gives a short overview. They all have in common
that they visit each element exactly once, accumulate some approxi-
mate information, and finally derive some cardinality estimate of the
data stream they have seen. For our purpose, ProbabilisticCount-
ing with stochastic averaging [66] (PCSA) seems to provide the best
trade-off: With 32-way accuracy, it achieves a standard error of 13%.
While having reasonable precision, this takes up to 128B, i.e., two
cache lines, and hence ensures that the estimator does not interfere
with the careful cache management of the routines described in Sec-
tion 5.4. Furthermore, it can be integrated into the routines with very
little extra computations per record. PCSA is based on counting lead-
ing zeros of a single hash value, which we calculate for every record
anyways. We thus directly present the hash value of each record that
is processed in the first level of recursion to the estimator. Only four
more instructions are then necessary for each record, including the
counting the leading zeros in the hash value which is available as
hardware instruction on many processors.7 The details of PCSA are
explained in Appendix B.

Two more properties of PCSA are worth noting: First, it is easily
parallelizable. Every thread can maintain its own private state and at
any given point, when a global estimate is required, one can combine
the respective states to obtain the result a single thread would have

7 On the X86 architecture, the lzcnt instruction does this calculation. See https://

software.intel.com/sites/landingpage/IntrinsicsGuide/ or similar for details.

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

5.6 adaptation to the output size 108

20 24 28 212 216 220 224 228
0

20

40

60

80

100

120

L3 ΣL3 256 · L3

Target output size (K)

“E
le

m
en

t
ti

m
e”

=
T
·P

/
N
/
C

[n
s]

Output size estimated
Output size provided
Exponential growing

Figure 16: Impact of output size estimation on Adaptive using P = 20

threads.

computed. Second, we can exploit the fact that at any point their states
can be used to estimate the number of distinct elements so far. This
is useful in the next chapter, where we overlap the processing of the
different passes, which requires an estimate of the output size even
before all input records have been processed for the first time.

Our approach has remote resemblance with InspectorJoins pro-
posed by Chen et al. [40], which collects statistics during the parti-
tioning phase of the join in order to select the most appropriate join
phase algorithm afterwards.

5.6.2 Evaluation

We now quantify the impact of PCSA experimentally. To that aim
we compare the run time of three configurations of our Adaptive

operator on uniform data: First, as a reference, we run the operator
without estimator, but provide the exact output size as a parameter
so that it can immediately allocate the output data structure with the
correct size. Second, we run it without estimator and external informa-
tion, so that the output data structure has to be grown exponentially
whenever it runs full. Third, we use the prediction of the estimator as
described previously. Figure 16 shows the result.

By comparing the two configurations without estimator, we can see
the costs due to growing the output data structure, which is necessary

5.7 extension to numa and remote memory 109

if we have no information about the output size. There is no visible
difference between the two for K < 226 = N

64 , so the costs for growing
until that small size are dominated by the much larger regular pro-
cessing costs. For larger K, the growing costs continuously increase:
while they amount to 15% of additional costs for K = 226, they in-
crease the element time from 92ns to 198ns for K ≈ N (the latter
point is outside the plot), which corresponds to 115% extra run time.
This confirms the importance of knowing the output size and em-
phasizes that ignoring this aspect, as done by some work proposed
previously, is not acceptable in practice.

We now compare the configuration with estimator with the one
where the output size is known and the estimator deactivated. We
can see that variant with the estimator is roughly 2.8ns slower. This
corresponds to the computational overhead of counting the leading
zeros and storing the result. It represents around 30% of additional
run time for small K, but since it is a constant overhead, it diminishes
relatively with the increasing run time of larger K. Remember that the
experiments in Figure 16 are done with a query without grouping col-
umns in order to make the impact of the estimator more visible. The
additional processing costs of grouping columns will further decrease
the relative costs of the estimator.

More importantly, other than the constant overhead of the estimator,
there is no difference anymore, which means that we completely elim-
inated the costs of growing the output. Our approach thus achieves
almost optimal performance even for very large K by only adding a
small constant overhead.

The fact that the overhead is relatively high for small K can be mit-
igated by a small, pragmatic modification: We could activate the esti-
mator only in the Partitioning routine of our algorithm. This way, it
would never be used on inputs where K is small compared to N. In
these cases, the costs of growing are negligible anyways. Only when
K is large enough such that the Partitioning routine is used, we have
to pay the overhead of the estimator. This approach does not take into
account those keys that are only processed by the Hashing routine.
However, that routine only processes a small fraction of the rows if K
is large, so we expect the estimate to be only off by little. We leave the
implementation of this modification and its experimental evaluation
as a small open problem for future work.

5.7 extension to numa and remote memory

Until here, our framework assumes uniform access cost to memory.
As we discuss in Section 3.5 however, this may not be the case for
very large machines or even clusters, where accessing remote mem-
ory is much slower than accessing local memory. In order to scale to
such large machines, the challenge becomes In this section, we thus

5.7 extension to numa and remote memory 110

discuss how to extend our framework with NUMA awareness. We
believe that our solution is also a valid approach for clusters with fast
interconnect networks, which behave similarly as NUMA sockets, but
with somewhat different constants.

In order to reduce communication between the sockets, there are
two well known strategies (cf. Section 3.4.1): To use the names of
Graefe [76], in TwoPhaseAggregation on the one hand, first every
node aggregates its own input, then these intermediate results are ex-
changed among the sockets such that each socket gets all results of
a subset of the groups, which are finally aggregated by that socket.
The Repartition algorithm on the other hand exchanges the input
directly without prior, local aggregation, before each socket aggre-
gates locally the groups it is responsible for. If the number of groups
K is small, TwoPhaseAggregation is faster because it reduces the
amount of data transferred over the network. With very large K, the
effort of doing an initial, local aggregation may not be outweighed
by the benefit of data reduction, so Repartition is faster in this case.
These complementary choices were known in the early parallel da-
tabase systems [76, 163], and recently confirmed to exist in modern
NUMA systems as well [116]. As with the choice between HashAg-
gregation and SortAggregation, the better strategy depends on K,
which we only know at runtime. The question is thus how to select
the right strategy adaptively.

We argue that the adaptive mechanism of the previous section can
be applied to this question almost without modification. The general
idea is to start like TwoPhaseAggregation until we have reason to
believe that this was not the best strategy, at which point we operate
like Repartitioning. The resulting algorithm basically works as fol-
lows. First, the threads of each socket start a local Aggregation on
the input of their socket as described in the previous section: they pro-
cess the input, using either Hashing or Partitioning depending on
by how much the data was reduced, and recurse into the buckets thus
produced. The Hashing routine is now modified in such a way that
it stops as soon as the run it produces becomes larger than a certain
threshold (which we define more formally below). If that happens,
we switch to Partitioning for some time just as in the single-socket
algorithm. The intermediate result of the local computation is thus a
partial Aggregation, where the runs consist in a mix of hash tables
and partitions and potentially contain several records that belong to
the same group. When the local (partial) Aggregations are done, the
buckets thus produced are repartitioned among the sockets such that
each socket gets all records of a subset of the buckets. Finally, each
socket aggregates all records of each of its buckets locally using the
single-socket algorithm of the previous section.

Like the cache-efficient algorithm of the previous section, this mech-
anism makes us operate automatically in the mode of the better of

5.7 extension to numa and remote memory 111

two approaches, in this case Repartition and TwoPhaseAggrega-
tion: If the number of groups K is small, the threshold of the Hash-
ing routine is never reached, so each socket produces a full local Ag-
gregation and the communication volume of the subsequent repar-
titioning is minimized. This is exactly how TwoPhaseAggregation

behaves. If the number of groups K is too large for the local Aggre-
gations to be beneficial, then the Hashing routines soon interrupts
because the runs get larger than the threshold. Hence, most runs are
produced with the much faster Partitioning routine—at the expense
of a slightly higher communication volume—which corresponds to
how the Repartition algorithm behaves. Note that, unlike one might
first think, the effort of producing many partitions locally does not
represent additional work: The Aggregations after the repartition-
ing of the data need small enough partitions in order to aggregate
them in cache anyways. Had the partitions not been produced before
exchanging them, then this work would have to be done afterwards.

The threshold for the Hashing routine to stop is defined as follows.
We assume that pre-aggregation is not helpful if K > β0N for some
machine constant β0 ∈ (0, 1] (N is the number of records in the input
of that socket and K the number of groups among these N records). In
terms of the current run, this is the case if the current run is larger
than β0

N
Fr , where F is the fan-out (F = 256 in our implementation)

and r the depth of the recursion (starting with r = 0 for the input).
Like α0, β0 is a machine constant that balances computation with
communication, which has to be determined by experiments similar
to those we describe in Section 5.5.2.1.

Finally, a few known techniques are required for full NUMA aware-
ness: In order to cope with unequally distributed work or differences
in available compute resources on the sockets, work stealing across
sockets may be beneficial. In order to avoid unnecessary cross-socket
communication, threads from a socket should only start stealing from
other sockets when their local work is completely finished. However,
it may be beneficial to limit work stealing to cases where the imbal-
ance is so high that more than one pass is remaining on the over-
loaded socket. Otherwise, the additional memory costs induced by
the stealing may outweigh the benefit of off-loading the work (see
work of Psaroudakis et al. [151] for a more detailed description of
this effect). Furthermore, as Li et al. [116] point out, it is important to
cleverly schedule the partitioning in a topology-aware way in order to
avoid that some sockets or connections are saturated while others are
idle. Last but not least, it is also important to start communications
before all computations are finished. Otherwise, the interconnects be-
tween the sockets are idle during the computation phases, which
makes suboptimal use of this scarce resource (Balkesen et al. [19] do
something similar for Joins). In our algorithm, this can be achieved
by processing the buckets in the same order on all sockets and start-

5.8 evaluation 112

ing the repartitioning and post-aggregation of a bucket as soon as
it finishes. This way processing of the buckets is implicitly synchro-
nized, so the communication of each bucket can be overlapped with
the computation of other buckets. We only sketch the application of
these techniques to our operator because we expect it to be similar to
those described in the prior work we cited and difficulties mainly to
arise in implementation details, which we leave as future work.

In summary, our adaptive mechanism for cache efficiency on mem-
ory with uniform access cost from the previous section extend to
communication efficiency in a NUMA setup. As before, it provides
a means to switch between two complementary strategies based on
a very simple, local criterion and different sockets may take differ-
ent decisions if the characteristics of their respective input vary. The
mechanism does not require synchronization, sampling, or planning,
but instead makes our algorithm adapt to the data at runtime. This
way it behaves automatically like the best algorithm for the respective
situation.8

5.8 evaluation

In this section we evaluate the effectiveness of our algorithm design,
assess the quality of our implementation, and compare the perfor-
mance of our operator with previous work.

We implemented our algorithm for column-wise processing and
systems where the impact of NUMA is negligible. We argue that the
experiments have a certain validity for the JiT processing model as
well: Where not otherwise mentioned, the experiments are run just on
the grouping column, so the inner loops of both processing models
are exactly equivalent. The implementation of the NUMA extension
is left for future work.

5.8.1 Test Setup

We run the experiments on two Intel Xeon E7-8870 CPUs9 with 256GiB

of main memory. They run at 2.4GHz and have 10 cores each. Each
core has 64KiB of private L1 cache, 256KiB of private L2 cache, and
access to a shared 30MiB on-chip L3 cache (3MiB per core). The
TLB of the CPUs have two levels, the first of which have 64 entries for
data and 128 for instructions and the second 512 entries for both com-

8 Note that in this work, we concentrate on the hard case, where no (potentially fuzzy)
initial partitioning of the input is known. If such a partitioning is known, communica-
tion may not be necessary at all because then we know that all records of each group
are in the input of the same socket. TrackJoin [150] and NeoJoin [155] were de-
signed to reduce communication for Join in these situations. Furthermore, for cases
where K ≈ N, it may be beneficial to detect distinct records in a pre-processing phase
and only to exchange the remaining ones, such as we propose in prior work [83].

9 http://ark.intel.com/products/53580

http://ark.intel.com/products/53580

5.8 evaluation 113

1 4 8 12 16 20
1

4

8

12

16

20

Number of cores (P)

Sp
ee

du
p

optimal
K = 231

K = 226

K = 221

K = 216

K = 211

Figure 17: Speedup of Adaptive compared to single core performance.

bined. The operating system is SLES 11.3 with Linux kernel 3.0.101

for x86_64. We use GCC 4.8.3 as compiler using -O3 -march=native

optimizations.
Our data sets consist of N = 231 rows where all columns are

64-bit integers. If not mentioned otherwise we report run times as
“Element Time” = T · P/N/C, where T is the total run time, P the
number of cores, and C the number of columns (grouping and aggre-
gate columns combined). This metric represents the time each core
spends to process one element and makes numbers of different con-
figurations easily comparable—among themselves and to known ma-
chine constants such as the time of a cache miss.

All presented numbers are the median of 10 runs.
We previously presented the experiments of this chapter in [133]

(with exception of Figure 16). They were reproduced by a SIGMOD
Review Committee and were found to support the central results re-
ported in the paper.10

5.8.2 Scalability with the Number of Cores

We first assess the parallelization mechanisms of Section 5.3.2 and the
quality of our implementation in terms of scalability with the num-
ber of cores. Figure 17 shows the speedup of Adaptive for different
numbers of groups K compared to its respective performance on a
single core. As the plot shows, the speedup is around 16 on our 20

CPU cores no matter K, which is as close to the optimal speedup as
practical implementations usually get. Section 5.8.5 also shows the

10 See http://db-reproducibility.seas.harvard.edu/, under “SIGMOD 2015”.

http://db-reproducibility.seas.harvard.edu/

5.8 evaluation 114

1 2 4 6 8 10
0

20

40

60

80

100

Number of columns (C)

“E
le

m
en

t
ti

m
e”

=
T
·P

/
N
/
C

[n
s]

K = 227

K = 223

K = 219

K = 215

K = 211

Figure 18: Scalability of Adaptive with the number of columns using P = 20

threads.

experiments with other distributions, where we found our algorithm
to perform just as well. Finally, we also ran this experiment with con-
current dummy threads on the idle cores in order to simulate a real
system under load: If the dummy threads loop over their respective
3MiB of cache to keep the cache warm, the performance of our algo-
rithm is not influenced since its threads only rely on their respective
part of the cache. However, if the dummy threads run an out-of-cache
memcpy, the performance of our algorithm deteriorates by up to factor
two, confirming that memory bandwidth is the main bottleneck our
algorithm faces. The good scalability in all situations does not come
to a surprise, since the threads of our algorithm do not share any
resources and synchronize only at a very coarse granularity.

5.8.3 Scalability with the Number of Columns

Figure 18 shows how the number of aggregate columns affects the
performance of Adaptive for different output cardinalities K. Just for
this plot, we use N = 228 input elements to compensate the memory
increase due to the additional columns. The experiment evaluates the
effectiveness of the column-wise processing presented in Section 5.3.3,
which is designed to process the different columns independently. In-
deed, the plot indicates that the run time per element is almost the
same for any number of columns. As discussed in Section 5.4, the
processing of the grouping column is a bit more expensive than the
processing of the other columns because of the hashing and collision
resolution, which explains the slightly higher costs per element with
lower number of aggregates.

5.8 evaluation 115

We also confirmed the scalability of our operator with the num-
ber of columns in experiments with other data distributions, not pre-
sented here because they do not reveal further insights (we do show
the impact of data distributions with a fixed number of columns be-
low). Since the number of columns does not affect the processing cost
per element, we run all other experiments only with a grouping col-
umn, i.e., without aggregate columns or C = 1.

5.8.4 Comparison with Prior Work

We now show an experimental analysis of several state-of-the-art algo-
rithms for in-memory Aggregation from the work of Cieslewicz and
Ross [42] and Ye et al. [199] and compare them to Adaptive. Since
their work targets the row store architecture (implicitly assuming
JiT query compilation) while our implementation targets the column-
store architecture, we use a DISTINCT query with no aggregate col-
umns (C = 1) for the comparison. In this type of query, the input and
output data structures are equivalent in both architectures, and our al-
gorithm does not need to produce a mapping vector for column-wise
processing, so the experiment abstracts from all architectural differ-
ences.

We used the original implementations, but made the following
modifications to tune them to this experiment: First, we changed
the minimal output data structure size to the size of the L3 cache,
which effectively eliminates collision resolution for small K and conse-
quently reduces the run time in these cases by up to 25%. Second, we
removed padding and redundant fields in the intermediate and out-
put data structures, in order to reduce tuple size and hence memory
traffic. This reduces the run time by roughly 20% for large K and even
by up to 50% where the reduction in size makes the output just fit
into cache. The padding originally improved the collision resolution
in the high-throughput cases of small K, but our first modification im-
proves theses cases even more. Third, we replaced system mutexes by
much smaller spin locks, again to reduce memory traffic, which also
reduces the time by roughly 20% for the variants using them. Finally,
we replaced the multiplicative hashing by MurmurHash2, which we
use in our algorithms as well. This has the same effect on the algo-
rithms from prior work than on ours: a more predictable performance
with up to 20% run time reduction due to fewer collisions, but notice-
able overhead for small K. Furthermore, we exceptionally deactivate
the cardinality estimator of Adaptive and instead provide it with
the output size, which is an information that all algorithms from the
shown competitors rely on. This makes our algorithms somewhat
faster, but the benefit is only noticeable for large output cardinalities,
i.e., if K ≈ N, and always less than 10%.

5.8 evaluation 116

20 24 28 212 216 220 224 228
0

50

100

150

200

L3 ΣL3 256 · L3

Target output size (K)

“E
le

m
en

t
ti

m
e”

=
T
·P

/
N
/
C

[n
s]

Hybrid

Part.+Aggr.
Independent

Plat

Atomic

Adaptive

(a) Single core run time per element

20 24 28 212 216 220 224 228
0

500

1,000

1,500

2,000

L3 ΣL3 256 · L3

Target output size (K)

Th
ro

ug
hp

ut
=

N
/
T

[m
ill

io
n

el
em

en
ts

/s
] Hybrid

Part.+Aggr.
Independent

Plat

Atomic

Adaptive

(b) Total throughput

Figure 19: Comparison with prior work of Cieslewicz and Ross [42] and Ye
et al. [199] using P = 20 threads.

5.8 evaluation 117

Figure 19 shows a comparison of run times on data with uniform
distribution. As we analyze in the following, all algorithms from prior
work have an intrinsic limit in terms of K. They all consist of a fixed
number of passes (either one or two) over the data, which means that
they work well until a certain number of groups, but are penalized by
a high number of cache misses beyond this limit. This is in line with
our analysis of Chapter 4.

We describe the different algorithms and analyze their performance
in more detail:

Hybrid [42] (1 pass): Each thread aggregates its part of the input
into a private hash table with a size fixed to its part of the shared L3

cache. When this table is full, old entries are evicted similarly to an
LRU cache and inserted into a global, shared hash table. This becomes
inefficient as soon as most of the output does not fit into the private
tables, which happens for K > 216 (marked with L3 in Figure 19).

Atomic [42] (1 pass): All threads work on a single, shared hash
table protected by atomic instructions. This approach can suffer from
contention due to concurrent updates as discussed by the original
authors [42], but in the present DISTINCT query without aggregate
columns, virtually no updates occur, so the problem is inexistent. It
reaches its cache efficiency limit when the shared hash table exceeds
the cache size, namely at around K = 219 (marked with ΣL3). This
gives Atomic an advantage over all other algorithms for numbers of
groups where it can fit its output into the combined cache while the
shared-nothing approaches cannot.

Independent [42] (2 passes): In a first pass, every thread produces
a hash table of his part of the input. In a second pass, the hash tables
are split and merged in parallel.11 This makes the algorithm simi-
lar to HashingOnly with two passes, but since the hash tables of
the first pass can be larger than the cache, both passes can trigger
close to a cache miss per row. This limit is reached when the working
set exceeds the L3 cache fraction corresponding to each thread, namely
roughly at K = 216 for the first pass (marked with L3) and K = 224

for the second (marked with 256 · L3).
Partition-and-Aggregate [199] (2 passes): Similarly to Partition-

Always with two passes, this algorithm first partitions the entire in-
put by hash value and then merges each partition into its part of a
hash table. Like our algorithm if limited to two passes as shown in
Figure 11b, this algorithm cannot do the merging in a cache-efficient
manner if K > 256 · cache = 224 (256 ·L3 in the plot). Furthermore, its
partitioning uses the naive implementation as presented in Section 5.4
and is therefore slower than ours.

Plat [199] (Partition with Local Aggregation Table, 2 passes): Sim-
ilarly to Hybrid, in this algorithm each thread aggregates into a pri-

11 Note that the time of the second pass was not taken into account in the original
paper [42].

5.8 evaluation 118

vate, fixed-size hash table. When it is full, new entries are overflowed
into hash partitions, which are merged in a subsequent pass like in
the previous algorithm. This entails the same limit: the merging be-
comes inefficient if K > 256 · cache = 224 (marked with 256 · L3 in
the plot). The partitioning in itself is also less efficient than ours, but
in contrary to the previous algorithm, our optimization could not be
applied here, since the private hash tables would destroy the explicit
L1 cache management of software write-combining.

Adaptive (variable number of passes): Our algorithm is the only al-
gorithm that gracefully degrades with larger K thanks to the efficient
additional passes. Compared to the fastest of the other algorithms, it
achieves a speedup of at least factor 2.7 for all K > 221.12 The peak
speedup factor 3.7 is achieved at K = 224 where Adaptive needs only
41ns/element while Atomic needs 153ns/element. Note that this
speedup is higher than one usually hopes for for such a fundamental
operator like Aggregation, where improvements of several tens of
percent are already worth some effort.

It is also worth noting that the second best algorithm for large val-
ues of K is actually the simplest in terms of cache management: While
the cache efficiency mechanisms of the other algorithms take extra
time even though they do not work outside the range of K they were
designed for, Atomic “just” pays a single cache miss per row.

As Figure 19b shows, Adaptive is also at least as fast as almost
all other algorithms for smaller values13 of K. The similarity of all
algorithms for small K does not come as a surprise, since all hash-
based algorithms do effectively exactly the same in these scenarios.
It is interesting to see however that the throughput starts dropping
slightly later for Adaptive than for the other algorithms. The reason
is that the linear probing scheme our algorithms use can store more
elements in the same amount of space than the chaining scheme used
by the other algorithms, which need to store an additional pointer.14

Only for K = 218, Atomic can fit the output just into its shared L3

cache, and is therefore slightly faster than Adaptive, which already
needs a partitioning pass. Since the partitioning is so fast though, the
difference is only very small.

5.8.5 Skew Resistance

We now extend the experiments on uniform data to other input dis-
tributions in order to test the skew resistance of our Adaptive oper-
ator. We use the synthetic data generators of Cieslewicz et al. [42],

12 As shown by our real-world workload study of Section 2.1.2 and unlike common
belief, Aggregation with an output cardinality larger than two million rows is not
at all uncommon.

13 We leave the narrow gap to Independent as a small open problem.
14 This is also the reason why the cache sizes indicated in Figure 19 are off by factor

two for Adaptive.

5.8 evaluation 119

20 24 28 212 216 220 224 228
0

20

40

60

80

100
cache 256·cache

Target output size (K)

“E
le

m
en

t
ti

m
e”

=
T
·P

/
N
/
C

[n
s]

heavy-hitter
moving-cluster
self-similar
sorted
uniform
zipf

Figure 20: Adaptive on different distributions using P = 20 threads.

which generate input data for any combination of N and K for a se-
ries of distributions with different characteristics. Since data cannot
have K = N groups and be skewed at the same time, K is only approxi-
mated. The distributions are namely heavy-hitter, moving-cluster, self-
similar, sorted, uniform, and zipf.15 In short, in heavy-hitter, 50% of
all records have the key 1, the others are distributed uniformly be-
tween 2 and K. In moving-cluster, the keys are chosen uniformly from
a sliding window of size 1024. Self-similar is the Pareto distribution
with an 80–20 proportion (also known as 80–20 rule) and zipf is the
Zipfian distribution with exponent 0.5.

Figure 20 shows the performance of Adaptive on all data sets. The
first and most important observation is that Adaptive is not slower
on the other distribution than uniform. In this sense, uniform is the
hardest distribution for our operator and skew only improves its per-
formance. Since skew means that some keys occur more often than
others, our operator can benefit from skew by using hashing for early
aggregation of these values.

To show the mechanics of how our algorithm adapts to the skew,
we plot those cases of each distribution with solid markers where our
algorithm uses only hashing in the first phase, while we plot with
hollow markers the cases where it switches to partitioning in the first
phase at least once. This way we can see that on the sorted data set,
Adaptive switches to partitioning only where K > N/2. Before that

15 We omit the distribution sequence because of its similarity to uniform.

5.8 evaluation 120

point every value is repeated several times, so every run of hashing
reduces the data by factor α > α0 or more, so our algorithm uses
hashing for the next run as well. Since all hash tables are produced
in cache and there are only very few of them except for the largest
K, the second pass remains negligible and makes the run time only
grow slowly with larger K. The behavior with moving-cluster is very
similar, except that the hashing is more costly due to inferior locality.
Since self-similar only exhibits relatively mild skew, the same effect is
less pronounced on this data set: the reduction factor α is only high
enough where there are just more groups than what would fit into
cache. The run time is consequently very similar to that of uniform
data, except that our algorithm switches to partitioning slightly later,
namely for K > 219. Heavy-hitter even switches to partitioning at the
same point as uniform, so for our algorithm this distribution does not
have noticeable skew. In particular, it does not cause contention since
there are no shared data structures in our algorithm. It rather seems
like the non-hitter keys are the hard part of this distribution. The zipf
data set is so little skewed that it is processed just like uniform data.
The fact that it takes less time for the largest K is due to an artifact
intrinsic to the generation of skewed data because there are actually
less than K distinct values as discussed above.

As discussed and shown experimentally in the original papers,
some of the algorithms of Cieslewicz and Ross [42] and Ye et al. [199]
also adapt to skew, but to a lesser degree than ours. All of them
are based on hashing and therefore profit from locality. However,
only Hybrid can adapt to changes in locality as occurring in data
sets like sorted or moving-cluster since it maintains a set of “hot”
groups similarly to an LRU cache. Furthermore, Hybrid can be com-
plemented with Atomic, which has the best performance of the algo-
rithms known at the time for larger K, as shown by Cieslewicz and
Ross [42]. By using sampling during execution, they can choose the
best of the two algorithms, which is quite robust but has considerably
higher constants than our Adaptive. All other shown competitors
have no mechanism to adapt to changing locality.

Even more importantly, the authors of the above algorithms do not
give mechanisms to adapt to unknown K and rely on a prediction of
the optimizer instead. This could be fixed by growing the data struc-
tures on demand, but would be highly non-trivial (if at all possible
efficiently) for the shared data structure of Atomic and the resizing
costs would considerably decrease performance for large K as shown
in Section 5.6.2. In contrast, our recursive, run-based algorithm makes
adapting to unknown K easier and the integration of a cardinality esti-
mator lets us construct the hash table runs immediately in the correct
size in order to transparently handle any K without overhead. Thanks
to this feature our algorithm is the only one to fully meet our “adap-
tivity” challenge.

5.9 summary and conclusion 121

5.9 summary and conclusion

In this chapter we study the question of how adaptive query pro-
cessing algorithms can estimate the size of the output data structure
before allocating it. This is of great practical relevance for our own Ag-
gregation operator and represents an aspect that has been ignored
by prior work. As solution we propose to integrate an inexpensive
cardinality estimator into an early phase of the processing such as
partitioning. With experiments we show that our approach can cut
processing costs by up to factor 2 by effectively eliminating the costs
of resizing the data structure every time the current size is not suffi-
cient anymore. Thanks to the simplicity of the estimator we use, the
additional computational costs are limited. With this pragmatic build-
ing block, we ensure that our Aggregation operator is truly adaptive
and achieves optimal performance without any type of external infor-
mation.

In summary, our work starts with the assumption that even in the
in-memory setting, the movement of data is the hard part of relational
operators such as Aggregation. It builds on the insight of the pre-
vious chapter, where we establish a lower bound on the number of
cache line transfers, which is matched by the traditional HashAggre-
gation and SortAggregation with well-known optimizations. We
design an algorithmic framework based on sorting by hash value that
allows combining Hashing for early aggregation and state-of-the-art
IntegerSorting routines depending on the locality of the data. We
also show how to parallelize it within and across multi-core proces-
sors. Our framework thus addresses the cache efficiency and paral-
lelization challenges we identified in Section 3.1. Furthermore, we
tune both the Hashing and the Sorting routines to modern hard-
ware and devise a simple, yet effective criterion of locality to switch
between the two. As a consequence, our algorithm also meets the
challenges of CPU friendliness and adaptivity. We show extensive ex-
periments on different data sets and a comparison with several algo-
rithms from prior work. Thanks to the combination of optimal high-
level design guided by the theoretical analysis of the previous chapter
and low-level tuning to modern hardware, we are able to outperform
all our competitors by up to factor 3.7.

We expect work like ours to become of increasing importance in
the near future, since memory bandwidth is developing at a lower
rate than processing speed of multi-core CPUs. In particular, we in-
vite more work on the duality of Hashing and Sorting. We believe
that other cache-efficient sort algorithms can be augmented similarly
to what we do with BucketSort: Integrating early aggregation into
an appropriate sort algorithm in an even tighter way could have the
advantage of reducing the amount of data even if the reduction factor

5.9 summary and conclusion 122

is lower than our α0, but seems challenging to do without increasing
computations too much.

6
M E M O RY- C O N S T R A I N E D A G G R E G AT I O N U S I N G
P I P E L I N I N G

Relational operators of the first generation of in-memory database
systems were designed to increase execution speed through cache ef-
ficiency and CPU friendliness. Memory usage of intermediate results
was often neglected, which does not affect performance of these op-
erators in benchmarks but consumes one of the scarcest resources
in systems of this architecture. This renders many approaches pro-
posed in the past impractical. In this work we study the question
of how to limit memory usage of the Aggregation operator with-
out compromising performance. To that aim we propose a pipelined
processing model inside the operator to overlap production and con-
sumption of intermediate results. We show how clever scheduling of
work between and within the different stages of the operator allows
controlling the amount of auxiliary memory used by the operator and
thus the trade-off between speed and memory consumption. Our re-
sulting operator enables competitive processing performance until it
is limited to a small fraction of the original memory usage. This de-
sign also makes our operator malleable, i.e., it can use or free resources
during execution as provided or needed by the rest of the system.

6.1 motivation

In the previous chapter, we present an Aggregation operator that
solves most of the challenges that we identify in Chapter 3: Through
recursive algorithm design and low-level tuning, we make the oper-
ator cache-efficient and CPU-friendly, enable wait-free parallelization
with balanced distribution of work, and ensure robustness against
unexpected data characteristics. However, in fine, all these challenges
aim at improving a single metric: speed of execution.

While execution speed is very important, it is not the only metric of
interest. In industry-grade database systems, which should not only
perform well in benchmarks but handle very diverse and potentially
unusual situations, memory usage of operators is of almost equal in-
terest. While affordable memory sizes increase at a rapid pace, it is
still one of the scarcest resources of in-memory database systems. If
it is handled without caution, queries may have to be aborted when
the system runs out of memory, or new queries may not be admitted
because not enough free memory is available for their execution.

As we discuss in Section 3.8, database systems traditionally limit
memory consumption with a pipelined processing model. However,

123

6.1 motivation 124

this approach does not apply to the auxiliary memory of operators,
which may reach considerable orders of magnitude for pipeline break-
ers such as Aggregation. These operators often need several passes
over the input, during which the amount of data is not reduced, even
if the final output of the operator is much smaller than the input. Our
Aggregation operator for example may produce runs whose total
size is as large as the input: If the number of groups K is larger than
the cache size M (i.e, if K > M) and two or more levels of recursion
are needed, then the intermediate runs consists of roughly N rows for
an input of size N. This is the case even if the result is quite small, say
K = 2M≪ N.

To remedy this issue, we sketch a query processing system that
tracks and possibly constrains the amount of memory used by differ-
ent parts of each query and extend our Aggregation operator to this
system. The query processing system that we envision organizes its
main memory space in a hierarchical fashion: A certain amount of
the total memory is dedicated to query processing and split among
the currently running queries. Each query in turn divides its memory
into the memory used by the different operators for their process-
ing, the memory used by the intermediate results between operators
and the final result, and the memory for metadata and bookkeeping
of the query. The operators may organize their memory in another
level of the hierarchy. All memory allocations need to be tracked and
accounted for to one component in the hierarchy. We use this hier-
archy to control memory usage in a tractable fashion: each level of
the hierarchy breaks down its own constraint into constraints for its
components.

In order to react to changes in resource utilization, memory con-
straints between levels may be renegotiated: As queries progress or
terminate, they return unused memory budget to the system, which
may allocate it to new queries or existing ones, which in turn may for-
ward it to some of their operators. Operators may also request more
memory if that permits increasing their efficiency, but must be able
to deal with situations where their requests are denied. This allows
us to impose a memory constraint on queries and operators in order
to limit excessive use by single components, but is more flexible than
static allocations of resources, which may lead to under-utilization in
dynamic environments.

In order to use system resources efficiently, the optimizer may take
estimates of memory usage into account and plan queries in such
a way that expected memory pressure is never too high. Similarly,
admission control may be extended to queue queries until they can
comfortably be processed with the current memory budget. However,
in this section, we focus on the mechanisms needed within operators,
so studying the optimizer and admission control is out of the scope
of our work.

6.2 intra-operator pipelining 125

We use the query processing system described above as context
to study Aggregation in a memory-constrained environment. Con-
cretely, we make the following contributions:

• We extend the Aggregation operator from the previous sec-
tions such that it strictly respects a given memory limit for its
intermediate results. To that aim we pipeline the work of dif-
ferent levels of recursion, thus reducing the amount of interme-
diate results (and hence memory usage) present at any point
inside the operator.

• We identify situations where dead-locks may occur and devise
an intra-operator scheduling scheme that avoids them.

• Our intra-operator scheduler also ensures the best possible ef-
ficiency for the processing with a scheme similar to a buffer
tree [10]. It exhibits a trade-off between the amount of memory
used for intermediate results and processing speed, which can
be chosen by the database system to react to changing workload
during runtime.

• As a by-product, we also make our operator malleable, i.e., we
make its degree of parallelism dynamic to enable changing the
number of processing units depending on the system load.

The rest of this chapter is organized as follows: We first explain
how work inside an operator can be pipelined in Section 6.2. Then
we present how we schedule this work in order to maintain efficiency
in Section 6.3. We discuss implementation details in Section 6.4 and
evaluate the performance of our approach in Section 6.5. Finally, we
make some concluding remarks in Section 6.6.

6.2 intra-operator pipelining

We start with describing the mechanisms of intra-operator pipelining.
This introduces the basic concept of how to organize the work of our
recursive algorithm, such that the recursion levels can be pipelined.
We also show some pitfalls of this approach and the way we address
them. This will lay the basis for the next section, where we discuss
how to schedule the work in the pipeline such that best efficiency is
achieved.

6.2.1 Overview

The main idea of intra-operator pipelining is based on the observa-
tion that each recursive call to the algorithm processes the data as if
it were a stream: it reads each tuple from memory once, uses some
constant amount memory to process it, and puts the results into one

6.2 intra-operator pipelining 126

level 1

free list

buffers level 2 buffers

..
.

level 3

..
.

concat

Aggregation operator

Figure 21: Intra-operator pipelining.

of the output partitions in memory, from where they are never read
again. Consequently, the recursive call of a particular partition can
start consuming the results of the current call as soon as they are
produced. This is very similar to pipelined processing of relational
operators, but happens inside an operator.

Figure 21 illustrates this idea. The recursive calls of the Aggrega-
tion operator form the stages of a branched pipeline organized in
levels, which correspond to the levels of recursion of the original algo-
rithm. Each stage consumes the blocks of tuples that the previous one
produces. During processing, it holds one block per output partition,
to which it writes the results. When the block of a partition becomes
full, it is placed into a buffer of the corresponding next stage and re-
placed with a new one. When all tuples of a block are processed, the
memory of the block is not returned to the operating system. Instead,
the block is inserted into a free list, from where it is recycled.

With this model, the memory used by the operator is flowing in a
closed cycle: it is used for the blocks of a running stage, the blocks in
the buffers in between stages, and the blocks in the free list. By con-
trolling the number of blocks in the cycle, we can control the memory
consumed by the operator. Similarly, the memory used for input and
output of the operator to communicate with the preceding and subse-
quent operators is flowing in respective cycles that can be controlled
independently.

Intuitively, a stage needs two things in order to be runnable: there
must be tuples in its buffer that it can process and there must be
enough memory in the free list for its output. Runnable stages are
subject to be run by a scheduler, to which a stage returns when the
free list or the buffer become empty. We give a more formal defini-
tion of runnable stages in the following subsection and present the
scheduling of the stages in the next section.

6.2 intra-operator pipelining 127

6.2.2 Ensuring Efficient Progress

The circular flow of blocks and the branched nature of the pipeline
make it non-trivial to ensure efficient progress. In the following we
establish the necessary mechanisms.

First, there have to be enough free blocks for the stage to start pro-
cessing. Let mi determine the minimum number of blocks for a stage
of level i and l be the number of levels in the pipeline. Since the work
of a stage of the last level consists of merging its input to the output of
the operator, it does not need to take any more blocks, so ml = 0. The
work of a stage of the other levels consists of partitioning its input
into a certain number of partitions, so these stages need a block per
partition, hence mi = npartitions for i < l, where npartitions is the num-
ber of partitions the Partitioning routine produces or its fan-out. If
there are not at least mi blocks in the free list, a stage of level i is not
runnable.

However, this is not enough in a parallel setup: A stage may start
running when there are mi blocks in the free list and still not get
all required blocks, since other stages may have taken some blocks in
the meantime. In the worst case this may lead to a live lock. We solve
this problem by taking all blocks required for a stage to start process-
ing atomically. This ensures that a stage can either take all required
blocks, mi, or none at all. In Section 6.4 we give details about how to
implement this scheme with regular allocators.

Second, it is important to be able to free memory at all times. Con-
sider a point in time where all blocks in Figure 21 are in the buffers
between stages of level 1 and 2. Consequently, the free list is empty.
In particular, no stage in level 2 can get new blocks for its output, so
no stage in level 2 can run. No other stage is runnable either because
all other buffers are empty. Hence, no memory can be freed because
there is no free memory—deadlock.1

To prevent this situation, we establish the following rule: A block
can be taken from the free list only under the condition that the mem-
ory remaining in the free list is sufficient to process all tuples from
the block such that it can be returned to the free list. In other words,
a stage may only take a memory block if there are enough blocks for
the stages directly following, which in turn may only run if their suc-
cessors will also have enough memory, etc. So the number of blocks
Mi required by subsequent stages of a stage of level i is defined recur-
sively as follows: Ml = 0 since the stages of the last level do not have
successors, and Mi = mi+1 +Mi+1. With this argument, a stage can-
not start to run if there are not at least mi +Mi blocks in the free list,
enough for the stage itself to start processing and for the subsequent
stages to consume the results. If a running stage needs a new block, at

1 Note that this is similar to a deadlock problem observed with the Exchange operator
with a limited receive buffer by Graefe [76, Section 10.2].

6.2 intra-operator pipelining 128

least Mi blocks need to be in the free list—otherwise the stage cannot
get the block and needs to stop running. This guarantees that there is
always a runnable stage that eventually frees memory.

Third, it is important to ensure that the blocks are filled to a high
degree. Otherwise, we not only waste memory, but more importantly
also compromise the amortization effort of blockwise processing. With
above definition of mi and Mi, two effects can impede that. To under-
stand the first effect, consider an input with an extremely high skew,
where all but a tiny fraction of the tuples belong to the same “heavy-
hitter” group. With this input, a situation may occur where a stage
fills the block of the partition of the heavy-hitter group, while all the
other blocks only contain one or very few tuples. If the stage cannot
get new blocks at that point, it stops running. It puts its unfinished in-
put block (if existing) back to its input buffer and the partially filled
output blocks (if existing) into their respective output buffers. Sub-
sequent stages consume the intermediate results and eventually, the
stage continues its work where it left it. However, all but one of the
blocks it produced are almost empty. In order to fill blocks to a high
degree even in presence of skew, we refine the above definition of mi

to mi = 2npartitions blocks. This is based on the observation that at
most one block per partition can be partially empty, namely the last
one. So if a stage produces 2npartitions blocks—no matter how they
are distributed over the partitions—on average the blocks must be at
least half full, which bounds the worst case within a constant from
the optimum.

The other effect that can cause blocks to be filled to a very low
degree is due to the fact that the number of tuples per partition
is divided on average by the fan-out of the Partitioning routine,
npartitions, in every level of the pipeline. Hence, if a certain amount
of tuples should be processed on average by the stages of a certain
level of the pipeline, the number of tuples processed by the stages of
the preceding level has to be higher by this factor. We thus adapt the
definition of mi for a last time to ml = 0, ml−1 = 2npartitions, and
mi = npartitions ·mi+1 for i < l − 1, which is equivalent to ml = 0

and mi = 2(npartitions)
l−i for i < l. We adapt the definitions of Mi

accordingly, so as before, a stage is required to take mi blocks (in an
atomic fashion) when it starts running and needs to leave Mi blocks
in the free list at all times.

Our scheme has a certain similarity with Arge’s buffer tree [10]. In
this tree conceived for the (single-processor) external memory model
(cf. Chapter 4), inserted elements traverse the tree down to their final
location through a sequence of buffers. The buffers are used such that
flushing them to the next level is amortized by inserts from the pre-
vious level, which guarantees an optimal amortized insertion cost in
terms of cache line transfers. As with our scheme, this means that a
buffer of a certain level is flushed a factor less often than the previous

6.2 intra-operator pipelining 129

level that corresponds to the fan-out of the tree. Sitchinava and Zeh
[168] propose an extension of the buffer tree to the parallel external
memory model. Their approach consists in parallelizing the routine
that flushes the buffers, which only works efficiently with a fan-out
of at least PB (on a machine with P processors and a block size of
B tuples). This either represents a quite fine grained parallelization
scheme (if we choose a small value for B, such as the cache line size)
or forces us to have a huge fan-out (if we choose a larger value for B,
such as the size of a memory page). A larger fan-out, in turn, would
not work with the low-level tuning techniques of our Partitioning

routine presented in Section 5.4, so we do not think that their ap-
proach can be applied to our problem directly. In contrast, we paral-
lelize across nodes of the tree, such that most buffers are processed
by a single thread, which requires significantly less synchronization.

6.2.3 Columnwise Processing

In above discussion about pipelining, we assume that every time a tu-
ple is processed, it is processed in its entirety. However, as discussed
in Section 5.3.3, this is not the case in column-store database systems,
where rather columns are processed in their entirety: In the most ex-
treme form of column-wise processing, the entire key column is pro-
cessed first, producing a mapping vector, which is then used to pro-
cess the aggregate columns one by one accordingly. In Section 5.3.3
we show how our framework adopts this scheme for runs by inter-
leaving the processing of the key and aggregate columns. Here we
extend the discussion about pipelining in a similar way in order to
make it work for the column-wise processing model.

Let us look at what happens when the output block of a partition
runs full during the processing of the key column. According to the
pipelining scheme described above, the block should be put into the
queue of the next stage corresponding to its partition. However, since
the aggregate columns have not been processed yet, it is not a com-
plete input of the next stage, so we cannot insert the block into the
queue yet.

One solution would be to use the mapping vector in order to pro-
duce the aggregate columns just at the point when a block of keys is
full. This way we complete the output block with the other columns
and do not need to change the pipelining mechanism any further.
However, this would mean that we constantly switch between the pro-
cessing of different columns, which would lead to bad performance
due to cache thrashing.

We thus extend all pipeline stages with internal buffers that allow
amortizing the switching. Figure 22 illustrates this approach. When a
stage starts running, it processes the key column and puts the result
into its internal buffers. At some point in time, it decides to switch to

6.3 intra-operator scheduling 130

stage with
internal buffers

external
buffers

Figure 22: Extended pipelining stage with internal buffer.

processing the aggregate columns, thus completing the output blocks
in its internal buffers with the remaining columns. Only when all col-
umns have been processed, the complete blocks are finally removed
from the internal buffers and inserted into the external buffers of the
subsequent stages.

6.3 intra-operator scheduling

The previous section describes how we split the work of a recur-
sive algorithm into blocks and how we route these blocks through a
pipeline while guaranteeing efficient progress and handling multiple
columns. This establishes the mechanisms of intra-operator pipelining.
In this section we discuss two questions related to the strategy of intra-
operator pipelining, namely how to schedule the work in the pipeline:
which level of the pipeline to work on (thus potentially producing or
consuming free memory), and which partition to work on inside a
given level.

6.3.1 Choosing a Partition Within a Pipeline Level

The easier of the two questions is the one about which partition to
work on in a given level of the pipeline. As we argued before, switch-
ing between partitions has warm-up costs, so we are interested to
work on the partition we choose for a reasonably long time in order
to amortize the switching costs. It is thus a good strategy to pick par-
ticularly full partitions. For the moment we ignore heavily skewed
distributions and extend our solution later to support work stealing.

In order to find the partition with the most blocks in its queue
quickly, we maintain a priority queue of the (non-empty) partitions
of each level. Whenever a thread is looking for a job in a particular
level, it pops the top-most partition from the priority queue. When
blocks are inserted into the buffer of a partition by previous pipeline
stages, the priority of the partition changes and the priority queue
is updated accordingly. We calculate the priority of a partition as
min(⌈lognblocks⌉ ,pmax), where nblocks is the number of blocks in its

6.3 intra-operator scheduling 131

queue and pmax the maximum priority value that we allow. There are
several reflections behind this design: First, most of the times when a
block is inserted into the buffer, the rounded logarithm of the length
of the buffer does not change, so the priority queue does not need to
be updated. This makes the common operation, the insertion of new
blocks, cheap. Second, we do not need to know the exact length of
the buffer—choosing “one of the fullest” buffers is good enough to
amortize the costs for switching. In particular, the differences matter
less the larger the buffers are (which is expressed by the logarithm)
and eventually they do not make any difference at all anymore (ex-
pressed by the maximum value of pmax). We use pmax = 10, which
worked well in our experiments. Finally, it allows us to use a bounded
height priority queue, which just consists of a linked list per possible
priority value. In this data structure, insertion is done in O(1) list ac-
cesses by adding the partition into the appropriate list. Popping the
largest element is done in O(pmax) list accesses in the worst case by
iterating over all priority values in descending order until a priority
with a non-empty list is found. Then, any element from this list is re-
turned. To make this priority queue thread-safe, it is sufficient to use
a thread-safe linked list. We use the lock-free linked list SkipListSet

from libcds.2

With above design, only one thread can work on any given parti-
tion at each point in time: when it pops a partition from the priority
queue, that partition cannot be found by any other thread. If the input
is very skewed and the bulk of the work ends up in one partition, this
can lead to a situation where only a single thread is working. We thus
introduce work stealing by making the following changes: First, when
a thread pops the largest partition from the priority queue, it inserts
the same partition back into the queue immediately.3 Furthermore,
we calculate the priority of a partition as min

(⌈
log nblocks

Ppartition+1

⌉
,pmax

)
,

where the new variable Ppartition is the number of threads currently
working on the partition in question. Hence, the priority does not re-
flect just the amount of blocks in the buffer, but the amount of blocks
in the buffer that each of the threads gets if the current thread chooses
that buffer. Consequently, work stealing only happens on a partition
that is so full that each of the threads gets a larger amount of work
by sharing the partition than by taking any of the other partitions
exclusively. In summary, our scheme schedules a number of threads
to work on each partition that is proportional to its length and thus
distributes the work equally among all threads even if the input is
heavily skewed.

2 http://libcds.sourceforge.net/, v1.5.0.
3 It is often a good idea to require a minimum size of tasks that can be stolen. Our

scheme can be extended with this feature by reinserting partitions into the priority
queue only if they are larger than that minimum size.

http://libcds.sourceforge.net/

6.3 intra-operator scheduling 132

6.3.2 Choosing a Pipeline Level

Deciding in which level of the pipeline a given thread should work
is a more complex question due to the cyclic dependencies of sev-
eral dimensions discussed in Section 6.2.1: Each stage can consume
blocks with intermediate results of the previous stage only if they are
available; these intermediate results in turn can only be produced if
free memory is available; and memory can only be freed by consum-
ing blocks with intermediate results. At the same time it is important
that when a thread starts working on a given partition, it continues to
work there for as long as possible in order to amortize the overhead of
switching partitions. We are thus interested in choosing a level that al-
lows us to work on large partitions taking the dependencies of the stages
into account.

To give an intuition about the complexity of the question, we start
with discussing a very simple strategy: whenever a thread finishes its
current work, it chooses the lowest pipeline level where it can run. We
thus call this strategy LowestFirst. To keep things simple, we assume
that there is only one thread and two levels in the pipeline. The thread
starts with processing the input (the stage of level 1), which it puts
in blocks into the buffers of the next stages, as long as the number of
blocks left in the free list is above the required minimum M1. Since
the thread cannot run in level 1 anymore, it will pick the next lowest
level, level 2, pick one of the largest partitions it has just produced,
and partition all of its blocks into blocks of the output. At this point
it can go back to level 1, since a few blocks were freed by level 2, where
it processes the input until the minimum M1 of blocks in the free list
is reached again. That will happen much faster this time since the
only free blocks are those of a single partition freed just before. The
thread then alternates between processing a single partition of level 2

and about the same amount of blocks of level 1. This means that only
a small amount of memory is used in every step, namely as much
as can be freed from a single partition—we unnecessarily restrict the
memory that is actually used.

Figure 23a shows a sample run of the LowestFirst with multiple
threads. The experiments are carried out with the test setup described
in Section 6.5.1, but with N = 228 input records to increase readability
of the plots.4 As expected, all threads first work in the first level of the
pipeline, which increases the memory consumption close to the limit.
From then on, the threads oscillate between the two levels and can
thus only make limited progress before they are rescheduled because
memory usage is constantly close to the constraint.

4 Note that the absolute run times in these plots are not particularly meaningful be-
cause the tracing facilities needed for the plots affect the performance of the algo-
rithm negatively.

0.0 0.5 1.0 1.5

N
u
m
b
er

of
th
re
ad

s

Time [s]

0
%

33
%

6
7
%

1
00

%

threads in level 1
threads in level 2

memory usage

0
10
0

30
0

50
0

M
em

or
y
u
sa
ge

[M
iB
]

(a) LowestFirst

0.0 0.5 1.0 1.5 2.0 2.5

N
u
m
b
er

of
th
re
ad

s

Time [s]

0
%

33
%

67
%

10
0
%

threads in level 1
threads in level 2

memory usage

0
10
0

30
0

50
0

M
em

or
y
u
sa
ge

[M
iB
]

(b) LowestFirstInertia

0.0 0.5 1.0 1.5

N
u
m
b
er

of
th
re
ad

s

Time [s]

0
%

33
%

67
%

10
0
%

threads in level 1
threads in level 2

memory usage

0
10
0

3
00

M
em

or
y
u
sa
ge

[M
iB
]

(c) StaticRatio (25%)

Figure 23: Memory consumption and thread activity over time using differ-
ent naive scheduling strategies.

6.3 intra-operator scheduling 134

A better strategy is to alternate between production and consump-
tion of intermediate blocks with a larger granularity by staying as
long in each level as possible. With this strategy and again assuming
a single-threaded case, the thread starts in level 1 and processes the
input blocks until there are M2 blocks in the free list. It then processes
all available intermediate results in level 2, before finally starting over
in level 1. At this point, all blocks have been freed, so all available
memory can actually be used for the processing, so the thread can do
the same work for a longer time before having to switch. We call this
strategy LowestFirstInertia.

If we extend this strategy to multiple threads, we can see that this
may still not be optimal: The threads first all work in level 1 until
no more free blocks can be taken from the free list. All threads that
need new memory from this point on are forced to switch to level 2

in order to free memory. Since it takes some time before memory can
actually be released, in fact most threads change to level 2, so they all
change levels more or less at the same time. They consume interme-
diate results, thus freeing memory blocks, until all buffers are empty
and then all return to level 1, again more or less at the same time. Fig-
ure 23b shows a sample execution of the LowestFirstInertia strat-
egy: The threads alternate between consumption and production of
intermediate results as if they were synchronized such that the mem-
ory usage alternates between minimum and maximum. This means
that, on average, only about half of the memory is used.

In order to improve the memory usage, we can attempt to produce
and consume intermediate results at the same time: If each level gets
assigned a fraction of the threads such that all levels process the data
at the same rate, then the amount of memory used by each level re-
mains more or less constant over time. If this equilibrium can be at-
tained with a high memory usage, more blocks are in the partitions
on average thus better amortizing the cost of partition switches. One
heuristic with this goal is to statically assign a certain ratio of the
threads to each of the levels. This strategy is called StaticRatio. This
is helpful as reference, but has several practical shortcomings: First,
the processing speed of the different levels depends at least on the im-
plementation and the hardware, so we would have to find the desired
fraction for every system anew. More importantly, it also depends on
input distribution and output cardinality. If the output is smaller than
one hash table, almost no work needs to be done in level 2, whereas
for very large outputs, the number of tuples being processed level 2 is
as high as the number of tuples in the input. Hence, whichever ratio
with statically pick, it will not be optimal for all situations.

Figure 23c shows a sample execution of the StaticRatio strategy
with a ratio of 25% of the threads assigned to level 1 and the rest to
level 2. It shows that after some start-up phase, production and con-
sumption of intermediate results are more or less balanced, such that

6.3 intra-operator scheduling 135

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

N
u
m
b
er

of
th
re
ad

s

Time [s]

0
%

33
%

6
7
%

1
00

%

threads in level 1
threads in level 2

memory usage

0
10
0

30
0

50
0

M
em

or
y
u
sa
ge

[M
iB
]

Figure 24: Memory consumption and thread activity over time using the
MemoryTarget (50%) scheduling strategy.

memory consumption remains stable. However, this equilibrium was
found offline by trying out different ratios.5 Furthermore, the ratio
cannot be changed during execution. Consequently, before the first
blocks of level 1 are completed, the threads of level 2 are completely
idle. Similarly, the threads of level 1 stop working slightly earlier than
those of level 2.

We thus propose a strategy that aims at dynamically maintaining a
balance between production and consumption of intermediate results
while using as much of the available memory as possible. The inten-
tion to increase the average amount of work the threads do before
they are rescheduled. The strategy consists in choosing the pipeline
level depending on how much of the available memory is currently
used. If more than a ratio mtarget ∈ (0, 1) is used, we assume that
the operator is about to run out memory, so threads are scheduled to
level 2 in order to free memory. If less than a ratio of mtarget is used,
threads are scheduled to level 1 in order to produce more intermedi-
ate results. Whenever a thread does not find work in the level it was
assigned to, it searches for work in the other level. We call this strat-
egy MemoryTarget. Figure 24 shows a sample run of this strategy
with rtarget = 50%. Similarly, as in the LowestFirstInertia strategy,
some threads alternate between the two levels, but now more threads
continue the work in their level and the available memory is never
unnecessarily freed, so on average, the threads do more work in the
same partition before they are rescheduled.

5 Assigning more threads to level 1 produces intermediate results too fast, such that
eventually the memory constraint is reached, while assigning more threads to level 2

consumes the intermediate results even faster, such that the buffers cannot accumu-
late a lot of work before a thread empties them again.

6.4 implementation details 136

6.3.3 Malleable Execution

The fact that we break down the work of the operator into small tasks
has another benefit apart from making it possible to pipeline the pro-
cessing of the work of different recursion levels: the degree of paral-
lelism can now be varied during execution. This kind of parallelism
is called malleable [120]. Our operator can trivially support it: When-
ever a new thread starts working on a particular operator instance, it
first selects a pipeline level as just described and pops a stage from
the priority queue of that level—just like threads choose the next par-
tition to work on when they have run out of memory or out of work.
After a thread has done a sufficiently large amount of work, the op-
erator yields it back to the inter-operator scheduler, which can decide
that it should continue to work in the same operator or schedule it
to do some other work. This way, the scheduler of the execution en-
gine of the database system can react to dynamic workloads changes
by increasing and decreasing the number of threads of the operator.
As mentioned earlier, scheduling strategies between operators are out
of the scope of our work and constitute a possible extension of this
thesis.

6.4 implementation details

In this section we briefly go over a few details that are necessary to
make our implementation efficient and that are worth mentioning.

First, as mentioned earlier, we devise a scheme that allows us to
guarantee that either all or none of a series of allocations succeed
and that is independent of the underlying memory allocator. Doing
several allocations “atomically” is necessary to ensure that the Parti-
tioning routine can allocate at least a certain number of blocks for
each of its output partitions once it starts processing. This mecha-
nism should be orthogonal to the memory allocator, which is often a
highly optimized software component [180]. Note that simply allocat-
ing a single chunk of memory is not sufficient because the different
allocations are freed at different points in time.

Our solution consists in wrapping the allocator in a memory pool
that decouples the reservation of memory from its allocation. The pool
has a desired limit and maintains a counter for how much memory
has been allocated or reserved. In order to make a series of allocations,
other software components can make reservations of memory of a
certain amount. The reservation is only granted if it does not exceed
the limit of the pool, in which case the reserved amount of memory
is deduced from the pool. A reservation is represented by a handle
that has the interface of an allocator such that it can act as a proxy
for the allocator of the pool, to which it has a reference. The reserva-
tion also tracks the total amount of memory that it has allocated. As

6.4 implementation details 137

long as there is reserved memory left, allocations are accounted for
to the reservation handle and therefore guaranteed to succeed. Oth-
erwise, they are accounted for to the pool, which may or may not be
able to service the request. This mechanism guarantees that as much
memory can be allocated as has been reserved and is transparent to
the software components that use it. In the case of our Partitioning

routine, we can thus first make a reservation that is large enough in
order to ensure efficient progress according to the reasoning in Sec-
tion 6.2.2 and then start the routine with the reservation handle as
allocator. Similarly, our reservation scheme allows us to reserve the
memory of several columns in an atomic fashion.

Second, we implement a lazy loading scheme for the data struc-
tures of the scheduler that belong to particular levels and stages of
the pipeline. These data structures only do bookkeeping and the bulk
of the work is done in the two main routines, so this is a rather small,
though noticeable optimization. Since the length of the pipeline, which
corresponds to the depth of the recursion, is not known at the begin-
ning of the execution, we might construct the data structures of later
levels and stages unnecessarily. Since there is one stage for every par-
tition and the number of partitions is multiplied by the Partitioning

fan-out with every additional pipeline level, this can represent no-
ticeable effort (with our fan-out of 256, we have 65536 buckets in the
third level). Furthermore, a third level of recursion may only be neces-
sary for some of the partitions, namely due to high skew or sporadic
work stealing as discussed in Chapter 5. Consequently, we construct
each level and each stage in this level when they are first accessed,
respectively. This reduces the overhead to a minimum as only those
bookkeeping data structures are constructed that are actually used
during execution.

Finally, we fit our Hashing routine into the pipelined execution
model as follows. This routine produces the results for the subsequent
partitions as a single piece of memory that does not consist of blocks.
In order to place a part of a hash table into the buffer of the partition
that corresponds to that part, we use a descriptor consisting of the
first and the last index of that part of the hash table along with a
shared pointer the hash table itself. This way, when a pipeline stage
has produced a hash table, one such descriptor is put into each of the
partitions of the next stages. The shared pointer ensures that the hash
table is only released once all of its content has been consumed by
the subsequent pipeline stages. Note that this means that consuming
a hash table part does not release memory. However, this does not
affect the guarantee of our scheme to be able to make progress at all
times. Our mechanism is based on the invariant that all intermediate
results that a certain stage produces can be consumed. In particular,
this holds for all partitions after the current pipeline stage—whether
they actually free memory or not. So eventually all descriptors will

6.5 experimental evaluation 138

be processed and released, which finally also releases the memory of
the hash table.

6.5 experimental evaluation

In this section, we evaluate the impact of intra-operator pipelining
and intra-operator scheduling under a constrained amount of mem-
ory. To that aim, we extended the implementation of the Aggrega-
tion operator of the previous chapter with the concepts presented in
this chapter. Our implementation currently only works for two levels
of recursion; the evaluation of our approach for three levels is left for
future work.

6.5.1 Experimental Setup

We run the experiments on the same machine as in Chapter 5. It
consists of two Intel Xeon E7-8870 CPUs6 and 256GiB of main mem-
ory. The processors run at 2.4GHz and have 10 cores each. Each core
has a private L1 cache of 64KiB, a private L2 cache of 256KiB, and
can access a shared on-chip L3 cache of 30MiB (equivalent to 3MiB

per core). The TLB of the CPUs have two levels, a first with 64 en-
tries for data and 128 for instructions and a second with 512 entries
for both combined. The operating system is SLES 11.3 with Linux
kernel 3.0.101 for x86_64. We use GCC 4.8.3 as compiler using -O3

-march=native optimizations.
If not mentioned otherwise, our data sets consist of N = 231 tuples

of 64-bit integers and we use all available P = 20 cores. As argued
in Section 5.8, we run the experiments only on the grouping column
and report running times in the metric “Element Time” = T · P/N/C,
where T is the total run time, P the number of cores, and C the num-
ber of columns (grouping and aggregate columns combined). All pre-
sented numbers are the median of 10 runs.

6.5.2 Aggregation under Memory Constraint

We first show the impact of a fixed memory constraint of 256MiB

on our algorithm using different intra-operator scheduling strategies
for a varying number of groups K. Note that a constraint of this size
represents a mere 1.6% of the input size—which is the amount of
memory used for intermediate results by a recursive algorithm with-
out constraint. As a reference, we plot the performance of our Adap-
tive algorithm without constraint, as well as the Atomic algorithm
of Cieslewicz and Ross [42], which were the two fastest algorithms in
the experiments in Section 6.5 of the previous chapter.

6 http://ark.intel.com/products/53580

http://ark.intel.com/products/53580

6.5 experimental evaluation 139

20 24 28 212 216 220 224 228
0

50

100

150

200

250

300

350

cache 256·cache

Target output size (K)

“E
le

m
en

t
ti

m
e”

=
T
·P

/
N
/
C

[n
s]

unconstrained
Atomic [42]
LowestFirst

LowestFirstInertia

StaticRatio (35%)
MemoryTarget (50%)

Figure 25: Comparison of intra-operator scheduling strategies under a mem-
ory constraint of 256MiB.

Figure 25 shows the result. For K 6 cache, almost all strategies have
the same performance because they behave exactly the same way: ev-
ery thread only uses the Hashing routine producing a single hash
table that never runs full. After the initial allocation, the threads do
not need to ask for new memory blocks, so they continue until the en-
tire input has been consumed in order to do (negligible) work of the
second level of the pipeline. Only StaticRatio behaves differently:
in this strategy, the threads assigned to level 2 are idle during virtu-
ally all the execution. Hence, this strategy only uses a fraction of the
available cores and is thus considerably slower.

The cases where 256 · cache > K > cache, where both pipeline lev-
els have a roughly equal amount of work, are more interesting. As
expected, the LowestFirst strategy performs worst, with run times
between 1.9 and 2.7 times higher than the unconstrained algorithm.
LowestFirstInertia and MemoryTarget are much faster, with Low-
estFirstInertia having an overhead of 20% to 70% compared to
the unconstrained version and MemoryTarget having an overhead of
20% to 47%. This means that the fact that MemoryTarget takes the
current level of memory usage into account gives it an advantage of
about 15% compared to the more simple LowestFirstInertia. Over-
all, both strategies make our approach of intra-operator pipelining
viable.

The performance of StaticRatio varies relatively to the other strate-
gies. This is expected since its thread ratio is hand-tuned to a particu-

6.5 experimental evaluation 140

lar relative processing speed of pipeline levels 1 and 2, which varies
with K. However impractical this makes StaticRatio, it gives hope
for finding even better scheduling strategies, but we leave this as an
open problem for future work.

It is also interesting to compare our operator with memory con-
straint to the Atomic algorithm of Cieslewicz and Ross [42], which
does not need intermediate memory at all. In the configuration shown
in the plot, our algorithm with MemoryTarget scheduling strategy
has still an advantage of factor 1.1 to 2.4 compared to Atomic for
256 · cache > K > cache. This is an important result, since it confirms
that considerably higher performance than the simple Atomic algo-
rithm can be achieved without excessive memory consumption.

For K > 256 · cache, we reach the limitation of our current im-
plementation, which only supports constrained memory with two
pipeline levels. Like PartitionAlways with two passes, as shown
in Figure 11b in the previous chapter, our algorithm suffers from the
cache misses of the out-of-cache processing of the second pipeline
level if the number of groups is that large. Despite this obvious in-
efficiency, our algorithm is still faster than the Atomic algorithm of
Cieslewicz and Ross [42] for all but the largest K. We believe that our
concepts can be extended to three pipeline levels and more, but leave
the implementation and evaluation open for future work.

6.5.3 Trade-Off between Performance and Memory Constraint

We now show how the amount of memory available for intermediate
results impacts the performance of our algorithm. Figure 26 shows
the performance of the scheduling strategies evaluated before for a
fixed number of groups of K = 223 and variable memory constraints
between 32MiB (equivalent to 0.2% of the input size) and 4096MiB

(equivalent to 25%). As a reference, we also plot the performance
of our Adaptive operator without constraint and that of the Atomic

algorithm of Cieslewicz and Ross [42].
As the figure shows, all strategies have a higher run time, the

smaller the memory constraint is and approach the run time of the
unconstrained version as the constraint tends towards the input size.
This is expected, since a smaller constraint means that the threads
need to switch between partitions more often, which induces more
overhead. With constraints of 64MiB and more, most strategies are
faster than Adaptive, and with constraints of 256MiB and more, the
difference is larger than factor 2 (except the naive LowestFirst).

While the general trend is the same for all strategies, some are more
affected by the constraints than others. As expected, LowestFirst is
the slowest in almost all cases. The MemoryTarget strategy is again
the fastest strategy in all situations except one, where the StaticRatio

6.6 summary and conclusion 141

32 64 128 256 512 1024 2048 4096
0

50

100

150

200

250

Memory constraint [MiB]

“E
le

m
en

t
ti

m
e”

=
T
·P

/
N
/
C

[n
s]

unconstrained
Atomic [42]
LowestFirst

LowestFirstInertia

StaticRatio (35%)
MemoryTarget (50%)

Figure 26: Impact of the amount of available memory on different intra-
operator scheduling strategies for K = 223 groups.

strategy is slightly faster. In particular, MemoryTarget always has an
edge over LowestFirstInertia, even if it is not always large.

6.6 summary and conclusion

In this chapter, we envision a query processing system that organizes
and constrains its available memory in a dynamic hierarchy of mem-
ory budgets. We transform our recursive Aggregation algorithm
of the previous chapter into a branched pipeline in order to work
with a given constraint of such a system. To that aim, we devise an
intra-operator pipelining scheme, compatible with columnwise pro-
cessing, that avoids possible dead-locks and inefficiencies with a tech-
nique similar to buffer trees [10]. Furthermore, we define several intra-
operator scheduling strategies that schedule the work of different
stages of the pipeline. We show that a strategy that takes the cur-
rent memory usage into account makes the best use of the available
memory by balancing production and consumption of intermediate
results. A series of experiments confirms the viability of our approach:
For medium-sized outputs, setting a memory constraint of just 1.6%
of the original memory usage of our algorithm only incurs an over-
head of 20% to 47%. This is still more than factor two faster than
the best algorithm of prior work, which does not need any additional
memory, and can be further improved by investing a higher memory
budget. We thus solve the final “memory constraint” challenge of Sec-

6.6 summary and conclusion 142

tion 3.1 without significantly compromising the performance of our
operator with respect to the other challenges.

While we see significant advantages in our approach compared to
previously proposed parallel buffer trees [168], in particular for prac-
tical implementations, we also think that more of the design space
should be explored. Since in a buffer tree, the scheduling of the work
is driven by the operations on the tree, its algorithm is not only
simpler than ours, but also gives provable efficiency guarantees. In
contrast, a formal efficiency proof seems difficult to achieve for our
scheduling of pipeline stages. It is thus natural to ask for a simple,
yet practical and highly tuned implementation of parallel buffer trees
as a follow-up question of our work.

7
D I S C U S S I O N

In this thesis we study the problem of engineering Aggregation op-
erators for relational in-memory database systems. We set forth a
list of eight challenges. Although most of them have been studied
in the past in isolation, our work makes advances with each of the
challenges and shows how to address all of them at the same time.

We start with a theoretical study of Aggregation in several exter-
nal memory models, which reveals that Aggregation has the same
cache complexity as MultisetSorting in many realistic situations.
This serves as a guideline for our algorithm design. Consequently,
we build an Aggregation algorithm with the recursive structure of
a Sorting algorithm that inherits many good properties of Hashing.
It thus combines two traditionally opposite approaches in order to
achieve the cache efficiency of the better of the two. A simple, cheap
mechanism lets our algorithm adapt to the data by switching between
Hashing and Sorting routines during execution. We tune our imple-
mentation to low-level details of the hardware in order to utilize its
performance to the fullest and show how to parallelize our opera-
tor such that it perfectly scales within and across processors. Further-
more, our operator is designed to work with column-wise processing
and integrates well with Just-in-Time compiled query execution. We
also extend the adaptive mechanism with an online cardinality esti-
mator that makes our operator completely independent from poten-
tially wrong statistics from the optimizer. Finally, we develop a tech-
nique to pipeline execution within our operator such that the amount
of memory for intermediate results and thus the overall memory con-
sumption is reduced.

We argue that—apart from our solution for each isolated challenge—
our contribution also lies in their combination into one operator. A
solution that fails to address just one of the challenges may not be
of any value for productive use in a real database system. In our ex-
perience, the argument that the challenges are orthogonal often falls
short. Obvious examples of a connection between challenges include
the fact that skew is typically only a problem for parallel execution or
that our sophisticated solution for processing under a memory con-
straint is only necessary for algorithms with large intermediate re-
sults. Similarly, as argued throughout the thesis, the reason why an
adaptive solution is needed is the fact that different strategies are
built to achieve cache efficiency in different situations. Of course, our
intra-operator scheduling also reflects the high degree of parallelism.
Maybe less easy to spot is the connection between CPU friendliness

143

discussion 144

on the one hand and adaptivity and system integration respectively
on the other. Too fine-grained or complex adaptive decisions may be
too computationally expensive or may not work in a column-wise pro-
cessing model. Our solution satisfies all three criteria by combining
two tight loops on columns at a coarse granularity. The task of engi-
neering Aggregation operators thus consists in combining several
partial, well-chosen solutions such that together they form a greater
one.

While, from an algorithmic perspective, our solution for Aggrega-
tion is the most complete to date, it leaves some questions related
to software engineering unanswered. Our choice to implement all
techniques inside the operator leads to a complex, monolithic im-
plementation. Furthermore, its functionality partially overlaps with
that of other components of a typical database system, such as mem-
ory management, user-level scheduling, and pipelining. However, the
fact that we tailor each component to our particular operator allows
us to show the performance that can be achieved if other aspects are
subordinate. It thus has a definite value as reference point for future
implementations. Furthermore, we believe that it is possible to find
abstractions that allow modularizing our operator while preserving
its performance. This may even make some building blocks from our
memory management and user-level scheduling available for other
operators. How and to what degree this is possible is an interesting
question for future work.

Another direction is to reduce complexity by simplifying certain
algorithmic aspects. One possibility is to incorporate very recent ad-
vances in hardware-conscious Partitioning routines. Schuhknecht et
al. [162] presented a technique that allows partitioning with a much
larger fan-out than what we use with only little more cost per element.
If a large fan-out is required, namely if the number of groups is very
large, then this requires fewer levels of recursion and thus reduces the
overall execution time. Furthermore, it has the advantage that two lev-
els of recursion are probably enough in all situations the system is de-
signed for.1 Under this assumption, hard-coding two passes might be
simpler than a recursive algorithm, in particular in combination with
intra-operator pipelining. Since the slightly higher partitioning costs
of the larger fan-out are not needed for a small number of groups, one
might think about finding a mechanism that adapts the fan-out of the
Partitioning routine such that the smallest sufficient value is used.

In the context of Just-in-Time compiled query processing, one may
also argue that cache efficiency can be achieved in a simpler way than
by our recursive algorithm. With Just-in-Time compiled query plans

1 The technique of Schuhknecht et al. [162] works well with up to 214 partitions. Since
our Hashing routine works well with up to 217 records of 32 bit, we could process
up to 231 groups efficiently. While larger scenarios are conceivable, one might rather
want to process them with several sockets, so at least each socket would only have
two levels.

discussion 145

it is possible to have tight loops and row-wise processing. With row-
wise processing in turn, cache efficiency is easier to achieve: First, an
algorithm that produces one cache miss per record will also produce
exactly one cache miss for the entire row. With column-wise process-
ing, however, the same algorithm is executed for every column, so it
will produce a cache miss per row and column. In other words, row-
wise processing can amortize cache misses better than column-wise
processing. Furthermore, techniques like prefetching and simultane-
ous multi-threading may be used to hide latencies. Second, if rows
are large enough to fill several cache lines, accessing data out of the
cache does not load unnecessary data. In the external memory model,
a cache line then corresponds to a block of size B = 1, which renders
analyses in this model meaningless.2 Making one out-of-cache access
per input record may then be the best strategy. Combining all this
techniques may lead to a “cache-efficient” algorithm that is much sim-
pler than ours. Whether this is a viable solution, however, depends on
many other things: Even with Just-in-Time compilation, row-wise pro-
cessing makes vectorization hard to achieve; it only works in systems
that support results in row format; and all the reasoning of this para-
graph does not apply to rows that are so short that they are merely
a “wide column”. Just-in-Time compilation thus opens a huge design
space that is interesting to explore in the context of cache-efficient
Aggregation algorithms.

Finally, we want to mention another possible extension of this the-
sis. As we have argued before elsewhere [159], a communication vol-
ume that is sublinear in the input size is required to scale algorithms
to large clusters and can be achieved for a surprisingly large num-
ber of problems. For Aggregation, TwoPhaseAggregation achieves
this property as long as the number of groups is small. In prior
work [83] we have sketched an algorithm with sublinear communica-
tion volume for the other extreme: if most groups consist of a single
record, it may be the best strategy to eliminate these unique records
with a communication-efficient Bloom filter in a pre-processing phase
and to run Aggregation only on the remaining ones. However, more
work is needed with this algorithm so that it solves the other chal-
lenges as well.

2 However, even if cache misses are not a problem, TLB misses may be. One could then
use the external memory model such that a block represents a memory page instead
of a cache line and use the model to find TLB-efficient algorithms.

Part IV

A P P E N D I X

Something attached to something else; an attachment or
accompaniment.

— Wiktionary [191]

A
P R O O F S

a.1 from multiplicities to the number of groups

A multiset of size N can be characterized by the size of the corre-
sponding set or by the multiplicities of the different elements. In this
thesis, we denote the size of the set by K and the multiplicities by Ni,
i ∈ {1, . . . ,K}. Since doing analyses in terms of the multiplicities is
more precise than doing them just in terms of K, we use the former
characteristics whenever possible. However, if a simpler analysis is
needed, most often it is possible to obtain a result in terms of K from
the more precise result.

For example, the worst-case lower bound for the number of com-
parisons of MultisetSorting, i.e., sorting of a multiset, is known to
be [136]:

N logN−

K∑
i=1

Ni logNi +O(N) (31)

The worst-case complexity of MultisetSorting in terms of K is
the worst case of a distribution of multiplicities that maximizes Equa-
tion 31. This can be done by using the log sum inequality [48]. The log
sum inequality says that

K∑
i=1

ai log
ai

bi
> A log

A

B
(32)

where A =
∑K

i=1 ai and B =
∑K

i=1 bi and that equality holds iff all
ai

bi
are equal. Instantiated for our case (i.e., with ai = Ni and bi = K),

we get A = N, B = K, and

K∑
i=1

Ni logNi > N log
N

K
. (33)

Hence, we can maximize the comparison lower bound of Multiset-
Sorting from Equation 31 like this:

N logN−

K∑
i=1

Ni logNi +O(N)

6N logN−N log
N

K
+O(N)

=N logN−N · (logN− logK) +O(N)

=N logK+O(N) (34)

149

A.2 algebraic transformations of section 4 .3 .2 150

and equality holds iff all Ni are equal. Thus, the lower bound of
MultisetSorting from Equation 31 has a simplified form using just
N and K:

N logK+O(N). (35)

a.2 algebraic transformations of section 4 .3 .2

a.2.1 Equation 14

Here we show the algebraic transformations needed to transform
Equation 13 into Equation 14 in the proof of the lower bounds in
Section 4.3.2. In the transformations, we use Stirling’s approxima-
tion [190] of the factorial:

√
2π NN+1/2e−N 6 N! 6 e NN+1/2e−N, (36)

as well as the following inequality to bound binomial expressions (cf.
Greiner [79]):

(
x

y

)y

6

(
x

y

)
6

(
ex

y

)y

. (37)

The right side of Equation 13 under the logarithm is transformed
as follows by using Stirling’s approximation:

ln(N!) −
N

B
ln(B!) − lnP

>
1

2
ln 2π+

(
N+

1

2

)
lnN−N−

N

B

(
1+

(
B+

1

2

)
lnB−B

)
− lnP

=N ln
N

B
−

N

B

(
1+

1

2
lnB

)
+

1

2
lnB+

1

2
ln 2π− lnP

>N ln
N

B
−

N

B

(
1+

1

2
lnB

)
− lnP

>N ln
N

B
−N− lnP = N ln

N

eB
− lnP (38)

Similarly, the left side under the logarithm can be transformed as
follows, using Equation 37 to bound the binomial expression:

Pℓ (ln 3+ 2 lnN+B ln 2) + ℓ ln
(

min(MP,N)

PB

)
6Pℓ (ln 3+ 2 lnN+B ln 2) + ℓPB ln

emin(MP,N)

PB

=Pℓ

(
ln 3+ 2 lnN+B ln

(
2+ emin

(
M

B
,
N

PB

)))
(39)

A.2 algebraic transformations of section 4 .3 .2 151

Putting 38 and 39 together, we obtain Equation 14:

ℓ >
N ln N

eB − lnP

P
(
ln 3+ 2 lnN+B ln

(
2+ emin

(
M
B , N

PB

)))
=

N ln N
eB − lnP

Θ(P(lnN+B lnd))
,

with d = max
(
2, min

(
M
B , N

PB

))
.

B
P R O B A B I L I S T I C C O U N T I N G A L G O R I T H M S

The problem of estimating the number of distinct elements in a stream
has been studied by a variety of authors. The first considerable study
was the seminal paper of Flajolet and Martin [66], which introduced
ProbabilisticCounting (PC),1 as well as an extension with stochastic
averaging (PCSA). The basic approach tracks the numbers of leading
zeros in the hash values of records and the extension increases accu-
racy by using memory space for several such estimators. The under-
lying intuition is that the more distinct elements there are, the more
likely it is that one of them has many leading zeros. In subsequent
work, ProbabilisticCounting was refined in order to improve its ac-
curacy and to reduce its memory consumption [59, 65]. Alternative
approaches were also proposed. We refer to comparisons by Aouiche
and Lemire [8] and Metwally et al. [130] for an overview.

Algorithm 6 ProbabilisticCounting

1: func ProbabilisticCounting(S: Seq. of Row)
2: bitmap← {0, . . . , 0}
3: for each row in S do
4: nz ← Clz(Hash(row.key)) ◃ Clz: count leading zeros
5: bitmap[nz]← 1

6: R← Clz(~bitmap) ◃ ~x: bitwise complement of x
7: return 2R

φ

The basic ProbabilisticCounting algorithm is shown as pseudo-
code in Algorithm 6 and works as follows: For each record that we
process, we count the number nz of leading zeros in the binary rep-
resentation ot the hash value of the record. We remember each value
of nz that we observe by setting to 1 the bit of a bitmap at position
nz. After all records have been processed, we count the number of
leading 1-bits in the bitmap. Let the result be R. This means that
at least one of the records has a hash value that starts with R zeros.
Flajolet and Martin show that for K distinct values and perfectly uni-
form hash values, we expect to observe E(R) = log2φK bits set, with
φ = 0.77351 . . . [66], so K can be estimated by 2R

φ .
Because the standard error of ProbabilisticCounting is quite high,

Flajolet and Martin propose to use stochastic averaging. Algorithm 7

shows the pseudo-code of this approach. It consists in using m bitmaps
to count observed numbers of leading zeros instead of just one, and to

1 Sometimes this technique is also called FMSynopsis, named after the two authors
that proposed it.

153

probabilistic counting algorithms 154

Algorithm 7 ProbabilisticCounting with stochastic averaging

1: func PCSA(S: Seq. of Row, m ∈ N)
2: for i← 0 to m− 1 do
3: bitmap[i]← {0, . . . , 0}

4: for each row in S do
5: h← Hash(row.key)
6: nz ← Clz(h div m)
7: bitmap[h mod m][nz]← 1

8: R← 1
m

∑i=0
m−1 Clz(~bitmap[i])

9: return 2R

φ

use some otherwise unused bits of the hash function to select which
of the bitmaps to use for each record. This imitates having m simulta-
neous estimators, but still only needs a single hash value (instead of
m of them). By using the average of the m values for R, we make the
result more precise. For an analysis of the mathematical properties of
these estimators, we refer to the original paper [66].

B I B L I O G R A P H Y

[1] Daniel J. Abadi. “The Design and Implementation of Mod-
ern Column-Oriented Database Systems.” In: Foundations and
Trends in Databases 5.3 (2012), pp. 197–280.

[2] Daniel J. Abadi, Daniel S. Myers, David J. DeWitt, and Samuel
R. Madden. “Materialization Strategies in a Column-Oriented
DBMS.” In: ICDE. 2007.

[3] Alok Aggarwal and Jeffrey Scott Vitter. “The Input/Output
Complexity of Sorting and Related Problems.” In: Commun.
ACM 31.9 (1988), pp. 1116–1127.

[4] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and David
A. Wood. “DBMSs on a Modern Processor: Where Does Time
Go?” In: PVLDB. 1999.

[5] Martina-Cezara Albutiu. “Scalable Analytical Query Process-
ing.” PhD thesis. Technische Universität München, 2013.

[6] Martina-Cezara Albutiu, Alfons Kemper, and Thomas Neu-
mann. “Massively Parallel Sort-Merge Joins in Main Memory
Multi-Core Database Systems.” In: PVLDB. 2012.

[7] Rasmus Resen Amossen and Rasmus Pagh. “Faster Join-Projects
and Sparse Matrix Multiplications.” In: ICDT. 2009.

[8] Kamel Aouiche and Daniel Lemire. “A Comparison of Five
Probabilistic View-Size Estimation Techniques in OLAP.” In:
DOLAP. 2007.

[9] Lars Arge. “External Memory Data Structures.” In: Handbook
of Massive Datasets. Springer, 2002.

[10] Lars Arge. The Buffer Tree: A New Technique for Optimal I/O-Algo-
rithms. Tech. rep. BRICS, RS-96-28. University of Aarhus, 1996.

[11] Lars Arge, Gerth Stølting Brodal, and Rolf Fagerberg. “Cache-
Oblivious Data Structures.” In: Handbook of Data Structures and
Applications. Chapman & Hall/CRC, 2005, pp. 38-1–38-28.

[12] Lars Arge, Michael T. Goodrich, Michael Nelson, and Nodari
Sitchinava. “Fundamental parallel algorithms for private-cache
chip multiprocessors.” In: SPAA. 2008.

[13] Lars Arge, Mikael Knudsen, Kirsten Larsen, Frank Dehne, Jörg-
Rüdiger Sack, Nicola Santoro, and Sue Whitesides. “A General
Lower Bound on the I/O-Complexity of Comparison-based Al-
gorithms.” In: WADS. 1993.

155

Bibliography 156

[14] Lars Arge and Peter Bro Miltersen. “On showing lower bounds
for external-memory computational geometry problems.” In:
External Memory Algorithms. 1999.

[15] Albert Atserias, Martin Grohe, and Dániel Marx. “Size Bounds
and Query Plans for Relational Joins.” In: FOCS. 2008.

[16] Ron Avnur and Joseph M. Hellerstein. “Eddies: Continously
Adaptive Query Processing.” In: SIGMOD. 2000.

[17] Shivnath Babu. “Adaptive query processing in the looking
glass.” In: CIDR (2005), pp. 238–249.

[18] Shivnath Babu, Pedro Bizarro, and David Dewitt. “Proactive
Re-Optimization.” In: SIGMOD. 2005.

[19] Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M. Tamer
Özsu. “Multi-Core, Main-Memory Joins: Sort vs. Hash Revis-
ited.” In: PVLDB. 2013.

[20] Cagri Balkesen, Jens Teubner, and Gustavo Alonso. “Main-
Memory Hash Joins on Multi-Core CPUs : Tuning to the Un-
derlying Hardware.” In: ICDE. 2013.

[21] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer
Ozsu. “Main-Memory Hash Joins on Modern Processor Archi-
tectures.” In: TKDE 27.7 (2015), pp. 1754–1766.

[22] Ronald Barber, Peter Bendel, Marco Czech, Oliver Draese, Fred-
erick Ho, Namik Hrle, Stratos Idreos, Min-Soo Kim 0002, Oliver
Koeth, Jae-Gil Lee, Tianchao Tim Li, Guy M. Lohman, Kon-
stantinos Morfonios, René Müller, Keshava Murthy, Ippokratis
Pandis, Lin Qiao, Vijayshankar Raman, Richard Sidle, Knut
Stolze, and Sandor Szabo. “Business Analytics in (a) Blink.”
In: IEEE Data Eng. Bull. 35.1 (2012), pp. 9–14.

[23] Ronald Barber, Guy Lohman, Ippokratis Pandis, Gopi Attaluri,
Naresh Chainani, Sam Lightstone, Vijayshankar Raman, Richard
Sidle, and David Sharpe. “Memory-Efficient Hash Joins.” In:
PVLDB. 2015.

[24] Claude Barthels, Simon Loesing, Gustavo Alonso, and Don-
ald Kossmann. “Rack-Scale In-Memory Join Processing using
RDMA.” In: SIGMOD. 2015.

[25] Steven Keith Begley, Zhen He, and Yi-Ping Phoebe Chen. “MC-
Join: A Memory-Constrained Join for Column-Store Main-Mem-
ory Databases.” In: SIGMOD. 2012.

[26] Michael A. Bender, Gerth Stølting Brodal, Rolf Fagerberg, Riko
Jacob, and Elias Vicari. “Optimal Sparse Matrix Dense Vector
Multiplication in the I/O-Model.” In: SPAA. 2007.

[27] Dina Bitton and David J. DeWitt. “Duplicate record elimina-
tion in large data files.” In: TODS 8.2 (1983), pp. 255–265.

Bibliography 157

[28] Spyros Blanas, Yinan Li, and Jignesh M. Patel. “Design and
Evaluation of Main Memory Hash Join Algorithms for Multi-
core CPUs.” In: SIGMOD. 2011.

[29] Spyros Blanas and Jignesh M. Patel. “Memory Footprint Mat-
ters: Efficient Equi-Join Algorithms for Main Memory Data
Processing.” In: SoCC. 2013.

[30] Spyros Blanas, Jignesh M. Patel, Vuk Ercegovac, Jun Rao, Eu-
gene J. Shekita, and Yuanyuan Tian. “A Comparison of Join
Algorithms for Log Processing in MaPreduce.” In: SIGMOD.
2010.

[31] Peter A. Boncz, Stefan Manegold, and Martin L. Kersten. “Da-
tabase Architecture Optimized for the New Bottleneck: Mem-
ory Access.” In: PVLDB. 1999.

[32] Peter A. Boncz, Marcin Zukowski, and Niels Nes. “MonetD-
B/X100: Hyper-Pipelining Query Execution.” In: CIDR. 2005.

[33] H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth,
M. Franklin, B. Hart, M. Smith, and P. Valduriez. “Prototyp-
ing Bubba, A Highly Parallel Database System.” In: TKDE 2.1
(1990), pp. 4–24.

[34] Gerth Stølting Brodal. “Cache-Oblivious Algorithms and Data
Structures.” In: SWAT. 2004.

[35] Gerth Stølting Brodal, Erik D. Demaine, Jeremy T. Fineman,
John Iacono, Stefan Langerman, and J. Ian Munro. “Cache-
Oblivious Dynamic Dictionaries with Update/Query Trade-
offs.” In: SODA. 2010.

[36] Gerth Stolting Brodal and Rolf Fagerberg. “Lower Bounds for
External Memory Dictionaries.” In: SODA. 2003.

[37] Donald D. Chamberlin and Raymond F. Boyce. “SEQUEL: A
Structured English Query Language.” In: SIGFIDET Workshop
on Data Description, Access and Control. 1976.

[38] Badrish Chandramouli and Jonathan Goldstein. “Patience is a
Virtue: Revisiting Merge and Sort on Modern Processors.” In:
SIGMOD. 2014, pp. 731–742.

[39] Shimin Chen, Anastassia Ailamaki, Phillip B. Gibbons, and
Todd C. Mowry. “Improving Hash Join Performance through
Prefetching.” In: TODS 32.3 (2007), pp. 1–32.

[40] Shimin Chen, Anastassia Ailamaki, Phillip B. Gibbons, and
Todd C. Mowry. “Inspector joins.” In: PVLDB. 2005.

[41] John Cieslewicz, William Mee, and Kenneth A. Ross. “Cache-
Conscious Buffering for Database Operators with State.” In:
DaMoN. 2009.

[42] John Cieslewicz and K.A. Ross. “Adaptive Aggregation on
Chip Multiprocessors.” In: PVLDB. 2007.

Bibliography 158

[43] John Cieslewicz and Kenneth A. Ross. “Data partitioning on
chip multiprocessors.” In: DaMoN. 2008.

[44] John Cieslewicz, Kenneth A. Ross, Kyoho Satsumi, and Yang
Ye. “Automatic contention detection and amelioration for data-
intensive operations.” In: SIGMOD. 2010.

[45] Edgar F. Codd. “A relational model of data for large shared
data banks.” In: Communications of the ACM 13.6 (1970), pp. 377–
387.

[46] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
and Clifford Stein. Introduction To Algorithms. MIT Press, 2001.
isbn: 0262032937.

[47] Andrei Costea and Adrian Ionescu. “Query Optimization and
Execution in Vectorwise MPP.” MA thesis. Vreije Universiteit
Amsterdam, 2012.

[48] Imre Csiszár and Paul C. Shields. “Information Theory and
Statistics: A Tutorial.” In: FTCIT 1.4 (2004), pp. 417–528.

[49] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. “Ev-
erything you always wanted to know about synchronization
but were afraid to ask.” In: SOSP. 2013.

[50] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified
Data Processing on Large Clusters.” In: CACM 51.1 (2008).

[51] Erik D. Demaine. “Cache-Oblivious Algorithms and Data Struc-
tures.” In: BRICS (2002).

[52] Amol Deshpande, Zachary Ives, and Vijayshankar Raman. “Adap-
tive Query Processing.” In: Foundations and Trends in Databases
1.1 (2006), pp. 1–140.

[53] David J. DeWitt, Jeffrey F. Naughton, Donovan A. Schneider,
and S. Seshadri. “Practical Skew Handling in Parallel Joins.”
In: PVLDB. 1992.

[54] David J DeWitt, Randy H Katz, et al. “Implementation Tech-
niques for Main Memory Database Systems.” In: SIGMOD.
1984.

[55] David DeWitt and Jim Gray. “Parallel Database Systems: The
Future of High Performance Database Systems.” In: CACM
35.6 (1992), pp. 85–98.

[56] D.J. DeWitt, S. Ghandeharizadeh, D.A. Schneider, A. Bricker,
H.-I. Hsiao, and R. Rasmussen. “The Gamma Database Ma-
chine Project.” In: TKDE 2.1 (1990), pp. 44–62.

[57] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Lar-
son, Pravin Mittal, Ryan Stonecipher, Nitin Verma, and Mike
Zwilling. “Hekaton: SQL Server’s Memory-Optimized OLTP
Engine.” In: SIGMOD. 2013.

Bibliography 159

[58] Ulrich Drepper. “What every programmer should know about
memory.” In: Red Hat, Inc (2007). url: http://people.freebsd.
org/~lstewart/articles/cpumemory.pdf.

[59] Marianne Durand and Philippe Flajolet. “Loglog Counting of
Large Cardinalities.” In: ESA. 2003.

[60] Robert Epstein. Techniques for processing of aggregates in rela-
tional database systems. Tech. rep. Technical Report UCB/ERL,
1979.

[61] Franz Färber, Norman May, Wolfgang Lehner, Philipp Große,
Ingo Müller, Hannes Rauhe, and Jonathan Dees. “The SAP
HANA Database – An Architecture Overview.” In: IEEE Data
Eng. Bull. 35.1 (2012), pp. 28–33.

[62] Arash Farzan. “Cache-Oblivious Searching and Sorting in Mul-
tisets.” PhD thesis. University of Waterloo, 2004.

[63] Arash Farzan, Paolo Ferragina, Gianni Franceschini, and J. Ian
Munro. “Cache-oblivious comparison-based algorithms on mul-
tisets.” In: ESA. 2005.

[64] Ziqiang Feng and Eric Lo. “Accelerating Aggregation using
Intra-cycle Parallelism.” In: ICDE. 2015.

[65] Philippe Flajolet, Éric Fusy, and Olivier Gandouet. “Hyper-
LogLog : the analysis of a near-optimal cardinality estimation
algorithm.” In: AofA. 2007.

[66] Philippe Flajolet and G. Nigel Martin. “Probabilistic Counting
Algorithms for Data Base Applications.” In: JCSS 31.2 (1985).

[67] Craig Freedman, Erik Ismert, and Per-Åke Larson. “Compila-
tion in the Microsoft SQL Server Hekaton Engine.” In: IEEE
Data Eng. Bull. 37.1 (2014), pp. 22–30.

[68] Philip W. Frey, Romulo Goncalves, Martin Kersten, and Jens
Teubner. “A Spinning Join That Does Not Get Dizzy.” In: ICDCS.
2010.

[69] Philip W. Frey, Romulo Goncalves, Martin Kersten, and Jens
Teubner. “Spinning relations: High-Speed Networks for Dis-
tributed Join Processing.” In: DaMoN. 2009.

[70] M. Frigo, C.E. Leiserson, H. Prokop, and S. Ramachandran.
“Cache-Oblivious Algorithms.” In: FOCS. 1999.

[71] Philip Garcia and Henry F. Korth. “Database Hash-Join Al-
gorithms on Multithreaded Computer Architectures.” In: CF.
2006.

[72] Naga K. Govindaraju, Brandon Lloyd, Wei Wang, Ming Lin,
and Dinesh Manocha. “Fast computation of database opera-
tions using graphics processors.” In: SIGMOD. 2004.

http://people.freebsd.org/~lstewart/articles/cpumemory.pdf
http://people.freebsd.org/~lstewart/articles/cpumemory.pdf

Bibliography 160

[73] Goetz Graefe. “Encapsulation of parallelism in the Volcano
query processing system.” In: SIGMOD. 1990.

[74] Goetz Graefe. “Implementing sorting in database systems.” In:
ACM Computing Surveys 38.3 (2006).

[75] Goetz Graefe. “New algorithms for join and grouping opera-
tions.” In: Computer Science – R&D 27.1 (2011), pp. 3–27.

[76] Goetz Graefe. “Query evaluation techniques for large data-
bases.” In: ACM Computing Surveys 25.2 (1993), pp. 73–169.

[77] Goetz Graefe, Ross Bunker, and Shaun Cooper. “Hash Joins
and Hash Teams in Microsoft SQL Server.” In: PVLDB. 1998.

[78] J. Gray, A. Bosworth, A. Lyaman, and H. Pirahesh. “Data cube:
a relational aggregation operator generalizing GROUP-BY, CROSS-
TAB, and SUB-TOTALS.” In: ICDE. 1996.

[79] Gero Greiner. “Sparse Matrix Computations and their I/O
Complexity.” PhD thesis. Technische Universität München, 2012.

[80] Gero Greiner and Riko Jacob. “The Efficiency of MapReduce
in Parallel External Memory.” In: LATIN. 2012.

[81] Gero Greiner and Riko Jacob. “The I/O Complexity of Sparse
Matrix Dense Matrix Multiplication.” In: LATIN. 2010.

[82] Sven Helmer, Thomas Neumann, and Guido Moerkotte. Early
Grouping Gets the Skew. Tech. rep. University of Mannheim,
2011.

[83] Lorenz Hübschle-Schneider, Peter Sanders, and Ingo Müller.
“Communication Efficient Algorithms for Top-k Selection Prob-
lems.” In: CoRR abs/1502.0 (2015).

[84] John Iacono and Mihai Pătraşcu. “Using Hashing to Solve the
Dictionary Problem (In External Memory).” In: SODA. 2012.

[85] Intel Corporation. Intel® 64 and IA-32 Architectures Optimiza-
tion Reference Manual. 2009.

[86] Information technology—Database languages—SQL—Part 2: Foun-
dation. ISO/IEC 9075-2:2011(E). 2011.

[87] Yannis E. Ioannidis and Stavros Christodoulakis. “On the prop-
agation of errors in the size of join results.” In: ACM SIGMOD
Record 20.2 (1991), pp. 268–277.

[88] Riko Jacob, Tobias Lieber, and Nodari Sitchinava. “On the
Complexity of List Ranking in the Parallel External Memory
Model.” In: MFCS 8635 (2014), pp. 384–395.

[89] Morten Skaarup Jensen and Rasmus Pagh. “Optimality in Ex-
ternal Memory Hashing.” In: Algorithmica 52.3 (2007), pp. 403–
411.

[90] Hong Jia-Wei and H. T. Kung. “I/O complexity: The red-blue
pebble game.” In: STOC. 1981.

Bibliography 161

[91] D. Jimenez-Gonzalez, J.J. Navarro, and J.-L. Larriba-Pey. “CC-
Radix: a cache conscious sorting based on Radix sort.” In: PDP.
2003.

[92] Dani Jiménez-González, Josep Lluis Larriba-Pey, and Juan J.
Navarro. “Case Study: Memory Conscious Parallel Sorting.”
In: Algorithms for Memory Hierarchies. 2003, pp. 355–377.

[93] Daniel Jiménez-González, Juan J. Navarro, and Josep-L. Larrba-
Pey. “Fast Parallel In-Memory 64-bit Sorting.” In: ICS. 2001.

[94] Navin Kabra and David J. DeWitt. “Efficient mid-query re-op-
timization of sub-optimal query execution plans.” In: ACM
SIGMOD Record 27.2 (1998), pp. 106–117.

[95] Rohit Khurana. Introduction to Database Systems. Pearson Edu-
cation India, 2010. isbn: 8131731928.

[96] Changkyu Kim, Tim Kaldewey, Victor W. Lee, Eric Sedlar, An-
thony D. Nguyen, Nadathur Satish, Jatin Chhugani, Andrea Di
Blas, and Pradeep Dubey. “Sort vs. Hash Revisited: Fast Join
Implementation on Modern Multi-Core CPUs.” In: PVLDB.
2009.

[97] M. Kitsuregawa, M. Nakayama, and M. Takagi. “The effect of
bucket size tuning in the dynamic hybrid GRACE hash join
method.” In: PVLDB. 1989.

[98] Masaru Kitsuregawa, Hidehiko Tanaka, and Tohru Moto-Oka.
“Application of Hash to Data Base Machine and Its Architec-
ture.” In: New Generation Computing 1.1 (1983), pp. 63–74.

[99] Anthony Klug. “Equivalence of Relational Algebra and Re-
lational Calculus Query Languages Having Aggregate Func-
tions.” In: Journal of the ACM 29.3 (1982), pp. 699–717.

[100] Mikael Knudsen and Kirsten Larsen. “I/O-complexity of com-
parison and permutation problems.” MA thesis. Aarhus Uni-
versity, 1992.

[101] Donald E. Knuth. Art of Computer Programming, Volume 3: Sort-
ing and Searching (2nd Edition). Addison-Wesley Professional,
1998, p. 800. isbn: 0201896850.

[102] Marcel Kornacker, Alexander Behm, Victor Bittorf, Taras Bo-
brovytsky, Casey Ching, Alan Choi, Justin Erickson, Martin
Grund, Daniel Hecht, Matthew Jacobs, Ishaan Joshi, Lenni Kuff,
Dileep Kumar, Alex Leblang, Nong Li, Ippokratis Pandis, Henry
Robinson, David Rorke, Silvius Rus, John Russell, Dimitris Tsiro-
giannis, Skye Wanderman-Milne, and Michael Yoder. “Impala:
A Modern, Open-Source SQL Engine for Hadoop.” In: CIDR.
2015.

[103] Konstantinos Krikellas. “Case for holistic query evaluation.”
PhD thesis. University of Edinburgh, 2010.

Bibliography 162

[104] Konstantinos Krikellas, Stratis D. Viglas, and Marcelo Cintra.
“Generating code for holistic query evaluation.” In: ICDE. 2010.

[105] V. Kumar and E.J. Schwabe. “Improved algorithms and data
structures for solving graph problems in external memory.”
In: SPDP. 1996.

[106] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome
Rolia. “SkewTune: Mitigating Skew in MapReduce Applica-
tions.” In: SIGMOD. 2012.

[107] Yongchul Kwon, Kai Ren, Magdalena Balazinska, and Bill Howe.
“Managing Skew in Hadoop.” In: IEEE Data Eng. Bull. 36.1
(2013), pp. 24–33.

[108] Tirthankar Lahiri, Ma Neimat, and Steve Folkman. “Oracle
TimesTen: An In-Memory Database for Enterprise Applica-
tions.” In: IEEE Data Eng. Bull 36.2 (2013), pp. 6–13.

[109] Harald Lang, Viktor Leis, Martina-Cezara Albutiu, Thomas
Neumann, and Alfons Kemper. “Massively Parallel NUMA-
aware Hash Joins.” In: IMDM. 2013.

[110] Eric N. Larson Påand Hanson and Susan L. Price. “Colum-
nar storage in SQL Server 2012.” In: IEEE Data Eng. Bull. 35.1
(2012), pp. 15–20.

[111] Per-Åke Larson. Grouping and duplicate elimination: Benefits of
early aggregation. Tech. rep. Microsoft, 1997. url: http : / /

research.microsoft.com/pubs/69693/tr-97-36.pdf.

[112] Per-Åke Larson Larson. “Data reduction by partial preaggre-
gation.” In: ICDE. 2002.

[113] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neu-
mann. “Morsel-Driven Parallelism: A NUMA-Aware Query
Evaluation Framework for the Many-Core Age.” In: SIGMOD.
2014.

[114] D. Lemire and L. Boytsov. “Decoding billions of integers per
second through vectorization.” In: Softw. Pract. Exper. 45.1 (2015),
pp. 1–29.

[115] Christian Lemke, Kai-Uwe Sattler, Franz Faerber, and Alexan-
der Zeier. “Speeding Up Queries in Column Stores – A Case
for Compression.” In: DaWaK. 2010, pp. 117–129.

[116] Yinan Li, Ippokratis Pandis, Rene Mueller, Vijayshankar Ra-
man, and Guy Lohman. “NUMA-aware algorithms: the case
of data shuffling.” In: CIDR. 2013.

[117] Yinan Li and Jignesh M. Patel. “BitWeaving: Fast Scans for
Main Memory Data Processing.” In: SIGMOD. 2013.

[118] Guy M. Lohman. Is Query Optimization a “Solved” Problem?
2014. url: http : / / wp . sigmod . org / ?p = 1075 (visited on
05/07/2015).

http://research.microsoft.com/pubs/69693/tr-97-36.pdf
http://research.microsoft.com/pubs/69693/tr-97-36.pdf
http://wp.sigmod.org/?p=1075

Bibliography 163

[119] Guy M. Lohman. “Is query optimization a “solved” problem.”
In: Proc. Workshop on Database Query Optimization. 1989.

[120] Walter T. Ludwig. “Algorithms for Scheduling Malleable and
Nonmalleable Parallel Tasks.” PhD thesis. University of Wis-
consin-Madison, 1995.

[121] Roger MacNicol and Blaine French. “Sybase IQ Multiplex - De-
signed For Analytics.” In: PVLDB. 2004.

[122] S. Manegold, P. Boncz, and M. Kersten. “Optimizing main-
memory join on modern hardware.” In: TKDE 14.4 (2002),
pp. 709–730.

[123] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. “Op-
timizing database architecture for the new bottleneck: memory
access.” In: The VLDB Journal 9.3 (2000), pp. 231–246.

[124] Stefan Manegold, Peter Boncz, Niels Nes, and Martin Kersten.
“Cache-conscious radix-decluster projections.” In: PVLDB. 2004.

[125] Volker Markl, Vijayshankar Raman, David Simmen, Guy Loh-
man, Hamid Pirahesh, and Miso Cilimdzic. “Robust query pro-
cessing through progressive optimization.” In: SIGMOD. 2004.

[126] Xavier Martinez-Palau, David Dominguez-Sal, and Josep Lluis
Larriba-Pey. “Two-way Replacement Selection.” In: PVLDB.
2010.

[127] Yossi Matias, Eran Segal, and Jeffrey Scott Vitter. “Efficient
Bundle Sorting.” In: SICOMP 36.2 (2006), p. 394.

[128] Jean-Pierre Maury. Newton: Understanding the Cosmos. Thames
and Hudson, 1992. isbn: 0500300232.

[129] Manish Mehta and David J. DeWitt. “Managing Intra-operator
Parallelism in Parallel Database Systems.” In: PVLDB. 1995.

[130] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi.
“Why Go Logarithmic if We Can Go Linear? Towards Effective
Distinct Counting of Search Traffic.” In: EDBT. 2008.

[131] Rene Mueller, Jens Teubner, and Gustavo Alonso. “Data pro-
cessing on FPGAs.” In: PVLDB. 2009.

[132] Ingo Müller, Cornelius Ratsch, and Franz Faerber. “Adaptive
String Dictionary Compression in In-Memory Column-Store
Database Systems.” In: EDBT. 2014.

[133] Ingo Müller, Peter Sanders, Arnaud Lacurie, Wolfgang Lehner,
and Franz Färber. “Cache-Efficient Aggregation: Hashing Is
Sorting.” In: SIGMOD. 2015.

[134] Ingo Müller, Peter Sanders, Robert Schulze, and Wei Zhou.
“Retrieval and Perfect Hashing using Fingerprinting.” In: SEA.
2014.

Bibliography 164

[135] Matthias Müller-Hannemann and Stefan Schirra. Algorithm En-
gineering—Bridging the Gap Between Algorithm Theory and Prac-
tice. Springer Berlin Heidelberg New York, 2010, p. 527. isbn:
978-3-642-14865-1.

[136] Ian Munro and Philip M. Spira. “Sorting and Searching in Mul-
tisets.” In: SICOMP 5.1 (1976), p. 1.

[137] J. Ian Munro and Venkatesh Raman. “Sorting Multisets and
Vectors In-Place.” In: WADS. 1991.

[138] Fabian Nagel, Gavin Bierman, and Stratis D. Viglas. “Code
generation for efficient query processing in managed runtimes.”
In: PVLDB. 2014.

[139] Masaya Nakayama, Masaru Kitsuregawa, and Mikio Takagi.
“Hash-Partitioned Join Method Using Dynamic Destaging Strat-
egy.” In: PVLDB. 1988.

[140] Thomas Neumann. “Efficiently Compiling Efficient Query Plans
for Modern Hardware.” In: PVLDB. 2011.

[141] Hung Q. Ngo, Dung T. Nguyen, Christopher Re, and Atri
Rudra. “Beyond Worst-case Analysis for Joins with Minesweep-
er.” In: PODS. 2014.

[142] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. “Worst-
case Optimal Join Algorithms.” In: PODS. 2012.

[143] M. Tamer Özsu and P Valduriez. Principles of distributed data-
base systems. 3rd ed. Springer, 2011. isbn: 9781441988331.

[144] Rasmus Pagh and Morten Stöckel. “The Input/Output Com-
plexity of Sparse Matrix Multiplication.” In: ESA. 2014.

[145] David A. Patterson and John L. Hennessy. Computer Organiza-
tion and Design: The Hardware/Software Interface. Elsevier, 2012,
p. 703. isbn: 0123747503.

[146] Holger Pirk, Stefan Manegold, and Martin Kersten. “Waste
not. . . Efficient co-processing of relational data.” In: ICDE. 2014.

[147] Fred J. Pollack. “New microarchitecture challenges in the com-
ing generations of CMOS process technologies.” In: MICRO
(1999), p. 2.

[148] Orestis Polychroniou, Arun Raghavan, and Kenneth A. Ross.
“Rethinking SIMD Vectorization for In-Memory Databases.”
In: SIGMOD. 2015.

[149] Orestis Polychroniou and Kenneth A. Ross. “A comprehen-
sive study of main-memory partitioning and its application to
large-scale comparison- and radix-sort.” In: SIGMOD. 2014.

[150] Orestis Polychroniou, Rajkumar Sen, and Kenneth A. Ross.
“Track Join: Distributed Joins with Minimal Network Traffic.”
In: SIGMOD. 2014.

Bibliography 165

[151] Iraklis Psaroudakis, Tobias Scheuer, Norman May, Abdelka-
der Sellami, and Anastasia Ailamaki. “Scaling Up Concur-
rent Main-Memory Column-Store Scans: Towards Adaptive
NUMA-aware Data and Task Placement.” In: PVLDB. 2015.

[152] Naila Rahman. “Algorithms for Hardware Caches and TLB.”
In: Algorithms for Memory Hierarchies. 2003, pp. 171–192.

[153] Smriti R. Ramakrishnan, Garret Swart, and Aleksey Urmanov.
“Balancing Reducer Skew in MapReduce Workloads using Pro-
gressive Sampling.” In: SoCC. 2012.

[154] Vijayshankar Raman, Gopi Attaluri, Ronald Barber, Naresh
Chainani, et al. “DB2 with BLU Acceleration: So Much More
than Just a Column Store.” In: PVLDB. 2013.

[155] Wolf Rödiger, Tobias Mühlbauer, Alfons Kemper, and Thomas
Neumann. “High-Speed Query Processing over High-Speed
Networks.” In: CoRR abs/1502.0 (2015).

[156] Wolf Rodiger, Tobias Muhlbauer, Philipp Unterbrunner, Ange-
lika Reiser, Alfons Kemper, and Thomas Neumann. “Locality-
Sensitive Operators for Parallel Main-Memory Database Clus-
ters.” In: ICDE. 2014.

[157] Milan Ružić. “Constructing Efficient Dictionaries in Close to
Sorting Time.” In: ICALP. 2008.

[158] Peter Sanders. “Algorithm Engineering – An Attempt at a Def-
inition.” In: Efficient Algorithms. 2009.

[159] Peter Sanders, Sebastian Schlag, and Ingo Müller. “Commu-
nication efficient algorithms for fundamental big data prob-
lems.” In: IEEE Big Data Conf. 2013.

[160] Peter Sanders and Sebastian Winkel. “Super Scalar Sample
Sort.” In: ESA. 2004.

[161] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Anthony D.
Nguyen, Victor W. Lee, Daehyun Kim, and Pradeep Dubey.
“Fast sort on CPUs and GPUs.” In: SIGMOD. 2010, p. 351.

[162] Felix Martin Schuhknecht, Pankaj Khanchandani, and Jens Dit-
trich. “On the Surprising Difficulty of Simple Things: the Case
of Radix Partitioning.” In: PVLDB. 2015.

[163] Ambuj Shatdal, Chander Kant, and Jeffrey F. Naughton. “Cache
Conscious Algorithms for Relational Query Processing.” In:
PVLDB. 1994.

[164] Ambuj Shatdal and Jeffrey F. Naughton. “Adaptive Parallel
Aggregation Algorithms.” In: SIGMOD. 1995.

[165] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. “The Hadoop Distributed File System.” In: MSST.
2010.

Bibliography 166

[166] Abraham Silberschatz, Henry Korth, and S. Sudarshan. Data-
base System Concepts. McGraw-Hill, 2011. isbn: 9780073523323.

[167] Nodari Sitchinava. Personal communication. 2014.

[168] Nodari Sitchinava and Norbert Zeh. “A parallel buffer tree.”
In: SPAA. 2012.

[169] Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar
Kandil. “LEO - DB2’s LEarning Optimizer.” In: PVLDB. 2001.

[170] Michael Stonebraker. “The Case for Shared Nothing.” In: IEEE
Data Eng. Bull. 9.1 (1986), pp. 4–9.

[171] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong
Chen, Mitch Cherniack, Miguel Ferreira, Edmond Lau, Amer-
son Lin, Sam Madden, Elizabeth O’Neil, Pat O’Neil, Alex Rasin,
Nga Tran, and Stan Zdonik. “C-Store: A Column-oriented DBMS.”
In: PVLDB. 2005.

[172] TPC Benchmark™ H. Revision 2.17.1. 2014.

[173] Todd L Veldhuizen. “Leapfrog Triejoin : A Simple , Worst-Case
Optimal Join Algorithm.” In: ICDT. 2014.

[174] Elad Verbin and Qin Zhang. “The Limits of Buffering: A Tight
Lower Bound for Dynamic Membership in the External Mem-
ory Model.” In: STOC. 2010.

[175] Rares Vernica, Andrey Balmin, Kevin S. Beyer, and Vuk Ercego-
vac. “Adaptive MapReduce using Situation-Aware Mappers.”
In: EDBT. 2012.

[176] Jeffrey Scott Vitter. Algorithms and Data Structures for External
Memory. Now Publishers Inc, 2008. isbn: 1601981066.

[177] Jeffrey Scott Vitter. “External Memory Algorithms.” In: ESA.
1998.

[178] Jeffrey Scott Vitter. “External memory algorithms and data
structures: dealing with massive data.” In: ACM Computing
Surveys 33.2 (2001), pp. 209–271.

[179] Florian M. Waas. “Beyond Conventional Data Warehousing —
Massively Parallel Data Processing with Greenplum Database
(Invited Talk).” In: BIRTE. 2009.

[180] Mehul Wagle, Daniel Booss, Ivan Schreter, and Daniel Egenolf.
“NUMA-Aware Memory Management with In-Memory Data-
bases.” In: TPCTC. 2015.

[181] Christopher B. Walton, Alfred G. Dale, and Roy M. Jenevein.
“A Taxonomy and Performance Model of Data Skew Effects in
Parallel Joins.” In: PVLDB. 1991.

[182] Jan Wassenberg and Peter Sanders. “Engineering a Multi-core
Radix Sort.” In: Euro-Par. 2011.

Bibliography 167

[183] L.M. Wegner and J.I. Teuhola. “The External Heapsort.” In:
TSE 15.7 (1989), pp. 917–925.

[184] Zhewei Wei, Ke Yi, and Qin Zhang. “Dynamic External Hash-
ing: The Limit of Buffering.” In: SPAA. 2009.

[185] Martin Weidner, Jonathan Dees, and Peter Sanders. “Fast OLAP
Query Execution in Main Memory on Large Data in a Cluster.”
In: IEEE Big Data Conf. 2013.

[186] Jian Wen. “Revisiting Aggregation Techniques for Data Inten-
sive Applications.” PhD thesis. University of California, River-
side, 2013.

[187] Jian Wen, Vinayak R. Borkar, Michael J. Carey, and Vassilis
J. Tsotras. “Revisiting Aggregation Techniques for Data Inten-
sive Applications: A Performance Study.” In: CoRR abs/1311.0
(2013).

[188] Wikipedia. Integer Sorting — Wikipedia, The Free Encyclopedia.
2015. url: http://en.wikipedia.org/wiki/Integer_sorting
(visited on 01/22/2015).

[189] Wikipedia. Russell’s paradox — Wikipedia, The Free Encyclopedia.
2015. url: https://en.wikipedia.org/wiki/Russell’ s_

paradox (visited on 11/27/2015).

[190] Wikipedia. Stirling’s approximation — Wikipedia, The Free En-
cyclopedia. 2015. url: https : / / en . wikipedia . org / wiki /

Stirling’s_approximation (visited on 09/11/2015).

[191] Wiktionary. appendix – Wiktionary. 2015. url: https : / / en .

wiktionary.org/wiki/appendix (visited on 10/07/2015).

[192] Wiktionary. practice – Wiktionary. 2015. url: https : / / en .

wiktionary.org/wiki/practice (visited on 10/07/2015).

[193] Wiktionary. state of the art – Wiktionary. 2015. url: https://
en . wiktionary . org / wiki / state _ of _ the _ art (visited on
10/07/2015).

[194] Wiktionary. theory – Wiktionary. 2015. url: https://en.wiktionary.
org/wiki/theory (visited on 10/07/2015).

[195] Thomas Willhalm, Ismail Oukid, Ingo Müller, and Franz Faer-
ber. “Vectorizing Database Column Scans with Complex Pred-
icates.” In: ADMS. 2013.

[196] Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso
Plattner, Alexander Zeier, and Jan Schaffner. “SIMD-scan: ul-
tra fast in-memory table scan using on-chip vector processing
units.” In: PVLDB. 2009.

[197] J.L. Wolf, D.M. Dias, and P.S. Yu. “A Parallel Sort Merge Join
Algorithm for Managing Data Skew.” In: TPDS 4.1 (1993),
pp. 70–86.

http://en.wikipedia.org/wiki/Integer_sorting
https://en.wikipedia.org/wiki/Russell's_paradox
https://en.wikipedia.org/wiki/Russell's_paradox
https://en.wikipedia.org/wiki/Stirling's_approximation
https://en.wikipedia.org/wiki/Stirling's_approximation
https://en.wiktionary.org/wiki/appendix
https://en.wiktionary.org/wiki/appendix
https://en.wiktionary.org/wiki/practice
https://en.wiktionary.org/wiki/practice
https://en.wiktionary.org/wiki/state_of_the_art
https://en.wiktionary.org/wiki/state_of_the_art
https://en.wiktionary.org/wiki/theory
https://en.wiktionary.org/wiki/theory

Bibliography 168

[198] J.L. Wolf, P.S. Yu, J. Turek, and D.M. Dias. “A Parallel Hash Join
Algorithm for Managing Data Skew.” In: TPDS 4.12 (1993),
pp. 1355–1371.

[199] Yang Ye, Kenneth A. Ross, and Norases Vesdapunt. “Scalable
Aggregation on Multicore Processors.” In: DaMoN. 2011.

[200] Ke Yi. “Dynamic Indexability and the Optimality of B-Trees.”
In: JACM 59 (2012), 21:1–21:19.

[201] Ke Yi and Qin Zhang. “On the Cell Probe Complexity of Dy-
namic Membership.” In: SODA. 2010.

[202] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. “Spark: Cluster Computing with Work-
ing Sets.” In: HotCloud. 2010.

[203] Hao Zhang, Gang Chen, and Chin Ooi. “In-Memory Big Data
Management and Processing: A Survey.” In: TKDE 27.7 (2015),
pp. 1920–1948.

[204] Jingren Zhou. “Architecture-sensitive database query process-
ing.” PhD thesis. Columbia University, 2004.

[205] Jingren Zhou and Kenneth A. Ross. “Implementing database
operations using SIMD instructions.” In: SIGMOD. 2002.

[206] Marcin Zukowski, S. Heman, N. Nes, and P. Boncz. “Super-
Scalar RAM-CPU Cache Compression.” In: ICDE. 2006.

[207] Marcin Zukowski, Sándor Héman, and Peter Boncz. “Architec-
ture-Conscious Hashing.” In: DaMoN. 2006.

Z U S A M M E N FA S S U N G

Seit Jahrzehnten erfährt unsere Gesellschaft eine fortschreitende Di-
gitalisierung fast all ihrer Bereiche: Wirtschaftsprozesse, Finanztrans-
aktionen, Regierungsführung, Online-Shopping, Forschung in allen
Disziplinen, Medizin, persönliche Kommunikation, Transportwesen,
Wohnen und viele mehr. Die Menschheit produziert und sammelt nie
dagewesene Mengen an Daten, die schwierig zu fassen sind, und die
Fähigkeit, aus ihnen Erkenntnisse abzuleiten, wird gleichzeitig immer
wichtiger und technisch schwieriger. Mit diesem Ziel ist eine große
Vielfalt an Software-Anwendungen entstanden – oft unter dem Be-
griff Business Intelligence zusammengefasst –, die Konzepte wie Da-
tenanalyse, Berichtswesen, Online Analytical Processing (OLAP), Data-
Mining, etc. anbieten und kontinuierlich ausgebaut werden.

Dieser Trend wird begleitet von technischen Fortschritten bei Com-
puter-Hardware. Rechenleistung und Speicherkapazität unterliegen
seit ihren ersten Tagen vor einem halben Jahrhundert einem exponen-
tiellen Wachstum und versprechen dies auch in Zukunft weiter zu tun.
Während langer Zeit war diese Entwicklung für Software transparent,
aber heute kann Leistungssteigerung oft nur durch Spezialisieren und
explizites Exponieren von mehr und mehr Hardware-Komponenten
erreicht werden. Software kann daher nur dann von der vollen Re-
chenleistung profitieren, wenn sie sich der inneren Funktionsweise
der Hardware bewusst ist. Dies bedeutet, dass mehr und mehr Ver-
antwortung auf die Ebene der Software verlagert wird, wodurch Soft-
ware immer komplexer und schwieriger zu entwickeln wird.

Um den Zusammenfluss dieser zwei Trends zu bewältigen, wurde
eine spezielle Software als Abstraktionsschicht entwickelt: Relationa-
le Datenbankmanagementsysteme. Sie bieten eine logische, struktu-
rierte Sicht auf Daten und entlasten dadurch Anwendungen um viele
technische Aspekte des Umgangs mit Daten, sodass diese sich dar-
auf konzentrieren können, was zu tun ist, während die Systeme sich
darum kümmern, wie es getan wird. Insbesondere ist es die Aufgabe
von Datenbankmanagementsystemen, Anfragen von Anwendungen
so zu bearbeiten, dass dabei das volle Potential der Hardware genutzt
wird. Datenbankmanagementsysteme zu bauen ist daher ein ständi-
ger Wettlauf, sich an jede neue Hardware-Generation anzupassen, um
immer schneller die ständig wachsenden Datenmengen bearbeiten zu
können.

Im Herzen diesen Wettlaufs liegt eine Reihe von Operatoren – al-
gorithmische Bausteine, die Datenbanksysteme kombinieren, um auf
Anfrage von Anwendungen Berechnungen auszuführen. Eine der
wichtigsten Operatoren ist die Aggregation. Sie besteht darin, eine

169

zusammenfassung 170

Menge von Datenbankeinträgen zusammenzufassen, indem die Ein-
träge in Gruppen eingeteilt werden und jede Gruppe zu einem ein-
zelnen Wert aufaggregiert wird. So könnten zum Beispiel die Buch-
haltungseinträge aller verkauften Waren einer Kaufhauskette durch
die Anzahl verkaufter Artikel pro Filiale zusammengefasst werden.
Nahezu alle Anwendungen zur Datenanalyse benötigen diese Funk-
tionalität und ein typisches Datenbanksystem verbringt einen großen
Teil seiner Rechenzeit mit diesem Operator. Das Ziel der vorliegenden
Dissertation ist es, eine neue Generation von Aggregations-Opera-
toren zu bauen, die Datenbanksysteme in ihrem Wettlauf um das
Ausnutzen neuer Hardware voranbringt.

Aggregations-Operatoren zu bauen, ist aus mehreren Gründen
herausfordernd. Beginnend mit oben erwähntem Hardware-Bewusst-
sein sind folgendes konkrete Herausforderungen: Erstens ist es für
diese Operatoren wichtig, dass sie kostenintensive Datenbewegungen
reduzieren. In modernen Datenbanksystemen, die fast all ihre Da-
ten im Hauptspeicher halten, betrifft dies vertikale Datenbewegungen
zwischen Hauptspeicher und Prozessor-Caches, aber auch horizonta-
le Datenbewegungen zwischen verschiedenen Recheneinheiten. Wei-
terhin können moderne Prozessoren bestimmte Arten von Rechenan-
weisungen schneller ausführen als andere, sodass Algorithmen so im-
plementiert werden sollten, dass sie so oft wie möglich effiziente An-
weisungsabfolgen verwenden. Zuletzt bestehen moderne Computer
aus einer großen Zahl von parallel laufenden Recheneinheiten – in
Form von mehreren Komponenten auf dem gleichen Chip, in Form
von mehreren Chips innerhalb des gleichen Computers oder in Form
von mehreren zusammengeschalteten Computern. Software kann da-
her nur dann alle verfügbare Rechenleistung nutzen, wenn sie ihre
Arbeit in Arbeitspakete aufteilen kann, die gleichzeitig und unabhän-
gig voneinander ausgeführt werden können, und dabei nur ein gerin-
ges Maß an Kommunikation zwischen den beteiligten Recheneinhei-
ten geschieht. Zusammengefasst müssen Aggregations-Operatoren,
um moderne Hardware voll auszunutzen, so gebaut werden, dass sie
cache-effizient, prozessor-freundlich, hochgradig parallelisierbar und kom-
munikationseffizient sind.

Eine weitere Gruppe von Herausforderungen hängt mit der ge-
wünschten allgemeinen Einsetzbarkeit von Datenbankoperatoren zu-
sammen. Diese sollten unabhängig von den Eigenschaften der Ein-
gabedaten eine gute Leistung erreichen. Bei Aggregation funktio-
nieren mit moderner Hardware, abhängig von der Anzahl der Grup-
pen in den Daten, unterschiedliche Strategien am besten. Diese Ei-
genschaft der Daten ist schwierig im Voraus zu bestimmen. Daher
ist es für Aggregations-Operatoren attraktiv, ihre Strategie während
der Ausführung adaptiv an die Daten anzupassen. Ähnlich verhält
es sich in den schwierigen Situationen, wo einer bestimmten Grup-
pe deutlich mehr Einträge angehören als anderen. Um robust für al-

zusammenfassung 171

le Anwendungen zu funktionieren, brauchen wir also Mechanismen,
die mit schiefen Verteilungen von Gruppen umgehen können. Sowohl
Adaptivität als auch Schiefebeständigkeit sind daher wünschenswerte Ei-
genschaften, welche zu erreichen eine Herausforderung darstellt.

Eine letzte Gruppe von Herausforderungen kommt von der Tatsa-
che, dass Aggregations-Operatoren Teil eines größeren Systems sind.
Erstens bedeutet das, dass sie Hardware-Ressourcen mit anderen Soft-
ware-Komponenten teilen müssen. Im Kontext von hauptspeicher-
basierten Datenbanksystemen ist das besonders schwierig mit der
Ressource Hauptspeicher. Operatoren brauchen Hauptspeicher, um
Zwischenergebnisse abzulegen, aber je nach System kann die dafür
zur Verfügung stehende Menge eingeschränkt werden. Außerdem
haben unterschiedliche Arten von Datenbankmanagementsystemen
unterschiedliche Schnittstellen zwischen ihren Operatoren, was man-
che Entscheidungen im Algorithmen-Design beeinflussen kann. Beim
Entwurf von Aggregations-Operatoren ist es daher wichtig, darauf
zu achten, dass sie selbst mit beschränktem Speicherplatz laufen und
in die Architektur von Datenbankmanagementsytemen des neusten
Stands der Technik integrierbar sind.

Jede dieser Herausforderungen für sich genommen ist bereits schwer
zu erreichen. Die Aufgabe wird jedoch weiter verkompliziert, wenn
sie alle gleichzeitig angegangen werden sollen. Jede Design-Entschei-
dung, um eine bestimmte Eigenschaft zu verbessern, kann negativ be-
einflussen, wie gut sich der entstehende Operator in einer anderen Di-
mension verhält. Die Aufgabe, einen kompletten Aggregations-Ope-
rator zu bauen, ist daher auch deshalb herausfordernd, weil sie darin
besteht, verschiedene Kosten-Nutzen-Abwägungen in ein Gleichge-
wicht zu bringen, sodass eine insgesamt gute Lösung entsteht.

In dieser Arbeit gehen wir die Herausforderungen an, Aggrega-
tions-Operatoren im Kontext von hauptspeicherbasierten Datenban-
ken zu konstruieren.

In einem ersten Teil untersuchen wir Aggregation von einem theo-
retischen Blickwinkel aus. Wir analysieren das Problem in verschiede-
nen Externen-Speicher-Modellen, um seine Grenzen bei Cache-Effizi-
enz zu verstehen. Wir können zeigen, dass Aggregation unter vielen
realistischen Parameterwerten dieser Maschinenmodelle dieselbe un-
tere Schranke hat wie MultiMengenSortieren. Dies beweist eine
langjährige folkloristische Vermutung der Datenbankgemeinschaft,
die impliziert, dass die beste Strategie für Aggregation davon ab-
hängt, wie viele Gruppen die Eingabe enthält, und dass es optimal ist,
einen sortier-basierten Algorithmus zu verwenden, wenn die Anzahl
der Gruppen groß ist. Die Erkenntnisse dieser theoretischen Analyse
stellen eine zeitlose Richtlinie für den Entwurf von cache-effizienten
Aggregations-Algorithmen dar.

In einem zweiten Teil konstruieren wir in mehreren Iterationen
einen praxisbezogenen Algorithmus, der allen oben genannten Her-

zusammenfassung 172

ausforderungen gerecht wird. In der ersten Iteration stellen wir die
allgemein akzeptierte Ansicht in Frage, dass die zwei traditionellen
Strategien, HashAggregation und SortierAggregation, komplett
gegensätzlich sind. Stattdessen entwerfen wir einen einzigen Algo-
rithmus, der Merkmale von beiden Strategien aufweist. Ein einfacher,
kostengünstiger Mechanismus lässt unseren Operator sein Verhalten
während der Ausführung an die Daten anpassen, ohne auf im Voraus
bestimmte, externe Informationen angewiesen zu sein. Er ist daher
mindestens so cache-effizient wie der jeweils beste der zwei statischen
Auswahlmöglichkeiten. Außerdem versorgt ein behutsam integrierter,
probabilistischer Streaming-Algorithmus unseren Operator mit einer
genauen Schätzung der Anzahl der Gruppen in der Eingabe, was po-
tentiell untragbare Kosten durch das Verändern der Größe der Da-
tenstruktur verhindert, die das Ergebnis halten wird. Wir verwenden
auch einige systemnahe Tuning-Techniken, um unseren Algorithmus
prozessor-freundlich zu machen und sicherzustellen, dass er mit Aus-
führungsmodellen von Datenbanksystemen integriert werden kann,
die dem neusten Stand der Technik entsprechen. Schließlich zeigen
wir, wie unser Operator sowohl innerhalb eines Prozessors als auch
über Prozessorgrenzen hinweg und bei schiefer Eingabeverteilung so
parallelisiert werden kann, dass er zu jeder Zeit vollkommen parallel
ausgeführt wird.

In einer zweiten Iteration verabschieden wir uns von der verbrei-
teten, aber unrealistischen Annahme, dass unbegrenzt Speicher für
Zwischenergebnisse verfügbar ist. Wir entwickeln Techniken, die es
erlauben, verschiedene Phasen eines rekursiven Algorithmus in einer
Pipeline auszuführen, und wenden sie auf unseren Aggregations-
Operator an. Diese Techniken stellen sicher, dass Zwischenergebnisse
nach einer Phase rasch von der nächsten Phase konsumiert und ihr
Speicher freigegeben werden kann. Das häufigere, dem Pipelining in-
härente Wechseln zwischen Rechenaufgaben ist eine mögliche Quelle
von Mehraufwand, aber durch cleveres Intra-Operatoren-Scheduling
erhalten wir eine Leistung aufrecht, die nahe an der der ursprüngli-
chen Version liegt, während die Adaptivität und Beständigkeit gegen
Datenschiefe des Operators erhalten bleiben.

Wir bestätigen die Machbarkeit unseres Algorithmenentwurfs mit
umfangreichen Experimenten. Im Vergleich mit mehreren Konkur-
renzalgorithmen vom neusten Stand der Technik ist unsere Imple-
mentierung in fast allen Situationen die schnellste; in vielen Situa-
tionen mit einem großen Vorsprung, der in einer 3,7 mal niedrigeren
Ausführungszeit für eine große Anzahl von Gruppen gipfelt. Unser
Operator läuft mit der Geschwindigkeit der Speicherbandbreite, ska-
liert bis zu einer großen Anzahl von Recheneinheiten, und erreicht
selbst bei extrem schiefen Eingaben die gleiche Leistung. Unser Kar-
dinalitätsschätzer beseitigt effektiv und mit geringem Mehraufwand
die Vergrößerungskosten der Ergebnisdatenstruktur, sodass bis zur

zusammenfassung 173

Hälfte der Ausführungszeit eingespart werden kann. Wenn der Spei-
cher für Zwischenergebnisse auf gerade einmal 1.6% des ursprüng-
lichen Speicherverbrauchs beschränkt wird, erfährt unser Operator
einen Mehraufwand von nur 20% bis 47% und kann durch Locke-
rung der Begränzung zu einer höheren Leistung gebracht werden.

Zusammengefasst konstruieren wir durch Kombination einer sorg-
fältigen theoretischen Analyse, cleverem Algorithmen-Design und ei-
ner Reihe von Ingenieurstechniken einen einzelnen, vielseitig einsetz-
baren Aggregations-Operator, der mit Blick auf alle Herausforderun-
gen auf dem neusten Stand der Technik ist, die im Kontext von haupt-
speicherbasierten Datenbanksysteme aufkommen.

Ingo Müller
Curriculum Vitae phd@ingomueller.net

born March 2, 1986 in Breisach, Germany

Research Interests
Core database system algorithms and data structures with a focus on adaptive mechanisms and efficient
usage of modern hardware.

Academic Background
since 2011 PhD in Computer Science, Karlsruhe Institute of Technology (KIT), Germany.

Topic: Engineering Aggregation Operators for Relational In-Memory Database Systems.
Supervisor: Prof. Peter Sanders.
Industry Partner: SAP SE.
Graduation: February 11, 2016.
Grade: summa cum laude

2010 Triple-Degree in Computer Science:
2005–2010 MSc in Computer Science, Karlsruhe Institute of Technology (KIT), Germany.

Rank: 5%, Average: 1.1/5.0.
2008–2010 Master’s Degree in Engineering, Grenoble INP–Ensimag, Grenoble, France.

Rank: 2nd (of 252), Average: 17.0/20.
2009–2010 MSc in Computer Science, Université Joseph-Fourier (UJF), Grenoble, France.

Rank: 2nd (of 19), Average: 17.4/20.
2005 Abitur (sehr gut) and Baccalauréat (mention trés bien), Breisach, Germany.

Prizes for my achievements in Physics and French.

Honors & Awards
2015 ACM SIGMOD 2015 Programming Contest Finalist.

Achieved 2nd place of 38. Received SIGMOD Student Travel Award for finalists.
2010 Graduation Award, Karlsruhe Institute of Technology (KIT).

Award granted to the top 10% students of the class.
2009–2015 Member of SAP FastTrack.

Alumni program for the top 10% interns.
2008–2010 Mobility Scholarship, Deutsch-Französische Hochschule (French-German University).

Publications

Scientific
SIGMOD 2015 Ingo Müller, Peter Sanders, Arnaud Lacurie, Wolfgang Lehner, Franz Färber. Cache-

Efficient Aggregation: Hashing Is Sorting. In Proceedings of the 36th ACM SIGMOD
International Conference on Management of Data, 2015.

CoRR 2015 Lorenz Hübschle-Schneider, Peter Sanders, Ingo Müller. Communication Efficient Al-
gorithms for Top-k Selection Problems. In Computing Research Repository, 2015.
arXiv:1502.03942 [cs.DS].

SEA 2014 Ingo Müller, Peter Sanders, Robert Schulze, Wei Zhou. Retrieval and Perfect Hashing
using Fingerprinting. In Proceedings of the 13th International Symposium on Experi-
mental Algorithms, 2014.

EDBT 2014 Ingo Müller, Cornelius Ratsch, Franz Faerber. Adaptive String Dictionary Compression
in In-Memory Column-Store Database Systems. In Proceedings of the 17th International
Conference on Extending Database Technology, 2014

IEEE BigData
2013

Peter Sanders, Sebastian Schlag, Ingo Müller. Communication Efficient Algorithms for
Fundamental Big Data Problems. In Proceedings of the IEEE International Conference
on Big Data, 2013

ADMS 2013 Thomas Willhalm, Ismail Oukid, Ingo Müller. Vectorizing Database Column Scans with
Complex Predicates. In Proceedings of the Fourth International Workshop on Acceler-
ating Data Management Systems Using Modern Processor and Storage Architectures,
2013.

Dat. Eng. Bull.
2012

Franz Färber, Norman May, Wolfgang Lehner, Philipp Große, Ingo Müller, Hannes Rauhe,
Jonathan Dees. The SAP HANA Database – An Architecture Overview. In IEEE
Computer Society Data Engineering Bulletin, 35 (1): 28-33, 2012.

Master’s
Thesis

Ingo Müller. Experimental Method Provides Adaptation of Parallel Algorithms in
OpenCL to Fit a Variety of Platforms Preserving Near-Optimal Performance. Mas-
ter’s Thesis, Université Joseph-Fourier, Grenoble and Karsrluhe Institute of Technology,
2010.

Patents
2016 Arnaud Lacurie, Ingo Müller. Dynamic Hash Table Size Estimation During Database

Aggregation Processing. US Patent App. 15/016,978.
2016 Arnaud Lacurie, Ingo Müller. Memory-Constrained Aggregation Using Intra-Operator

Pipelining. US Patent App. 15/040,501.
2015 Arnaud Lacurie, Gordon Gaumnitz, Jonathan Dees, Ingo Müller. Aggregating Database

Entries By Hashing. US Patent App. 14/726,251; EPO App. 16001194.6.
2014 Ingo Müller, Cornelius Ratsch, Franz Färber. Adaptive Dcitionary Compres-

sion/Decompression for Column-Store Databases. US Patent App. 14/139,669.
2012 Ingo Müller, Peter Sanders. Hash Table and Radix Sort Based Aggregation. US Patent

App. 13/729,111
2011 Frederik Transier, Christian Mathis, Nico Bohnsack, Kai Stammerjohann, Peter Sanders,

Ingo Müller. Aggregation in Parallel Computation Environments with Shared Memory.
European Patent EP2469423 A1.

Conference & Industry Talks

Conferences
SIGMOD 2015 Cache-Efficient Aggregation: Hashing Is Sorting. Conference presentation, SIGMOD,

2015.
○␣ Also presented at EPFL (2015), ETH Zürich (2015), TU Dortmund (2015), and SAP

HANA Campus.

SIGMOD 2015 “SimpleMinds” in the SIGMOD Programming Contest. Contest finalist presentation,
SIGMOD, 2015.

EDBT 2014 Adaptive String Dictionary Compression in In-Memory Column-Store Database Systems.
Conference presentation, EDBT, 2014.

Industry
HANA Campus Data compression: past, present, and a foresight (slides by Paolo Ferragina). Seminar

presentation, SAP HANA Database Campus Research Seminar, 2014.
EPFL Forum Current Research Project in the SAP HANA Database Campus. Industry talk, EPFL

Forum, 2014.
HANA Campus Introduction to H-Store, C-Store, MonetDB, and PAX. Seminar presentation, SAP

HANA Database Campus Research Seminar, 2012.
SAP Research

Workshop
Parallel Aggregation + “X”. Workshop presentation, SAP HANA Database Research
Workshop, 2012.

HANA Campus Proving Lower Bounds in the External Memory Model. Seminar presentation, SAP
HANA Database Campus Research Seminar, 2012.

HANA Campus Adaptive Aggregation on Chip Multiprocessors (slides by John Cieslewicz and Kenneth
A. Ross). Seminar presentation, SAP HANA Database Campus Research Seminar, 2011.

HANA Campus Using Radix Sort for Aggregation. Seminar presentation, SAP HANA Database Campus
Research Seminar, 2011.

IBM Research Performance Portability for OpenCL thru Auto-Tuning – A Case Study on Financial
Applications. Invited talk, IBM Research Division, Zurich, 2010.

IBM
Montpellier

Introduction to OpenCL. Training course (1 day), Deep Computing Team, PSSC, IBM,
Montpellier, France, 2010.

Thesis Supervision
2015 Cheng Chen. Vectorizing Recompression in Column-Based In-Memory Database Sys-

tems. Master’s Thesis, Technical University Dresden, Germany.
2013 Arnaud Lacurie. Memory Constraint Aggregation Operator with Adaption to Output

Size. Master’s Thesis, Grenoble INP–Ensimag, Grenoble, France.
2013 Wei Zhou. A Compact Cache-Efficient Function Store with Constant Evaluation Time.

Bachelor Thesis, Karlsruhe Institute of Technology, Germany.
2013 Cornelius Ratsch. Adaptive String Dictionary Compression in In-Memory Column-Store

Database Systems. Master’s Thesis, Universität Heidelberg, Germany.
2013 Sebastian Schlag. Distributed Duplicate Removal. Master’s Thesis, Karslruhe Institute

of Technology, Germany.
2012 Andreas Schuster. Compressed Data Structures for Tuple Identifiers in Column-Oriented

Databases. Master’s Thesis, Universität Heidelberg, Germany.

Leadership and Service
Peer Reviews

Ext. Reviewer SIGMOD 2015, SPAA 2014, IMDM 2013, DAWAK 2013, CSRD 2011.
Program Comm. ALLDATA 2015.

SAP HANA Database Campus
Public Relations:
○␣ Co-organized SAP booth and travel grant for EDBT 2013.
○␣ Created and maintained SAP HANA Database Campus web site.
○␣ Introduced display of student portraits and paper abstracts in the hallway of the SAP

HANA Database Campus.

Recruiting Events:
○␣ Co-organized Open House Day of the SAP HANA Database Campus, SAP Headquar-

ters, 2014.
○␣ Represented SAP at Grenoble INP–Ensimag Internship Fair, Grenoble, 2013.
○␣ Co-organized Programming Contest, Karlsruhe Institute of Technology, 2012.
○␣ Represented SAP at EPFL Forum, EPFL, 2012.
○␣ Represented SAP at Tag der Informatik, University of Heidelberg, 2012.

Campus organization:
○␣ Organized the SAP Database Research Workshop (2 days), November 2012.
○␣ Organized the SAP HANA Database Campus Research Seminar.
○␣ Created HANA Database Campus internal wiki and git server.
○␣ Co-organized regular team building events for students.
○␣ Synchronized with other SAP locations.

Work Experience & Internships
2011–2015

(5 years)
Full time researcher, SAP HANA Database Campus, Walldorf, Germany.
- Cooperation of SAP SE and Karlsruhe Institute of Technology as PhD thesis project.
- Research and product integration of core database system algorithms and data structures.

2010
(6 months)

Internship, Deep Computing Team, PSSC, IBM, Montpellier, France.
- Cooperation of IBM Montpellier, KIT, and UJF as master’s thesis project.
- Detailed performance analysis and modeling on PPC, Cell, GPUs.

Summer 2009
(10 weeks)

Internship, Technology Development, SAP AG, Walldorf, Germany.
Multicore Hash-Tables: Evaluation of different approaches for the computation of aggregation
functions in an in-memory database.

2007–2008
(11 months)

Student Assistant, Institut für Fördertechnik und Logistiksysteme, Karlsruhe Institute
of Technology, Germany.

Trainings
February 2015 Winter School, Database Implementation Techniques, 5 days, Schloss Dagstuhl,

Germany.
September 2014 Summer School, Algorithm Engineering, 2 days, Bad Herrenalb, Germany.

February 2012 Graduate Seminar, Motivating and Efficient Supervision of Thesis Students, 2 days,
Hochschuldidaktikzentrum Baden-Württemberg, Karlsruhe, Germany.

Language Proficiency
German native
French bilingual (DELF B2 in 2008, now estimated C2)
English fluent (TOEFL in 2008: 111/120, now estimated C2)
Spanish advanced (estimated C1)
Catalan beginner (estimated A2)

Extracurricular Activities
since 2011 AEGEE: Various positions in pan-european student organization AEGEE :

○␣ Elected Speaker of European-level Information Technology Committee (1 year),
○␣ Delegate for European-level General Assembly (elected three times),
○␣ Vice-President of local branch (1 year),
○␣ IT responsible for local branch (4 years).

since 2007 ThunderBirthDay: Design, implementation, and maintenance of an add-on for Mozilla
Thunderbird (500’000 downloads, 23 community translations).

2010–2011 Social project with street kids and travelling in Peru (5 months).
2008–2010 Class representative at Grenoble INP–Ensimag in pedagogic conferences.

References
Prof. Dr. rer. nat. Peter Sanders
Full Professor at Karlsruhe Institute of Technology, Karlsruhe, Germany
 sanders@kit.edu
Prof. Dr.-Ing. Wolfgang Lehner
Full Professor at Technical University Dresden, Dresden, Germany
 wolfgang.lehner@tu-dresden.de
Dr. Norman May
Senior Developer at HANA Platform Core Department, SAP SE, Walldorf, Germany
 norman.may@sap.com
Dr. h.c. Franz Färber
Chief Development Architect at HANA Platform & Database Department, SAP SE,
Walldorf, Germany
 franz.faerber@sap.com

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

Happy users of classicthesis usually send a real postcard to the
author, a collection of postcards received so far is featured here:

http://postcards.miede.de/

Final Version as of July 7, 2016 (classicthesis).

http://code.google.com/p/classicthesis/
http://postcards.miede.de/

	Dedication
	Abstract
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Lists
	1 Introduction
	1.1 Context and Motivation
	1.2 Challenges
	1.3 Contributions and Thesis Outline

	State of the Art
	2 Foundations
	2.1 Grouping with Aggregation
	2.1.1 Example and Formal Definition
	2.1.2 Real-World Workload Study

	2.2 Relational Database Management Systems
	2.3 Modern Hardware
	2.4 Algorithm Engineering

	3 Related Work
	3.1 Overview: Challenges of Aggregation Operators
	3.2 Cache Efficiency
	3.2.1 I/O Efficiency
	3.2.2 Cache Efficiency

	3.3 CPU Friendliness
	3.4 Parallelism
	3.4.1 Early Parallel Database Systems
	3.4.2 Multi-Core Parallelism

	3.5 Communication Efficiency
	3.5.1 NUMA Awareness
	3.5.2 Clusters & High-Speed-Networks

	3.6 Skew Handling
	3.7 Adaptivity
	3.8 Memory Constraint
	3.9 Processing Models
	3.10 Summary

	Theory
	4 External Aggregation and Related Problems
	4.1 Introduction
	4.1.1 Motivation
	4.1.2 Known Results and Challenges
	4.1.3 Contributions

	4.2 Analysis in the External Memory Turing Machine Model
	4.2.1 Overview
	4.2.2 The External Memory Turing Machine Model with Payload Extension
	4.2.3 Lower Bound
	4.2.4 Upper Bound
	4.2.5 Discussion

	4.3 Analysis in the Parallel External Memory Model
	4.3.1 Machine Model and Problem Definitions
	4.3.2 Lower Bounds
	4.3.3 Upper Bounds
	4.3.4 Discussion

	4.4 Practical Considerations
	4.5 Related Work
	4.5.1 Work on External Memory Algorithms
	4.5.2 Work on External Memory Data Structures
	4.5.3 Cache-Oblivious Model
	4.5.4 Work on (RAM) Lower Bounds of other Relational Operators

	4.6 Conclusion

	Practice
	5 Cache-Efficient Aggregation: Hashing Is Sorting
	5.1 Introduction
	5.2 Review of State-of-the-Art Sorting Techniques
	5.3 Algorithmic Framework
	5.3.1 Mixing Hashing and Sorting
	5.3.2 Parallelization
	5.3.3 System Integration

	5.4 Minimizing Computations
	5.4.1 Minimizing CPU costs of Hashing
	5.4.2 Minimizing CPU costs of Partitioning

	5.5 Adaptation to Locality
	5.5.1 Adaptation Mechanism
	5.5.2 Tuning of Algorithm Constants

	5.6 Adaptation to the Output Size
	5.6.1 Motivation and Adaptation Mechanism
	5.6.2 Evaluation

	5.7 Extension to NUMA and Remote Memory
	5.8 Evaluation
	5.8.1 Test Setup
	5.8.2 Scalability with the Number of Cores
	5.8.3 Scalability with the Number of Columns
	5.8.4 Comparison with Prior Work
	5.8.5 Skew Resistance

	5.9 Summary and Conclusion

	6 Memory-Constrained Aggregation using Pipelining
	6.1 Motivation
	6.2 Intra-Operator Pipelining
	6.2.1 Overview
	6.2.2 Ensuring Efficient Progress
	6.2.3 Columnwise Processing

	6.3 Intra-Operator Scheduling
	6.3.1 Choosing a Partition Within a Pipeline Level
	6.3.2 Choosing a Pipeline Level
	6.3.3 Malleable Execution

	6.4 Implementation Details
	6.5 Experimental Evaluation
	6.5.1 Experimental Setup
	6.5.2 Aggregation under Memory Constraint
	6.5.3 Trade-Off between Performance and Memory Constraint

	6.6 Summary and Conclusion

	7 Discussion

	Appendix
	A Proofs
	A.1 From Multiplicities to the Number of Groups
	A.2 Algebraic Transformations of Section 4.3.2
	A.2.1 Equation 14

	B Probabilistic Counting Algorithms
	Bibliography
	Zusammenfassung
	Curriculum Vitae
	Colophon

