
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

September 1987

Three Highly Parallel Computer Architectures and Their Suitability Three Highly Parallel Computer Architectures and Their Suitability

for Three Representative Artificial Intelligence Problems for Three Representative Artificial Intelligence Problems

Ron Katriel
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Ron Katriel, "Three Highly Parallel Computer Architectures and Their Suitability for Three Representative
Artificial Intelligence Problems", . September 1987.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-88-08.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/628
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76361592?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F628&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/628
mailto:repository@pobox.upenn.edu

Three Highly Parallel Computer Architectures and Their Suitability for Three Three Highly Parallel Computer Architectures and Their Suitability for Three
Representative Artificial Intelligence Problems Representative Artificial Intelligence Problems

Abstract Abstract
Virtually all current Artificial Intelligence (AI) applications are designed to run on sequential (von
Neumann) computer architectures. As a result, current systems do not scale up. As knowledge is added
to these systems, a point is reached where their performance quickly degrades. The performance of a von
Neumann machine is limited by the bandwidth between memory and processor (the von Neumann
bottleneck). The bottleneck is avoided by distributing the processing power across the memory of the
computer. In this scheme the memory becomes the processor (a "smart memory").

This paper highlights the relationship between three representative AI application domains, namely
knowledge representation, rule-based expert systems, and vision, and their parallel hardware realizations.
Three machines, covering a wide range of fundamental properties of parallel processors, namely module
granularity, concurrency control, and communication geometry, are reviewed: the Connection Machine (a
fine-grained SIMD hypercube), DADO (a medium-grained MIMD/SIMD/MSIMD tree-machine), and the
Butterfly (a coarse-grained MIMD Butterflyswitch machine).

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-88-08.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/628

https://repository.upenn.edu/cis_reports/628

THREE HIGHLY PARALLEL
COMPUTER ARCHITECTURES AND

THEIR SUITABILITY FOR THREE
REPRESENTATIVE ARTIFICIAL

INTELLIGENCE PROBLEMS
Ron Katriel

MS-CIS-88-08
LlNC LAB 97

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104

February 1988

Acknowledgements: This research was supported in part by DARPA grants NO001 4-85-
K-0018, NSF-CER grant MCS-8219196 and U.S. Army grants DAA29-84-K-0061,
DAA29-84-9-0027.

Three Highly Parallel Computer Architectures

and Their Suitability for

Three Representative Artificial Intelligence Problems

Ron Katriel

Computer and Information Science Department

University of Pennsylvania

Philadelphia, PA 19104-6389

katriel@cis.upenn.edu

September 29, 1987

Abstract

Virtually all current Artificial Intelligence (AI) applications are designed to run on sequen-

tial (von Neumann) computer architectures. As a result, current systems do not scale up. As

knowledge is added to these systems, a point is reached where their performance quickly de-

grades. The performance of a von Neumann machine is limited by the bandwidth between

memory and processor (the von Neumann bottleneck). The bottleneck is avoided by distributing

the processing power across the memory of the computer. In this scheme the memory becomes

the processor (a "smart memory").

This paper highlights the relationship between three representative A1 application domains,

namely knowledge representation, rule-based expert systems, and vision, and their parallel hard-

ware realizations. Three machines, covering a wide range of fundamental properties of parallel

processors, namely module granularity, concurrency control, and communication geometry, are

reviewed: the Connection Machine (a fine-grained SIMD hypercube), DADO (a medium-grained

MIMD/SIMD/MSIMD tree-machine), and the Butterfly (a coarse-grained MIMD Butterfly-

switch machine).

Contents

Introduction 5

. 1.1 The Need for Parallelism in A1 5

. 1.2 Parallelism and NP-completeness 5

1.3 Three Representative A1 Domains . 6

1.3.1 Why These Domains? . 6

1.4 Three Representative Highly Parallel Computers . 7

. 1.4.1 Why These Machines? 7

. 1.5 Outline of the Paper 8

2 Introduction to Parallelism 9

. 2.1 Theoretical Limitations of Parallel Computation 9

2.2 A Taxonomy of Parallel Processing . 10

2.3 Practical Architectures: Narrowing the Space . 10

2.4 SIMD (Array) Machines . 11

2.4.1 Organization of an Array Computer . 11

2.4.2 Interprocessor Communications in Array Processors 13

2.4.3 SIMD Programming . 15

2.5 MIMD Machines (Multiprocessors) . 15

2.5.1 Memory Organization in Multiprocessors . 16

2.5.2 Synclironization, Scheduling, and Resource Sharing . 18

2.5.3 MIMD Programming . 18

3 Overview of the Chosen Machines 19

3.1 The Connection Machine . 19

3.1.1 Introduction . 19

3.1.2 The Connection Machine Design . 19

3.1.3 Programming the Connection Machine . 21

3.2 DADO . 21

3.2.1 Introduction . 21

3.2.2 DADO'S Design Philosophy . 22

3.2.3 Programming DADO . 23

3.3 The Butterfly . 24

3.3.1 Introduction . 24

3.3.2 Butterfly Architecture . 25

3.3.3 Programming the Butterfly Parallel Processor . 25

4 Paral lel ism in t h e Selected Domains 2 7

. 4.1 Massive Parallelism in Semantic Networks 27

. 4.1.1 Introduction 27

. 4.1.2 A Taxonomy of Massively Parallel Architectures 29

4.1.3 Shastri's Massively Parallel Representation Language 30

4.2 Parallelism in Rule-Based Expert Systems . 30

. 4.2.1 Introduction 30

4.2.2 Production Systems . 31

4.2.3 Memory-Based Reasoning . 34

. 4.3 Parallelism in Vision 35

. 4.3.1 Introduction 35

4.3.2 Intermediate-Level Vision . 36

5 Performance of t h e Chosen Machines 38

. 5.1 Performance of the Connection Machine 38

5.1.1 Semantic Networks . 38

. 5.1.2 Rule-Based Expert Systems 39

5.1.3 Intermediate-Level Vision . 40

5.1.4 Comments on the Connection Machine . 40

5.2 Performance of the DADO Machine . 41

5.2.1 Production Systems . 41

. 5.2.2 Intermediate-Level Vision 43

. 5.2.3 Semantic Networks 43

. 5.2.4 Comments on DADO 44

5.3 Performance of the Butterfly Machine . 44

. 5.3.1 Intermediate-Level Vision 44

. 5.3.2 Semantic Networks 45

5.3.3 Rule Based Expert Systems . 46

. 5.3.4 Comments on the Butterfly 47

5.4 Compare-and-Contrast . 48

6 Architectures for t h e Selected Domains 49

6.1 Knowledge Representation: Semantic Networks . 49

6.1.1 Fundamental Computations . 49

6.1.2 Architectural Issues . 50

6.1.3 Special Requirements . 51

6.2 Expert Systems: Production Systems . 52

6.2.1 FundamentalComputations . 52

6.2.2 ArchitecturalIssues . 52

6.2.3 Special Requirements . 53

6.3 Vision (especially Intermediate-level) . 54

6.3.1 Fundamental Computations . 54

6.3.2 Architectural issues . 55

6.3.3 Special Requirements . 56

7 Conclusions 5 7

7.1 The Communication Network . 57

7.2 Shared Memory versus Message Passing . 58

List of Figures

Functional structure of an SIMD array processor. Source: Hwang and Briggs, "Computer

Architecture and Parallel Processing", Page 24, McGraw-Hill, 1984 12

Static interconnection network topologies. Source: Hwang and Briggs, "Computer Architec-

ture and Parallel Processing", Page 335, McGraw-Hill, 1984 13

Functional design of an MIMD multiprocessor system. Source: Hwang and Briggs, "Computer

Architecture and Parallel Processing", Page 26, McGraw-Hill, 1984 16

Block diagram of The Connection Machine. Source: Frenkel, "Evaluating Two Massively

Parallel Machines", CACM, Volume 29, Number 8, August 1986 20

Functional division of the DADO tree. Source: Stolfo, "The DADO Parallel Computer",

Technical Report, Department of Computer Science, Columbia University, 1983 23

A 16-input 16-output Butterfly switch. Source: "The Butterfly Parallel Processor Overview",

BBN Technical Report Number 6148 (Version I), Bolt Beranek and Newman Inc., March 1986 26

Example of a KL-ONE semantic inheritance network. Source: Brachman and Schmolze, "An

Overview of the KL-ONE Knowledge Representation System", Cognitive Science, Volume 9,

page 196,1985 . 27

Example OPS5 rule system. Source: Miranker, "TREAT: A Better Match Algorithm for A1

Production Systems", AAAI87 paper draft, January 1987 . 32

An example RETE match network. Source: Miranker, "TREAT: A Better Match Algorithm

for A1 Production Systems", AAAI87 paper draft, January 1987 33

1 Introduction

1.1 The Need for Parallelism in A1

Virtually all current Artificial Intelligence (AI) applications are designed to run on sequential (von

Neumann) computer architectures. As a result, current systems do not scale up. As knowledge is

added to these systems, a point is reached where their performance quickly degrades. Thus para-

doxically, programs become slower as they become smarter. As a consequence, current systen~s can

perform "intelligently" only in limited domains and suffer from brittleness. Furthermore, current

systems do not generally perform in real time.

Several techniques have been identified for speeding up A1 programs on sequential machines.

They include improved instruction set design, faster clock rates, custom VLSI hardware and the

use of advanced A1 language compilers. A von Neumann computer, however, does not utilize its

hardware efficiently; most of the chip area is memory and only a few memory locations are accessed

a t a time. The performance of the machine is limited by the bandwidth between memory and

processor. This is what Backus calls the von Neumann bottleneck. The bigger one builds machines,

the worse it gets.

The von Neumann bottleneck is avoided by distributing the processing power across the memory

of the computer. In this scheme the memory becomes the processor (this can be viewed as "smart

memory"). Attempts to use parallelism to speed up existing A1 systems have met with limited

success. Often a speed-up of four times is the best that can be achieved. The major reason for this

is that current A1 programs (when converted to run on parallel machines) tend to have sequential

bottlenecks which dominate in many cases the running time of the entire program.

1.2 Parallelism and NP-completeness

In a recent interview, Richard Karp said:

"Most of the work that the theoretical computer science community has been doing

on parallel computation has been concerned with making polynomial-time algorithms

even faster . . . [Theoreticians] may say "Focusing attention on applying parallelism to

NP-complete problems is hopeless, as you can never reduce run time from exponential

to polynomial by throwing processors at a problem, unless you have an exponential

number of processors. On the other hand, . . . , parallelism may really help us curb

combinatorial explosions." [Frenkel 86a]

Many NP-complete problems in A1 are well suited to parallel computation. Most of these

problems involve heuristic state-space search algorithms. Important classes of such problems are

branch-and-bound algorithms (i.e., best-first search), divide-and-conquer algorithms (a.k.a. means-

end analysis) and backtrack-search algorithms (e.g. depth-first search used in Prolog).

1.3 Three Representative A1 Domains

1.3.1 Why These Domains?

This paper highlights the relationship between three representative artificial intelligence application

domains and their parallel hardware realization. I have decided to focus my attention on the

three important domains in artificial intelligence, namely knowledge representation (using semantic

networks), rule-based expert systems (production systems), and intermediate-level vision (the Hough

transform):'

1. Knowledge Representation: Semantic networks have received wide attention as a paradigm

for knowledge representation. They have clean semantics (based on restrictions of First

Order Predicate Calculus), are fairly expressive, and are ideally suited to take advantage of

massively parallel architectures. Most existing knowledge representation systems are based

on variations of semantic networks.

2. Rule-based Expert Systems: Production systems employ a restricted form of inference known

as "forward and/or backward chaining" (a.k.a. modus ponens in formal logic). Rules have

been used extensively in many systems to capture expert knowledge in areas such as med-

ical diagnosis, mineral exploration, or speech understanding. Among their advantages are

modularity, and naturalness.

3. Vision: Image processing is a mammoth information-processing task. Massively parallel

computers are ideally suited for the low (iconic) level processing. Medium- and coarse-grained

parallel computers are more appropriate at the higher (symbolic) levels of vision. The key

to vision processing is a flow of communication and control both up and down through all

representation levels.

The three domains span a wide range of data-structures and computations performed on them:

'Please note that there are many other important A1 domains: natural language processing, robotics, logic

programming, planning, etc. The selected domains represent areas most familiar to the author of this paper.

Production Systems (forest of trees I database operations (join, select)

Intermediate-Level Vision I mesh or tree 1 statistics & pattern matching

Operations

inheritance & categorization

A1 Domain

Semantic Networks

1.4 Three Representative Highly Parallel Computers

Data Structure(s)

directed acyclic graph

1.4.1 W h y These Machines?

Most AI-oriented machines are exploratory systems under development at universities and research

labs. One can classify existing parallel computers for artificial intelligence under the following

taxonomy [Hwang 871:

Language-Based Parallel A I Machines:

1. List-Processing (Lisp) Machines: Symbolics, TI Explorer

2. Prolog Machines: ICOT PIM, Tamura machine

3. Functional Programming Machines: ALICE, Rediflow

Knowledge-Based Parallel A1 Machines:

1. Semantic Networks: Connection Machine, NETL

2. Rule-Based: DADO, NON-VON

3. Object-Based: FAIM-1, SOAR

4. Neural Networks: ANZA, MARK IV

Intelligent Interface Parallel Machines for AI-Oriented Systems:

1. Speech Recognition: Harpy, HEARSAY-I1

2. Pattern Recognition/Image Processing: Pyramid, CAAPP

3. Computer Vision: Butterfly, WARP

The machines chosen for this paper, namely the Connection Machine, DADO, and the Butterfly,

are bold-faced. They have been selected for the following reasons:

There is a one-to-one mapping between these three machines and the three chosen A1 domains

All have been realized in hardware and extensively benchmarked and some (the Connection

Machine and the Butterfly) are currently being marketed [Lim 861

All three machines employ conventional, off-the-shelf components for their processors and

switching networks

They have received wide attention from the A1 community, and much information about their

design and performance is available

They cover a wide range of fundamental properties of parallel processors, namely module

granularity, concurrency control, and communication geometry [Schwartz 831:

1. Thinking Machines' Connection Machine: fine-grained SIMD hypercube

2. Columbia University's DADO: medium-grained SIMD/MIMD/MSIMD tree

3. The BBN Butterfly: coarse-grained MIMD Butterfly-switch (shuffle-exchange)

It is important to emphasize at this point that the three machines do not exhaust the space of

possible parallel architectures. Due to the lack of space (and time) many other interesting machines

such as Intel's Hypercube, NYU's Ultracomputer, Schlumberger's FAIM- 1, TRW's MARK IV , etc.,

have not been covered.

1.5 Outline of the Paper

This paper is organized in a breadth-first fashion. It is possible, however, to read it in a depth-

first manner. This would be particularly useful for readers who are interested only in one of

the machines or one of the A1 domains. Basic familiarity with A1 (especially semantic networks,

production systems and vision) is assumed, but no background knowledge of parallel processing is

needed - a brief but comprehensive overview of parallelism is presented in section 2. It describes

and contrasts the salient features of SIMD, MIMD and MSIMD architectures. Section 3 is an

overview of the architectures of the Connection Machine, DADO and the Butterfly. In section 4,

an introduction to parallelism in semantic networks, rule-based expert systems and vision can be

found. Section 5 presents an analysis of the performance of the chosen machines in each of the

selected A1 domains. In section 6 possible architectures for each of the domains are investigated

and contrasted. Finally, section 7 contains a general discussion and conclusions. Readers familiar

with certain sections or subsections are encouraged to skip them, particularly if short on time.

2 Introduction to Parallelism

2.1 Theoretical Limit ations of Parallel Computation

At the most favorable extreme, certain problems will be totally decomposable into completely

independent operations which can proceed in parallel. These can be called constant time concurrent

algorithms. At the opposite extreme, there exist computational processes which are completely

unparallelizable.

A general (idealized) model for parallel computation is called the paracomputer model: A very

large number of (identical) processors share a common memory which can be read from and written

to simultaneously in a single cycle (multiple writes are resolved in some way). It is useful to note

that a single processor with a large enough memory can simulate an N-processor paracomputer

in time O(N); thus an N-processor paracomputer can never be more than N times faster than a

serial computer.

Though theoretically useful, the paracomputer model is unrealizably powerful. A more realistic

model, called the ultmcomputer7 consists of a large number N of communicating processors (each

with its own local memory) connected together, where each processor communicates with a fixed

number k of other processors (via a favorable interconnection pattern) [Schwartz 801. It is clear that

the N-processor ultracomputer cannot compute faster than an N-processor paracomputer. Since

in an ultracomputer one cannot bring more that k quantities together in one place during one cycle

of computation, at least logk N cycles will be required. This is an attainable limit; there are many

interesting O(1og N) ultracomputer algorithms. Note that a paracomputer communication cycle

can be simulated by an ultracomputer in time O(1og N).

For highest efficiency it is often important to balance processor interconnection with local

processing. In many cases the "inefficiency factor" log N can be regarded as resulting from an

imbalance between the amount of work performed locally within each processor and the amount

of interprocessor communication performed. One may be able to restore balance by giving each

processor a larger amount of local work and only communicating "preprocessed" data. An algorithm

of this sort, which uses N processors in an asymptotically efficient way, can be said to be completely

paralleliza ble.

Just because an algorithm can be expressed in concurrent terms is no guarantee that it will

run significantly faster on a parallel machine. The true measure of parallelism is how much faster

a given program will run on n simple parallel processors compared to how fast it would run on a

single processor (and for what ranges of n this is valid). The best one can hope for is a speed-

up of n; for most existing A1 programs (written in traditional computer languages) this seems

to be about 4 [Deering 841. in practice, several factors can prevent realization of linear speedup.

Among the most important are the need for interprocessor synchronization, poor algorithm design

(not all parallelism inherent in the problem is exposed), contention among the processors for the

same resource, and traditional 1/0 structures which cannot feed a high-performance processor fast

enough to avoid processor idle time.

2.2 A Taxonomy of Parallel Processing

The space of parallel processing can be divided along three dimensions, namely concurrency control,

module granularity, and communication geometry [Kung 801. As will be seen later, practical parallel

architectures as embodied in existing parallel computers correspond to a small subspace of the cross

product of these three dimensions. The three dimensions form a taxonomy of parallel processing2:

1. Module Granularity: This refers to the maximal amount of computation a typical processor

can do before having to communicate with other processors. This dimension is usually divided

into three: fine-, medium-, and coarse-grain. It reflects the processing power of individual

processors and the size of their memory space (the two are correlated).

2. Concurrency Control: Enforces desired interactions among processors so that the overall

execution of parallel algorithms will be correct. This dimension can be subdivided into two

orthogonal subdimensions: synchronous versus asynchronous control, and centralized control,

distributed control, or control via shared data.

3. Communication Geometry: The spectrum of possible processor-to-processor and processor-

to-memory communication geometries ranges from the simplest but most limited topologies

(ring, star) through tree, mesh, hypercube, and banyan, to the ideal and most complex

topology (crossbar).

2.3 Practical Architectures: Narrowing the Space

The interesting and useful parallel architectures correspond to a very small subspace of the cross

product {module granularity) x {concurrency control} x {communication geometry}. It is useful

at this point to introduce a classification of high-speed computer architectures, suggested by Flynn

2The taxonomy is crude and is by no means meant to be complete.

[Flynn 721. Flynn has shown that computer systems fall naturally into four classes, along two

dimensions: parallelism within the instruction stream and parallelism within the data stream:

1. SISD (single-instruction stream, single-data stream): A conventional serial computer, exhibit-

ing no parallelism.

2. MISD (multiple-instruction stream, single-data stream): A generally unrealistic architecture

for parallel computers (no real embodiment of this class exists).

3. SIMD (single-instruction stream, multiple-data stream): A vector or array processor in the

sense that each instruction operates on a data vector rather than a single operand.

4. MIMD (multiple-instruction stream, multiple-data stream): A computer (sometimes referred

to as a multiprocessor) composed of N processors, each of which is a complete computer.

Only the last two classes (vector processor and multiprocessor) are of interest for parallel com-

putation. These types of computers are vastly different in how they obtain parallelism of operation.

Vector processors (SIMD machines) are synchronous lock-step computers that require central con-

trols and tend to have small granularity. The communication geometry is of major importance.

Multiprocessors (MIMD machines) consist of a set of asynchronous processors with relatively large

granularities. Memory organization is of major importance, as it affects control. A hybrid class,

designed to bridge the gap between these two extremes, is referred to as multiple-SIMD (MSIMD).

Essentially, MSIMD computers are partitioned SIMD computers where each partition is controlled

by an independent host. The host machines can be organized as an SIMD, MIMD, or even MSIMD

computer. MSIMD computers are particularly useful in image processing.

2.4 SIMD (Array) Machines

The central question concerning the design of array computers is how to build data access and

communication facilities so that the array computer is useful for as large a variety of computations

as possible (this subject area is still evolving). Most surprising, an efficient algorithm for a serial

computer may lead to a relatively inefficient algorithm for a vector computer [Stone 801.

2.4.1 Organization of an Array Computer

The control unit in an array computer is itself a computer. The crucial difference between this

processor and others is that it can execute conditional branch instructions. Each instruction is

Figure 1: Functional structure of an SIMD array processor

k
r 4 P

either a control instruction, in which case it is executed entirely within the control unit, or it is a

vector instruction and is executed in the processor array (but the instruction stream is much like

a conventional serial instruction stream, with each instruction executed in sequence). The control

processor has the exclusive privilege to determine which instruction to execute next. Figure 1

depicts the functional structure of an SIMD array processor. A few additional facilities can greatly

enlarge the class of problems that can be done efficiently on an SIMD computer. They include

masking for conditional branching, a suitable interprocessor communication network, and data

skewing support.

V

LEI
[TI

Control PE: processing elements

unit CP: control processor

(scalar CM: control memory

processing) P: processor
M: memory

Data .
bus

"El PE2 PE,v
7

El+
1

J

E l 4
. -

i i Control
E l +

C

• • •

(Array
processing)

f
Y t . . . 1 I

Inter-PE connection network
(data routing)

(a) Linear array (b) Ring (c) Star

(d) Tree (e) Near-neighbor mesh (f) Systolic array (j) 3-cube-connected cycle

(g) Completely connected (h) Chordal ring (i) 3 cube

Figure 2: Static interconnection network topologies

2.4.2 Interprocessor Communications in Array Processors

The interconnection network supports data exchanges between processors in an array computer.

To maximize parallelism, as much as possible of the available memory and processor bandwidths

must be utilized. Data must be stored in such a way as to avoid memory-access conflicts. This calls

for careful structuring of data in its storage format. Data structuring for efficient memory access

frequently causes data to be fetched in such a way that operand pairs are not properly aligned

for parallel manipulation. To solve this problem we must install a permutation network in tlze

processor [Siegel 851. Figure 2 depicts popular interconnection network patterns.

At the two extremes one finds the complete interconnection network (crossbar) and the ring

network (linear array with wrap-around). A crossbar interconnection network eliminates contention

for communication resources but does not eliminate contention for memory. It is the most general

and flexible interconnection scheme, providing total connectivity between N processors at the pro-

hibitive cost (for large N) of N2. Ring networks are useful only where communications requirements

are very small. They are extremely simple both logically (control) and hardware-wise.

One can retain full interconnection flexibility, with logic growth proportional to N log2 N , if

the time to do a permutation is permitted to grow as log, N instead of being constant. A better

approach is to reduce the number and hence flexibility of the interconnections, while maintaining as

high a speed as possible. The following topologies are examples of such networks, and are presented

in order of decreasing complexity (and generality):

Banyan Networks: A Banyan network provides complete interconnections a t a cost in

switching circuitry that grows as Nlog N. It has a unique path from each input to each

output and is more general than most other cell-based networks. The binary k-cube, perfect

shuffle, and tree networks are graph homomorphic images of the Banyan. They have lower

hardware cost, but higher contention and reduced efficiency.

Binary k-Cube (Hypercube): Contains a rich collection of data paths and is suitable for

applications such as sorting. It is one of today's most popular designs [Wiley 871. Each of the

processors is placed at a different corner of the k-dimensional cube and is assigned a binary

ID 0 5 p 5 2k - 1. Two processors are connected iff their IDS differ only in one bit. k

connections per processor are required. The largest distance between any two processors is

proportional to k.

Cube-Connected Cycles (CCC): The CCC can be viewed as a simulator of the k-cube.

Only a constant number of wires per processors is needed. The 2k processors are arranged

in 2k-T rings of size 2' at the corners of a (k - r)-cube. The time complexity for divide-and-

conquer is O(k - r) + O(2'). If k and T are chosen so that (T - 1) + 2'-' 5 k 5 r + 2' then

performance is retained while interconnection complexity is reduced [Preparata 811.

Perfect Shuffle (shuffle-exchange): The shuffle is very similar to the CCC in its properties.

It is ideally suited for algorithms having a recursive divide-and-conquer character. The shuffle-

exchange performs a permutation of its input similarly to shuffling a deck of cards. First the

deck is divided exactly in half, then the two halves are interleaved such that the lower half

ends up taking even positions and the higher half odd positions in the newly formed deck

(retaining their orders).

Mesh (2D-array): Mesh connectivity is extensively used for image processing, matrix com-

putations and graph algorithms, where many of the computations involve only the small

neighborhood of a processor. Only four connections per processor are needed. The topology

is regular and efficiently maps onto VLSI circuits. The major drawbacks of a mesh are its

large delay (O(&)) and the fact that its highly blocking. The problem can be somewhat

alleviated by adding wrap-around links (torus).

a Tree: Communication between remote leaves faces a bottleneck toward the root, but trees

perform well on a rather large range of problems (sorting, matrix multiplication (in O(n2)),

and several NP-complete problems). Tree machines can efficiently implement exhaustive

search algorithms for several NP-complete problems, but exponential complexity eventually

catches up - either in compute time or in nunzber of processors - since speed-up is, at most,

linear with the number of processors.

2.4.3 SIMD Programming

The SIMD programming paradigm (which reflects the underlying architecture of an array com-

puter) is data-level parallelism. One element of data is stored per processor and the front-end

host computer executes a serial program, each step of which can involve computations in all the

machine's processors. Such a solution seems far more natural and easy to construct than those

typically proposed or implemented for coarse-grained (MIMD) parallel machines. An advantage

of using a fine-grained (SIMD) machine is that it allows programmers to write programs which

suppose a much larger number of processors that the machine. To quote Hillis, "It is very much

like virtual and physical memory". As a fine-grained machine is expanded (by adding processors,

memory and communication devices to an existing machine), programs can in many cases take

advantage of the increase in computational power without any fundamental changes in design.

2.5 MIMD Machines (Multiprocessors)

The interesting problems for these machines are quite different from those of vector computers.

Multiprocessors are suitable for a much larger class of computations than array computers because

multiprocessors are inherently more flexible [Stone 801. It is relatively straightforward to fit a

computation to a multiprocessor, which is not the case for vector computations on an array com-

puter. However, to attain high-efficiency computation in a multiprocessor system, one has to solve

problems of task synchronization and task scheduling. In some cases, improper synchronization or

I nterprocessor-memory
connection nctnorli

(buses, crossbar,
or multiporl)

Figure 3: Functional design of an MIMD multiprocessor system

scheduling can leads to gross inefficiency, and in extreme situations computation may cease entirely.

This is in sharp contrast to array computers. Since synchronization is automatic and scheduling

unnecessary (only one task at a time is performed) for array computers, they are free from the

problems that surround the multiprocessor, though at the expense of flexibility.

2.5.1 Memory Organization in Multiprocessors

Memory organization in multiprocessors is an important issue, as it most strongly affects the style

of programming. Three classes of machines are presented, namely shared memory, message passing,

and hybrid multiprocessors. Figure 3 illustrates the functional design of an MIMD multiprocessor

system.

Shared M e m o r y Machines A shared memory machine has a single global memory accessible

to all processors. Each processor has some local memory (cache or registers), but the operating

system usually presents the user with the view of totally shared memory (and often the user is

not allowed to explicitly use the cache). Efficiency is the primary motivation for allowing shared

memory at the user level. Each process can retrieve the data it requires using hardware prim-

itives; no costly system software need be involved. Often, this approach ignores the problem of

synchronization, which can dominate the cost of remote references. A key feature of shared memory

systems is that the access time to a piece of data is independent of the processor making the request

(barring memory contention, which is as important an issue as in uniprocessors). The aggregate

memory bandwidth limits the number of processors that can be accommodated before the system's

performance degrades due to contention.

Message Passing Machines Message passing systems are configured so that some memory is

local to each processor, but none is globally accessible. Message-passing imposes a value-oriented

semantics: processes may only communicate values, which may require the exchange of an environ-

ment in which to interpret the value (i.e., a pointer value is represented by the object to which it

points). This object-oriented approach has proven quite popular for distributed systems composed

of many processes. The time it takes for a processor to access data depends on its distance from

the processor that currently has the data in its local memory. The design of the communication

network between the processors is, therefore, a major concern in a message passing system. In

contrast to the shared memory system, the performance of an algorithm will depend on how well

the location of the data matches up with it use.

Hybrid Machines Hybrid systems have some of the properties of shared memory systems and

some of the properties of message passing. All memory is local to a given processor, but the

operating system makes the machine look like it has a single, global memory. Thus, programs are

written as if for a shared memory system. However, data must be laid out as if for a message passing

system if best performance is to be obtained, since access time depends on the distance between

the owner of the data and the requestor (e.g., the Butterfly). Even though the penalties for

poor data layout are often considerably smaller on hybrid systems, data layout is key to algorithm

performance and the aggregate communications speed is a limit on the number of processors that

can be accommodated.

2.5.2 Synchronization, Scheduling, and Resource Sharing

Synchronization and interlocking can be done relatively easily using special instructions that ma-

nipulate semaphores. Each semaphore has a queue associated with it. To obtain high-efficiency

utilization of processors during a computation, it is usual to remove a suspended process from a

processor (placing it in an appropriate queue) and permit another process to proceed on the newly

available processor. An important problem in multiprocessing is deadlock prevention. A global

policy is necessary for dealing with this problem. This policy, traditionally, is enforced by the

operating system.

In general, multiprocessor computer systems have all of the resource allocation problems of

conventional serial computers, but processor scheduling and memory allocation tend to be the

dominant problems. Recent results in the study of algorithm complexity indicate that processor

scheduling and memory allocation problems may be so inherently complex that there is no hope

of solving them with fast algorithms. In practice, the resource allocation problem is placed in the

hands of the user to solve through his assignment of relative priorities.

2.5.3 MIMD Programming

Coarse-grained parallel computers must generally be programmed by means of a method that

might aptly be called contml-level parallelism. This paradigm requires the programmer to divide

a program into fragments, one for each of the processors in the machine [Waltz 871. However, the

fit of module memory capacity and the size of a typical data-element is not as natural as in the

SIMD case, requiring special software mechanisms. Synchronization is another problem. In writing

a program for a coarse-grained machine, one can adhere to concepts much like those used for

programming sequential computers; the problems arise in attempting to coordinate the programs.

Worse yet, it is often difficult to find parallelism in programs, let alone exactly the right amount

of parallelism needed to distribute the work load equally among the (relatively small) number of

available processors.

3 Overview of the Chosen Machines

3.1 The Connection Machine

3.1.1 Introduction

The Connection Machine was designed by Daniel Hillis to concurrently manipulate knowledge stored

in semantic networks [Hillis 841. it was designed to be fast at a few very simple operations that

are important for artificial intelligence, such as property lookup in a semantic inheritance network.

As it turns out, the resulting machine - built by Thinking Machines, Inc. - seems to be quite

general. The Connection Machine is at the "radically fine-grained" end of the spectrum of parallel

machines [Waltz 871. It is available in configurations ranging from 16,384 up to a maximum of

65,536 (for the CM-2) processor-memory units.

The design philosophy underlying the Connection Machine is that cost should be in the network,

not in its many processors, and that there should be an appropriate balance between the network

and processors. A well-tested technology is employed in order to achieve simplicity and reliability.

The Connection Machine can operate at its peak processing rate (close to 20 GFLOPS for the

CM-2) in a wide range of applications. The key to such flexibility is a communication network

that enables the multiprocessors to exchange information in the pattern best suited to the problem

at hand [Hillis 871. Furthermore, Each processor can, under software control, mimic a number of

virtual processors. To accomplish this, the memory of each processor is divided up so that each

"virtual processor" operates on a smaller amount of memory. The speed penalty for computation

has been verified as being approximately linear (up to a million virtual processors).

3.1.2 The Connection Machine Design

Physically, the Connection Machine consists of 4096 chips of proprietary design, each containing 16

processors - each with a local memory of 64 Kbits (for the CM-2) - plus a hardware router (making

for 512 Mbytes of total primary storage). All processors execute instructions from a single stream

(i.e., in SIMD mode) generated by four microcontrollers under the direction of a conventional host

(DEC VAXen or Symbolics 3600 Series Lisp Machines). Each operation can combine two bits from

memory with one bit from a register, producing one bit to memory and one bit to a register. See

figure 4 for a block diagram of the Connection Machine.

The processor-memory units are wired (via routers) as a boolean 12-cube with 4,096 (212)

corners, one for each chip in the Connection Machine. 24,576 bidirectional wires are used to

Micro
:ontroller

Figure 4: Block diagram of The Connection Machine

connect them. However, no processor is more than 12 wires away from any other. Each cube in

the 12-cube has two subcubes, which may be designated 0 and 1 respectively. As a result each

corner has a unique address specified by a string of 12 binary digits (bits). Each router can accept

a message from one of the processors on the chip (or from a router on a different chip) and send it

to either a processor on its chip or another router on a different chip. Each router can also buffer

messages if there are no channels available over which to send them [Hillis 851.

Parallel channels support 110 rates of up to 2000 Mbps (for very-high speed devices such as

disks and frame buffers). The CM-2 can be used with up to 8 Data-Vault parallel disk storage

devices. Each of these contains 42 5! inch winchesters that can be read from and written to in

parallel. Each unit has a data transfer rate of 40 Mbytes/second, achieving a total transfer rate of

approximately 320 Mbytes/second.

3.1.3 Programming the Connect ion Machine

The Connection Machine programming paradigm (which reflects its underlying architecture) is

data-level parallelism: one element of data is stored per processor (or virtual processor) and the

front-end host computer executes a serial program, each step of which can involve computations in

all the Connection Machine's processors. Programmers interact with Connection Machine through a

conventional computer, known as the host. The processors of the Connection Machine are connected

with the host much as a conventional memory unit would be. The Connection Machine can be

programmed at the front end with C* and *Lisp, which are data-parallel extensions of Common-Lisp

and C respectively. Programs for the Connection Machine are surprisingly similar to conventional

programs [Frenkel 86bl. However, learning to write programs for parallel machines requires thinking

in ways that are quite different from those demanded by sequential computers.

The basic operations of the machine operate on sets and functions rather than on numbers

or pointers. Numbers are just special nodes (concepts) that are recognized by the arithmetic

instructions. Four instruction groups are supported:

1. Set opemtions: Intersection, union, difference, complement, clear, etc. These require no

messages to be sent.

2. Propagation: Projection, restriction, and inheritance. These involve message transmission.

3. Function manipulation: Application, modification, composition, etc. This group of operations

(which support database join) gives the Connection Machine its additional power over marker

propagation machines.

4. Arithmetic: Associative functions such as sum, multiply, min/max, and/or, etc., and asym-

metric operations such as subtract.

3.2 DADO

3.2.1 Introduction

The ultimate goal of the DADO project group is the design and implementation of a cost effective,

high performance, attached rule processor that is driven by a conventional host machine and is

capable of rapidly executing rule-based software with very large rule sets [Stolfo 861. The essence

of their approach is to execute a very large number of pattern-matching operations on concurrent

hardware. Although DADO was designed specifically for the acceleration of OPS-style production

systems, it has been found to suit a larger class of problems called almost decomposable searching

problems.

3.2.2 DADO'S Design Philosophy

DADO is a family of special purpose highly parallel tree-structured computers in which memory

and processing are extremely intermingled [Stolfo 871. The distinction between the members of this

family is granularity, the storage capacity and processor functionality at an individual processing

element (PE). Each P E is a fully programmable microcomputer with a modest amount of local

memory (16-20 KBytes in DAD02). A single conventional host adjacent to the root of the DADO

tree controls the operation of the entire ensemble of PEs.

DADO'S execution modes are rather unique. Each P E may operate in SIMD mode whereby

instructions are executed as broadcast by some ancestor PE in the tree. Alternately, a P E may

operate in MIMD mode by executing instructions from its local RAM (memory). Such a P E may,

however, broadcast instructions for execution by descendant PEs operating in SIMD mode. This

allows DADO to be fully partitioned into a number of distinct "sub-DADOs", each executing a

distinct task. This mode is usually referred to as multiple-SIMD (MSIMD) [Siegel 811. Figure 5 il-

lustrates a possible configuration of DADO for production systems execution. The PM level operate

in MIMD-mode while the upper tree and the WM-subtrees operate in SIMD-mode. A fourth mode,

termed SPMD (for single-program, multiple-data stream), provides parallel remote procedure

invocation in the style of SIMD processing. The procedures are stored locally within the PEs, op-

erate autonomously and, therefore, may take different amounts of time to complete. Machine-level

instructions are not broadcast and executed in lock-step. Rather, addresses of prestored code are

broadcast to PEs for local execution.

The designers of DADO introduced a special mechanism designed to accelerate certain ba-

sic computations on the machine. The min-resolve circuit, as it's called, uses the combinatorial

hardware in the 110 switch to select one out of all the enabled PEs in a single instruction cycle

[Gupta 84a]. It can be used to calculate (in one cycle) the minimum value of a set of values dis-

tributed one to a PE. Furthermore, the PE with the minimum value is marked (ties are arbitrated in

hardware according to a fixed P E ordering scheme). One use of the min-resolve circuit is to identify

the maximally-rated conflict set instance from all PEs storing production rules. The mechanism

should also useful in certain vision applications.

DADO1 had 15 PEs connected as a complete binary tree. DAD02, the fourth prototype in

P M Level:
match, dmmnne relevance
6. instantiate

WM Subtrees:
crntent - addressable
rnemorles

Figure 5: Functional division of the DADO tree

the DADO series (in operation since December 1985), is a medium-grained fully populated binary

tree-structured multiprocessor incorporating 1023 moderately powerful processing elements (PEs).

It employs two physical tree interconnections. A specialized 110 coprocessor for a DADO2 P E was

designed to accelerate inter-PE communication. This also provides a measure of fault tolerance.

DADO was designed around commercially available, state-of-the-art technology. The Intel 8751 was

chosen at the time (1983) as the microprocessor for the PEs (it was the only commercially available

single chip microcomputer in existence that provided 4 parallel 8-bit ports). Initial performance

results for OPS5 rule matchings indicate that DADO2 is 2 to 31 times faster than a VAX 111750.

3.2.3 Programming DADO

As mentioned above, DADO can be programmed efficiently for a class of problems called almost

decomposable searching problems. The class includes Prolog-like backward chaining logic program-

ming formalisms, relational database operations, and statistical pattern recognition. Each of these

problems shares the same common programming paradigm [Stolfo 871 on DADO:

a Distribute an initial set of data to the processors

Broadcast the data to other processors in constant time

Match (in each processor) a query against the data

Resolve to find the best answer in constant time

Report the final answer to the root of DADO

Three high level parallel programming languages are available on DADO. All are straightforward

extensions of (serial) conventional C, PL/M, and Portable Standard Lisp (PSL). These extensions

involve adding SIMD variables to the languages (i.e., special vectors) and extending some operators

to operate on them in parallel.

3.3 The Butterfly

3.3.1 Introduction

The Butterfly is a coarse-grained, shared-memory, expandable MIMD parallel computer built by

Bolt Beranek and Newman (BBN) [BBN 861. The computer got its name from the Butterfly switch

which it uses for interprocessor communication. The switch supports a processor-to-processor band-

width of 32 Mbitsjsecond. One processor (Motorola MC68000) and 1 to 4 MBytes of memory are

located on a single board called a Processor Node. The processor is capable of executing 500,000

instructions per second. The memory architecture, implemented by the operating system in con-

junction with a micro-coded coprocessor, provides the user with the illusion of shared memory.

Remote memory references (via the Butterfly switch) take about five times longer than local refer-

ences. The speed of the processors, memories, and switch are balanced to ensure that none become

a performance bottleneck.

The Butterfly's architecture scales in a flexible and cost-efficient fashion from 1 to 256 pro-

cessors. When using 256 processors the computer has a raw processing power of 128 MIPS and

a main memory of 256 to 1024 MBytes. For applications such as matrix multiplication, gaussian

elimination, convolution, and histograms of images nearly linear speed is achieved through the

entire range of processors (up to 256)3. To date, the Butterfly has been mainly used for research

in image processing and computer vision. Symbolic processing and A1 applications are currently

being developed (object-oriented programming and rule-based expert systems).

3Note that most of these applications can be efficiently computed in parallel on mesh-connected machines.

3.3.2 Butterfly Architecture

Each Butterfly node contains an 8Mhz Motorola MC68000 microprocessor with 24 bit virtual ad-

dresses, at least 1 MByte of main memory, a 2901-based bit-slice microcoded co-processor called

the Processor Node Controller (PNC), memory management hardware, an 110 bus, and an in-

terface to the Butterfly switch. The PNC interprets every memory reference issued by the 68000

and is used to communicate with other nodes across the switching network. It also provides, in

microcode, efficient test-and-set and queueing operations, a process scheduler, and communication

synchronization mechanisms. The memory management unit is used to translate virtual addresses

(used by the 68000) into physical memory addresses. As a result, the memory of all Processor

Nodes, taken together, appear as a large single global memory to application software.

The Butterfly switch is a collection of 4 x 4 switch elements (4-input 4-output crossbars) con-

figured as a "serial decision" network, a topology similar to that of the Fast Fourier Transform

Butterfly. An N-processor system uses (N log4 N)/4 switches arranged in log, N columns. Switch

operation is similar to that of a packet switching network. Figure 6 illustrates a 16-input 16-output

Butterfly switch. To reduce switch contention a large configuration (e.g., a 128-node Butterfly)

contains extra switch nodes, used to provide alternate communication paths between processors.

This also makes the switch more resilient to switching node failures. Machines are configured

so that the probability of message collision within the switch is relatively low (typical contention

overhead is 1% to 5%). The switch supports efficient transfer of blocks of data between any pair

of Processor Nodes at full switch bandwidth. The Butterfly 110 system is distributed among the

Processor Nodes. The I/O bus on each processor supports connections to a Multibus (for fast I/O

devices such as disks, and external memory and processors) and serial RS-232 lines (for terminals).

3.3.3 Programming the Butterfly Parallel Processor

The Butterfly Parallel Processor is programmed exclusively in high-level programming languages

(C, Symbolics 3600 compatible Lisp, and Fortran). Editing, compiling and linking, downloading,

running and debugging of programs are done from a UNIX front-end (VAX or Sun workstation). A

window manager enables rapid switching between the front-end and the Butterfly system environ-

ments. The Chrysalis operating system contains application libraries for allocating memory, setting

up processes, etc., and low-level subroutines (the kernel) callable from the user's program. The

most significant application library is the Uniform System Library which creates an environment

Figure 6: A 16-input 16-output Butterfly switch

where all processors share a single common address space. It provides subroutines to efficiently

allocate data structures for the problem.

Two distinct approaches to programming the Butterfly have seen widespread use: message pass-

ing and shared memory. When using the message passing paradigm the programmer decomposes

the application into a moderately sized collection of loosely coupled processes which from time to

time exchange control signals or data (using general communication primitives). This approach

is similar t o programming a multiprocess application for a uniprocessor. In the shared memory

approach, a task is usually some small procedure to be applied to a subset of the shared memory.

A task, therefore, can be represented simply as an index, or a range of indices, into the shared

memory and an operation to be performed on that memory. This style is particularly effective for

applications containing a few frequently repeated tasks (e.g., scientific computing). Memory and

processor management are used to keep all memories and processors equally busy.

PERIOD

"A REPLY-REQUESTED-MESSAGE is, among other things, a MESSAGE with a ReplyByDate, which is a DATE."

"An URGENT--AGE is a REPLY-REQUESTED-MESSAGE whose ReceivedDote and ReplyByDate satisfy a LESS-THAN
whose Lessaz i s the ReceivedDate, whose Greater is the ReplyByDote, and whose Difference is 1-HOUR."

Figure 7: Example of a KL-ONE semantic inheritance network

4 Parallelism in the Selected Domains

4.1 Massive Parallelism in Semantic Networks

4.1.1 Introduction

The building block of semantic networks are concepts. Concepts, represented as nodes in a semantic

networks, roughly correspond to the notion of concepts in natural language, but have more precise

definitions. Concepts derive their meaning from the properties and the corresponding property-

values they have and from their position in a subsumption hierarchy, expressed via IS-A links.

Concepts higher in the conceptual hierarchy denote more abstract (general) concepts while concepts

at the bottom of the hierarchy are usually referred to as individual concepts (instances). For

best economy of representation, properties should be attached at the highest appropriate level of

abstraction. Figure 7 illustrates a fairly complex KL-ONE semantic network.

Semantic networks support two important forms of reasoning, namely inheritance and catego-

rization (or classification). There substantial evidence that both inheritance and classification are

important forms of human reasoning and that people are very good at doing both. Inheritance

allows an agent to infer ("by inheritance") properties of a concept based on the properties of its

ancestors. A major problem for inheritance is the presence of exceptions and conflicting informa-

tion. Categorization (or classification) is the dual of the inheritance problem. Unlike inheritance,

which seeks some property value of a given concept, categorization seeks a concept that has some

specified property values [Shastri 861.

Traditional representation languages include KL-ONE [Brachman 851 and its descendants, KL-

TWO [Vilain 851 and NIKL [Moser 831. They usually have two major components: a definitional

language (conceptual taxonomy) and a propositional language (fact database). Semantically, they

are based on restrictions of First Order Logic with Lambda Abstraction (FOL+). These restrictions

trade computational power for computational tractability. The classification issues in KL-ONE have

been studied extensively and are reasonably well understood. The use of a classifier ensures that

the resulting knowledge base is sound, complete, and efficiently structured. Classification has been

shown to be NP-complete, even for very restricted versions of KL-ONE [Brachman 841.

As an alternative to traditional representation languages, Shastri and Feldman [Shastri 85b]

[Shastri 85a] have proposed to integrate evidential reasoning into semantic networks. The evidence

combination rule employed in their system is a generalization of the Dempster-Shafer evidence

combination rule. Traditional representation languages do not appropriately handle incomplete-

ness, inconsistency and uncertainty. Shastri's language offers a uniform treatment of inheritance

and categorization problems, including those that involve exceptions, multiple hierarchies (lattices

rather than trees), and conflicting information. A major advantage of the language is that it can

be implemented on a massively parallel computer. An account, accompanied by a figure, is given

below.

T h e Need for Parallelism in Semantic Networks Knowledge Representation in A1 involves

more than just looking up a fact in a table. If knowledge is stored in a semantic memory, then

finding the relevant information may involve searching the entire network. This can take time that

is exponentially proportional to the size of the network. In 1968, Quillian [Quillian 681 proposed

that information stored in a semantic network could be manipulated by concurrently propagating

markers through the network. Such a system would be able to retrieve information in a time that

was essentially independent of the size of the network. The basic idea was extended considerably

by Fahlman [Fahlman 821, Woods [Woods 781 and others.

The following closely follows [Shastri 861. Ideally, each concept (node) should be allocated to

a distinct processor and the interconnections between these processors should be flexible enough

to represent the relations between the corresponding concepts. This requires a large number of

processor elements with programmable logical connections so that the topology can be configured to

suit the problem. This form of parallelism, which has been termed "massive parallelism", provides

a phenomenal increase in raw computing power. Due to technological constraints, processors tend

to be simple and have little local memory, and the interconnection network topology is regular.

However, the memory is distributed throughout the machine and is more intelligent (can modify

itself in many places simultaneously through the local processors).

4.1.2 A Taxonomy of Massively Parallel Architectures

Fahlman [Fahlman 821 has proposed a division of massively parallel systems into three classes:

1. Marker-Passing Systems: This is the simplest family and the most limited. Communications

among processing elements is in the form of single-bit markers. Each node has the capacity

to store a few distinct marker bits and perform simple boolean operations on markers. Links

between nodes are, in effect, dedicated private lines, so a lot of marker traffic can proceed

in parallel. Fahlman7s NETL is an example of such as system. A major problem with his

architecture was its use of an external machine to control propagation, which introduces a

sequential bottleneck into the system [Bic 851.

2. Value-Passing Systems: These systems pass around continuous quantities or numbers and

perform simple arithmetic operations on these values (e.g., traditional analog computers).

They never suffer from contention. Many of the iterative relaxation algorithms that have been

proposed for solving low-level image processing problems and spreading-activation models of

semantic processing are ideally suited to value-passing architectures. Connectionist networks

also fall under this category. Their units are patterned after neurons (though they represent

a gross over-simplification). For a detailed description see [Feldman 821, [Rumelhart 861, and

[Fahlman 871.

3. Message-Passing Systems: These are the most powerful and by far the most complex systems.

Such generality has a price: individual computing elements are complex, communication costs

are high, and there may be severe contention and traffic congestion problems in the network.

Many message-passing systems with well-defined semantics have been proposed (e.g., KL-

ONE). Also, most parallel computers fall into this category (e.g., the Connection Machine).

4.1.3 S hastri's Massively Parallel Representat ion Language

Shastri [Shastri 85a] [Shastri 861 has successfully applied the connectionist paradigm to his theory

of evidential reasoning in semantic networks. His system employs distributed control (i.e., spreading

activation) and clever mechanisms to efficiently support inheritance and categorization. The system

has been simulated on a conventional computer and performed as expected. The representation

language uses special units to encode concepts, properties, and the relations among them. Units

have only two states: active or inert. Active units produce an output that is equal to their potential.

For concept nodes, the potential is graded and represents their level of activity.

Queries are presented to the semantic network via special routine networks. The query net-

work is appropriately interfaced with the semantic network, activating the relevant units in it.

Bidirectional relay nodes facilitate the computation along IS-A links (used in inheritance and cat-

egorization). At any given time, IS-A links are enabled in one direction only to eliminate the

possibility of indefinite oscillation of the network. The network settles down after a period of time

that is linearly proportional to the depth of the conceptual hierarchy (logarithmic in the size of

the network, i.e., the number of concepts). A winner-take-all network (which is part of the query

network) arbitrates among the possible candidate answers (if more than one concept is significantly

active). The routine network has mechanisms to deal with conflicts and null answers.

4.2 Parallelism in Rule-Based Expert Systems

4.2.1 Introduction

One of the goals of A1 is the creation of programs that base their "reasoning" on experience.

After several decades of research in AI, rule-based production systems have emerged as one of the

most important and widely employed tools for the implementation of expert systems and other

A1 software. A production system organization facilitates the modular, incremental growth of

knowledge bases, and allows for the useful but unplanned interaction of independently-specified

rules [Winston 771 [Nilsson 801. While a few production systems have already found commercial

application, their use in certain other domains (especially real-time systems) is precluded by slow

execution speeds. A detailed overview of parallelism in the OPS5 production systems follows.

While there has been some progress toward the goal of automatically generating rules of infer-

ence ([Quinlan 791) the construction of intelligent programs has proven to be a difficult task, one

that depends on the ability of a highly skilled individual to create sets of rules. Waltz [Waltz 871

believes that memories of specific events, and not rules, are the key to reasoning from experience.

This paradigm has been overlooked in the past because sequential (von Neumann) computers are

too slow to execute some of the necessary basic operations (like associative memory search). A

brief description can be found below.

4.2.2 Production Systems

In general, a production system is defined by a set of rules, or productions, that form the production

memory (PM), together with a database of assertions, called the working memory (WM). Each

production consists of a conjunction of pattern elements, called the left-hand-side (LHS) of the

rule, along with a set of actions called the right-hand-side (RHS). The RHS specifies information

that is to be added to (asserted) or removed from the WM when the LHS successfully matches

against the contents of the WM. In operation, the Production System repeatedly executes a cycle

of three major phases. In the match phase one determines, for each rule, whether the LHS matches

the current environment of the WM. All matching instances of the rules are collected in the conflict

set of rules. Next, a Select phase is initiated to choose exactly one of the matching rules according

to some predefined criterion. Finally, in the Act phase, WM elements are added or deleted from

WM as specified in the RHS of the selected rule, or some other operation (e.g., 110) is performed.

Typical conflict resolution techniques use recency of a matched data in WM, as well as syntactic

discrimination.

The OPS5 Production System The production system language OPS was first described by

Forgy and McDermott (1977). Several subsequent versions have appeared, with OPS5 being the

most widely known. OPS5 has been evaluated favorably by many researchers and has been used to

implement a large and successful commercial production system (McDermott7s Rl). Its static and

dynamic characteristics have been measured on several OPS5 production systems, and even though

the language was designed for sequential processing, its speed can be increased significantly by

parallel execution. Miranker [Miranker 871 is actively engaged in the development of a production

systems language specifically designed for parallel execution. Such a language may well prove better

Rule:

(P example-rule

(A < x >)

(B < x > < y >)

(C < Y >)

->

;no RHS actions)

Figure 8: Example OPS5 rule system

Initial Working Memory:

(A 1)

(B 1 2)

(B 2 3)

(B 2 4)

(C 3)

(C 2)

suited to the capabilities of parallel machines. The syntax of OPS5 is very close to the description

in the previous paragraph. See figure 8 for an example OPS5 rule and some relevant working

memory elements.

T h e Development of t h e OPS5 Matching Algori thm Of the three steps in the production

system cycle, the matching phase has proven in practice to be the most time-consuming. According

to Forgy [Forgy 791, more than 90% of the execution time in a uniprocessor implementation is con-

sumed by matching. On a sequential machine, the matching phase is an O(I(PMIIIIWMIJ) process

that compares the LHS of each production in the PM to every statement in the WM. Worse yet,

each LHS can have a number of literals in the form of a conjunction. However, careful investigation

by Forgy uncovered useful heuristics which can cut down the time spent in the matching phase.

Forgy's RETE Match algorithm [Forgy 821 exploits two observations about OPS5:

1. Structural similarity: LHS's differ (syntactically) only slightly from each other (matching is

speeded-up since changes to the WM can be easily traced to the LHS's they will affect).

2. Temporal redundancy: The WM changes very little from production cycle to production cycle

(most matches do not have to be recomputed). Furthermore, the changes to WM have few

effects on the conflict set.

Hence, a computational savings results if the LHS's of all rules in the production system are

compiled into an "augmented discrimination network", or dataflow graph [Hwang 841, with state

information saved at each node during execution. See figure 9 for an example RETE network

(the rule and working memory elements were introduced on page 32.) The production system

Resu l t r ng
Re l a t i o n s
ca lpha-memor le5)

Intermediate
Partial
Resu 1 t
(be ta -memor 1 e S)

J o i n y

Changes to
the

Initial Sutc of rhc Rm Network Con4 l i c t S e t

Activity of the Rm: Match During m Addition

Figure 9: An example RETE match network

interpreter can then incrementally compute the contents of the conflict set. A typical example is

the R1 system [McDermott 821, which incrementally builds a solution to the VAX configuration

problem. Production systems that search through large databases, such as ACE [Stolfo 821 or

sensor-based systems, are not. McDermott, Newel1 and Moore conjectured (1978) that the cost of

maintaining the state information exceeds the cost of comparisons that otherwise would have to be

recomputed. Despite this, it is assumed that RETE is the best algorithm for production system

matching.

The OPS-RETE Match Algorithm The RETE algorithm compiles the left-hand sides of

production rules into a discrimination network. Changes to the working memory serve as the input

to the network. The network, in turn, reports changes to the conflict set. The network contains two

categories of nodes: test nodes and memory nodes. Additions or deletions to the WM are recorded

in memory nodes (a-memories). A pointer to the change, called a token, is then replicated and

passed to a number of entry points into the network. Once a token updates an a-memory, it

continues to propagate through the network. Following the a-memories are tests nodes, called the

two-input test nodes, which test for consistent variable bindings between two condition elements.

If two tokens satisfy the test, a new token is formed at the output arc of the test node and stored

in a token memory, called a P-memory. Tokens that propagate from terminal p-memories in the

network (one terminal node per production) reflect changes to the conflict set.

4.2.3 Memory-Based Reasoning

The key operation in memory-based reasoning is weighted associative search for items in memory

that are similar to a present case that one hopes to understand or act appropriately on [Waltz 871.

Once some matches have been found, they can suggest hypotheses. Other operations, which are

based on statistics, test these hypotheses; to do so, they separate important features from unim-

portant ones. Waltz's example from the medical diagnosis domain should clarify things. It is

assumed that the system has access to a large relational database of medical patient records. A

memory-based reasoning program can find diagnostic hypotheses for a new patient as follows:

1. Load each of the processors with a database item (patient record)

2. Broadcast each feature of the new patient to all processors

3. Have each processor compute a numerical measure of closeness of its data record to each

feature of the item under consideration and adding them up

4. Select from the database patients whose total scores are closest to that of the new patient

Next, a hypothesis-testing phase is run. If the results suggest that only one diagnosis is plausible,

we are done; if more than one diagnosis remains, a second hypothesis-testing method is invoked,

which either completes the diagnosis, or proposes tests that would differentiate among the remaining

possibilities. This is repeated until only one diagnosis remains. Now, if many similar patients

received the same diagnosis it is very likely that the patient under consideration should also get

the same diagnosis (a rule has been discovered); if only a small number of patients are similar to

the new patient this might still warrant a diagnosis (it might be a rare disease); if no patients are

similar enough to the new patient the system "knows that it does not know" how to diagnose this

patient.

4.3 Parallelism in Vision

4.3.1 Introduction

The image understanding problem can be thought of as an iconic to symbolic (or signal to sym-

boo transformation. It can be described as involving three levels of processing, namely low-,

intermediate- and high-level processing. The low-level input image data is essentially an array

of signal data and forms an iconic representation of the real world. To perform image interpre-

tation the machine must transform this low level information (color and intensity) into high-level

symbolic representations of objects in the scene (in terms of predefined knowledge about objects in

the world). This task involves monocular static image interpretations as well as integrating informa-

tion from multiple sensory sources, including stereo input and motion sequences [Weems 841. The

intermediate-level provides an interface between the low- and high-levels of representation. Much

work has been done at both extremes of image processing. However, the interface between these

two areas is less well understood. This grey area involves which features are to be extracted by

the low-level image processing and in what format they should be presented to the image analysis

level.

Many architectures deal with images in the most conventional format, namely a large two di-

mensional matrix of brightness values called pixels (picture elements). Image resolution ranges from

real-time (b&w) video data as small as 256 x 256 pixels with only 6-bits of information per pixel to

satellite (color) images that may involve 4,000 x 4,000 pixels with as many as 24-bits of information

per pixel [Reeves 811. Since in many cases there is a need for very high speed computation, it is

obvious from these figures that many vision applications require parallel processing. Many special

special-purpose parallel processing architectures have been proposed and implemented.

Since the focus of this paper is on A1 domains, low-level image processing will not be treated

(though some consider it to be a border case). The problems encountered in high-level vision are

very similar to those found in many A1 domains. In particular, matching and search are heavily

utilized. Unfortunately, virtually no work has been done on applying parallelism to this area.

Specifically, there is no literature available at the time of this writing describing high-level vision

on the Connection Machine, DADO, or the utter fly.^ Consequently, only intermediate-level vision

will be treated in this paper.

4This is not surprising in the case of the Connection Machine, due to its fine-grain module granularity. In the

case of the Butterfly, though, one would expect differently, as its architecture is ideal for high-level vision.

4.3.2 Intermediate-Level Vision

A common problem in computer image processing is the detection of straight lines in a digitized

image. The problem is to detect the presence of groups of co-linear or almost co-linear feature

points. An upper-bound on the time complexity of the problem, attained by a naive algorithm on a

sequential machine, is O(n2), where n is the number of feature points. The algorithm simply tests

the lines formed by all pairs of points. A better method was proposed by Hough [Hough 621 and

substantially improved upon by Duda and Hart [Duda 721. It is a representative of computationally

intensive intermediate-level vision problems and is therefore a candidate for execution on highly

parallel machines.

The Hough Transform Essentially, a Hough transform is designed to detect co-linear sets of

edge pixels in an image by mapping these pixels into a parameter space (the Hough space) defined

in such a way that co-linear sets of pixels in the image give rise to maxima in the Hough space.

Formally, given a set of co-linear edge points {(xl, yl), . . . , (x,, y,)), we know that they all must

satisfy the normal-angle representation of a line:

The key observation is that points lying on the same straight line in the picture plane correspond to

curves through a common point in the p, 6 parameter plane. Thus, the problem of finding the set

of lines in the image plane is reduced to that of finding common points of intersection of sinusoidal

curves in the parameter plane.

The implementation of the Hough transform involves a quantization of the parameter plane into

a quadruled grid. A two-dimensional array (the accumulator army or the Hough array) is then used

to represent the parameter plane grid. For each edge pixel, the algorithm increments the counts in

all accumulator array entries that correspond to lines passing through that edge pixel (this can be

though of as "voting" by the edge pixels for the parameter values of possible lines passing through

these points.) On a sequential machine, the time complexity of the Hough algorithm (on a serial

machine) is O(s+ mv), where s is the size of the grid (in pixels), m is the number of edge pixels, and

v is the number of votes cast by each point (which is inversely proportional to the quantization error

along the &dimension of the parameter space). Once the Hough array is computed, all maxima in

the parameter plane are searched for. Since each "real" maxima is surrounded by "false" votes in

'This part follows closely [Chand~an 861.

its neighborhood, the search is conducted in a small square neighborhood of candidates, perhaps

after smoothing the Hough array.

Parallel versions for the Hough transform have been developed for mesh-connected computers,

tree machines, and systolic multiprocessors. In the simplest case, the steps involved in detecting

large co-linear sets of edges or feature points in a binary picture may be summarized as follows:

Let dm;, to 4,,, be the range of angles that we are interested in, A4 be the angle resolution, and

let Accum refer to the accumulator array. Then the simple algorithm is:

for each edge point (x,y)

for 4 = 4min to 4,,, by A4

begin

p = [x x cos(b+ y x sin+];

Accum[p, 41 = Accum[p, $1 + 1

end

There is a high degree of data parallelism inherent in the problem. The Hough transform can

be thought of in terms of mapping a three-dimensional x x y x 4 space into a one-dimensional p

space and then incrementing the appropriate (p, 4) cells by 1. Thus, the processors can be allocated

according to one of the following schemes:

1. Distribute processing by x (or 3): Assign one row (column) of the binary image to each

processor, then compute p over the entire range of angles

2. Distribute processing by region: Assign a square shaped region of the input binary image to

each processor, then compute p over the entire range of angles

3. Distribute processing by 4: Assign one angle to each processor, then compute p for the entire

image (or sub-region of the image)

Method 3 is best as it ensures, in general, an even distribution of work among the processors.

Once the accumulator array is computed, one must next find the k highest local maxima. This

can be done in constant time on parallel machines equipped with special "resolve" and "broadcast"

instructions. One can then construct another array which has as its entries all those elements

which are the local maxima in all 3 x 3 neighborhoods and find the first k values. Efficient parallel

algorithms for doing this exist.

5 Performance of the Chosen Machines

5.1 Performance of the Connection Machine

5.1.1 Semantic Networks

The Connection Machine's architecture is based on Fahlman's NETL [Fahlman 831, a parallel ar-

chitecture for efficiently implementing semantic networks. This A1 paradigm is particularly ripe for

taking advantage of concurrency because data and processing is tightly coupled and control is very

localized. The Connection Machine's architecture captures many of the positive qualities of marker

propagation, without some of its weaknesses. Each processing element of the Connection Machine

stores a chunk of data, and elements are connected in the same way as the data is (the communica-

tion connections are configured to mimic the structure of the specific problem being solved). Since

it is impractical to connect elements with physical wires (which would require rewiring for every

new problem), processing elements are connected through a switching network and comn~unicate

by sending messages.

Data in the Connection Machine is stored as the pattern of connections between cells (this

is similar to Lisp, where data is stored as structures of pointers). Connection between nodes

is dynamic - any two nodes can talk if they know each other's address. Unconnected cells can

establish a connection by a mechanism called message waves [Hillis 841. A similar technique may

be used to connect to a cell of a particular type, rather than to a specific cell. Once contact has

been established, a cancel wave is sent out. The cancel wave travels twice as fast as the message

wave, catching up with the latter after it has travelled three times the necessary distance. This

method of allocating storage may allow the machine to continue to operate with defective cells

(malfunctioning cells can be cut off). None of the Connection Machine's algorithms depend on a

cell existing in a specific address.

Nodes in a semantic network can be linked to an arbitrary number of other nodes. A physical

cell, on the other hand, can only connect to a few other cells. The solution is to represent each node

as a balanced binary tree of cells. In this scheme, each cell needs only three connections. The total

number of cells needed to represent a node with c connections is c - 1. The overhead associated

with this technique is similar to that incurred in Lisp, where 'cons'-cells are used to create lists.

However, since trees are used rather than lists, the cost in time is logarithmic in the valence of

the simulated vertex. The trees are kept balanced by an elegant scheme of insertion and deletion

(invented independently by Carl Feynman and Browning [Browning 801 at CalTech). Links in the

semantic network can be represented with a single cell (two connections plus a link type).

Although the Connection Machine has been designed for manipulating semantic networks, it

has not been used in practice for this purpose at all (to the best of this authors' knowledge).

It isn't surprising, though. To justify the use of the Connection Machine for semantic network

processing, one would have to construct a very large knowledge base (say 10000 concepts). This is

a formidable task, and there are few domains that have this many concepts. The task of representing

in a computer something equivalent to human common sense would definitely qualify, but would

probably take hundreds of man-years in effort.

5.1.2 Rule-Based Expert Systems

MBR versus Production Systems Memory-based reasoning, which reasons from examples

rather than from rules, has several advantages over traditional Production Systems:

1. Since no rules are used, there are fewer opportunities for inadvertantly introducing inaccura-

cies (e.g., combining "confidence levels" for a chain of rules)

2. Rule generation (avoided in MBR) has a combinatorially explosive search space of possible

rules to contend with and there is never any certainty that the resulting rules set is complete

3. No expert is required; a knowledge engineer only needs to identify database contents and

mark them according to whether they are symptoms, features, or optional tests

4. MBR systems can form hypotheses on the basis of even a single precedent, something rule-

based systems cannot do (rules are inherently summaries of regularities)

5. If no items in memory are closely related to the item being analyzed, then the system is able

to recognize this fact and inform the user

In general, the size of the database improves the quality of the system's reasoning, without sig-

nificantly changing the time needed for generating hypotheses. Learning can be added to the system

by precomputing weights. The precomputed weights can then be used to generate hypotheses with

a single lookup operation. Waltz and Stanfill have tested the system on a word-pronunciation task

very similar to NETtalk [Sejnowski 861. The system, called MBRtalk, achieved 65% performance

on a database of 4500 randomly chosen English words [Stanfill 861. A problem with Stanfill and

Waltz's memory-based system is its inefficient use of memory space (conventional rule-based ex-

pert systems condense a lot of knowledge into every rule). His system trades off space efficiency for

completeness, consistency, and ease of acquisition. Without the Connection Machine this scheme

would be of theoretical interest only.

5.1.3 Intermediate-Level Vision

The Connection Machine is extremely well suited to low-level image processing. To date, the

Connection Machine has been used for high resolution stereo matching, and the processing of

visual information to produce contour maps (266,144 pixels) at a rate of 7000 per hour (instead

of 15). Both are low-level image processing tasks (on the border of A1 and signal processing).

The Connection Machine is not well suited for some intermediate-level vision problems, due to its

being very fine grained. The Hough transform, however, should run efficiently on the Connection

Machine (see the following discussion on the Butterfly's performance on intermediate-level vision

problems).

5.1.4 Comments on the Connection Machine

Although the Connection Machine is touted as a massively parallel computer for A1 applications,

very few A1 applications have been run on it. It has been used for simulating physical systems

on a very fine-grained level, data-base information (text) retrieval, and low-level image processing.

This is possibly the biggest criticism that can be directed at the Connection Machine. A possible

explanation for this state of affairs is that A1 application design has not caught up yet with the

astounding leaps in parallel hardware implementations. There is an urgent need for research in this

area.

The Connection Machine differs from most array machines in its mechanisms for arbitrary

communications. However, due to its fine granularity it is a special-purpose machine. A possible

solution would be to introduce partitioning into the design of the Connection Machine. This would

require a large number of microcontrollers, and a very high-rate interface between them and the

host machine(s). A 65,536-processor Connection Machine has 128 printed circuit boards with 32

boards currently connected to each of the four microcontrollers. If each printed circuit board had

its own (individually) programmable microcontroller, the Connection Machine could be viewed as

a 128-processor MIMD machine, where each processor is a 512-processor SIMD parallel processor.

This would enormously increase the flexibility of the machine, at a relatively modest cost. The

microcontrollers could be interconnected with a dense communication pattern, such as a hypercube.

5.2 Performance of the DADO Machine

5.2.1 Production Systems

The following (very simple) view of a parallel implementation of a production forms the basis

for DADO'S algorithms. A parallel implementation of the production system cycle requires the

partitioning of the PM and WM among available processors: some subset of processors would store

and process the LHS of rules, while another (possibly intersecting) subset of processors would store

and process WM elements. The basic concurrent algorithms is as follows:

1. Assign some subset of rules to a distinct set of processors

2. Assign some subset of WM elements to a set of processors (possibly distinct from those in

step 1).

3. repeat until no rule is active:

(a) Broadcast an instruction to all processors storing rules to begin the match phase (re-

sulting in the formation of local conflict sets).

(b) Considering each maximally rated instance6 within each processor, compute (in parallel)

the maximally rated rule within the entire system. Report its instantiated RHS.

(c) Broadcast the changes due to the rule reported in step 3 (b) to all processors, which

update their local WM accordingly.

In particular, I will focus on two different algorithms, referred to as "The Original DADO Algo-

rithm" and "The Full Distribution Algorithm" [Stolfo 861. These two algorithms point out different

characteristics that may occur in various rule-based programs. The Original DAD 0 Algorithm di-

rectly supports rule-based programs that operate upon and with large WM databases. The Full

Distributed Algorithm is intended to support programs whose rules include conditions that do not

match a large number of distinct WM elements.

The Original DADO Algorithm The original DADO algorithm makes direct use of the ma-

chine's ability to execute in both MIMD and SIMD modes of operation a t the same point in time.

The machine is logically divided into three conceptually distinct components: a PM level, an upper

6A maximally rated instance in a conflict set is a rule with a maximal rating based on some predefined ordering

scheme.

tree, and a number of WM subtrees. The PM level consists of MIMD-mode PEs executing the

match phase at one appropriately chosen level of the tree. A number of distinct rules are stored

in each PM-level PE. The WM subtrees (sub-DADOs) rooted by the PM-level PEs consist of a

number of SIMD-mode PEs collectively operating as a hardware content-addressable memory. WM

elements relevant to the rules stored at the PM-level root-PE (i.e., data elements that match some

pattern in the LHS of the rules) are fully distributed through the WM subtree. The upper tree con-

sists of SIMD-mode PEs lying above the PM level, which implement synchronization and selection

operations.

The Original DADO Algorithm was specifically designed for Production Systems which are

non-temporally redundant, have many WM elements change and many rules affected by the WM

changes in each cycle (saving state between cycles, as in RETE, has few advantages), and which have

a relatively small number of production rules but have a large WM. The Original DADO Algorithm

performs the match phase in time that is independent in the number of productions. To achieve this,

one needs as many processors as there are productions (approximately 100 PEs per production).

However, the RETE algorithm implemented on a serial computer performs the match in a time

that is virtually independent of the number of productions [Gupta 84al. The reasons for this poor

performance is that while attempting to implement temporally redundant systems, this algorithm

may recompute many of its matches. This can be remedied by incorporating in the algorithm many

of the capabilities of the RETE match. Miranker's TREAT algorithm [Miranker 871 implements

these ideas. Another problem with this algorithm is its poor use of the hardware [Gupta 84al. This

results from the fact that only a small number of WMEs are affected in each cycle, an hence only

a small portion of PM-level PEs and their associated WM-subtrees will do useful work (less than

2% for a system with 2000 productions.)

The Full Distribution Algorithm: In this case, a very small number of distinct production

rules are distributed to each of the DADO PEs, as well as all WM elements relevant to the rules

in question. The entire DADO tree alternates between MIMD and SIMD modes of operation.

The match phase is implemented as an MIMD process, whereas the selection and act phases are

executed as SIMD operations. Each P E executes the match phase for its own small Production

System. One such Production System is allowed to fire a rule, however, which is communicated to

all other PEs.

The Full Distribution Algorithm was specifically designed for Production Systems which are

temporally redundant, have many WM elements change but few rules affected by the WM changes

in each cycle (saving state between cycles, as in RETE, is advantageous), and which have a relatively

large number of production rules and have a large WM. It is important to note that for some

Production System programs the potential speedup of the match for the Full Distributed Algorithm

is not nearly as great as might be expected. In programs such as R1 (where few rules may potentially

match newly asserted WM elements on each cycle) few PEs perform useful work. In other cases,

certain anomalous rules may require more processing time on the average that other rules, thus

producing "hot spots" of sequential execution in a distributed environment.

Reported measurements show that in an average OPS5 production system, only about 30 rules

are affected by changes to the working memory during each production cycle. Furthermore, the total

time spent in each match phase is the time taken by the slowest, not the average, rule. Consequently,

the average speedup obtainable in the match phase from production-level parallelism is a factor of

about 6 (almost irregardless of the number of production rules). A simple scheme has been devised

to overcome these limitations. The essence of this approach, known as the copy and constrain rules,

is to replicate anomalous rules and to introduce constraints within the copies that restrict them to

match smaller disjoint portions of the set of potentially relevant WM elements.

5.2.2 Intermediate-Level Vision

No data is available at this time on DADO'S performance on vision problems. The Hough transform,

however, was implemented on NON-VON [Shaw 821, a medium- to fine-grained SIMD/MSIMD

parallel tree-machine, by Ibrahim et al. [Ibrahim 861. The description applies to DADO as well,

since it shares a lot in common with the NON-VON design. Furthermore, the account ignores

NON-VON7s leaf mesh connections which were introduced in later versions of the machine (DADO

does not employ a mesh either.) Two approaches are described, a direct approach and an MSIMD

approach. The time complexity of both algorithms is proportional to the number of edge pixels (an

optimal result), although the constant is much smaller for the MSIMD approach.

5.2.3 Semantic Networks

No information is currently available regarding the usefulness of DADO as an architecture for

semantic networks. Forrest [Forrest 851 developed a parallel KL-ONE-like knowledge representation

language, modelled on the idea of production systems, that uses a fine-grained MIMD tree-based

architecture. MIMD organization was preferred over SIMD for the following reasons: it is better

suited for learning, facilitates almost decomposable search problems frequently encountered in AI,

and is much more plausible from a cognitive point of view as a model for human thought. She has

shown that, for a tree of depth D, the worst case time complexity for a parallel algorithm is O(D)

for subsumption and o (D ~) for classification.

5.2.4 Comments on DADO

Synchronization is a significant problem in the DADO production system algorithms. The algo-

rithms have three distinct sequential steps and, therefore, there are synchronization phases during

which some processors are idle, waiting for others to finish. Although matches are processed in

parallel, the selection phase cannot be completed until the last match is finished. It is possible,

however, to overlap the update phase with the next matching phase, because each PM PE can start

its matching phase as soon as it has done its local updating.

Speed-up in DADO (if any), will probably come from the matching phase. The optimization in

the Rete algorithm means that possible speedup due to parallelism is only proportional to the size

of the conflict set, which is relatively small. In addition, the designers of the OPS system claim

that with special tag bits in hardware and custom microcode routines, their programs will run two

orders of magnitude faster than they do on current machines. In the case of production systems it

seems that DADO is not economical compared with available alternatives.

An important issue is OPS5 suitability as a paradigm for parallelism. R1 has been fine-tuned

for execution on serial processors, namely OPS5. Thus the inherent parallelism in R1 may bear

little resemblance to the inherent parallelism in the problem R1 solves. One possible solution is to

add to OPS5 parallel constructs. A language called HerbAl is being developed for DADO that will

explore this idea.

Being a medium-grained machine, DAD02 is highly suited to intermediate-level vision prob-

lems. (e.g., Hough Transform). The lack of a mesh connectivity on DADO, however, can be an

impediment to the efficient execution of certain window-based image operations.

5.3 Performance of the Butterfly Machine

5.3.1 Intermediate-Level Vision

The Butterfly, being a coarse-grained machine, is most suited for high-level vision applications.

It is, however, suitable for some intermediate-level image processing tasks such as performing the

Hough transform. The following is a description of the approach taken by Chandran and Davis

[Chandran 861 for implementing the Hough transform on the Butterfly.

The Hough Transform on the Butterfly The Hough transform is computed in three phases:

1. Phase I: The input space is allocated to the different processors. If the number of processors

is small, each processor computes the transform for a set of 4's. If the number of processors is

large, each processor is assigned a single angle and a set of rows of the input image (overlapping

or "scattered"), or a part of an input row if the number of processors is even greater. Each

processor then independently computes a version of the Hough array based on the subset of

the problem given to it. The time complexity of this phase is O(e x TIP), where e is the

number of edge points, T is the resolution of the +-dimension of the Hough space, and p is

the number of processors. It is independent of the size of the image.

2. Phase 11: The Hough arrays are collapsed into the complete Hough array using the standard

technique [Preparata 811. For an n x n input image, this phase has a time complexity of

log(n) on the Butterfly (or hypercube). This performance is attained when the number of

processors is n2/ log n.

3. Phase 111: Maxima detection can be done on a sequential machine in time proportional to the

size of the Hough array (compute the median in linear time, then use it to select the k biggest

elements of the array in linear time). On a Butterfly (or hypercube) with p processors, a

speedup of p can be achieved for problems of size k x p x logp or greater (when computing

the k largest maxima).

The Hough transform has been successfully implemented on a 16-processor Butterfly machine

by Chandran and Davis [Chandran 861, achieving linear speedup. No data, however, is available at

this time on the performance on larger configurations. Chandran and Davis have implemented the

Hough transform on NCUBE corporation's NCUBE (a hypercube) with similar results. Hence, the

following section applies to the Connection Machine too.

5.3.2 Semantic Networks

Symbolic Knowledge Representation The knowledge representation language described here

is part of the Parallel Expert System Execution Environment currently under development at

BBN [Quayle 861. The system is implemented in a parallel version of Common is^.' The Parallel

Expert System Execution Environment supports object oriented programming (an extended version

of CommonLoops), a hybrid rule-based system, and a knowledge representation language based on

KL-ONE, KANDOR, and KEE.

The knowledge representation language is a hybrid in the spirit of KL-ONE [Brachman 851 (and

its descendants), KRYPTON [Brachman, Fikes, Levesque 831, and CAKE [Rich 851 (see the previous

section on traditional representation languages for a detailed description). The representation

language offers many opportunities for parallelism. Classification and dependency maintenance are

primarily breadth-first exploration of static data structures. These can be implemented in a way

that is completely hidden from the user. The precise details of how the representation language will

exploit parallelism on the Butterfly has not yet been determined. Therefore, no data is available

at this time about the system's performance and scalability.

Connectionist Knowledge Representat ion Fanty [Fanty 861 has implemented (in parallel C)

an interactive parallel connectionist simulator on a 120-processor Butterfly machine. A set of

routines support sequential and parallel building of networks. Efficient data structuring of network

units allows the simulation of networks with as many as 100,000 units and 3,000,000 links (It takes

about 3 hours to sequentially build the network, and about one minute in parallel.) Linear speedup

during simulation runs was effectively achieved; for 90 processors a speedup factor of about 70 is

reported.

5.3.3 Ru le Based E x p e r t Sys tems

As mentioned in the previous section, the Parallel Expert System Execution Environment on the

Butterfly supports a rule-based system. The rule system is composed of four main parts: a proces-

sor, a context, an access interface, and a development interface. The processor is a set of programs

responsible for executing the rules in a rule set (this is akin to the rule interpreter in traditional

systems). The context is the Working Memory of the system. The access interface is similar

in function to the Rete algorithm. The development interface supports acquisition, editing, and

compilation of rules.

Two rule systems are being developed:

'The Butterfly uses a Lisp Machine as a front-end host. The Lisp Machine is capable of running in stand-alone

mode when a multiprocessor (Butterfly) machine is unavailable.

1. The Routine Knowledge Rule System: Exploits implicit parallelism through the underlying

Lisp implementation (similar in spirit to the LOOPS rule system. Its is less powerful than

OPS5, which is a Turing machine-equivalent programming language).

2. The Hybrid Pattern-Matching Rule System: Exploits explicit parallelism via concurrent pat-

tern matching, rule scheduling, and rule execution.

Performance data at the time of this writing is currently available only for the first system

[Boulanger 861. Related rules in the Routine Knowledge Rule System were organized into rule

packets. It should be noted that that rules in the system were totally independent of each other (no

serial dependencies between rule packets). Also, within a single rule packet, variables in the LHS

of rules were disjoint from variables in the RHS of rules (Boulanger claims that this is realistic).

Furthermore, the application data sets had the characteristic that very few rules actually fired for

any single data set (about 10 out of 220). The system was developed on a 16-processor Butterfly, so

scalability is an open question (according to Boulanger, the goal of the project was not to achieve

maximum speedup, but to investigate performance bottlenecks).

The results of simulation indicate that the effective parallelism in the rule system is very low

compared to the number of productions in the system. A speedup factor of about 8 was realized.

The group suggests time slicing the individual processors to improve this result (especially in the

case where tasks vary significantly in size).

5.3.4 Comments on the Butterfiy

The Uniform System approach on the Butterfly proves to be rather problematic. To reduce con-

tention, the Uniform System encourages a globally-shared memory and the scattering of data

uniformly on the machine. This means that while contention for a particular memory is reduced,

overall switch contention is increased because practically all data references are remote. Even when

data physically resides in local memory, all data conceptually resides in shared memory and must

be copied into the local workspace.

Parallelism in the Butterfly also suffers because of the overhead involved in generating the

tasks. Unfortunately, in spite of the existence of a scheduler, it is not possible to generate more

active processes than processors in the Uniform System. This has imposed a severe limitation

on applications. Furthermore, under the Uniform System it is not possible for processors to act

"independently" since the same code is loaded on all the processors (enforcing SPMD processing

rather than MIMD). Hopefully, these problems should be remedied in the near future.

Leblanc [LeBlanc 861 is developing a message passing environment for the Butterfly which seems

to remedy many of the shortcomings of the Uniform System approach. Process synchronization

occurs only during access to message buffers, which is implemented very efficiently (micro-coded).

The user does not need to be concerned with the low-level synchronization; it is implicit in the

message-passing primitives. This is in sharp contrast with the Uniform System which offers no

high-level synchronization primitives (each programmer must use low-level primitives to implement

the appropriate synchronization).

As expected, none of the three machines surveyed in this paper is suited to all the A1 tasks presented

above. The module granularity, concurrency control, and communications network employed by

each of these computers is tailored towards the efficient execution of a certain class of algorithms.

The Connection Machine excels at traversing huge semantic networks and processing low-level

image processing at blinding speeds. It is ill-suited for parallel execution of production systems,

due to the coarse-grained nature of this paradigm. I t may be useful for certain intermediate-level

vision tasks (such as the Hough Transform) which can be finely decomposed.

The Butterfly is a general-purpose machine, but this comes at a high cost: the number of

processors is quite small (at most 256 in the current version). Fine-grain problems can be hard to

fit onto it. Its globally shared memory can easily become a bottleneck if care is not taken to spread

data appropriately. The Butterfly is well suited for intermediate- and high-level image processing

and for the execution of production systems.

DADO has great potential, due to its MSIMD flexibility, but is severely limited by its tree-

structured communication network. Furthermore, it lacks mesh connections, a fact that ham-

pers its performance in certain intermediate-level image processing. It is well suited, however, to

intermediate-level image processing. Its usefulness for production system execution is still an open

issue.

6 Architectures for the Selected Domains

The discussion in this section complements the investigation in the previous section. Whereas

the later tried to analyze the suitability of three particular computer architectures for three A1

domains, this section takes a look at each of the domains and attempts to come up with the

architectural requirements for an efficient execution of these problems. A word of caution is due

here. There is a lot of literature discussing the suitability of particular architectures for certain

A1 problems. Virtually nothing is available on the dual approach. Due to time constraints, the

following discussion lacks in depth and formality. It is provided as an attempt to identify the

important issues that come up when one attempts to design special purpose parallel computers for

these domains.

The approach taken is as follows. First, for each A1 domain, the fundamental computations that

are at the heart of the problem are enumerated. Next, matching module granularity, concurrency

control and communication geometry are sought. Finally, special architectural requirements for

each domain are explicated.

6.1 Knowledge Representation: Semantic Networks

6.1.1 Fundamental Computations

Some fundamental computational abilities that any truly intelligent system must have (focusing on

tasks that have to do with recognition and search in a very large space of stored descriptions) are:

1. Set Intersection: Recognition can be viewed as the process of finding, in a very large set

of stored descriptions, the ones that best match a set of observed features. In its simplest

form, this can be viewed as a set-intersection problem. The set-intersection operation comes

up very frequently in A1 knowledge-base systems. On a serial machine set-intersection takes

time proportional to the size of the smallest of the sets being intersected, but frequently all of

the sets are quite large. In a parallel marker-passing system, such set intersections are done

in a single operation, once the members of each set have been marked with a different marker

(which takes a constant time).

2. Transitive Closure: In knowledge-base systems it is frequently necessary to compute the

closure of various transitive relations. The "is-a" relation is the most important of these

transitive relations in most data bases, but other closure relations such as "part-of", "bigger

than", "later in time", etc., might need to be computed. In a serial machine, the computation

of the transitive closure requires time proportional to the size of the answer set. In a parallel

marker-passing system, it takes time proportional to the length of the longest chain of relations

that has to be followed. For a short bushy tree (characteristic of most knowledge bases) the

marker-passing system can be much faster than a serial machine algorithm.

3. Contexts and Partitions: In the presence of multiple overlapping partitions in a knowledge

base, a serial machine must check each assertion for membership in one of the active partitions

before that assertion can be used. Marker-passing systems handle this easily: mark the tree

of active contexts using the transitive closure machinery, then propagate the mark to all

assertions associated with these contexts, thereby activating them.

4. Best-Match Recognition: The set intersection computation (described above) is sufficient if

the features are discrete and noise-free. Marker-passing systems are very poor at handling

imperfect matches. Value-passing systems are ideal for this: they simply select the element

whose activation level is the highest.

6.1.2 Architectural Issues

Although human experts may employ relatively small pools of specialized knowledge, they all seem

to depend on vast amounts of what has been termed "common sense" knowledge. To represent

even a fraction of this knowledge, one needs to construct large knowledge bases. This calls for

massively parallel architectures, that is, fine-grained machines. As demonstrated by any dictio-

nary, concepts are expressed in terms of many other concepts. This results in a highly connected,

nonuniform graph. Since queries to a semantic network usually involve searching a large portion

of the knowledge stored, one needs a fairly dense communications geometry to support the high

bandwidth requirements involved. Hypercube variations (i.e., the cube-connected cycles) seem to

be a good compromise between performance requirements (delay and contention) and cost (node

degree and number of links).

As indicated above, a value-passing architecture seems ideal for the task at hand. This architec-

ture is best implemented using distributed control mechanisms as indicated by Fahlman's work on

marker propagation [Fahlman 821, Woods' powerful extension of marker propagation [Woods 781,

Shastri's evidential reasoning massively parallel representation language [Shastri 85a] and Bic's

work on dataflow architectures [Bic 851. The MIMD paradigm seems most appropriate, in con-

trast with the approach taken by the designers of the Connection Machine. SIMD control has

been dictated mainly by economical constraints and is still feasible for the number of processors

employed. However, as the number of processors goes well into the millions, MIMD control will be

the only viable control strategy. MIMD control also better supports semantic networks with many

different types of nodes and links, since all types could perform different computations simultane-

ously. Moreover, one could simultaneously categorize many concepts by appropriately tagging each

message with the name of the concept that generated it [Bic 851.

6.1.3 Special Requirements

A special problem encountered in semantic networks, involves the process of knowledge acquisition.

When new concepts are added to a knowledge base, it is often necessary to add many new links and

even change existing links. In the Connection Machine this is accomplished by establishing virtual

connections between processors. Since physical connections are fixed, virtual communication paths

can be quite long. Knight has pointed out that data objects are free to move from cell to cell, as

long as they inform their acquaintances (the objects they are virtually connected to) where they

are moving. This allows communicating processors to get closer to each other, thus improving

communications and reducing network contention. Objects can force a swap even if it is to a less-

used object's disadvantage. This would allow implementation of a virtual network, analogous to

virtual memories on a conventional computer. Little-used objects would gradually be pushed away

from the center of activity and eventually fall off into a secondary storage device.

A better solution involves the use of dynamically reconfigurable computers. Smitley, Lee, and

Goldwasser [Smitley 851 have proposed a novel approach for dynamically reconfiguring a network

to match an algorithm. Their system, called PION (Processors Interconnected with an Optical

Network), is built around an optical (laser-based) communication network.' The network supports

high-speed, non-blocking, complete interconnection communication between N heterogeneous pro-

cessors. It is expandable at the reasonable cost of O(N). The optical network can be configured

to match the topology of the algorithm (prior to execution). Smitley has been concentrating on

trying to devise strategies for determining the optimum processor-to-processor network topology

for a given algorithm [Smitley 851. Finding the optimum solution has been shown to be an NP-

complete task, so Smitley has developed a heuristic algorithm that finds suboptimal solutions. The

algorithm's best, worst, and average case performance has been analyzed; it has been shown that

'Others have come up with similar proposals [Tenenbaum 831 [Bell 861

5 1

the algorithm almost always finds the optimal mapping.

6.2 Expert Systems: Production Systems

6.2.1 Fundamental Computations

A convenient way to describe the primitive operations in a production system algorithm is to make

an analogy to more familiar relational database terminology [Codd 721 [Date 821 [Hillyer 841. If the

WM elements of a production system are considered to be tuples of some universal relationship in

a relational database, then it becomes apparent that the LHS of a rule in a production system is

analogous to a query in a relational database language. Figure 8 can be represented as the database

query:

The constants in a single-condition element may be viewed as a relational selection over a

database of working memory. We say a working memory element partially matches a condition

element if it satisfies the select operators in the element's pattern constraints (referred to as intra-

condition testing). Consistent bindings of pattern variables between distinct condition elements

(called inter-condition testing) may be regarded as a database equijoin operation on the relations

formed by the selections. A collection of rules may be viewed as a collection of concurrent database

queries; the conflict set as the union of the query results of each of the rules in the system. A

primary optimization used when executing database queries is to perform the selects before the

joins. The input layer of a RETE network contains chains of tests that perform the selection

operations. Those elements that satisfy these tests (by partially matching a particular condition

element) are represented by a token stored in an a-memory (deletions to WM actually remove

tokens), thus forming the memory support part of the algorithm.

6.2.2 Architectural Issues

The problem of selecting an optimal grain-size for a parallel production systems accelerator is a

tradeoff between generality, cost, and hardware utilization. If one increases the amount of memory,

the number of distinct PEs decreases (for a fixed size machine) thus reducing the potential parallel

execution of code and driving up the cost of the PEs. However, decreasing the memory size affects

the size and the resultant complexity of code that may operate at an individual PE, thus restricting

the scope of applicability of the architecture. Furthermore, if the inherent parallelism in a problem

is not as great as the number of available PEs, the additional PEs will be underutilized [Stolfo 861.

Recent statistics reported for R1 indicate that of a total of 200 rules (and several hundred WM

elements), on the average, only 30-35 rules need to be matched against WM on each cycle of

operation [Gupta 84bl). This number seems to be independent of the size of the PM (Production

Memory). Thus, even if 200 fine-grain PEs were available to process rules, only 30-35 PEs would

perform useful work on each cycle of execution.

A tree communication geometry seems to be gexeral enough for a production systems machine.

However, since there is limited parallelism inherent in production systems and hence only a small

number of processors need to be employed, one could even use a crossbar. The upshot is that the

geometry is not a critical issue. We now focus our attention on the issue of concurrency control.

MSIMD organization, as found in DADO, seems ideal. SIMD-mode is sufficient for the select and

act phases, but MIMD-mode is preferable for the match phase. Actually, full MIMD capability is

not necessary. One could do quite nicely with only SPMD-mode, that is, loading each PE with a

match routine and simultaneously instructing all PE's t o branch to this routine.

6.2.3 Special Requirements

Tree structures have the nice property of supporting logarithniic-time broadcast, search, and fan-

in. Binary trees have a simple scheme for VLSI layout (an H-shape based fractal). Unlike array

structures, the connections of a tree structure are not uniform. The (on-chip) distance between

two connecting processors increases as they move up the root (this can be corrected on the chip,

by adjusting delays with appropriate drivers). Off-chip communications can be conducted at the

root without serious delay. Processors a t high levels of the tree (close t o the root) may become

bottlenecks if the majority of communications are not confined to processors at lower levels.

As shown above, one can view production system execution as queries to a database. It is easy

to see that additional speedup on a tree-structured parallel machine can be obtained by pipelining

the queries. This calls for special mechanisms in hardware to support pipelining in both directions,

that is, both up and down the tree links. A speedup of log N can be obtained for N processors. The

cost is linear in the number of processors, since this involves changes to individual processors, but

does not require additional links. I t is important to point out here that this speedup is obtained

only if flushing the pipeline occurs infrequently.

6.3 Vision (especially Intermediate-level)

6.3.1 Fundamenta l Computa t ions

The computer vision problem can be described as involving three levels of processing, namely low-,

intermediate- and high-level processing. Each level is characterized by different data representations

and different computations performed on them. Furthermore, processing at each level is influenced

by computations at the levels below and/or above it. The following is a brief exposition of these

issues.

1. Low-Level Processing: this level consists mainly of operations on pixels and local neigh-

borhoods of pixels and is characterized by an output matrix that is usually similar in size to

the input. Processing involves algorithms for restoration, noise removal, geometric correction,

segmentation, simple feature extraction (such as edge detection), feature enhancement, etc.

Most of these algorithms are numeric in nature. The result of this level is a transformed image

with labeled regions and line segments. No matchings or inferences on objects are performed

at this stage.

2. Intermediate-Level Processing: this level provides an interface between the low- and

high-levels of representation. Communication between the intermediate-level and these levels

is by no means unidirectional. In most cases, recognition of an object (or part of a scene)

at the high level will establish a strategy for further processing and probing the low and

intermediate levels. Typical activities in this level include feature extraction for regions,

lines and vertices (bottom-up activities) as well as the relations between these entities, and

grouping, splitting, and labeling processes to more naturally match stored object descriptions

(top-down activities). The results of this processing are two-dimensional representations of

image entities such as regions, line segments and vertices.

3. High-Level Processing: This level controls the intermediate level of processing where the

symbolic two-dimensional representations of the intermediate level must be related to object

descriptions stored in a knowledge base. Typical activities involve classifying segments or

features of the image into known classes which may involve combining a set of segments or

features to create a total composite object. The techniques involved here are usually termed

pattern recognition or AI. The result of this level is a symbolic representation of the content

of a specific image in terms of the general stored knowledge of the object classes and the

physical environment.

The key to vision processing is a flow of communication and control both up and down through

all representation levels. In the upward direction communication consists of segmentation results

from multiple algorithms, sets of attributes for each extracted image feature, statistical information,

and the passing of actual symbols. In the downward direction communications inherently are

commands for selecting subsets of the image, specifying further processing in particular portions

of the image, and requests for additional information in terms of the intermediate representation.

6.3.2 Architectural issues

Low-level vision tasks are well suited to SIMD computer structures. High performance is achieved

when each processor is assigned a pixel, processors are capable of bit-parallel operations, and chip

interconnections are very short (communication is mostly near-neighbor, so a mesh interconnection

scheme is ideal). MIMD processors are not very efficiently utilized for low-level image process-

ing since much of the hardware is devoted to individual control units and reliable asynchronous

data communication between processors. Furthermore, there is also a problem with sharing near-

neighbor data.

High-level vision problems (such as classification algorithms) frequently involve a set of se-

quential searches for pattern matching which may be conducted independently in parallel. Such

tasks, which may involve many independent operations on a common data base, are well suited

to an MIMD parallel computer. For example, one can assign a set of processors to analyze a set

of segmented objects (where each processor deals with a single object) or several processors may

concurrently analyze a single object (each performing a different analysis algorithm).

For intermediate-level vision, a hybrid MSIMD architecture is better suited than either of the

extremes (SIMD and MIMD). This scheme enables an independent group of SIMD processors to

be assigned to a task. A major concern in the design of an MSIMD computer is to ensure that

the worst features of both systems, the expense and inefficiency of MIMD data communication

and control and the inflexibility of homogeneous SIMD structures, are not both present in the

combination.

There are two possible cases where MSIMD systems might have an advantage over SIMD and

MIMD systems:

1. When the ratio of low-level image processing to image analysis is very unpredictable and has

great variability

2. When the SIMD low-level processing requires the processing of many relatively small sub-

images and each sub-image requires a different algorithm

A mesh-based interconnection network is needed to support the great number of local neighbor-

hood operations at the pixel (low) level. However, for certain intermediate-level vision problems

a tree structured interconnection network is more suitable. A good compromise would be to have

both, as the additional wiring demands for the tree connections are comparable to those needed

for a mesh (the number of links per processor are four for a mesh and three for a tree). A modest

amount of memory associated with each processor should be sufficient to support the data (records

holding intermediate-level information about the low-level pixels) and image processing routines.

6.3.3 Special Requirements

A vision machine must be able to load (and possibly dump) a complete image very quickly (less

than fraction of a second for real-time applications). Very high data transfer rates are involved here

(hundreds of Megabits per second). The need to dump an image out for evaluation by a sequential

program must be avoided at all costs. Most important, a general vision machine should provide

efficient and fast mechanisms for communicating information and control both up and down through

the three levels of representation. PASM, a partitionable SIMDJMIMD vision system developed

at Purdue University [Siegel 811, is an interesting architecture that can deal with all three levels.

The machine can be dynamically reconfigured as one or more SIMD and/or MIMD machines to

optimize a wide range of image processing and pattern recognition. The SIMD mode efficiently

supports "local'7 operations such as matrix arithmetic while the MIMD mode is optimized for

"global" pattern matching. A multistage communication network (e.g., hypercube or k-cube) is

used to connect the processors. A k-cube can be easily partitioned, as it is constructed recursively

by joining together two (k - 1)-cubes. The system employs parallel intelligent secondary storage

devices. This, in combination with double-buffering in the microcontrollers (which provide MIMD

control), supports fast loading and unloading of the memory modules (which are totally distributed

among the processors).

7 Conclusions

7.1 The Communication Network

Most parallel architectures are distinguished from each other by their method of inter-processor

communication. Two important factors in any computer system are communication bandwidth and

memory contention. Communication bandwidth is a measure of the amount of information (bytes)

one can move from one location to another (via a channel) in a given amount of time. Memory

contention indicates the loss in parallelism that occurs when data that could be accessed in parallel

is necessarily accessed in serial. The effective bandwidth of a system, arguably a good measure

of performance, should take both communication bandwidth and memory contention into account

[Tenenb aum 871.

For certain computer applications, massively parallel processors will be more effective than

uniprocessors (or coarse-grained multiprocessors), since they represent a better tradeoff between

communication bandwidth and memory contention. To better illustrate this point, I shall con-

trast the Connection Machine (a special-purpose machine) and the Butterfly (a general-purpose

computer).

The communication bandwidth between processors on the Connection Machine (typically 128

Kbps) is more than two orders of magnitude slower than the on the Butterfly (32 Mbps). How-

ever, in the Connection Machine processors that are physically close can share information almost

directly. In the case of the Butterfly, all inter-processor communication must travel through the

entire switching network (whose size is a function of the total number of processor^)^. Memory

contention, therefore, should be much worse on the Butterfly than on the Connection Machine.

As a result, although the maximal size of memory in the Connection Machine (256 Mbits) is

more than an order of magnitude smaller than that of a 256-processor Butterfly (8000 Mbits),

the Connection Machine has has an effective processing power (6000 MIPS) that is almost two

orders of magnitudes faster than that of the Butterfly (128 MIPS). Therefore, for massively parallel

applications (such as large semantic networks) where memory contention dominates link bandwidth,

the Connection Machine's architecture is more cost-effective than the Butterfly's.

In tree structured networks, processor to processor communication can be very poor because all

messages that are sent from one side of the tree to the other must pass through the root node. The

algorithms designed for DADO, therefore, avoid this type of communication by allowing duplicated

'This is a general distinction between special-purpose and general-purpose machines.

5 7

data to insure locality of reference within the tree (not very economical). By comparison, the

Butterfly and the Connection Machine have much better communication schemes.

The main cost in the Butterfly and the Connection Machine is the communication network.

The binary tree topology is favored because it can be efficiently implemented in VLSI technology

and can easily handle broadcasts from the root to a large number of recipients (the binary tree

bottleneck is avoided in the execution of production systems, since each node talks only with

its ancestors). The binary tree topology also supports algebraically commutative and associative

operations (e.g., addition) in time logarithmic in the number of processors. The Butterfly machine

is especially attractive for solving large-grain problems that demand general interconnects among

the processors. The Connection Machine also supports general connect, but is more tuned towards

fine-grain problems.

7.2 Shared Memory versus Message Passing

Since processors are still much faster than (bulk) memories and sharing data between multiple pro-

cessors must be done with special communication channels, MIMD machines with a shared memory

are bad as a paradigm for A1 [Deering 841. Some sort of special message passing (and forwarding)

is absolutely essential for efficient handling of the traffic. The particular model of computation in

use is less important than how well it is matched to the application. Shared memory is useful in

applications that communicate values that must be interpreted in the context of an environment

(e.g., pointers). Message-passing is a better model for value-oriented computing. Any programming

environment that offers a single model of communication will not be well-matched to a large class

of applications. This lesson has been learned during the development of software for the Butterfly.

Initially, the operating system supported only the shared memory model. Recently a substantial

effort has been undertaken to provide the butterfly with a comprehensive message passing environ-

ment. Initial benchmarks confirm that for certain applications and range of processor nodes, the

message passing approach outperforms the Uniform System [LeBlanc 861.

References

[BBN 861

[Bell 861

[Bic 851

[Boulanger 861

[Brachman 841

[Brachman 851

[Browning 801

[Chandran 861

[Codd 721

[Date 821

[Deering 841

[Duda 721

[Fahlman 821

BBN. The ButterflyTM Parallel Processor Overview. Tech Report 6148 (Version I) , Bolt

Beranek and Newman Inc., Cambridge, Mass., March 1986.

Bell, T . E. Optical Computing: A Field in Flux. IEEE Spectrum 23(8):34-57, August

1986.

Bic, L. Processing of Semantic Networks on Dataflow Architectures. Artificial Intelligence

27:219-227, 1985.

Boulanger, A. Parallelism in the Execution of a Routine Knowledge Rule System on the

ButterflyTM Computer. Report 6436, BBN Laboratories Inc., Cambridge, Mass. 02238,

December 1986.

Brachman, R. J. and Levesque, H. J . The Tractability of Subsumption in Frame-Based

Description Languages. Proceedings of the Fourth National Conference on Artificial Intel-

ligence (AAAI-84) , 1984.

Brachman, R. J . and Schmolze, J . G. An Overview of the KL-ONE Knowledge Represen-

tation System. Cognitive Science 9:171-216, 1985.

Browning, S. A. A Tree Machine. Lambda Magazine 1:31-36, 1980.

Chandran, S. and Davis, L. S. The Hough Dansform on the Butterfly and the NCube.

CS-TR 1713, University of Maryland, College Park, Maryland 20742, September 1986.

Codd, E. F. Database Systems, Chapter on Relational Completeness of Data Base Sub-

languages. Volume 6 of Courant Computer Science Symp. Series. Prentice Hall, London,

1972.

Date, C. J . An Introduction to Database Systems. Volume 1 of The Systems Programming

Series. Addison Wesley, 3rd edition, 1982.

Deering, M. F. Hardware and Software Architectures for Efficient AI. In Proceedings of

the Fourth National Conference on Artificial Intelligence (AAAI-84), pages 73-78. Morgan

Kaufmann Publishers, Inc., 95 First Street, Los Altos, CA 94022, 1984.

Duda, R. 0. and Hart, P. E. Use of the Hough Transformation t o Detect Lines and Curves

in Pictures. Communications of the ACM 15(1), 1972.

Fahlman, S. E. Three Flavors of Parallelism. In National Conference of the Canadian

Society for Computational Studies of Intelligence. Saskatoon, Saskatchewan, May 1982.

[Fahlman 831

[Fahlman 871

[Fanty 861

[Feldman 821

[Flynn 721

Porgy 791

[Forgy 821

[Forrest 851

[Frenkel 86a]

[Frenkel 86b]

[Gupta 84a]

[Gupta 84b]

[Hillis 841

[Hillis 851

Fahlman, S. E., Hinton, G. E., and Sejnowski, T . J . Massively Parallel Architectures

for AI: NETL, THISTLE and Boltzmann Machines. In Proceedings of the Third National

Conference on Artificial Intelligence (AAAI-83), pages 10%113. Washington D. C., August

1983.

Fahlman, S. E. and Hinton, G. E. Connectionist Architectures for Artificial Intelligence.

IEEE Computer 20(1):100-109, January 1987.

Fanty, M. A Connectionist Simulator for the BBN Butterfly MuHiprocessor. Butterfly Tech

Report 2, Computer Science Department, University of Rochester, Rochester, NY 14627,

January 1986.

Feldman, J . and Ballard, D. Connectionist Models and Their Properties. Cognitive Science

6:205-254, 1982.

Flynn, M. J. Some Computer Organizations and their Effectiveness. IEEE Transactions

on Computers C-21, September 1972.

Forgy, C. L. On the Eficient Implementation of Production Systems. PhD thesis, Carnegie-

Mellon University, 1979.

Forgy, C. L. Rete: A Fast Algorithm for the Many Pattern/ Many Object Pattern Matching

Problem. Artificial Intelligence 19:17-37, 1982.

Forrest, S. A Study of Parallelism in the Classifier System and its Application to Classifica-

tion in KL-ONE Semantic Networks. PhD thesis, Computer and Communications Science

Dept., University of Michigan, Ann Arbor, Michigan, 1985.

Frenkel, K. A. Complexity and Parallel Processing: An Interview with Richard Karp.

Communications of the ACM 29(2):112-117, February 1986.

Frenkel, K. A. Evaluating Two Massively Parallel Machines. Communications of the ACM

29(8):752-759, August 1986.

Gupta, A. Implementing OPS5 Production Systems on DADO. In Proceedings of the 1984

International Conference on Parallel Processing, pages 83-91. August 1984.

Gupta, A. Parallelism in Production Systems: The Sources and the Expected Speed-up.

Technical Report CMU-CS-84169, Carnegie-Mellon University, December 1984.

Hillis, D. The Connection Machine: A Computer Architecture Based on Cellular Automata.

Physica 10D:213-228, 1984.

Hillis, D. The Connection Machine. The MIT Press Series in Artificial Intelligence. The

MIT Press, Cambridge, Mass., 1985.

[Hillis 871 Hillis, D. The Connection Machine. Scientific American 256(6):108-115, June 1987.

[Hillyer 841 Hillyer, B. K. and Shaw, D. E. Execution of OPS5 Production Systems on A Massively Par-

allel Machine. Technical Report CUCS-147-83, Department of Computer Science, Columbia

University, New York City, NY 10027, September 1984.

[Hough 621 Hough, P. V. C. Methods and Means for Recognizing Complex Patterns. 1962.

[Hwang 841 Hwang, K. and Briggs, F. A. Computer Architecture and Parallel Processing, Chapter 1, 5

and 7, pages 1-50, 325-388, 459-552. Computer Organization and Architecture. McGraw-

Hill, 1984.

[Hwang 871 Hwang, K., Ghosh, J . , and Chowkwanyun, R. Computer Architectures for Artificial Intel-

ligence Processing. IEEE Computer 20(1):19-27, January 1987.

[Ibrahim 861 Ibrahim, H. A. H., Kender, J . R., and Shaw, D. E. On the Application of Massively Par-

allel SIMD Tree Machines t o Certain Intermediate-Level Vision Tasks. Computer Vision,

Graphics, and Image Processing 36:53-75, 1986.

[Kung 801 Kung, H. T . Advances in COMPUTERS, Chapter 2: The Structure of Parallel Algorithms,

pages 65-112. Volume 19. Academic Press, N.Y., 1980.

[LeBlanc 861 LeBlanc, T. J . Shared Memory Versus Message-Passing in a Tightly Coupled Multiproces-

sor: A Case Study. Butterfly Tech Report 3, Computer Science Department, University of

Rochester, Rochester, NY 14627, January 1986.

[Lim 861 Lim, H. S. and Binford, T . 0 . Survey of Parallel Computers. Technical Report, A1 Lab,

Computer Science Department, Stanford University, Stanford, CA 94305, 1986.

[McDermott 821 McDermott, J . R1: A Rule Based Configurer of Computer Systems. Artificial Intelligence

19(1):39-88, September 1982.

[Miranker 871 Miranker, D. P. TREAT: A Better Match Algorithm for A1 Production Systems. In

Proceedings of the Sixth National Conference on Artificial Intelligence (AAAI-87). Seattle,

Washington, 1987.

[Moser 831 Moser, M. G. A n Overview of NIKL, The New Implementation of KL-ONE. Technical

Report 5421, Bolt Beranek and Newman, Inc., 1983.

[Nilsson 801 Nilsson, N. J . Principles of Artificial Intelligence. Tioga, Palo Alto, Calif., 1980.

[Preparata 811 Preparata, F. P. and Vuillemin, J . The Cube-Connected Cycles: A Versatile Network for

Parallel Computation. Communications of the ACM 24(5):300-309, May 1981.

[Quayle 861 Quayle, C., Boulanger, A., Clarke, D., Thome, M., Vilain, M., and Anderson, K. Parallel

Expert Systems Execution Environment: A Functional Specification. Report 6225, BBN

Laboratories Inc., Cambridge, Mass. 02238, August 1986.

[Quillian 681

[Quinlan 791

[Reeves 811

[Rumelhart 861

[Schwartz 801

[Schwartz 831

[Sejnowski 861

[Shastri 85a]

[Shastri 85b]

[Shastri 861

[Shaw 821

[Siegel 811

[Siegel 851

Quillian, M. Semantic Information Processing, pages 227-270. MIT Press, Cambridge,

Mass., 1968.

Quinlan, J . R. Induction Over Large Data Bases. Technical Report HPP-79-14, Compuer

Science Department, Stanford University, Stanford, California, 1979.

Reeves, A. P. Parallel Computer Architectures for Image Processing. In Proceedings of the

1981 International Conference on Parallel Processing, pages 199-206. 1981.

Rumelhart, D. E., McClelland, J . L., and the PDP research group (editors). Parallel

Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1. MIT

Press, Cambridge, Mass., 1986.

Schwartz, J . T . Ultracomputers. ACM fiansactions on Programming Languages and Sys-

tems 2(4):484-521, October 1980.

Schwartz, J. T . A Taxonomic Table of Parallel Computers, Based on 55 Designs. Technical

Report, Courant Institute, NYU, 1983.

Sejnowski, T . J . and Rosenberg, C. R. NETtalk: A Parallel Network that Learns to Read

Aloud. Tech. Report JHU/EECS-86-01, The John Hopkins University, Baltimore, MD

21218, 1986.

Shastri, L. Evidential Reasoning in Semantic Networks: A formal Theory and its Par-

allel Implementation. T R 166, Computer Science Department, University of Rochester,

September 1985.

Shastri, L. and Feldman, J . A. Evidential Reasoning in Semantic Network: A Formal

Theory. In Proceedings of the Nznth International Joint Conference on Artificial Intelligence

(IJCAI-85), pages 465-474. Los Angeles, CA, August 1985.

Shastri, L. Massive Parallelism in Artificial Intelligence. MS-CIS 86-77 (LINC Lab 43),

University of Pennsylvania, Philadelphia, PA, December 1986.

Shaw, D. E. The NON- VON Supercomputer. Technical Report, Department of Computer

Science, Columbia University, New York City, NY 10027, August 1982.

Siegel, H. J., Seigel, L. J., Kemmerer, Mueller, F. C., Smalley, Jr. , H. E., and Smith,

S. D. PASM: A Partitionable SIMD/MIMD System for Image Processing and Pattern

Recognition. IEEE Transactions on Computers C-30(12), December 1981.

Siegel, H. J . Interconnection Networks for Large-Scale Parallel Processing: Theory and

Case Studies, pages 1-32. Lexington Books, 1985.

[Srnitley 851 Smitley, D., Goldwasser, S. M., and Lee, I. IPON - Advanced Architectural Framework for

Image Processing. Tech. Report MS-CIS-85-13, University of Pennsylvania, Philadelphia,

PA 19104, 1985.

[Stanfill 861 Stanfill, C. and Waltz, D. Toward Memory-Based Reasoning. Communications of the ACM

29(12):1213-1228, December 1986.

[Stolfo 821 Stolfo, S. J . and Vesonder, G. ACE: An Expert System Supporting Analysis and Man-

agement Decision Making. Technical Report, Department of Computer Science, Columbia

University, 1982.

[Stolfo 861 Stolfo, S. J . and Miranker, D. P. DADO: A Tree-Structured Architecture for Artificial

Intelligence. Annual Reviews of Computer Science 1:l-18, 1986.

[Stolfo 871 Stolfo, S. J . Initial Performance of the DAD02 Prototype. IEEE Computer 20(1):75-83,

January 1987.

[Stone 801 Stone, H. S. Introduction to Computer Architecture, Chapter 8 (Parallel Computers),

pages 363423. SRA, Chicago, IL, 2nd edition, 1980.

[Tenenbaum 831 Tenenbaum, E. A Comparison of Parallel Computer Architectures for A1 Applications.

Term Paper, MIT, 1983.

[Tenenbaum 871 Tenenbaum, E. Personal communication, July 1987

[Vilain 851 Vilain, M. The Restricted Language Architecture of a Hybrid Representation System. In

gth Int. Joint Conf. on Artificial Intelligence, pages 547-551. William Kaufmann, Inc., Los

Altos, California, 1985.

[Waltz 871 Waltz, D. L. Applications of the Connection Machine. IEEE Computer 20(1):85-97, Jan-

uary 1987.

[Weems 841 Weems, C., Levitan, S., Foster, C., Riseman, E., Lawton, D., and Hanson, A. Development

and Construction of a Content Addressable Array Parallel Processor for Knowledge-Based

Image Interpretation. In Proceedings of the Workshop on Algorithm-Guided Parallel Archi-

tectures for Automatic Target Recognition. Xerox international Center, Leesburg, VA, July

1984.

[Wiley 871 Wiley, P. A Parallel Architecture Comes of Age at Last. IEEE Spectrum 24(6):46-50, June

1987.

[Winston 771 Winston, P. H. Artificial Intelligence. Addison Wesley, Reading, Mass., 1977

[Woods 781 Woods, W. A. Research in Natural Language Understanding. Technical Report 2, BBN,

Cambridge, Mass., 1978.

	Three Highly Parallel Computer Architectures and Their Suitability for Three Representative Artificial Intelligence Problems
	Recommended Citation

	Three Highly Parallel Computer Architectures and Their Suitability for Three Representative Artificial Intelligence Problems
	Abstract
	Comments

	tmp.1190732882.pdf.s2MqX

