54 research outputs found

    Privacy preserving linkage and sharing of sensitive data

    Get PDF
    2018 Summer.Includes bibliographical references.Sensitive data, such as personal and business information, is collected by many service providers nowadays. This data is considered as a rich source of information for research purposes that could benet individuals, researchers and service providers. However, because of the sensitivity of such data, privacy concerns, legislations, and con ict of interests, data holders are reluctant to share their data with others. Data holders typically lter out or obliterate privacy related sensitive information from their data before sharing it, which limits the utility of this data and aects the accuracy of research. Such practice will protect individuals' privacy; however it prevents researchers from linking records belonging to the same individual across dierent sources. This is commonly referred to as record linkage problem by the healthcare industry. In this dissertation, our main focus is on designing and implementing ecient privacy preserving methods that will encourage sensitive information sources to share their data with researchers without compromising the privacy of the clients or aecting the quality of the research data. The proposed solution should be scalable and ecient for real-world deploy- ments and provide good privacy assurance. While this problem has been investigated before, most of the proposed solutions were either considered as partial solutions, not accurate, or impractical, and therefore subject to further improvements. We have identied several issues and limitations in the state of the art solutions and provided a number of contributions that improve upon existing solutions. Our rst contribution is the design of privacy preserving record linkage protocol using semi-trusted third party. The protocol allows a set of data publishers (data holders) who compete with each other, to share sensitive information with subscribers (researchers) while preserving the privacy of their clients and without sharing encryption keys. Our second contribution is the design and implementation of a probabilistic privacy preserving record linkage protocol, that accommodates discrepancies and errors in the data such as typos. This work builds upon the previous work by linking the records that are similar, where the similarity range is formally dened. Our third contribution is a protocol that performs information integration and sharing without third party services. We use garbled circuits secure computation to design and build a system to perform the record linkages between two parties without sharing their data. Our design uses Bloom lters as inputs to the garbled circuits and performs a probabilistic record linkage using the Dice coecient similarity measure. As garbled circuits are known for their expensive computations, we propose new approaches that reduce the computation overhead needed, to achieve a given level of privacy. We built a scalable record linkage system using garbled circuits, that could be deployed in a distributed computation environment like the cloud, and evaluated its security and performance. One of the performance issues for linking large datasets is the amount of secure computation to compare every pair of records across the linked datasets to nd all possible record matches. To reduce the amount of computations a method, known as blocking, is used to lter out as much as possible of the record pairs that will not match, and limit the comparison to a subset of the record pairs (called can- didate pairs) that possibly match. Most of the current blocking methods either require the parties to share blocking keys (called blocks identiers), extracted from the domain of some record attributes (termed blocking variables), or share reference data points to group their records around these points using some similarity measures. Though these methods reduce the computation substantially, they leak too much information about the records within each block. Toward this end, we proposed a novel privacy preserving approximate blocking scheme that allows parties to generate the list of candidate pairs with high accuracy, while protecting the privacy of the records in each block. Our scheme is congurable such that the level of performance and accuracy could be achieved according to the required level of privacy. We analyzed the accuracy and privacy of our scheme, implemented a prototype of the scheme, and experimentally evaluated its accuracy and performance against dierent levels of privacy

    Privacy-Preserving Record Linkage for Big Data: Current Approaches and Research Challenges

    Get PDF
    The growth of Big Data, especially personal data dispersed in multiple data sources, presents enormous opportunities and insights for businesses to explore and leverage the value of linked and integrated data. However, privacy concerns impede sharing or exchanging data for linkage across different organizations. Privacy-preserving record linkage (PPRL) aims to address this problem by identifying and linking records that correspond to the same real-world entity across several data sources held by different parties without revealing any sensitive information about these entities. PPRL is increasingly being required in many real-world application areas. Examples range from public health surveillance to crime and fraud detection, and national security. PPRL for Big Data poses several challenges, with the three major ones being (1) scalability to multiple large databases, due to their massive volume and the flow of data within Big Data applications, (2) achieving high quality results of the linkage in the presence of variety and veracity of Big Data, and (3) preserving privacy and confidentiality of the entities represented in Big Data collections. In this chapter, we describe the challenges of PPRL in the context of Big Data, survey existing techniques for PPRL, and provide directions for future research.This work was partially funded by the Australian Research Council under Discovery Project DP130101801, the German Academic Exchange Service (DAAD) and Universities Australia (UA) under the Joint Research Co-operation Scheme, and also funded by the German Federal Ministry of Education and Research within the project Competence Center for Scalable Data Services and Solutions (ScaDS) Dresden/Leipzig (BMBF 01IS14014B)

    A Taxonomy of Privacy-Preserving Record Linkage Techniques

    Get PDF
    The process of identifying which records in two or more databases correspond to the same entity is an important aspect of data quality activities such as data pre-processing and data integration. Known as record linkage, data matching or entity resolution, this process has attracted interest from researchers in fields such as databases and data warehousing, data mining, information systems, and machine learning. Record linkage has various challenges, including scalability to large databases, accurate matching and classification, and privacy and confidentiality. The latter challenge arises because commonly personal identifying data, such as names, addresses and dates of birth of individuals, are used in the linkage process. When databases are linked across organizations, the issue of how to protect the privacy and confidentiality of such sensitive information is crucial to successful application of record linkage. In this paper we present an overview of techniques that allow the linking of databases between organizations while at the same time preserving the privacy of these data. Known as 'privacy-preserving record linkage' (PPRL), various such techniques have been developed. We present a taxonomy of PPRL techniques to characterize these techniques along 15 dimensions, and conduct a survey of PPRL techniques. We then highlight shortcomings of current techniques and discuss avenues for future research

    A Scalable Blocking Framework for Multidatabase Privacy-preserving Record Linkage

    No full text
    Today many application domains, such as national statistics, healthcare, business analytic, fraud detection, and national security, require data to be integrated from multiple databases. Record linkage (RL) is a process used in data integration which links multiple databases to identify matching records that belong to the same entity. RL enriches the usefulness of data by removing duplicates, errors, and inconsistencies which improves the effectiveness of decision making in data analytic applications. Often, organisations are not willing or authorised to share the sensitive information in their databases with any other party due to privacy and confidentiality regulations. The linkage of databases of different organisations is an emerging research area known as privacy-preserving record linkage (PPRL). PPRL facilitates the linkage of databases by ensuring the privacy of the entities in these databases. In multidatabase (MD) context, PPRL is significantly challenged by the intrinsic exponential growth in the number of potential record pair comparisons. Such linkage often requires significant time and computational resources to produce the resulting matching sets of records. Due to increased risk of collusion, preserving the privacy of the data is more problematic with an increase of number of parties involved in the linkage process. Blocking is commonly used to scale the linkage of large databases. The aim of blocking is to remove those record pairs that correspond to non-matches (refer to different entities). Many techniques have been proposed for RL and PPRL for blocking two databases. However, many of these techniques are not suitable for blocking multiple databases. This creates a need to develop blocking technique for the multidatabase linkage context as real-world applications increasingly require more than two databases. This thesis is the first to conduct extensive research on blocking for multidatabase privacy-preserved record linkage (MD-PPRL). We consider several research problems in blocking of MD-PPRL. First, we start with a broad background literature on PPRL. This allow us to identify the main research gaps that need to be investigated in MD-PPRL. Second, we introduce a blocking framework for MD-PPRL which provides more flexibility and control to database owners in the block generation process. Third, we propose different techniques that are used in our framework for (1) blocking of multiple databases, (2) identifying blocks that need to be compared across subgroups of these databases, and (3) filtering redundant record pair comparisons by the efficient scheduling of block comparisons to improve the scalability of MD-PPRL. Each of these techniques covers an important aspect of blocking in real-world MD-PPRL applications. Finally, this thesis reports on an extensive evaluation of the combined application of these methods with real datasets, which illustrates that they outperform existing approaches in term of scalability, accuracy, and privacy

    Exploiting Record Similarity for Practical Vertical Federated Learning

    Full text link
    As the privacy of machine learning has drawn increasing attention, federated learning is introduced to enable collaborative learning without revealing raw data. Notably, \textit{vertical federated learning} (VFL), where parties share the same set of samples but only hold partial features, has a wide range of real-world applications. However, existing studies in VFL rarely study the ``record linkage'' process. They either design algorithms assuming the data from different parties have been linked or use simple linkage methods like exact-linkage or top1-linkage. These approaches are unsuitable for many applications, such as the GPS location and noisy titles requiring fuzzy matching. In this paper, we design a novel similarity-based VFL framework, FedSim, which is suitable for more real-world applications and achieves higher performance on traditional VFL tasks. Moreover, we theoretically analyze the privacy risk caused by sharing similarities. Our experiments on three synthetic datasets and five real-world datasets with various similarity metrics show that FedSim consistently outperforms other state-of-the-art baselines

    Scalable and approximate privacy-preserving record linkage

    No full text
    Record linkage, the task of linking multiple databases with the aim to identify records that refer to the same entity, is occurring increasingly in many application areas. Generally, unique entity identifiers are not available in all the databases to be linked. Therefore, record linkage requires the use of personal identifying attributes, such as names and addresses, to identify matching records that need to be reconciled to the same entity. Often, it is not permissible to exchange personal identifying data across different organizations due to privacy and confidentiality concerns or regulations. This has led to the novel research area of privacy-preserving record linkage (PPRL). PPRL addresses the problem of how to link different databases to identify records that correspond to the same real-world entities, without revealing the identities of these entities or any private or confidential information to any party involved in the process, or to any external party, such as a researcher. The three key challenges that a PPRL solution in a real-world context needs to address are (1) scalability to largedatabases by efficiently conducting linkage; (2) achieving high quality of linkage through the use of approximate (string) matching and effective classification of the compared record pairs into matches (i.e. pairs of records that refer to the same entity) and non-matches (i.e. pairs of records that refer to different entities); and (3) provision of sufficient privacy guarantees such that the interested parties only learn the actual values of certain attributes of the records that were classified as matches, and the process is secure with regard to any internal or external adversary. In this thesis, we present extensive research in PPRL, where we have addressed several gaps and problems identified in existing PPRL approaches. First, we begin the thesis with a review of the literature and we propose a taxonomy of PPRL to characterize existing techniques. This allows us to identify gaps and research directions. In the remainder of the thesis, we address several of the identified shortcomings. One main shortcoming we address is a framework for empirical and comparative evaluation of different PPRL solutions, which has not been studied in the literature so far. Second, we propose several novel algorithms for scalable and approximate PPRL by addressing the three main challenges of PPRL. We propose efficient private blocking techniques, for both three-party and two-party scenarios, based on sorted neighborhood clustering to address the scalability challenge. Following, we propose two efficient two-party techniques for private matching and classification to address the linkage quality challenge in terms of approximate matching and effective classification. Privacy is addressed in these approaches using efficient data perturbation techniques including k-anonymous mapping, reference values, and Bloom filters. Finally, the thesis reports on an extensive comparative evaluation of our proposed solutions with several other state-of-the-art techniques on real-world datasets, which shows that our solutions outperform others in terms of all three key challenges

    End-to-End Entity Resolution for Big Data: A Survey

    Get PDF
    One of the most important tasks for improving data quality and the reliability of data analytics results is Entity Resolution (ER). ER aims to identify different descriptions that refer to the same real-world entity, and remains a challenging problem. While previous works have studied specific aspects of ER (and mostly in traditional settings), in this survey, we provide for the first time an end-to-end view of modern ER workflows, and of the novel aspects of entity indexing and matching methods in order to cope with more than one of the Big Data characteristics simultaneously. We present the basic concepts, processing steps and execution strategies that have been proposed by different communities, i.e., database, semantic Web and machine learning, in order to cope with the loose structuredness, extreme diversity, high speed and large scale of entity descriptions used by real-world applications. Finally, we provide a synthetic discussion of the existing approaches, and conclude with a detailed presentation of open research directions

    Effective Record Linkage Techniques for Complex Population Data

    Get PDF
    Real-world data sets are generally of limited value when analysed on their own, whereas the true potential of data can be exploited only when two or more data sets are linked to analyse patterns across records. A classic example is the need for merging medical records with travel data for effective surveillance and management of pandemics such as COVID-19 by tracing points of contacts of infected individuals. Therefore, Record Linkage (RL), which is the process of identifying records that refer to the same entity, is an area of data science that is of paramount importance in the quest for making informed decisions based on the plethora of information available in the modern world. Two of the primary concerns of RL are obtaining linkage results of high quality, and maximising efficiency. Furthermore, the lack of ground-truth data in the form of known matches and non-matches, and the privacy concerns involved in linking sensitive data have hindered the application of RL in real-world projects. In traditional RL, methods such as blocking and indexing are generally applied to improve efficiency by reducing the number of record pairs that need to be compared. Once the record pairs retained from blocking are compared, certain classification methods are employed to separate matches from non-matches. Thus, the general RL process comprises of blocking, comparison, classification, and finally evaluation to assess how well a linkage program has performed. In this thesis we initially provide a holistic understanding of the background of RL, and then conduct an extensive literature review of the state-of-the-art techniques applied in RL to identify current research gaps. Next, we present our initial contribution of incorporating data characteristics, such as temporal and geographic information with unsupervised clustering, which achieves significant improvements in precision (more than 16%), at the cost of minor reduction in recall (less than 2.5%) when they are applied on real-world data sets compared to using regular unsupervised clustering. We then present a novel active learning-based method to filter record pairs subsequent to the record pair comparison step to improve the efficiency of the RL process. Furthermore, we develop a novel active learning-based classification technique for RL which allows to obtain high quality linkage results with limited ground-truth data. Even though semi-supervised learning techniques such as active learning methods have already been proposed in the context of RL, this is a relatively novel paradigm which is worthy of further exploration. We experimentally show more than 35% improvement in clustering efficiency with the application of our proposed filtering approach; and linkage quality on par with or exceeding existing active learning-based classification methods, compared to our active learning-based classification technique. Existing RL evaluation measures such as precision and recall evaluate the classification outcome of record pairs, which can cause ambiguity when applied in the group RL context. We therefore propose a more robust RL evaluation measure which evaluates linkage quality based on how individual records have been assigned to clusters rather than considering record pairs. Next, we propose a novel graph anonymisation technique that extends the literature by introducing methods of anonymising data to be linked in a human interpretable manner, without compromising structure and interpretability of the data as with existing state-of-the-art anonymisation approaches. We experimentally show how the similarity distributions are maintained in anonymised and original sensitive data sets when our anonymisation technique is applied, which attests to its ability to maintain the structure of the original data. We finally conduct an empirical evaluation of our proposed techniques and show how they outperform existing RL methods
    • …
    corecore