
Effective Record Linkage
Techniques for Complex

Population Data

Charini Nanayakkara

A thesis submitted for the degree of
Doctor of Philosophy in Computer Science

The Australian National University

April 2022

© Charini Nanayakkara 2022

Except where otherwise indicated, this thesis is my own original work.

Charini Nanayakkara
28 April 2022

I dedicate this thesis to the four pillars in my life, my loving parents, husband and
my only sibling.

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my supervisory
panel for the unwavering support they have offered me throughout my doctoral
studies. Having an amazing individual as Professor Peter Christen (The Australian
National University, Canberra, Australia) as my primary supervisor has immensely
contributed to the successful completion of this thesis and related publications. With
more than twenty years of experience in the field of academia, his guidance and
support have always been admired by all his students. Above all, I am truly grateful
to him for genuinely caring for his students’ well-being and their future, and for
constantly making time for each and every one of us such that we never deviated
from track. I would like to acknowledge the contribution of my co-supervisor Dr.
Thilina Ranbaduge (Data 61 – CSIRO, Canberra, Australia) for his valuable support
and comments, and for being an inspiration to all of us by completing a PhD with
several A-grade publications, while raising a young child. Many thanks goes to Dr.
Eilidh Garrett (University of Edinburgh, UK) for her insights on population data as
an experienced demographer.

I express my heartfelt gratitude to the two people who gave me life and nurtured
me, my beloved parents Jayanthi and Tissa Nanayakkara. The many sacrifices they
made in life for caring for my aunt in ill health, and for my grandmother who was
suffering from Alzheimer’s disease taught me what it truly means to be resilient
despite all odds. The strength they found to do so much for others even when the
world did not necessarily applaud their sacrifices was astounding, and still does not
fail to inspire me. Actions speak louder than words, and I am indebted to my parents
for guiding me through example and not merely by advice. Simply observing my
parents helped me to find the courage to refrain from wrongdoings, and steer in the
correct path. All the good that I have done and the achievements I have made are
a tribute to my parents; for having raised two girls while being caregivers, despite
them not being very wealthy. They will always be remembered as the two people
who laid the foundation to all my good traits and why I strive to be a person of value
to society.

I am truly grateful to my loving husband Yasith Kanchana Lokuge for his unwa-
vering love, support and encouragement throughout my life as a graduate student
and beyond. He sacrificed his well-paid, hard-earned job as a Software Engineer in
Sri Lanka to help me pursue my dreams despite knowing that it is extremely difficult
for immigrants to secure jobs in Canberra, Australia. Undeterred by all these chal-
lenges, Yasith was perseverant in searching for opportunities in the industry which
eventually led to him securing a position in an Australian software development
company even prior to us arriving in Canberra. I am awed by his kind heart and

vii

the love he showers upon me every single day. I take this opportunity to thank my
loving sister Dulanji Nanayakkara who has always believed in my potential to reach
great heights, and for constantly being my cheerleader. My parents, husband and
sister are my greatest pillars of strength, and I am truly grateful to them for being
who they are.

My heartfelt gratitude goes out to my friends who were with me through thick
and thin during my childhood and doctoral studies. I appreciate each one of them
for being exemplary individuals whom I could learn something from, and for their
friendship. My wonderful, generous relatives, and my in-laws who have helped me
in numerous ways are acknowledged with much love for their support, blessings and
encouragement in this journey.

I express my gratitude to Dr. Amitha Caldera and Dr. Shiromi Arunathilake from
the University of Colombo School of Computing, Sri Lanka, and Mr. Viraj Brian
Wijesuriya who is reading for his PhD at the University of Oxford, for their support
with obtaining a scholarship at the ANU. Their immense support has helped me
secure scholarships for which there is high demand and competition among students
from around the globe.

I am truly grateful to the School of Computing at the Australian National Univer-
sity (ANU) for offering me two scholarships for international students (a fee waiver
and a stipend). Hailing from a developing country such as Sri Lanka, and not be-
ing extremely wealthy as to be able to afford a foreign education, pursuing doctoral
studies would have never become a reality for me without such scholarships. I ex-
press my sincere gratitude to the non-academic staff at the ANU as well, for their
largely unapplauded invaluable services, without which the academic work would
not have progressed smoothly. The workshops and support provided by the staff
of the ANU Academic Skills is greatly valued and acknowledged since those (espe-
cially programs such as the Thesis Boot Camp led by Victoria and Inger) have been
immensely helpful in organising and improving my work as a graduate student.

Last, but not least, I would like to express my heartfelt gratitude to my Alma
maters from my motherland, the University of Colombo School of Computing and
Musaeus College, Colombo, Sri Lanka, for moulding me into the person I am to-
day. The education and values I have learnt from these institutions have helped me
become a better individual and succeed in life. I pay tribute to every teacher and
lecturer who has taught me up to now, and has been influential in my life. I sin-
cerely thank the people in my beautiful country, Sri Lanka, for having paid for my
education with their taxes, and to the amazing free education system in my moth-
erland. Free education in Sri Lanka, as initiated by Dr. C.W.W Kannangara, paves
the path for Sri Lankan children to receive quality education and reach great heights,
regardless of their background and wealth, and I would forever owe my country for
this reason. I express my immense gratitude and dedicate this thesis to all who have
helped me in the slightest manner during my doctoral studies, and in all aspects of
life.

Abstract

Real-world data sets are generally of limited value when analysed on their own,
whereas the true potential of data can be exploited only when two or more data
sets are linked to analyse patterns across records. A classic example is the need for
merging medical records with travel data for effective surveillance and management
of pandemics such as COVID-19 by tracing points of contacts of infected individuals.
Therefore, Record Linkage (RL), which is the process of identifying records that refer
to the same entity, is an area of data science that is of paramount importance in the
quest for making informed decisions based on the plethora of information available
in the modern world.

Two of the primary concerns of RL are obtaining linkage results of high quality,
and maximising efficiency. Furthermore, the lack of ground-truth data in the form
of known matches and non-matches, and the privacy concerns involved in linking
sensitive data have hindered the application of RL in real-world projects. In tradi-
tional RL, methods such as blocking and indexing are generally applied to improve
efficiency by reducing the number of record pairs that need to be compared. Once
the record pairs retained from blocking are compared, certain classification methods
are employed to separate matches from non-matches. Thus, the general RL process
comprises of blocking, comparison, classification, and finally evaluation to assess
how well a linkage program has performed.

In this thesis we initially provide a holistic understanding of the background
of RL, and then conduct an extensive literature review of the state-of-the-art tech-
niques applied in RL to identify current research gaps. Next, we present our initial
contribution of incorporating data characteristics, such as temporal and geographic
information with unsupervised clustering, which achieves significant improvements
in precision (more than 16%), at the cost of minor reduction in recall (less than 2.5%)
when they are applied on real-world data sets compared to using regular unsuper-
vised clustering.

We then present a novel active learning-based method to filter record pairs subse-
quent to the record pair comparison step to improve the efficiency of the RL process.
Furthermore, we develop a novel active learning-based classification technique for RL
which allows to obtain high quality linkage results with limited ground-truth data.
Even though semi-supervised learning techniques such as active learning methods
have already been proposed in the context of RL, this is a relatively novel paradigm
which is worthy of further exploration. We experimentally show more than 35%
improvement in clustering efficiency with the application of our proposed filtering
approach; and linkage quality on par with or exceeding existing active learning-
based classification methods, compared to our active learning-based classification
technique.

ix

x

Existing RL evaluation measures such as precision and recall evaluate the classi-
fication outcome of record pairs, which can cause ambiguity when applied in the
group RL context. We therefore propose a more robust RL evaluation measure
which evaluates linkage quality based on how individual records have been as-
signed to clusters rather than considering record pairs. Next, we propose a novel
graph anonymisation technique that extends the literature by introducing methods
of anonymising data to be linked in a human interpretable manner, without com-
promising structure and interpretability of the data as with existing state-of-the-art
anonymisation approaches. We experimentally show how the similarity distributions
are maintained in anonymised and original sensitive data sets when our anonymisa-
tion technique is applied, which attests to its ability to maintain the structure of the
original data. We finally conduct an empirical evaluation of our proposed techniques
and show how they outperform existing RL methods.

List of Contributions

Major Contributions
1. Charini Nanayakkara, Peter Christen, and Thilina Ranbaduge. Temporal Graph-

based Clustering for Historical Record Linkage. International Workshop on Mining
and Learning with Graphs (MLG) Workshop, held at ACM SIGKDD, London
(2018).

2. Charini Nanayakkara, Peter Christen, and Thilina Ranbaduge. Robust Temporal
Graph Clustering for Group Record Linkage. Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining (PAKDD), Macau (2019).

3. Charini Nanayakkara, Peter Christen, and Thilina Ranbaduge and Eilidh Gar-
rett. Evaluation Measure for Group-based Record Linkage. International Journal of
Population Data Science, 4(1) (2020).

4. Charini Nanayakkara, Peter Christen, and Thilina Ranbaduge. An Anonymiser
Tool for Sensitive Graph Data. International Workshop on Entity Retrieval and
Learning (EYRE) co-located with CIKM, Galway, Ireland (2020).

5. Charini Nanayakkara, Peter Christen, and Thilina Ranbaduge. Active Learning
Based Similarity Filtering for Efficient and Effective Record Linkage. Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD), Delhi (2021).

Minor Contributions
1. Charini Nanayakkara, Peter Christen, and Thilina Ranbaduge. Historical Record

Linkage (some of the clustering algorithms related to Chapter 4). June 2020,
https://dmm.anu.edu.au/HISTRL/.

2. Charini Nanayakkara, Peter Christen, and Thilina Ranbaduge. DOYEN - Data
Generator and Anonymiser for Sensitive Graph Data. December 2020, https://
dmm.anu.edu.au/doyen/.

3. Charini Nanayakkara, Nishadi Kirielle, and Peter Christen. SNAPS - Scotland
Family Pedigree Search Tool. June 2021, https://dmm.anu.edu.au/SNAPS/.

4. Nishadi Kirielle, Charini Nanayakkara, Peter Christen, Chris Dibben, Lee Will-
iamson, Eilidh Garrett, and Clair Manson. Unsupervised Graph-based Entity Res-
olution for Accurate and Efficient Family Pedigree Search. International Conference
on Extending Database Technology (EDBT), Edinburgh, UK (2022).

xi

https://dmm.anu.edu.au/HISTRL/
https://dmm.anu.edu.au/doyen/
https://dmm.anu.edu.au/doyen/
https://dmm.anu.edu.au/SNAPS/

xii

Contents

Acknowledgments vii

Abstract ix

List of Contributions xi

List of Figures xviii

List of Tables xix

Notations and Terminology xxi

1 Introduction 1
1.1 Overview of Record Linkage . 1
1.2 Research Problems . 3
1.3 Aim and Objectives . 5
1.4 Contributions . 6
1.5 Research Limitations . 8
1.6 Research Methodology . 9
1.7 Thesis Outline . 10

2 Background 13
2.1 A Brief History of Record Linkage . 13
2.2 Linkage of Complex Population Data . 14
2.3 The Main Steps of the Record Linkage Process 15

2.3.1 Data Pre-processing . 15
2.3.2 Indexing/Blocking . 17
2.3.3 Record Pair Comparison and Pairwise Similarity Graph 18
2.3.4 Match and Non-match Classification 20
2.3.5 Evaluation . 21

2.4 Evaluation Measures . 21
2.4.1 Linkage Quality Measures . 21
2.4.2 Linkage Complexity and Scalability Measures 23

2.5 Population Data Sets . 24
2.5.1 Birth Data Sets . 24
2.5.2 The North Carolina Voter Registration Data Set (NCVR) 28
2.5.3 The Bibliographic Data Sets . 29

2.6 Generating Pairwise Similarity Graphs from Data Sets 30

xiii

xiv Contents

2.7 Summary . 32

3 Related Work 33
3.1 Unsupervised Classification for Record Linkage 33
3.2 Supervised Classification for Record Linkage 39
3.3 Semi-supervised Classification for Record Linkage 43
3.4 Efficiency Enhancement in Record Linkage 49
3.5 Evaluation Measures for Record Linkage 53
3.6 Graph Anonymisation Techniques . 55
3.7 Summary . 59

4 Graph-based Clustering for Record Linkage Using Data Characteristics 61
4.1 Introduction . 61
4.2 Modelling Constraints Implied by Data Characteristics 62
4.3 Graph-based Clustering Using Data Characteristics 63

4.3.1 Greedy Clustering . 64
4.3.2 Star Clustering . 68
4.3.3 Robust Graph Clustering . 70

4.3.3.1 Generating Base Clusters 71
4.3.3.2 Iterative Cluster Merging 74

4.4 Experimental Evaluation . 76
4.4.1 Linkage Quality Evaluation . 77
4.4.2 Run-time Evaluation . 81

4.5 Summary . 82

5 Record Linkage Using Transition Probabilities on Data Characteristics 83
5.1 Introduction . 83
5.2 Modelling Population Goodness . 85

5.2.1 Markov Chain-based Population Goodness 85
5.2.2 Overall Transition Probability-based Population Goodness 86

5.3 Record Linkage Clustering with Population Goodness 87
5.3.1 Markov Chain-based Cluster Goodness (MC) 87
5.3.2 All Pairs-based Overall Cluster Goodness (AP) 88
5.3.3 Record-based Overall Cluster Goodness (RB) 89

5.4 Experimental Evaluation . 90
5.4.1 Linkage Quality Evaluation . 91
5.4.2 Run-time Evaluation . 93

5.5 Summary . 94

6 Active Learning-based Graph Filtering for Record Linkage 95
6.1 Introduction . 95
6.2 Active Learning-based Record Pair Filtering 97

6.2.1 Problem Definition . 97
6.2.2 Binning-based Filtering . 98
6.2.3 Calculating Optimal Bin Similarity Thresholds 101

Contents xv

6.2.4 Bin Scoring Functions . 102
6.3 Experimental Evaluation . 103

6.3.1 Filtered Similarity Graph Quality 105
6.3.2 Linkage Quality and Efficiency Improvement 108

6.4 Summary . 112

7 Active Learning-based Record Linkage With Filtering 115
7.1 Introduction . 115
7.2 Active Learning with Filtering . 118

7.2.1 Overview . 118
7.2.2 Initial Classification Based on the Expected Number of Matches 119
7.2.3 Iterative Classification Refinement 120
7.2.4 Algorithmic Outline . 123

7.3 Experimental Evaluation . 126
7.3.1 Linkage Quality With Different Parameter Settings 126
7.3.2 Linkage Quality Comparison With State-of-the-art Techniques . 130
7.3.3 Linkage Quality and Efficiency Comparison With Supervised

Classification Techniques . 131
7.4 Summary . 132

8 An Evaluation Technique for Group Record Linkage 135
8.1 Introduction . 135
8.2 Proposed Evaluation Method . 138

8.2.1 Record-based Cluster Evaluation 138
8.2.2 Example Cluster Evaluation . 142
8.2.3 Area Under the Curve . 143

8.3 Experimental Evaluation . 144
8.4 Summary . 148

9 Graph Data Anonymisation for Record Linkage 151
9.1 Introduction . 151
9.2 Mapping-based Graph Data Anonymisation 152

9.2.1 Method Overview . 153
9.2.2 Cluster-based Attribute Value Mapping and Anonymisation . . 153
9.2.3 Generating Anonymised Date Values 155

9.3 Web Tool Demonstration . 156
9.4 Evaluation . 159
9.5 Summary . 161

10 Overall Experimental Evaluation 163
10.1 Introduction . 163
10.2 Graph-based Clustering Using Data Characteristics 164
10.3 Record Linkage Using Transition Probabilities 168
10.4 Active Learning-based Graph Filtering 170
10.5 Active Learning-based Record Linkage With Filtering 173

xvi Contents

10.6 An Evaluation Technique for Group Record Linkage 176
10.7 Graph Data Anonymisation . 178
10.8 Summary . 180

11 Conclusion and Future Work 183
11.1 Summary of the Research Problems . 183
11.2 Summary of Contributions . 184
11.3 Research Findings . 186
11.4 Future Work . 187
11.5 Conclusion . 188

References 191

List of Figures

1.1 The research methodology followed in this thesis. 9
1.2 Flow diagram indicating the cohesion of our proposed techniques. . . . 11

2.1 Record linkage process . 16
2.2 Precision-recall graph and the relationship between F and F∗ measures. 22
2.3 A snippet of a Scottish birth certificate from 1895. 25
2.4 Frequency distributions of attribute values (birth and NCVR data sets). 26
2.5 Frequency distributions of attribute values (bibliographic data sets). . . 28

4.1 Temporal constraints corresponding to births by the same mother. . . . 64
4.2 Example of the greedy temporal linkage approach. 65
4.3 Example iterative temporal cluster refinement in robust graph clustering. 72
4.4 Greedy clustering results (IoS and UK data sets). 77
4.5 Star clustering results (IoS and UK data sets). 78
4.6 Robust graph clustering results (IoS and UK data sets). 79

5.1 Temporal probability distributions for different pairs of birth records. . 84
5.2 Example of overlapping clusters. 86
5.3 Clustering with transition probabilities (IoS and UK data sets). 92

6.1 Our proposed filtering step in the record linkage process. 97
6.2 Example of filtering record pairs with binning. 98
6.3 Equal width binning on time (IoS, UK, and NCVR data sets). 104
6.4 Equal depth binning on time (IoS, UK, and NCVR data sets). 105
6.5 Equal width binning on space (IoS, UK, and NCVR data sets). 106
6.6 Equal depth binning on space (IoS, UK, and NCVR data sets). 107
6.7 Applying greedy clustering on the filtered graphs. 109
6.8 Applying star clustering on the filtered graphs. 110
6.9 Applying robust graph clustering on the filtered graphs. 111

7.1 Overview of our active learning with filtering approach. 117
7.2 F∗ values obtained with different parameter settings. 129
7.3 Comparison of supervised classification and our active learning method.131

8.1 Examples of different cluster predictions. 136
8.2 Example set of ground-truth and predicted sibling groups. 142
8.3 Cluster evaluation with existing measures (IoS and UK data sets). . . . 146
8.4 Cluster evaluation with our proposed measure (IoS and UK data sets). . 147

xvii

xviii LIST OF FIGURES

9.1 Overview of our anonymisation technique. 153
9.2 Input screen of the DOYEN web tool. 157
9.3 Sample of the sensitive input and the anonymised data sets. 158
9.4 Pairwise similarities of the sensitive input and the anonymised data sets.161

10.1 Flow diagram indicating the cohesion of our proposed techniques. . . . 164
10.2 Greedy clustering results (Kilm data set). 165
10.3 Star clustering results (Kilm data set). 166
10.4 Robust graph clustering results (Kilm data set). 166
10.5 The precision-recall curves for clustering the Kilm data set. 167
10.6 Clustering with transition probabilities (Kilm data set). 169
10.7 Equal width and equal depth binning on time (Kilm data set). 170
10.8 Equal width and equal depth binning on space (Kilm data set). 171
10.9 Applying clustering on the filtered graphs (Kilm data set). 172
10.10F∗ values obtained with different parameter settings (Kilm data set). . . 174
10.11Supervised classification versus our proposed method (Kilm data set). . 175
10.12Cluster evaluation with existing measures (Kilm data set). 176
10.13Cluster evaluation with our proposed measure (Kilm data set). 177
10.14Pairwise similarities of the sensitive and anonymised (Kilm) data sets. . 179
10.15Clustering the sensitive input and the anonymised Kilm graph data sets.180

List of Tables

2.1 Information about the data sets. 25
2.2 Attribute value frequency of the birth and NCVR data sets. 27
2.3 Attribute value comparison in birth data sets. 30
2.4 Blocking quality and edges in graph (birth data sets). 30
2.5 Attribute value comparison in NCVR and bibliographic data sets. . . . 31
2.6 Blocking quality and edges in graph (NCVR and bibliographic data sets). 31

4.1 Best clustering parameter settings (IoS and UK data sets. 80
4.2 Clustering run-times in seconds (IoS and UK data sets.) 81

5.1 Run-times for goodness-based clustering (IoS and UK data sets). 93

6.1 Run-times for clustering filtered graphs (IoS, UK, and NCVR data sets). 112

7.1 Ratio of matching and non-matching record pairs. 116
7.2 Comparison of the active learning method parameter settings. 127
7.3 Our active learning method versus stat-of-the-art techniques. 130
7.4 Run-time comparison for supervised classification and active learning. . 132

8.1 Classification of records into categories for our evaluation measure. . . 139
8.2 Confusion matrix for the seven categories described in Table 8.1 140
8.3 Proposed evaluation measure results (IoS and UK data sets.) 148

9.1 Sensitive to public attribute value mapping (IoS and UK data sets). . . . 160

10.1 Best clustering parameter settings (Kilm data set. 167
10.2 Clustering run-times in seconds (Kilm data set.) 168
10.3 Run-times for goodness-based clustering (Kilm data set). 169
10.4 Run-times for clustering filtered graphs (Kilm data set). 173
10.5 Supervised classification and active learning run-times (Kilm data set). 175
10.6 Proposed evaluation measure results (Kilm data set.) 177
10.7 Sensitive to public attribute value mapping (Kilm data set). 179

xix

xx LIST OF TABLES

Notations and Terminology

Notations

A, a List of attributes, an attribute
C, c List of clusters, a cluster of records
C A classifier
D A data set
E A set of edges in a graph data structure
G Graph data structure where G = (V, E)
M A set of classified matches
N A set of classified non-matches
P(.) A probability function
p A probability value
r, r.id, r.t A record, a record identifier and a record time-stamp
S A list of similarity functions
s A similarity vector
Sa(., .) A similarity function used to calculate the similarity between

record pairs on attribute a, where Sa ∈ S
s An overall similarity value
T List of temporal constraints
V A set of vertices (nodes) in a graph data structure
w List of weights
β A budget value
∆t A time difference
δ A threshold value

xxi

xxii LIST OF TABLES

Terminology

AUPRC Area Under the Precision-Recall Curve
COVID-19 Corona Virus Disease
DL Deep Learning
DOYEN Data generator and anOnYmiser for sENsitive graph data [124]
F F-measure [85]
F∗ F-star measure [83]
FN False Negatives
FP False Positives
IoS Isle of Skye birth data set
IPUMS Integrated Public Use Microdata Series [152]
Kilm Kilmarnock birth data set
LIFE-M Longitudinal, Intergenerational Family Electronic Micro-Database

Project [7]
LSH Locality Sensitive Hashing
ML Machine Learning
MPC Minnesota Population Centre
NCVR North Carolina Voter Registration data set
NT Non-Temporal
P Precision [85]
PPRL Privacy-Preserving Record Linkage
R Recall [85]
RL Record Linkage
T Temporal
TN True Negatives
TP True Positives
UK Synthetic birth data set from the United Kingdom

Certificate A document which contains information about a life event such
as a birth, death or marriage, and contains personal details of a
single or several related entities.

Record A collection of attribute values describing a single entity, where
one or more records can be retrieved from a certificate.

Data set A collection of records.

Chapter 1

Introduction

In this chapter, we provide an introduction to Record Linkage (RL) and highlight our
contributions to this field of study. We initially provide an overview of RL and its nu-
merous application areas in Section 1.1. In Section 1.2 we then introduce the research
problems, whereas in Section 1.3 we highlight our aims and objectives by providing
feasible solutions to these problems. In Section 1.4 we describe our contributions,
whereas in Section 1.5 we define the scope of our thesis. Finally, in Sections 1.6
and 1.7, we describe the methodology we followed in conducting our research, and
provide an outline of how the rest of this thesis is organised.

1.1 Overview of Record Linkage

Record linkage (RL), also known as entity resolution, data matching, or object iden-
tification, is the process of identifying sets or groups of records which refer to the
same entity, within one or across two or more data sets [35]. The plethora of infor-
mation available in real-world data sets can be effectively manipulated subsequent
to the application of RL methods. For instance, RL techniques are often used to de-
duplicate repeated records in data sets, since such repetition is detrimental to data
set quality, storage, and data analysis tasks. Linking records across data sets is also
useful to obtain a holistic view of data. For example, the overall health of a patient
can be analysed by linking his/her records residing in different hospital data sets. A
non-exhaustive list of areas where RL methods are applied is as follows.

1. The Health Sector: One of the primary areas of RL application is the health
domain [59, 131] because it is impossible to infer certain medical conditions and
patterns of deceases from a single health data set alone. The value of applying
RL techniques to contain pandemic situations by integrating surveillance data
was profoundly realised during the current COVID-19 outbreak [118]. Records
from different health data sets may need to be linked in order to identify inter-
dependencies among certain illnesses, or to identify medication that can result
in certain side effects. Furthermore, medical records may be linked with census
and other vital records (such as birth and death) to find and trace roots of
hereditary illnesses [163], as done in the early Oxford Record Linkage Study which
used RL techniques to link and analyse birth, death, and hospital data [74].

1

2 Introduction

2. Fraud Detection: RL is an integral part of modern fraud detection tools and in
identifying identity theft [29], where two or more data sets are linked to iden-
tify unusual patterns. Verification of identity is crucial in modern times where
travel across countries is approved based on electronically provided informa-
tion by individuals. By applying RL techniques, it is possible to validate such
personal information by linking them to several external data sets containing
accurate information. A successful application of RL for fraud detection was
mentioned in [93], where a data set of airplane pilots licensed by the US Fed-
eral Aviation Administration (FAA) was linked with a data set consisting of
individuals receiving disability payments from the Social Security Administra-
tion. Forty pilots with their record appearing in both data sets were arrested
for either deceiving the FAA or for unlawfully receiving benefits, whereas the
licences of fourteen pilots were revoked.

3. Genealogical and Demographic Studies: Among the numerous application
areas of RL, genealogical and demographic studies conducted based on histor-
ical data, such as censuses and vital records (birth, marriage and death certifi-
cates), are of considerable importance [149]. Since longitudinal data such as
vital records generally consist of several records representing the same individ-
ual (for example, an individual can appear as a baby in a birth certificate and
later as the bride in a marriage certificate), it is possible to link these records to
construct an entire population. Such a population data set can pave the way to
a multitude of studies in the health and social sciences that currently are not
feasible on individual data sets [17, 106].

Historical data sets not only provide information about individuals but also
about groups of individuals, such as families and households. Application of
RL techniques for identifying groups of entities, known as group linkage [134],
has received considerable attention in recent years, due to the numerous com-
plex studies that linked groups of records can facilitate [43, 68]. The identifica-
tion of relationships between individuals can enrich and improve the quality of
data, and thus facilitate more sophisticated analysis of different socio-economic
factors (such as health, wealth, occupation, and social structure) of large popu-
lations [17].

4. Online Stores: RL techniques are widely applied to organise products in on-
line stores [54]. Due to the possibility of the same product being referred to by
various names, and different products being identified by the same name, RL
methods need to be applied to distinguish among unique products. Ambiguity
among product names is further emphasised when individual traders are al-
lowed to advertise and sell their items via online marketplaces. The freedom to
name products as traders wish may even be exploited to increase the chances
of potential buyers viewing a product, by deceitfully assigning a name that is
similar to a commodity in high demand [146]. The reputation of online stores
would be at stake unless RL techniques are applied to identify and prevent
such malicious acts.

§1.2 Research Problems 3

Even though the importance of RL is indisputable, the inherent challenges in
RL [35, 40, 56], including the difficulty to scale linking larger data sets, privacy con-
cerns, and the lack of ground-truth data for evaluation, have greatly hindered the de-
velopment of commercial applications in this field of study. These challenges largely
increase when linking population data, due to low data quality (transcription errors
and misspellings of hand-written forms), sensitivity of personal data, missing data,
and lack of ground-truth (which is difficult and expensive to obtain). Therefore, the
vast majority of research in the area of RL has concentrated on either exploiting the
structure in such data sets (such as households and families) and developed group
linkage methods [43, 68, 70, 134] or collective techniques [15, 37, 147]. In the fol-
lowing section, we identify the challenges in RL which we aim to address in our
thesis.

1.2 Research Problems

Linking records within or across data sets in the absence of a unique identifier is a
non-trivial task, especially due to the large number of record pairs that need to be
compared to identify records that refer to the same entity [35]. As we discuss in
Section 2.3, the number of naïve record pair comparisons grows quadratically with
the size of the data sets being linked, thus resulting in the inability to conduct RL
in feasible time. For example, the total number of record pair comparisons across
two data sets with a thousand records in each is a million. Thus, a massive number
of record pair comparisons would need to be conducted across real-world data sets
which often contain many millions of records. As we emphasise in Section 1.5, we
will be focusing on population data throughout our thesis. The scalability of RL
approaches applied on population data sets is a significant concern, since such data
sets usually contain millions of records.

As we show in Section 2.5, population data is generally of low quality and ex-
tremely skewed with regard to frequency distribution of values (attribute values such
as names are usually shared by many records belonging to different entities), which
adversely affects the capability of linking these data using existing RL techniques.
Furthermore, longitudinal population data such as censuses and civil registries are
highly dependent on time (for example, the death record of a person can occur only
after his/her birth record, or the biological time intervals within which a mother
can or cannot deliver two children), an aspect which is incorporated only in a lim-
ited number of customised rule-based languages for RL [92], but not in general RL
techniques.

We have identified the following research problems pertaining to linking popula-
tion data, which we aim to address in our thesis.

1. Data Set Sizes: As we previously highlighted, it is infeasible to conduct RL on
data sets containing a large number of records with naïve pairwise comparisons
of records. Therefore, techniques such as blocking or indexing [35, 138] are
often applied as a step in RL to reduce the comparison space. Blocking and

4 Introduction

indexing are techniques where records that are likely to refer to the same entity
are grouped into the same blocks, and records that are likely to refer to different
entities are assigned to different blocks. This approach reduces the number of
record pair comparisons, thereby improving the efficiency of the overall record
linkage process. Additional meta-blocking [61] methods are sometimes applied
to further reduce redundant and superfluous record pair comparisons [138].

However, existing blocking, indexing, and meta-blocking techniques, when not
customised to the linkage problem at hand, are often inadequate for achieving
a desirable run-time for the overall RL process due to a considerable number of
record pair comparisons resulting from blocking, which mostly consist of true
non-matching pairs [35, 138]. Therefore, more complex filtering techniques
need to be developed to conduct RL efficiently.

2. Data Quality: A lack of data quality is a problem with the majority of real-
world data sets, whereas population data sets are often more susceptible to
this issue than other types of data. The quality of population data can be lack-
ing due to having different variations for attribute values, such as for names
and addresses. The quality of data is often compromised at transcription as
well, such as when digitising hand-written birth, death, and marriage certifi-
cates [35]. Furthermore, we often encounter highly skewed name distributions
in populations where many people share similar names, and few unique names
appear. Name and address values can also change over time due to marriage
or change of residence. Such imbalanced attribute value distributions, spelling
variations, use of name abbreviations, potential attribute value changes, and
errors introduced during data entry and transcription, can result in low data
quality. Therefore, methods which are capable of achieving high linkage quality
in the presence of low data quality need to be developed.

3. Data Privacy: When applying RL on population data, it is important to con-
sider privacy when publishing linkage results [40]. Privacy-Preserving Record
Linkage (PPRL) is a research area which is beyond our scope as we highlight
in Section 1.5. However, we need to be mindful of the information we publish
when making linkage results available to a research audience. Therefore, it is
important to develop new anonymisation methods that can ensure the privacy
of data sets utilised for conducting linkage experiments, while ensuring that
data set anonymisation does not compromise the efficiency and effectiveness of
the RL methods applied.

4. Lack of Ground-truth Data: Ground-truth data in the form of known matches
(record pairs that refer to the same entity) and non-matches (record pairs that
refer to different entities) are often difficult to obtain for RL projects [35]. This
is due to the infeasibility of manually classifying the potentially large number
of record pairs across data sets as true matches and non-matches. Even though
both supervised and unsupervised techniques are used for linking records [35],
applying supervised classification approaches for RL can be difficult because

§1.3 Aim and Objectives 5

ground-truth data is required for training supervised algorithms. Hence, more
advanced unsupervised and semi-supervised algorithms need to be developed
for linkage tasks.

5. Evaluating Linkage Results: The performance of linkage techniques are of-
ten assessed using precision, recall, and the F-measure [35] as we elaborate in
Chapter 2. These measures were originally developed to assess the quality of
classification methods in machine learning. In their recent research work, Hand
and Christen [85] showed why it may be inappropriate to use the F-measure
to compare linkage techniques despite its wide usage in the area of RL. It is
therefore important to further explore alternative methods to facilitate effective
and comparable evaluation of different RL techniques.

1.3 Aim and Objectives

The aim of our thesis is to address and propose feasible solutions for the research
problems we have highlighted in Section 1.2 within the scope we define in Section 1.5.
More precisely, our aim is to develop efficient and effective algorithms for RL, while ensuring
that the privacy of the resulting linked data set is preserved, and that linkage quality can be
assessed in a robust manner. In order to achieve our research aim, we address the
following objectives in our thesis.

1. Improve Record Linkage Efficiency with Record Pair Filtering: Conducting
RL in an efficient manner is a significant challenge due to the large sizes of mod-
ern data sets. As we highlighted in Section 1.2, a large number of record pairs
are often retained even after applying blocking, indexing, and meta-blocking
techniques to reduce record pair comparisons. Applying complex supervised
and unsupervised techniques on a large number of compared record pairs con-
siderably reduces the efficiency of the RL process [58]. Our objective is to use a
record pair filtering mechanism to improve the efficiency of the RL process.

2. Enhance Linkage Quality: As emphasised in Section 1.2, the lack of data qual-
ity, as commonly encountered in real-world data sets, can be detrimental to
linkage quality. The lack of data quality in real-world data sets significantly
hinders the performance of unsupervised and semi-supervised RL techniques,
since these approaches mostly rely on attribute values (which may be erroneous
if data is dirty) to determine the match and non-match status of the compared
record pairs. Therefore, our objective is to develop methods of improving un-
supervised RL techniques, such that high linkage quality can be achieved even
when data quality is lacking.

3. Develop Techniques to Ensure Data Privacy in Record Linkage: RL is often
performed on data sets that contain sensitive information such as personal data
(for example, names, addresses, and medical conditions of individuals). Due
to this reason, a research area known as Privacy-Preserving Record Linkage

6 Introduction

(PPRL) [40] is dedicated to exploring how RL can be conducted in a privacy-
preserving manner. We do not consider PPRL techniques in our work here
because they hinder the human interpretability of linked data, for example,
with the use of binary encryption for ensuring data privacy [156]. Instead,
our objective is to propose human understandable, anonymised data sets by
exploring alternative mechanisms of data anonymisation as applicable to RL.

4. Develop Unsupervised and Semi-supervised Record Linkage Techniques:
More often than not, existing supervised RL approaches are not applicable in
the real-world due to a lack of ground-truth data, as we have highlighted in Sec-
tion 1.2. Our objective is to address this issue by developing unsupervised and
semi-supervised methods, where the former requires no ground-truth data,
and the latter utilises only limited ground-truth data for training a classifier.

5. Develop Novel Robust Techniques for Evaluating Linkage Results: As we
elaborated in Section 1.2, precision, recall, and the F-measure are commonly
used to assess RL techniques even though these measures were originally de-
veloped to evaluate information retrieval and machine learning methods. Fur-
thermore, these measures are only applicable for assessing pairwise linkage
results, but not clusters or groups of linked records. Our objective is to ex-
plore the issues with using these measures for linkage assessment of groups
of records (by retrieving the record pairs within groups), and to develop tech-
niques that are specifically suited for evaluating group RL approaches.

1.4 Contributions

We have herewith summarised the contributions we are making in this thesis to the
domain of RL by achieving our research objectives highlighted in Section 1.3.

1. Robust Unsupervised Classification for Record Linkage Utilising Data Char-
acteristics: While both supervised and unsupervised classification methods
are applied in RL, for the majority of real-world applications the pragmatic
approach is to use unsupervised techniques due to the difficulty of obtaining
ground-truth data for supervised classification. This is due to the large sizes
of the data sets to be linked making it impossible for domain experts to man-
ually examine an adequate number of record pairs to determine whether they
are true matches or not, to conduct training in supervised RL. Therefore, as
presented in Chapters 4 and 5, we have developed novel unsupervised non
rule-based classification approaches for RL which do not require ground-truth
data for training. Furthermore, these techniques aim to improve the linkage
quality by incorporating data characteristics such as temporal and spatial in-
formation, and corresponding probability distributions in a population.

2. Graph Filtering for Record Linkage: As we described in Section 1.2, the RL
process can be inefficient even after blocking and indexing techniques are ap-
plied to reduce the number of record pair comparisons, where compared record

§1.4 Contributions 7

pairs are often represented as graphs in RL applications [35]. To the best of
our knowledge, no work has been conducted so far to determine how the
sizes of such graphs can be reduced by selectively discarding the many non-
matching record pairs such that the efficiency of the subsequent classification
phase is improved. We introduce a novel filtering technique which utilises pat-
terns along data dimensions (such as temporal or spatial) combined with active
learning [169] in Chapter 6, to effectively filter out record pairs that are likely
non-matches.

3. Active Learning Based Record Linkage With Filtering: As we discussed in
Section 1.2, the lack of availability of ground-truth data prohibits the use of
supervised approaches in real-world RL applications. Active learning is an
emerging area of research, which explores how supervised methods can be
applied when only limited ground-truth data is available. In the RL context,
however, it is important to develop an active learning strategy that can deal with
high class imbalance and the lack of data quality that is often encountered in
RL tasks. In Chapter 7 we develop a novel active learning based RL technique
which mitigates the class imbalance issue and produces high quality linkage
results, while conducting RL in an efficient manner by iteratively filtering out
high confidence matches and non-matches.

4. A Novel Evaluation Method for Record Linkage: As we discussed in Sec-
tion 1.2, the evaluation methods currently applied for assessing RL techniques
were originally developed for information retrieval or classification methods,
and are not always suitable for determining the quality of linkage results. In
this work, we show how these evaluation methods can produce ambiguous re-
sults when assessing group RL techniques, and introduce a novel evaluation
technique as we discuss in Chapter 8.

5. An Anonymisation Method for Graph Data: We introduce a novel anonymi-
sation method for graph data which is specifically useful for anonymising the
graph representations of data sets to be integrated using RL techniques. While
there are several existing anonymisation techniques for graph data [51, 173,
188], they are not applicable in the RL context because they cannot retain the
graph similarity structure as required for executing linkage algorithms, and/or
the anonymisation renders the graph non-human interpretable. Our method
mitigates both these issues, and is therefore ideal for anonymising graph rep-
resentations of sensitive data. Furthermore, our anonymisation method, which
we present in Chapter 9, allows research work conducted in the area of RL to
be made accessible to a larger audience without compromising data privacy.

6. Experimental Evaluation of the Proposed Methods: We conduct a comprehen-
sive experimental evaluation of our proposed techniques to assess their quality
and scalability, and compare these techniques with existing state-of-the-art so-
lutions for RL. We present the results of this empirical evaluation in Chapter 10.

8 Introduction

1.5 Research Limitations

In this section, we describe the scope of our research by describing which areas in
RL we aim to address.

1. Population Data: The novel methods introduced in our research are applicable
to population data which is also known as personal data (data about people).
We do not develop linkage methods considering other types of data such as
for consumer product data. RL is commonly applied on personal data [98,
114, 115], and therefore it is important to give priority to the characteristics
of such data sets (such as data quality and privacy issues) when developing
new linkage models. Furthermore, we consider data sets with different data
dimensions such as time and space. These are, for example, data sets that
contain dates of birth (temporal aspect), whereas data sets with addresses or
other locations have a spatial (geographic) dimension. The presence of such
characteristics is important, since we utilise those in the methods we introduce
in our thesis. However, the active learning based RL strategy we present in
Chapter 7, the evaluation method we describe in Chapter 8, and the graph
data anonymisation technique we propose in Chapter 9, are all applicable to
non-personal data as well, as they are independent of the type of data being
linked.

2. Privacy-Preserving Record Linkage: Our study does not consider Privacy-
Preserving Record Linkage (PPRL) [40]. Even though we propose a graph
anonymisation technique in Chapter 9 to help researchers publish linked sensi-
tive data sets to a wider audience, we do not propose PPRL techniques where
the data is completely obscured from the individuals who conduct a linkage
task. In PPRL, data is generally encrypted into binary or other forms, whereas
the anonymised data resulting from our approach are interpretable to humans.

3. Parallel and Distributed Computing: We do not focus on parallelisation of
our algorithms to improve scalability, since this is another research space [39,
99]. Rather, we improve the efficiency of our algorithms at the conceptual and
implementation levels by identifying likely true matches and true non-matches
early on in the linkage process and removing them from further processing.

4. Ground-truth Data: Our quality evaluation is based on the assumption that the
ground-truth data sets accumulated by domain experts reflect the true state of
the world. That is, we assume that records linked by a domain expert represent
the correct real-world entities, and that records not linked by a domain expert
represent different real-world entities. The reason for this assumption is due to
the possibility for domain experts to make some errors in the manual linkage
process. However, since the ground-truth provided by domain experts is the
closest we have to the gold standard, this is what we use to assess linkage
quality.

§1.6 Research Methodology 9

Develop prototypes

(3) Identify research problems

Empirical evaluation

Setup the experiments

Execute experiments

(1) Preliminary study

(2) Literature review

(5) Design the evaluation model

and research aims

(4) Design the development model

Design algorithms

Conduct theoretical analysis

Figure 1.1: The research methodology followed in this thesis.

5. Single-Source Record Linkage: In almost all the RL methods we have pro-
posed in our thesis, we have only conducted single-source RL (de-duplication
of records within a single data set), except in Chapter 7 where we conduct
linkage across two or more data sets as well. However, the methods we have
proposed are applicable for multi-source RL as well, given constraints as suit-
able to the context are applied (such as one-to-one constraints where one record
from a data set can only be linked to one record from the other data set).

1.6 Research Methodology

The methodology we follow to achieve our research objectives is illustrated in Fig-
ure 1.1, as we further discuss in this section.

1. Conducting the preliminary study: Initially we conducted a preliminary study
to obtain the background knowledge related to RL and regarding general ma-
chine learning and data mining techniques (such as classification), clustering
approaches, evaluation methods, blocking methods, and so on. Obtaining a
general understanding of related techniques helped us determine limitations
in existing RL methods and identify the research problems.

2. Conducting the literature review: We studied the existing literature on RL to
obtain knowledge about the state-of-the-art RL techniques and their limitations.

10 Introduction

This was an ongoing study throughout our research, which helped refine our
research problems, the designing of prototypes, and their evaluation.

3. Define the problem statement and research aims: Subsequent to identifying
the limitations of existing RL techniques, we formulated our research problems
and aims so as to address these limitations.

4. Development model: In the development model we designed algorithms to ad-
dress our research aims, and assessed them conceptually with regard to quality
and scalability. We then implemented prototypes of these proposed algorithms
using the Python programming language1 due to its simplicity, readability and
the availability of many libraries for statistical, data mining, and machine learn-
ing tasks.

5. Evaluation model: In the evaluation model, we first setup the experiments
by deciding on suitable baselines, parameter settings, and data sets. The ex-
periments were then executed to compare our own RL techniques with suit-
able baseline methods. Subsequently, the obtained results were evaluated for
quality and scalability using appropriate evaluation measures [35, 49, 85] to
ascertain whether our solutions mitigate the problems associated with baseline
approaches.

1.7 Thesis Outline

While we provided an overview of Record Linkage (RL) and highlighted our re-
search contributions in this introduction chapter, the rest of our thesis is structured
as follows. In the next chapter, we provide background information about the RL
process and the data sets we have used for empirical evaluation. In Chapter 3 we
then conduct a literature review of existing RL techniques. In Chapter 4, we intro-
duce three unsupervised classification approaches for record linkage which use data
characteristics such as time and space related information to enhance linkage quality.
We attempt to further improve the effectiveness of these algorithms by incorporating
population distribution patterns as we discuss in Chapter 5. We introduce a novel
filtering approach for RL in Chapter 6, where we elaborate on the efficiency improve-
ment gained when applying this approach. Subsequently, in Chapter 7, we present
an active learning based RL with filtering technique that employs a new active learn-
ing strategy to effectively and efficiently link records. In Chapter 8, we show how
existing evaluation methods for group RL can produce ambiguous linkage quality
results, and introduce a novel evaluation approach. In Chapter 9 we present our pro-
posed anonymisation method for sensitive graph data, which is helpful in making
RL related research conducted on sensitive data sets available to a wider audience.
Next, in Chapter 10 we conduct a comprehensive empirical evaluation of our pro-
posed methods using a new data set. Finally, in Chapter 11 we conclude our thesis

1https://www.python.org/

https://www.python.org/

§1.7 Thesis Outline 11

Active learning−based

s
G

s
E

s
G

a
E

a
V
a

= (,)

E
f

V
f

G
f

Cleaning and standardisation

Blocking / Indexing

Record pair comparison
(Chapter 9)

for record linkage
Graph data anonymisation

= (,) V
s

graph filtering for
record linkage
(Chapter 6)

= (,)

Graph−based clustering for record linkage

using data characteristics (Chapter 4)

Active learning−based record linkage
with filtering (Chapter 7)

An evaluation technique for
group record linkage (Chapter 8)

Existing evaluation measures
for pairwise record linkage

Record linkage using transition probabilities
on data characteristics (Chapter 5)

D

Figure 1.2: Flow diagram indicating how the techniques we propose in this thesis
(highlighted in red) can be integrated to conduct end-to-end record linkage.

by highlighting our contributions, how they have addressed the research questions,
and what future work could be explored in this area.

As a guideline for the reader, in Figure 1.2 we have highlighted how the chapters
where we discuss our contributions (Chapters 4 to 9) connect together. We discuss
the cohesiveness of our work as shown in this diagram in detail in Chapter 10.

12 Introduction

Chapter 2

Background

In this chapter, we provide background information which is required to under-
stand the area of Record Linkage (RL), and the following chapters in this thesis. In
Section 2.1 we provide a concise description of the history of RL, followed by a de-
scription of the use of RL for linking complex population data in Section 2.2. In
Section 2.3 we elaborate on the primary steps involved in the process of RL. We dis-
cuss the evaluation measures which are commonly used to assess the quality and
scalability of RL techniques in Section 2.4. Subsequently, in Sections 2.5 and 2.6, we
describe the data sets and the corresponding pairwise similarity graphs on which the
experimental evaluations throughout this thesis will be based. Finally, in Section 2.7,
we conclude this chapter with a summarisation of its content.

2.1 A Brief History of Record Linkage

Statisticians and health researchers have shown interest in the RL domain even before
the invention of modern computers [35]. The term Record Linkage was first introduced
by Dunn in 1946 [59] where he interpreted RL as the process of compiling a book
of life for individual persons. These books would begin with the birth record of a
person and end with their death record, whereas in between one would encounter
records of marriage, censuses, health, and so on. If such a book existed for each
individual in a population, it would allow much valuable information to be obtained
regarding several generations and facilitate many different social and health studies.

In the 1950s and early 1960s, Howard Newcombe et al. [129, 130] proposed a
method to automate the process of RL using computers. The concept of probabilistic
record linkage, which was initially proposed by Newcombe, was formally established
by the two statisticians Ivan Fellegi and Alan Sunter in 1969 [64]. To this date, the
probabilistic RL approach and its extensions [177] are the core of many RL systems.

Over the past few decades, interest and research related to RL has increased
rapidly, due to technology, social networks, and enhanced database storage allow-
ing the generation and storage of a massive amount of data [82]. In order to link /
de-duplicate databases containing millions of records, it is important to develop ad-
vanced RL techniques, by employing methods such as sophisticated machine learn-
ing (ML), clustering, and graph-based techniques, as we describe in Chapter 3.

13

14 Background

2.2 Linkage of Complex Population Data

Many RL tasks correspond to the linkage of population data, which contain informa-
tion about individuals, such as their names, addresses, ages, and so on. Population
data is often complex due to the variations encountered in attribute values such as
names (which may have spelling variations), skewed frequency distributions of at-
tribute values such as certain cities appearing more frequently than others in a data
set, and their large sizes [35]. Furthermore, most population data sets contain er-
rors introduced during data entry and transcription, thus rendering the linkage of
population data sets a difficult task [35].

A noteworthy area of RL is the application of linkage techniques on population
data from historical censuses and vital records (birth, death, and marriage certifi-
cates), to construct longitudinal data sets about a population. Such linked histor-
ical populations are extensively used for studies in the social sciences and geneal-
ogy [3, 7, 152]. The problem of historical population linkage has been studied in the
past four decades by researchers working in different domains [179].

In 1980, the US Census Bureau conducted a linkage on census data from several
US states, using a linkage system developed based on the seminal work of Fellegi
and Sunter [64]. Following the same principles, in 1996 Dillon [52] investigated an
approach to link census records from the US and Canada to generate a longitudinal
database to examine changes in household structures. More recent work related to
historical population linkage was done by Antonie et al. [4] who proposed a novel
RL technique to automatically assign unique household identifiers to records in the
1891 Canadian census. Fu et al. [70] introduced a novel historical household linkage
method which utilises the structural relationships (such as relationships and gener-
ation difference) between household members in the linkage process. A temporal
approach to linking census data was proposed by Christen et al. [43] which con-
siders the relationships between household members, and the possibility for certain
attribute values (such as names and addresses) to change over time.

The Integrated Public Use Microdata Series1 (IPUMS) is a large project initiated
by the Minnesota Population Centre (MPC) which aims to curate and ultimately link
large demographic data collections [152]. The Longitudinal, Intergenerational Fam-
ily Electronic Micro-Database Project2 (LIFE-M) is another example of transforming
historical records into a multi-generational longitudinal database [7], where US vital
records are combined with census information.

The Digitising Scotland project3 aims to transcribe and link all civil registration
events recorded in Scotland between 1856 and 1973. Around 14 million birth, 11
million death, and 4 million marriage records need to be linked to create a linked
database covering the whole population of Scotland spanning more than a century.
Such a linked database will allow researchers in various domains to conduct studies
that are currently impossible to do.

1https://www.ipums.org/
2https://life-m.org/
3https://digitisingscotland.ac.uk/

https://www.ipums.org/
https://life-m.org/
https://digitisingscotland.ac.uk/

§2.3 The Main Steps of the Record Linkage Process 15

Another area where population RL is extensively applied is the health sector. An
invaluable application of RL in recent times was for the containment of the COVID-
19 pandemic, which was very effectively used by the Taiwanese health care system
to successfully combat COVID-19 [112]. Nguyen et al. [132] discusses about a recent
application of RL on patient data for public health surveillance, whereas a renowned,
practical example of patient data linkage was conducted in Western Australia which
considerably helped to improve health policies in the state [101]. Recent research
conducted by Hamm et al. [81] further emphasises the importance of population RL
for multi-generational heath research such that early diagnosis and intervention of
hereditary illnesses are made possible.

Ensuring national security, and fighting crime prevention in the modern world
also relies on sophisticated population RL techniques [35]. Terrorists and criminals
often take extreme caution to avoid leaving traces of their activities such as online
transactions. Due to this reason, they often impersonate innocent individuals, or use
forged information whenever they interact with the rest of the world. Therefore, in
order to fight crime and terrorism, population data sets can be linked to identify out-
liers [113], which could represent deliberately altered identities or potential identity
thefts.

Bibliographic data sets such as the ACM Digital Library4, IEEE Xplore5, DBLP6,
and Google Scholar7 contain information about researchers such as their names, pub-
lications, and affiliations. Therefore, bibliographic data can be considered as popu-
lation data, on which RL techniques are extensively applied to support academic
related decision making and analysis, for example determining the impact of re-
searchers, and allocate funds to research projects [35].

As highlighted in Section 1.5, the scope of this thesis is to propose RL techniques
for integrating population data. We present the population data sets we use for
conducting the experimental evaluation of our proposed methods in Section 2.5.

2.3 The Main Steps of the Record Linkage Process

The RL process comprises primarily of five steps, and an optional clerical review step
as shown in Fig. 2.1. This section is dedicated to describing these steps of RL [35].

2.3.1 Data Pre-processing

Data pre-processing for RL can include data cleaning and standardisation of the data
to be linked, which is crucial for successful RL [35]. While the importance of data
pre-processing is indisputable, one should also take care not to introduce new errors
to the data while conducting pre-processing [73]. The primary steps involved in data
pre-processing are:

4https://dl.acm.org/
5https://ieeexplore.ieee.org/
6https://dblp.org/
7https://scholar.google.com/

https://dl.acm.org/
https://ieeexplore.ieee.org/
https://dblp.org/
https://scholar.google.com/

16 Background

Matches

Database A Database B

Data preprocessingData preprocessing Indexing

Classification Clerical review

Potential matchesNon−matches

Evaluation

Matches

Record pair
comparison

Figure 2.1: The primary steps involved in the process of record linkage (reproduced
from [35]).

• Standardising the structure and content of data when conducting RL across
different databases. Generally, different organisations have different database
structures, even if the data describe the same objects. Therefore, converting
all records into the same structure is an important step in data pre-processing.
Schema matching, the task of identifying which attributes across databases con-
tain the same type of information, is part of this standardisation step [13, 38]. It
may even be necessary to segment certain attributes for convenience of record
comparison [93]. For example, the address attribute might be represented as
street number, street name, street type, suburb, postcode, and state.

• Removing unwanted characters and words. Stop words [121] and characters
such as commas, periods, and hashes can be removed from the data set since
they generally are not useful for RL techniques, and can even degrade the
linkage performance [35].

• Expand abbreviations, correct misspellings and/or apply phonetic encoding.
For example, in the Isle of Skye data set which we discuss in Section 2.5.1,
occupation values are often abbreviated (e.g. ‘domestic servant’ is recorded
as ‘ds’). Therefore, expanding abbreviations, correcting misspellings, and ap-
plying phonetic encoding [35] is very important to improve the quality and
consistency of attribute values of records to be linked.

• Verify the correctness of attribute values. This pre-processing step can be ap-
plied if valid attribute values are known. For example, a phone number can be
verified if its expected number of digits and possible prefixes are known. An

§2.3 The Main Steps of the Record Linkage Process 17

address can be verified if an external database containing all valid addresses of
a given region or country is available [35].

2.3.2 Indexing/Blocking

Comparison of each pair of records in a large database (or across two databases)
is computationally expensive. The computational effort grows quadratically as the
number of records in the databases increases. The techniques used to reduce the
number of pairwise comparisons are commonly referred to as indexing [35], whereas
the traditional indexing approach is widely known as blocking [12]. The aim of in-
dexing or blocking in RL is to eliminate as many record pair comparisons as possible
that correspond to true non-matches [35]. In order to achieve this task, records are
assigned into one or several blocks, such that records which are likely to refer to the
same entity (correspond to true matches) are assigned to the same block, and records
that are likely to correspond to different entities are assigned to different blocks [35].
A block is generally represented by a ‘blocking key’, which is the common value ob-
tained for all records contained in that block by applying a certain blocking function.

A simple example for a blocking key would be using the prefix (such as the first
three letters) of the first or last name attribute in a certain data set. All records that
share the same prefix of the name attribute would belong to a single block, and
pairwise similarities would be calculated within each block. Phonetic encoding algo-
rithms, such as Soundex [32], are also used as blocking techniques in some instances,
whereas there exist a number of other complex indexing methods such as Locality
Sensitive Hashing (LSH), sorted neighbourhood indexing and q-gram based index-
ing [35, 138]. We now briefly explain the Soundex and LSH algorithms, since we use
them to conduct blocking on the population data sets we present in Section 2.5.

• Soundex: In the Soundex approach, which was developed by Russel and Odell
in 1918 [133], strings are encoded based on how they are pronounced in Amer-
ican English such that strings with similar pronunciation are converted into
the same Soundex code. This method is particularly helpful when blocking
records using person names, since certain names can be spelt in different ways.
For example, applying the Soundex algorithm on the names ‘Gail’, and ‘Gayle’
results in the same Soundex code ‘g400’.

• Locality Sensitive Hashing (LSH): LSH is a technique that maximises the like-
lihood of hashing similar items into the same ‘bucket’, and therefore it can be
used as a blocking approach in RL [107]. We employ a specific implementation
of LSH known as min-hashing based LSH [107]. The similarity of a min-hash
signature pair is an approximation to the Jaccard similarity of two values [107].
The min-hash signature generated for each record is split into ‘bands’ using
a user defined number of min-hash bands and a band size. Record pairs are
assigned to the same block for comparison if they have the same value in at
least some of these ‘bands’.

18 Background

There is, however, a trade-off in applying blocking techniques since the efficiency
improvement often comes at the cost of losing some true matching record pairs [184].
A good blocking approach would discard as many non-matching record pairs as
possible, while retaining almost all true matches. Scalability measures can be used
to assess blocking techniques in this regard, as we further discuss in Section 2.4.2.

2.3.3 Record Pair Comparison and Pairwise Similarity Graph Generation

Subsequent to indexing records, the records which were indexed into the same block
are compared in more detail in order to determine whether they refer to the same
entity or not. Generally, several attribute values of a record pair are compared to
calculate their similarity. Since a true matching record pair would not necessarily
have exact matches across all compared attributes [35], it is important to reflect the
extent to which records are similar. Therefore, appropriate approximate similarity
functions, such as Jaro-Winkler [95] and date similarity functions, are used to com-
pare attribute values. These values are then normalised to reflect a similarity between
1.0 and 0.0, where 1.0 means an exact match and 0.0 means total dissimilarity [34].
Next, the normalised attribute value similarities are combined to reflect the overall
similarity of the record pair, with or without using weights for each attribute (which
reflects the importance of an attribute in identifying matching records). The simi-
larity functions we used to compare records in the data sets used for experimental
purposes in this thesis (as described in Section 2.5) are as follows [35].

• Exact: The simple exact comparison function returns a similarity value of 1.0
for exactly matching attribute value pairs, and 0.0 otherwise.

• Edit distance based string similarity (Edit): In this method, the string simi-
larity calculation is based on the minimum number of edit operations (charac-
ter insertions, deletions, and substitutions) which are required to convert one
string into another [35]. The similarity is 1.0 if no edits are required, whereas
the similarity is 0.0 if all characters need to be converted.

• Jaccard coefficient based similarity (Jacc): In the Jaccard comparison method,
strings are initially split into q-grams or tokens (we have used bi-grams in our
experiments where for example the string ‘pete’ has the bi-grams ‘pe’, ‘et’, and
‘te’), and the similarity is calculated as the proportion of common unique q-
grams, compared to the number of all unique q-grams in the two strings being
compared. For a pair of identical strings, a Jaccard similarity of 1.0 is obtained,
whereas the similarity is 0.0 if the string pair has no common q-grams.

• Dice coefficient based similarity (Dice): The dice coefficient based comparison
function is similar to the Jaccard method. However, rather than comparing
the number of common unique q-grams against the number of all unique q-
grams, in the Dice method the number of common unique q-grams is compared
against the average number of q-grams across the compared pair of strings.

§2.3 The Main Steps of the Record Linkage Process 19

• Jaro-Winkler string comparison (JW): This is an approximate string compari-
son function which was specifically developed for name comparison by Matth-
ew Jaro and William Winkler from the US Census Bureau [95, 177], by taking
numerous name related heuristics into account. For example, the US Census
Bureau [182] has identified that people tend to make fewer errors at the begin-
ning of names when they write or type them compared to the remainder of
name strings, and therefore higher weight (or more importance) is given to the
first few characters in name comparison with the Jaro-Winkler method.

• Maximum absolute difference (MAD): This is a method used for approximate
comparison of numerical attribute value pairs [35]. If, for two numerical values
n1 and n2, the absolute difference is less than a user defined threshold δd, then
the pairwise similarity is calculated as a linear extrapolation between 1.0 and
0.0 as 1.0− (|n1 − n2|/δd). Otherwise, if |n1 − n2| ≥ δd, the similarity for the
numerical value pair is 0.0.

While there are advanced methods of conducting record pair comparison in the
literature [97], we adopt the widely applied weighted attribute value similarity tech-
nique, which can be formally defined as follows. Note that even though we mostly
consider single-source RL in this thesis, in the following definitions we have con-
sidered the multi-source (two-source) situations as well for these definitions to be
generally applicable.

Definition 1 (Record Pair Comparison) Let DA and DB be two data sets to be linked. A
blocking method as discussed in Section 2.3.2 has generated a set of candidate record pairs
(ri, rj), with ri ∈ DA and rj ∈ DB. For a de-duplication problem on a single data set D,
we can assume ri ∈ D, rj ∈ D, i 6= j. We denote the list of attributes such as names and
addresses corresponding to records in a data set by A, where a single attribute is denoted with
a ∈ A. We consider a list of weights w (|w| = |A|) where each weight corresponding to an
attribute a ∈ A is represented as wa ∈ w (0.0 ≤ wa ≤ 1.0). A higher weight wa reflects
higher importance of attribute a ∈ A in the linkage process.

Let S be a list of similarity functions, and Sa ∈ S be the similarity function used to
compare a record pair on attribute a ∈ A. The pairwise similarity of a record pair (ri, rj) on
a single attribute a ∈ A can be denoted as Sa(ri, rj). We can now represent each compared
record pair by a similarity vector, si,j, where |si,j| = |A|. Furthermore, assuming all similar-
ities are in [0, 1] (with a similarity of 0 for totally different values and 1 for an exact match),
an overall normalised similarity for the record pair (ri, rj) can be calculated as:

si,j =
∑a∈A Sa(ri, rj) · wa

∑a∈A wa
. (2.1)

A graph representation of compared records makes it possible to apply graph-
based classification and clustering techniques to identify the final linked records [148,
154]. Therefore, a pairwise similarity graph is often generated in the comparison

20 Background

phase, where nodes in the graph represent records, and an edge between two nodes
represents a record pair and the corresponding pairwise similarity [148]. Other meta-
data corresponding to a record pair, such as relationships among individuals and
distances between records in relation to time and space, can also be associated with
edges in a graph, as we discuss in later chapters. In Section 2.6 we describe the
pairwise similarity graphs generated for the data sets we used in our experiments.
A pairwise similarity graph can be formally defined as follows.

Definition 2 (Pairwise Similarity Graph) The set of compared records can be represented
as an undirected similarity graph, G = (V, E), where each node (vertex) in V represents a
record, ri or rj, and an edge (ri, rj) ∈ E connects two records ri and rj if their overall similarity
si,j (as provided in Equation 2.1) is at least a certain similarity threshold δs (si,j ≥ δs), with
0 ≤ δs ≤ 1. An edge may be represented by the overall similarity si,j or a similarity vector
si,j as we described in Definition 1.

2.3.4 Match and Non-match Classification

After obtaining the similarity of compared record pairs, these record pairs are classi-
fied as matches, non-matches, and sometimes into a third class of potential matches.
The potential matches class consists of the ambiguous links to be reviewed by a do-
main expert [93]. The classification could either be based on threshold similarities
which classify record pairs (ri, rj) based on their overall similarities si,j, or use super-
vised, unsupervised, or semi-supervised machine learning (ML) techniques which
are generally based on the attribute level similarity vector, si,j, for classification [35].

Supervised ML techniques are extensively applied for addressing many data re-
lated problems in the modern world, including the linkage of records [69, 103, 120].
Even though the application of supervised ML techniques for RL has been shown to
be highly effective [55], a major limitation of this approach is the requirement of train-
ing (ground-truth) data which is unavailable for most RL projects [35]. Therefore, un-
supervised methods such as clustering, and semi-supervised methods such as active
learning, need to be employed for real-world RL applications [33, 142, 145, 154].

In recent years, collective classification techniques such as graph-based cluster-
ing [86, 148, 153] have been developed, since the traditional classification methods
suffer from the inability to consider the potential dependencies among record pairs
(such as the inability to consider the transitive closure [35]). Clustering is the pro-
cess of grouping similar records, where each group is assumed to represent a single
entity. Obtaining groups with high intra-cluster similarity (objects within a group
are highly similar with one another) and low inter-cluster similarity (objects in dif-
ferent groups are highly dissimilar with one another) is the aim of clustering ap-
proaches [82]. A pairwise similarity graph needs to be generated at the RL com-
parison phase for clustering to be conducted, as we described in Section 2.3.3. The
clusters resulting from the application of graph clustering techniques can then be
analysed to identify whether the records within a cluster represent the same entity.
Star clustering, center clustering, and merge clustering are examples of graph clus-
tering techniques [58, 86, 153].

§2.4 Evaluation Measures 21

Recently, in contrast to traditional pairwise record linkage, group linkage [134]
has received significant attention because of its applicability in linking groups of
individuals, such as individuals in families or households [43, 71]. The aim of group
linkage is to identify groups of records that match across data sets. For example, a
family or household would consist of records of several people, where each record
represents a single entity. Group linkage can be applied when we want to identify
whether the same family or household appears in two data sets [43].

Given that the majority of our contributions as listed in Section 1.4 aim to im-
prove the classification step in the RL process, we extensively discuss and provide
information regarding existing classification approaches in Chapter 3.

2.3.5 Evaluation

Subsequent to classifying record pairs or clusters into matches and non-matches, the
quality and completeness of a RL method needs to be assessed. Ideally, quality can
be assessed against a ground-truth data set, where domain experts have manually
classified record pairs as matches or non-matches. However, where ground-truth
data is not available, quality evaluation is based on measures which utilise certain
characteristics of the linkage results itself (such as the similarity of matches and the
disparity of non-matches) [53].

Apart from the quality of RL techniques, the scalability of a linkage algorithm
needs to be assessed as well. Since RL generally concerns large data sets and any RL
algorithm needs to scale up for it to be of use in real-world applications, evaluating
scalability is of considerable significance in RL. We next describe the measures used
for RL evaluation in more detail.

2.4 Evaluation Measures

In this section, we describe the evaluation measures commonly used to assess linkage
quality and scalability of RL techniques [35].

2.4.1 Linkage Quality Measures

When ground-truth data is available for a linked data set, it is possible to evaluate
the quality of RL techniques using several measures. All the compared record pairs
can be categorised into four classes as True Positives (TP), False Positives (FP), True
Negatives (TN) and False Negatives (FN). The TP consist of record pairs which were
classified as matches and are also matches in the ground-truth. The FP are the record
pairs which were classified as matches but are non-matches in the ground-truth. The
TN consist of record pairs which were classified as non-matches and are also non-
matches in the ground-truth. The FN are the record pairs which were classified as
non-matches but are matches in the ground-truth. The linkage quality measures can
be defined as follows, using these four categories.

22 Background

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

(a) Precision-recall graph

0.0 0.2 0.4 0.6 0.8 1.0
F-measure

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

(b) F versus F ∗

Figure 2.2: Plots showing (a) a precision-recall graph, and (b) the relationship be-
tween F and F∗ measures.

• Precision [178] calculates the proportion of how many of the classified matches
(TP + FP) are true matches (TP). It can be calculated as:

Precision (P) =
TP

TP + FP
(2.2)

• Recall [178] calculates the proportion of true matches (TP + FN) that were
classified correctly (TP). It can be calculated as:

Recall (R) =
TP

TP + FN
(2.3)

• F-measure [127] calculates the harmonic mean between precision and recall.
It can also be represented as a weighted mean of P and R using a weight of
θ = (FN + TP)/(FN + FP + 2TP) [85]. The F-measure can be calculated as:

F-measure (F) =
2 · P · R
P + R

= θR + (1− θ)P (2.4)

Apart from the above measures, it is also possible to use visualisations to assess
the quality of a linkage technique. The Precision-recall (PR) graph [35] as shown in
Figure 2.2 (a) is one such visualisation, where precision values are plotted against
recall values for different classification parameter settings, such as different similarity
thresholds used in pairwise classification. The Area under the precision-recall curve
(AUPRC) corresponding to the PR graph is also used as a RL evaluation measure [23].

Even though the F-measure and the F-measure graph (which is used for comparing
F-measure results obtained with different similarity thresholds) are commonly used
to evaluate RL techniques, recent research has found that this measure is not suitable
to comparatively assess RL approaches due to the relative importance (reflected by
the weight θ as shown in Equation 2.4) assigned to precision and recall in the F-
measure depending on the number of predicted matches [85]. As an alternative, we
use the recently introduced F∗-measure, which mitigates some of the issues with

§2.4 Evaluation Measures 23

the F-measure [83], where F∗ is the number of true matches identified against the
number of matches which are either misclassified or are correctly classified matches.
F∗ is calculated as:

F∗ =
P · R

(P + R− P · R) =
F

(2− F)
=

TP
(FN + FP + TP)

(2.5)

Figure 2.2 (b) shows the monotonic relationship between the F-measure and the
F∗-measure. This indicates that conclusions made based on F∗ (such as the choice of
classification methods and parameters) are identical to the conclusions made based
on F-measure results.

All the linkage quality evaluation measures which we have discussed in this sec-
tion assess the quality of RL techniques considering record pair (pairwise) classifi-
cation as matches and non-matches. When group RL approaches are used, record
pairs within groups (clusters) are considered in the quality evaluation. Even though
these evaluation measures are adequate for assessing pairwise RL techniques, the
suitability of these measures for evaluating group RL methods (as we discussed in
Section 2.3.4) lacks investigation in the literature, as we discuss in Chapter 3. There-
fore, in Chapter 8 we propose a novel evaluation measure for group RL.

2.4.2 Linkage Complexity and Scalability Measures

Scalability measures assess how scalable RL techniques are. Note that as described
in Section 1.5 we do not consider parallel scalability in this section. we Run-time
is one popular scalability measure which conveys the time taken by a RL method
to execute all the steps from pre-processing until the generation of a linked data
set. However, run-times are highly reliant on the specifications of the machine used
for execution. Therefore, it is desirable to have measures which produce results
that are independent of external factors. Reduction ratio, pairs completeness and pairs
quality [35] are such scalability measures used in the domain of RL which utilise the
number of candidate record pairs generated by an indexing or blocking method to
assess scalability. The following notation is used to present these measures [35].

The total number of matched and non-matched record pairs are denoted with
om and on respectively. These numbers refer to the total numbers of possible com-
parisons and not the comparisons after indexing. Therefore, when RL between two
databases DA and DB, containing |DA| and |DB| records respectively, is concerned,
om + on = |DA| × |DB|. If RL is conducted to de-duplicate a single database with
|D| records, then we have om + on = |D|(|D| − 1)/2. Let us denote the number
of true match and true non-match candidate record pairs generated by an indexing
technique as im and in, respectively. Note that generally im + in � om + on.

• Reduction ratio calculates the relative reduction in the comparison space due
to indexing, with respect to the total number of possible comparisons. It can be
calculated as:

RR = 1−
(

im + in

om + on

)
(2.6)

24 Background

• Pairs completeness calculates the proportion of how many of the true matching
record pairs in the total comparison space are captured as true matches by an
indexing method (corresponding to recall). It can be calculated as:

PC =
im

om
(2.7)

• Pairs quality is the number of true matches generated by an indexing method,
divided by the total number of candidate record pairs that were generated
(corresponding to precision). It can be calculated as:

PQ =
im

im + in
(2.8)

Note that ground-truth data must be available to calculate pairs completeness
and pairs quality, since otherwise the true matching record pairs im generated by an
indexing technique are not known.

2.5 Population Data Sets

In this section we describe the different data sets we use to experimentally evaluate
the RL techniques we propose in this thesis. We use six data sets, among which three
are birth data sets, providing information regarding the birth of individuals and
their parents. Two are bibliographic data sets which contain details of researchers
and their publications, and one is a voter data set containing personal information of
voters (such as their names and addresses) from a state in the US.

Prior to discussing the individual data sets we have used in our experiments, we
define and distinguish between the terms certificate and record, which we extensively
use throughout this thesis. A certificate is the actual document which contains in-
formation regarding a single person, or several related individuals [149]. A record,
however, contains information regarding a single entity, where the entity could be an
individual, or a publication. For example, up to three records can be generated from
a birth certificate corresponding to the baby, the mother and the father, if their details
are provided. Likewise, up to six records can be generated from a marriage certificate
(related to the bride, the groom, the bride’s parents, and the groom’s parents), and
up to four records from a death certificate (the deceased, their parents, and possibly
their spouse). A collection of records is referred to as a data set.

2.5.1 Birth Data Sets

We use the following three birth data sets for evaluating our proposed methods.
Note that these birth data sets contain birth records which we have retrieved from the
corresponding birth certificates. The main entity in a birth record is the baby whereas
it includes the baby’s parents’ information as attributes describing the baby.

§2.5 Population Data Sets 25

Figure 2.3: A snippet of a Scottish birth certificate from 1895. Image taken from
http://www.scotlandsgenealogy.com/blog/scottish-birth-certificate/.

Table 2.1: The number of records in each data set, and the number of ground-truth
links om corresponding to each data set, as determined by a domain expert.

Data set Number of records Number of ground-truth links (om)

IoS 17,613 41,247
Kilm 37,121 68,215
UK 14,027 22,019

NCVR 14,619,783 6,978,001

ACM 2,294 2,220 (DBLP-ACM)DBLP 2,616 5,347 (DBLP-Scholar)Google Scholar 64,263

• Isle of Skye (IoS) data set: This is a real-world data set [149] covering the
population of the Isle of Skye (an island in Scotland) over the period from 1861
to 1901, which we extensively use in our research. This data set consists of
17,613 birth records derived from the original hand-written birth certificates
from Scotland, as shown in Table 2.1. Each record contains personal details
about a baby and its parents, such as their names, address, parents’ marriage
date, parents’ occupations, and the birth date of the child. A snippet of such an
original Scottish birth certificate is shown in Figure 2.3, highlighting the lack of
legibility of these original certificates that can potentially result in transcription
errors when birth certificates are digitised, transcribed, and converted into birth
records.

As with other historical data [4, 70], this data set has a very small number
of unique name values (2,055 first and only 547 last names). As Figure 2.4
(a) shows, the frequency distributions of names and addresses are also very
skewed, with few attribute values occurring many times. The five most com-
mon first and last name values occur in between 30% and 40% of all records, as
Table 2.2 illustrates. Many records have missing addresses or occupations, and
for unmarried women the details of a baby’s father are missing.

This data set has been extensively curated and linked semi-manually by de-
mographers who are experts in the domain of linking such historical data [149].
Their approach followed long established rules for family reconstruction [179],
leading to a set of linked birth records. We thus have a set of manually gen-
erated links of births that allows us to assess the quality of different RL tech-

http://www.scotlandsgenealogy.com/blog/scottish-birth-certificate/

26 Background

0 20 40 60 80 100
Values sorted by frequency

100

101

102

103

Fr
eq
ue
nc
y

(a) Frequency distributions
(IoS)

Last names
Addresses
First names (F)
First names (M)

0 20 40 60 80 100
Values sorted by frequency

100

101

102

103

104

Fr
eq

ue
nc

y

(b) Frequency distributions
(Kilm)

0 20 40 60 80 100
Values sorted by frequency

101

102

103

Fr
eq

ue
nc

y

(c) Frequency distributions
(UK)

0 20 40 60 80 100
Values sorted by frequency

103

104

105
Fr
eq

ue
nc

y

(d) Frequency distributions
(NCVR)

Figure 2.4: Sorted frequency distributions of male and female first names, last names,
and addresses in the (a) IoS, (b) Kilm, (a) UK birth data sets, and (d) the NCVR data
set. Notice the highly skewed frequency distributions especially for first names in

the birth data sets, where a small number of attribute values occur many times.

niques. The number of ground-truth links om (pairs of records corresponding to
births by the same mother, or siblings) is 41,247 for the IoS data set, as we show
in Table 2.1. Since the IoS data set is a real-world data set which is challenging
to be linked due to the presence of errors, missing values, and the skewness of
its attribute value frequency distributions, we use this data set for evaluating
all our proposed methods presented in Chapters 4 to 9.

• Kilmarnock (Kilm) data set: This is also a real-world data set covering the
population of Kilmarnock, a town in West Scotland, over the period from 1860
to 1901. As shown in Table 2.1, this data set contains 37,121 birth records
derived from the original birth certificates, where each record contains personal
details about a baby and its parents, similar to the IoS data set [149]. With the
manual linkage conducted on this data set by domain experts, 68,271 ground-
truth record pairs corresponding to siblings have been identified, as shown in
Table 2.1. The name and address attribute value frequency distributions are
again very skewed, as illustrated in Figure 2.4 (b) and Table 2.2, where few
attribute values occur many times.

Similar to the IoS data set, linking the Kilmarnock data set is also challeng-
ing due to the presence of errors and missing values, and we therefore use

§2.5 Population Data Sets 27

Table 2.2: The five most frequent values and their corresponding frequency counts
for male and female first names, last names, and addresses in the birth data sets (IoS,

Kilm, and UK) and the NCVR voter data set.
Data First name Last name Address
set Male Female

John (3,444) Mary (2,740) Mcdonald (3,349) Breakish (314)
Donald (2,628) Catherine (2,606) Mcleod (3,332) Aird (310)

IoS Alexander (1,665) Ann (2,084) Mckinnon (2,332) Roag (241)
Malcolm (800) Margaret (2,031) Nicolson (1,954) Edinbain (226)

Neil (787) Christina (1,626) Mclean (1,758) Bernisdale (224)

John (6,809) Janet (7,387) Brown (1,445) Robertson Pl (1,722)
James (5,700) Mary (5,675) Wilson (1,237) High St (1,058)

Kilm William (4,991) Margaret (5,036) Thomson (1,059) Low Glencairn St (925)
Robert (3,342) Elizabeth (3,746) Smith (980) Titchfield St (911)

Thomas (2,324) Agnes (3,072) Campbell (723) Fore St (890)

John (2,239) Mary (2,419) Ashworth (822) Burnley Road (1,416)
James (1,636) Elizabeth (1,288) Taylor (762) Bacup Road (464)

UK William (1,181) Sarah (1,279) Lord (401) Bury Road (211)
Thomas (921) Alice (670) Haworth (364) Church Street (164)
George (702) Margaret (653) Pickup (329) Haslingden Road (152)

James (226,474) Mary (134,660) Smith (178,653) 1801 Fayetteville St (10,004)
Michael (192,273) Jennifer (98,201) Williams (139,660) 9201 Uni City Blvd (8,954)

NCVR William (180,012) Elizabeth (84,655) Johnson (127,625) 0 WSSU (6,819)
John (176,597) Patricia (71,707) Jones (121,855) 1 Duke Uni West (5,953)

Robert (171,170) Linda (70,855) Brown (105,539) 0 WFU (5,125)

this data set to conduct the overall comparative experimental evaluation of our
developed techniques, which we present in Chapter 10.

• Birth data set based on the 1901 UK census data set (UK): This is a synthetic
birth data set which we generated using real census data from the district of
Rawtenstall in North-East Lancashire in the United Kingdom (UK) from the
year 1901 [43, 67]. This original 1901 UK census data set, which is the latest
census data set used by Fu in her thesis [67], contains information about each
individual in a household, such as their name, address, occupation, gender,
age, and birth place. Furthermore, individuals from a single household are
grouped together using a household identifier, whereas the household head
and the relationships of the other household members to the head are indi-
cated in this data set. This allows us to generate a synthetic birth data set and
the corresponding ground-truth data. This synthetic UK birth data set there-
fore contains information about a baby and its parents, similar to the IoS and
Kilmarnock data sets.

To make this synthetic data set more challenging, we have corrupted the name
and address attribute values in 20% of the families in this census data set.
As shown in Table 2.1, this UK birth data set has 14,027 birth records where
22,019 record pairs correspond to pairs of siblings, or ground-truth links as

28 Background

0 20 40 60 80 100
Values sorted by frequency

0

200

400

600

800

Fr
eq

ue
nc

y
(a) Frequency distributions

(DBLP)
Author
names
Venues
Years

0 20 40 60 80 100
Values sorted by frequency

0
100
200
300
400
500
600
700
800

Fr
eq

ue
nc
y

(b) Frequency distributions
(ACM)

0 20 40 60 80 100
Values sorted by frequency

100

101

102

103

Fr
eq

ue
nc

y

(c) Frequency distributions
(Scholar)

Figure 2.5: Frequency distribution of author names, venues, and years corresponding
to publications in the bibliographic data sets (a) DBLP, (b) ACM, and (c) Scholar.

derived from the roles of individuals in each family in the census data set (son
or daughter of the household head). Figure 2.4 (c) and Table 2.2 show the
skewness of the attribute value frequency distributions in this data set. Similar
to the IoS data set, we use this data set for evaluating all our proposed methods
presented in Chapters 4 to 9.

2.5.2 The North Carolina Voter Registration Data Set (NCVR)

The NCVR data set contains personal information about US voters from the state
of North Carolina8, such as their names, addresses, gender, birth years, and birth
places. The original NCVR data set contains information about voters collected for
each election held within a year, for the past 15+ years9. We use a subset of the
full NCVR data set by combining the voter data available from the years 2011 to
2020, where records corresponding to the same individual across the years can be
identified with a unique voter identifier.

When combining these files, we retain the first occurrence of an individual,
whereas a record of that person for each subsequent year is retained only if they have
at least one attribute value changing (among a selected set of attributes) compared to

8https://dl.ncsbe.gov
9https://www.ncsbe.gov/results-data/voter-registration-data

https://dl.ncsbe.gov
https://www.ncsbe.gov/results-data/voter-registration-data

§2.5 Population Data Sets 29

their last retained record, in order to make the linkage task more challenging. How-
ever, instances where the first and last names together with the gender all change
across the years are ignored (since those attribute values play a vital role in identi-
fying an individual), whereas individuals with invalid values for attributes such as
the registration year are also excluded. The reason why we follow an individual over
time when combining the files is because we aim to link the NCVR snapshots over
time in order to identify record pairs that correspond to the same individual.

The NCVR data set thus generated contains 14,619,783 records, where 6,978,001
record pairs correspond to the same individual (or ground-truth links) as shown
in Table 2.1. The name and address values of individuals in the NCVR data set
are somewhat skewed as shown in Figure 2.4 (d) and Table 2.2, but the skewness
is relatively less compared to the skewness of the historical birth data sets. Even
though this means that linking the NCVR data set should be less challenging, due to
its large size, this data set is useful for assessing the methods which we propose in
Chapters 6 and 7 to enhance the efficiency of the RL process.

2.5.3 The Bibliographic Data Sets

We consider three bibliographic data sets, DBLP, ACM, and Google Scholar (which
we refer to as Scholar), which were originally provided by Köpcke et al. [104]. The
aim of linking these data sets is to identify publications by the same authors across
the DBLP and ACM, and the DBLP and Scholar data set pairs, respectively. Rather
than using the original versions of these data sets, we use the ones provided by
Mudgal et al. [120] who have organised these data sets for conducting supervised
classification10. The two bibliographic data set pairs we use for experimental evalua-
tion are as follows.

• DBLP-ACM: In this data set pair, the aim is to link records corresponding to the
same publication across the DBLP and ACM bibliographic data sets. As shown
in Table 2.1, the DBLP-ACM data set pair has 2,220 record pairs corresponding
to the same publication, which are the ground-truth links.

• DBLP-Scholar: In this data set pair, the aim is to link records corresponding to
the same publication across the DBLP and Google Scholar bibliographic data
sets. As shown in Table 2.1, the DBLP-Scholar data set pair has 5,347 ground-
truth links.

The frequency distributions for attribute values author names, venues, and years
in these bibliographic data sets are shown in Figure 2.5. The venue and year values
span across a small range for the DBLP and ACM data sets, because these con-
tain publications from only five venues spanning across only ten years (from 1994
to 2003). Unlike for the birth data sets, the author names in these bibliographic
data sets show a uniform distribution and therefore lack skewness, especially for the
DBLP and ACM data sets. For these reasons, linking these bibliographic data sets

10See: https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md

https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md

30 Background

Table 2.3: Attributes in birth data sets used for calculating pairwise similarities (us-
ing similarity functions discussed in Section 2.3.3) to generate the similarity graphs,
as discussed in Section 2.6. For the birth data sets we generate three similarity graphs
GA, GNA, and GN , considering the attribute combinations All, Parent names and ad-

dresses, and Parent names only, respectively.
Attribute Function IoS Kilm UK

GA GNA GN GA GNA GN GA GNA GN

Father first name JW X X X X X X X X X
Father last name JW X X X X X X X X X
Mother first name JW X X X X X X X X X
Mother last name JW X X X X X X X X X
Parents marriage date Edit X X
Parents marriage place JW X X
Occupation father Dice X X X
Occupation mother Dice X X X
Address Dice X X X X X X
Source parish JW X X X X X X X

Table 2.4: The blocking quality and the number of record pairs (edges) contained in
each pairwise similarity graph generated for the birth data sets.

Data set Number of record pairs Reduction Pairs Pairs
GA GNA GN ratio (RR) completeness (PC) quality (PQ)

IoS 5,373,498 16,130,256 21,012,728 0.591 1.000 0.002
Kilm 25,045,978 50,802,438 72,468,163 0.769 0.992 0.001
UK 4,268,343 5,920,045 5,716,423 0.617 0.996 0.002

is relatively easier than linking birth data sets. However, we use these data sets for
assessing the active learning based RL strategy we propose in Chapter 7, since most
existing supervised and active learning based linkage methods have been assessed
using these same data sets.

2.6 Generating Pairwise Similarity Graphs from Data Sets

In this section, we describe how we generate pairwise similarity graphs subsequent
to the RL comparison step for the data sets presented in Section 2.5. The formal
definitions of record pair comparison and similarity graph generation were provided
in Definitions 1 and 2 respectively.

Prior to similarity graph generation, as discussed in Section 2.3.2 we applied LSH
and Soundex blocking on the birth data sets and the NCVR data set respectively, to
improve the efficiency of the record pair comparison step. Blocking was not applied
on the bibliographic data set pairs since most true non-matches in them were already
removed [120].

As we described in Section 2.3.3, we then generated a pairwise similarity graph
G for each of the data sets to be linked, by comparing attribute values for pairs of

§2.6 Generating Pairwise Similarity Graphs from Data Sets 31

Table 2.5: Attributes in the NCVR and bibliographic data sets used for calculating
pairwise similarities (using similarity functions discussed in Section 2.3.3) to generate

the similarity graphs, as discussed in Section 2.6

.

Attribute Function NCVR DBLP-ACM DBLP-Scholar

First and Last names JW X X X
Gender Exact X
Street and City Dice X
Zip-code Jacc X
Title Jacc X X
Venue Jacc X X
Year MAD X X

Table 2.6: The blocking quality and the number of record pairs (edges) contained in
each pairwise similarity graph generated for the NCVR and bibliographic data sets.

Data set Number of record pairs Reduction Pairs Pairs
ratio (RR) completeness (PC) quality (PQ)

NCVR 34,589,478 0.999 0.821 0.0002
DBLP-ACM 12,363 - - -
DBLP-Scholar 28,707 - - -

records. For the birth data sets, we used a similarity threshold δs = 0.5 to determine
the record pairs to retain, since we identified that the majority of record pairs with
an overall similarity below 0.5 (si,j < 0.5) were true non-matches. However, for the
NCVR and bibliographic data sets we set δs = 0.0 to include all compared record
pairs. Furthermore, we set equal weights to all attributes used in the comparison in
our experiments (wa = 1.0 for a ∈ A) based on the assumption that all attributes
are equally important in distinguishing among matching and non-matching record
pairs.

• Birth data sets: We generated three types of pairwise similarity graphs for
each birth data set by comparing different subsets of attributes, as shown in
Table 2.3. The similarity graphs are All (GA), where all attribute values are
compared, Parent names and address (GNA), where the parents’ names and their
addresses are compared, and Parent names only (GN), where only the parent
names are compared. The number of edges (corresponding to compared record
pairs) are shown in Table 2.4.

• NCVR: As shown in Table 2.5, we generated a single pairwise similarity graph
for the NCVR data set by comparing the name and address values. This graph
contains 34,589,478 edges, as shown in Table 2.6. We used a blocking strategy
which resulted in a pairs completeness (PC) of only 0.821 for the NCVR data
set because attempting to further improve it significantly increases the similar-
ity graph size and further reduces pairs quality. Since such a low PC value
can negatively impact the linkage precision of the RL classification step, we
included all true matching record pairs in the NCVR pairwise similarity graph.

32 Background

• Bibliographic data sets: As shown in Tables 2.6 and 2.5, we generated similar-
ity graphs for the DBLP-ACM and DBLP-Scholar bibliographic data set pairs
by comparing the title, venue, author names, and year attributes.

2.7 Summary

In this chapter, we have highlighted the background related to RL, discussing its
history and the major steps involved in the RL process. We focused specifically on the
background information corresponding to the linkage of complex population data
which is the scope of our research. We provided detailed descriptions of the specific
methods used in this thesis, corresponding to steps in the RL process. Furthermore,
we described the data sets we use for experiments throughout this thesis, and the
pairwise similarity graphs generated for each data set. In the next chapter, we will
be discussing related research work conducted on RL as relevant to our research
questions.

Chapter 3

Related Work

In this chapter, we discuss existing research conducted in the area of Record Linkage
(RL) related to the research questions which we aim to address in this thesis, as we
highlighted in Section 1.2. We categorise this chapter into six sections as aligned
with our research questions. We first discuss state-of-the-art unsupervised, super-
vised, and semi-supervised classification techniques in Sections 3.1 to 3.3 which are
applied in the classification step of the RL process. We mostly focus on unsuper-
vised and semi-supervised classification approaches given that we aim to address
the RL problem where none or only limited training data (ground-truth) is avail-
able. In Sections 3.4 and 3.5 we then discuss efficiency improvement methods and
evaluation measures developed to assess RL techniques. Next, in Section 3.6, we
discuss modern anonymisation techniques for graphs since anonymising sensitive
data sets which are represented as graphs is one of our research problems. Finally in
Section 3.7 we conclude this chapter with a summary of the presented literature.

3.1 Unsupervised Classification for Record Linkage

As discussed in Section 2.3.4, unsupervised RL methods such as clustering are often
applied on a pairwise similarity graph to conduct the final classification of record
pairs as matches and non-matches. The advantage of using unsupervised tech-
niques for classification in RL is their applicability in real-world linkage projects
where ground-truth data is not available. In this section, we present state-of-the-art
unsupervised classification techniques for RL.

To summarise work in this area, Hassanzadeh et al. [86] developed a framework
offering a range of clustering algorithms adapted for applications in the RL context.
Saeedi et al. [153, 154] proposed several advanced clustering approaches for multi-
source RL, whereas Draisbach et al. [58] proposed three clustering techniques for
RL that consider only the structure of the pairwise similarity graph representing the
data sets to be linked. Furthermore, the literature comprises advanced unsupervised
group RL approaches as proposed by On et al. [134] and Antonie et al. [3], and rule
based methods proposed by Kouki et al. [105]. These state-of-the-art unsupervised
RL approaches take record pair similarities, their relationships, and many other fac-
tors into account in the record pair classification step as we discuss in detail below.

33

34 Related Work

• Hassanzadeh et al. [86] introduced a framework named Stringer, which can
comparatively evaluate the linkage quality of RL techniques. The following
clustering methods that can be used for RL were empirically evaluated using 29
synthetic and real-world data sets. Apart from the following clustering meth-
ods, the transitive closure (also known as partitioning or connected components
technique [86]), where a sub-graph in which any two vertices are connected to
each other is identified as a cluster, was used as a baseline.

– Centre Clustering [88]: In Centre Clustering, the record pairs (ri, rj) cor-
responding to the edges in the similarity graph are sorted in descending
order according to their overall pairwise similarities si,j (calculated as de-
fined in Equation. 2.1), and processed iteratively. If both vertices (where a
vertex represents a record) are unassigned to a cluster, one is assigned as a
cluster centre and all other vertices that are connected to the centre record
with high similarity are assigned to that cluster.

– Merge Centre [87]: Similar to Centre Clustering, however, clusters are
merged if a vertex has high similarity to the centres of other clusters.

– Star Clustering [6]: In Star Clustering, the degree sequence (number of
neighbours per vertex) is considered for selecting vertices with larger de-
grees as cluster centres. All vertices highly similar to a centre vertex are
assigned to the corresponding star cluster, whereas a post-processing step
resolves cluster overlaps.

– Ricochet Family of Algorithms [176]: Wijaya and Bressan proposed four
algorithms under this family, which are known as Sequential Rippling
(SR), Balanced Sequential Rippling (BSR), Concurrent Rippling (CR), and
Ordered Concurrent Rippling (OCR). SR is similar to star clustering, how-
ever, instead of considering the degree sequence, the average similarity of
edges connected to each vertex is considered for selecting centres. In BSR,
the centre vertices are selected such that the ratio between the average
edge weight of a centre to the sum of its similarity to the centres of other
existing clusters is maximised. In CR, all record pairs (edges) with an
overall pairwise similarity above a given threshold δ (si,j > δ) are sorted in
descending order of their similarity, and the corresponding vertices which
are not yet processed are assigned as cluster centres. If an edge connects a
centre to a non-centre vertex, the non-centre vertex is added to the centre
cluster. If an edge connects two centre vertices, the cluster corresponding
to the centre vertex with the lower average similarity of adjacent edges is
merged into the other cluster. OCR is similar to CR, however, instead of
using a threshold δ to select the edges to be processed a simple sorting of
edges by their similarity is used.

– Correlation Clustering [8]: In Correlation Clustering, the edges in the in-
put graph are marked as positive or negative, based on the pairwise sim-
ilarity si,j being above or below a similarity threshold δ. The aim of Cor-
relation Clustering is to maximise the number of positive edges within a

§3.1 Unsupervised Classification for Record Linkage 35

cluster and the number of negative edges between clusters, which is an
NP-hard problem. An approximate algorithm introduced by Bansal et
al. [8] was used in the Stringer framework.

– Markov Clustering (MCL): A technique originally proposed by Stijn van
Dongen [57]. MCL performs several random walks on a graph to identify
areas with high edge density, which correspond to a cluster. Hassanzadeh
et al. [86] were the first to introduce MCL for RL clustering, which was
also shown to be among the most efficient and effective algorithms for the
RL task based on their experimental evaluation.

– Cut Clustering: Cut Clustering uses the max flow-min cut theorem proven
by Ford et al. [66] where the objective is to find partitions in the graph such
that the sum of the pairwise similarities of removed edges is minimal. The
Cut Clustering algorithm proposed by Flake et al. [65] was used in the
Stringer framework.

– Articulation Point Clustering [9]: An articulation point in a graph is a
vertex whose removal would result in disconnecting the graph. In this
method, the articulation points are repeated in each sub-graph that is
resulting from articulation point removal, and a post-processing step is
applied to resolve cluster overlaps.

• Saeedi et al. [153] introduced a novel Apache Flink [28] based framework,
known as FAMER, to perform multi-source RL. The FAMER framework ini-
tially generates a pairwise similarity graph for the data sets to be linked, as we
described in Definition 2. Subsequently, clustering is conducted in a distributed
manner on this graph. The clustering algorithms supported by FAMER are
Connected Component Clustering, Centre Clustering, Merge Centre Cluster-
ing, Correlation Clustering, and Star Clustering, as defined by Hassanzadeh et
al. [86] as we previously described. For Correlation Clustering the parallel ap-
proach proposed by Chierichetti et al. [31] (referred to as CCPivot) was used in
this research. Saeedi et al. proposed and supported a second version of the Star
algorithm in FAMER where the average similarity of adjacent edges of vertices
were used to identify cluster centres (whereas in the original version of Star
Clustering the degree of vertices were used).

The different clustering algorithms in FAMER were experimentally evaluated
using three data sets from three different domains, where the largest data set
(based on the North Carolina Voter Registration data) contained records of
10 million entities. Based on a linkage quality evaluation, the most robust
clusters were shown to be produced by Centre Clustering, the new version of
Star clustering, and CCPivot. With respect to run-times, CCPivot was shown
to be the worst due to excessive memory requirements. The Star clustering
version proposed by Saeedi et al. [153] was shown as the best option among
the evaluated clustering schemes for multi-source RL due to its capability of
generating high quality clusters with the shortest run-times.

36 Related Work

• Saeedi et al. [154] then proposed two novel approaches for RL of multiple data
sources. The first approach is called Clustering based on Link Priority (CLIP),
whereas the second is entitled Repair based on Link Priority (RLIP). In the
CLIP clustering approach the edges E in a pairwise similarity graph generated
for the data sets to be linked, G = (V, E), are categorised as strong (if the edge
ea,b ∈ E connecting vertex va ∈ V and vertex vb ∈ V has the highest pairwise
similarity among all edges associated with both va and vb), normal (if the sim-
ilarity of edge ea,b is highest only for either va or vb), or weak otherwise. The
CLIP algorithm generates non-overlapping, source consistent clusters, mean-
ing that only a single record from each data set is contained in each cluster. A
graph containing only strong links is initially processed to find clusters, and
subsequent to removing those clusters, the remaining graph is processed with
strong and normal links.

The RLIP algorithm repairs the clusters generated by other clustering algo-
rithms (such as Star clustering), by correcting cluster overlaps and source in-
consistencies. To resolve cluster overlaps, a record appearing in more than one
cluster is assigned to the cluster with which it has a strong link. When an over-
lapping record has strong links to several clusters, the cluster with which the
record has the highest association degree (average similarity of a record with
other vertices in the cluster) is chosen. Overlapping records with no strong
links are assigned as singleton clusters. If an overlapping record is strongly
connected only with other overlapping record(s), those are ignored in the first
iteration and attempted to be resolved in the second iteration, or assigned as
singletons if unsuccessful. The CLIP and RLIP algorithms were evaluated us-
ing three data sets from three domains (same as in [153]) whereas CLIP and
RLIP were shown to produce considerably improved results, but with less scal-
ability compared to other all other clustering algorithms used in the FAMER
framework [153].

• Draisbach et al. [58] proposed three novel clustering techniques to conduct
unsupervised RL by considering only the structure of the pairwise similarity
graph but not the edge weights (record pair similarities si,j which we discussed
in Definition 1). Definitions of the proposed novel clustering techniques are as
follows:

– Maximum Clique Clustering (MCC)
MCC is an iterative process, where the maximum clique [19] of a graph
G = (V, E) is initially isolated and then all the vertices (which corresponds
to a record ri ∈ V) belonging to that maximum clique is removed from
the original graph G. These two steps are repeated until all records are
assigned to a maximum clique. The identified maximum cliques represent
the final clusters.

– Extended Maximum Clique Clustering (EMCC)
EMCC is an extended version of MCC which is useful when a clique can

§3.1 Unsupervised Classification for Record Linkage 37

be extended by including few missing edges (which correspond to record
pairs (ri, rj) ∈ E). The first step in EMCC identifies the maximum clique.
When multiple maximum cliques appear, the maximum clique that con-
tains most edges to vertices which do not appear in the maximum clique
is chosen, since that is the most likely to be extensible. The second step
iteratively identifies the records ri ∈ V which are eligible to join a cluster
by having at least a threshold percentage of edges in the cluster. These
two steps are executed iteratively until all vertices get assigned to some
cluster.

– Global Edge Consistency Gain Clustering (GECG)
GECE clustering is based on the consistency of records linked during the
graph construction phase. It takes into account all possible sets of vertex
(or record) triangles in the graph. A triangle with records ri, rj and rk
would be inconsistent if there exist edges (ri, rj) and (rj, rk) but not (ri, rk)
(meaning that transitivity does not hold in this triangle [35]). To resolve
such inconsistencies, for each edge of each triangle in the graph, an edge
switch is done (i.e. switching from link to non-link or vice versa). For
each such switch, the consistency gain (difference between the number
of consistent triangles after and before the edge switch) is calculated. If
the consistency gain is positive, the prior mentioned steps of consistency
calculation is repeated until a clique is obtained. Such cliques would be
identified as clusters. If no consistency gain is obtainable by edge switch,
all vertices are assigned to the same cluster.

An experimental evaluation conducted on seven real-world and synthetic data
sets showed that EMCC was the overall best approach compared to MCC,
GECG, and other baselines except Markov clustering which was proposed by
Hassanzadeh et al. [86] as we discussed earlier. EMCC and Markov produced
comparable results where EMCC led to higher precision and Markov clustering
led to higher recall values.

• As discussed in Section 2.3.4, group linkage techniques have received consider-
able attention due to their applicability in linking groups of individuals, such
as families or households. On et al. [134] introduced a group linkage method
based on maximum bipartite graph matching (BS,δr), where S refers to the pair-
wise similarity calculation method used and δr refers to the record level simi-
larity threshold. The aim of the suggested approach is to find the top k matches
from a list of target groups H′ when a query group h is given. Note that each of
these groups contains records referring to different entities. The best match(es)
were selected such that BS,δr ≥ δt where δt is a given similarity threshold. The
record level similarity for query group h and a target group h′ ∈ H′ is initially
calculated using the Cosine similarity with Term Frequency-Inverse Document
Frequency (TF-IDF) weighting [78]. The maximum bipartite graph matching is
subsequently calculated using:

38 Related Work

BS,δr(h, h′) =
∑(ri ,r′i)∈M(sim(ri, r′i))

|h|+ |h′| − |M| , (3.1)

where |M| is the number of matching record pairs with similarity greater than
threshold δr in a maximum weight bipartite matching. Since calculating BS,δr

is expensive due to the quadratic complexity in record comparisons [134], the
authors introduced an upper and a lower bound for BMsim,ρ, which together
remove many record pairs in an earlier phase. Furthermore, if the maximum
similarity between two vertices in the bipartite graph is less than threshold δt,
such links are disregarded in Equation 3.1. This group linkage method based on
maximum bipartite graph matching was shown to produce better recall when
compared to a group linkage technique using the Jaccard similarity, achieving
an average recall improvement of 16% to 17% when synthetic records and errors
were present in the data set.

• Antonie et al. [3] proposed a group linkage approach for population data,
which automatically identifies households in a census data set. A household
constitutes of a group of people residing in the same dwelling. The suggested
RL technique was based on the assumptions that the household head’s record
should precede the records of other household members, members of the same
household must share the same district, household members from the same
family must share the same surname, and the Numerical Personal Identifiers
(PID) of members from the same household must be sequential. The records in
a census data set were sorted by PIDs and district, and if record ri shared the
same district and surname with the previous record ri−1, they were grouped
into the same household. For records that could not be resolved, approximate
string similarity calculations [35] were applied on the district and surname
values to check for approximate similarity to consecutive household members
using a sliding window approach.

The proposed method was applied on the 1891 Canadian census, where the
households corresponding to 99.1% of records (individuals) could be identified.
A small subset (50 households) of results reviewed by domain experts were
identified to be 100% accurate whereas the statistics of the generated house-
holds was found to be very similar to the aggregate information provided by
Statistics Canada. However, the quality of this approach cannot be guaranteed
provided that only a very small subset of households were reviewed by ex-
perts, compared to the very large data set of the total Canadian census, which
comprised of approximately 4.8 million records.

• Kouki et al. [105] presented a novel collective RL technique to build familial
networks based on the information (reports) gathered from different family
members. The characteristics of this information comprises of statistical signals
(comparison of attribute values), relational information (relationships among

§3.2 Supervised Classification for Record Linkage 39

family members), transitivity [35] (if x is the same entity as y, and y is the same
entity as z, then x has to be the same entity as z), and bijective nature (there
could only be a one-to-one match among mentions from two reports). Further-
more, to use relationship information for RL, a relationship normalisation was
conducted which resulted in learning family relationships by the perspective of
different mentions in a report.

The model proposed by Kouki et al. [105] comprised of seven rules, such as the
name similarity rule which defines how the name similarity among mentions
could be used to identify whether they refer to the same entity. This model
outperformed the supervised learning techniques Logistic Regression, Logistic
Model Trees, and Support Vector Machines (SVM) on both effectiveness and
efficiency, in all the experiments conducted on two real-world data sets.

Even though the state-of-the-art unsupervised RL methods we have discussed
above are shown to produce commendable linkage results, none of them is able to
incorporate data characteristics that are commonly available in population data (such
as temporal and spatial constraints) into the classification strategy. This is partially
due to the lack of customisation of unsupervised algorithms to cater to the problem
of linking population data. To address this research gap, we propose novel linkage
algorithms in Chapters 4 and 5 which incorporate data characteristics with the aim
of improving linkage quality.

3.2 Supervised Classification for Record Linkage

Supervised classification techniques such as Supervised Machine Learning (ML) and
Supervised Deep Learning (DL) techniques (where DL is a subarea of ML) are widely
applied for a number of analytic purposes in the world of science, whereas such
techniques have shown promising results in many applications including the RL
domain [55, 60]. However, the lack of ground-truth data in many RL projects hin-
ders the application of supervised classification methods for linking records. For a
comprehensive understanding of existing RL methods however, we next provide a
summary of selected state-of-the-art supervised classification techniques for RL, and
then discuss them in detail.

Among a range of powerful supervised learning approaches proposed for RL, the
most distinctive and widely acclaimed are the Magellan tool by Konda et al. [103] of-
fering different ML techniques for conducting RL tasks, and DL approaches proposed
by Gottapu et al. [76], Ebraheem et al. [60], Mudgal et al. [120], and Li et al. [109].
The methods use record pairs labelled as matches and non-matches to train ML and
DL techniques to effectively predict the class of a new record pair.

• Gottapu et al. [76] proposed a novel hybrid machine-human approach (where
records were linked using a DL approach and any ambiguous classifications
were reviewed by humans) for RL. A Convolutional Neural Network (CNN)
was used as the learning algorithm since it has the advantages of not requiring

40 Related Work

many attributes in the data set and not requiring to perform pairwise record
comparison. The data set initially needs to be pre-processed by removing stop
words [121], matching keywords with unique indices (integers) then repre-
senting records as a concatenation of their indices (with padding such that
all records have the same length), and representing each keyword as a unique
high dimensional vector of integers using word embedding.

When a pre-processed data set is given as input to the CNN, a sliding window
maps the indices within the window to a class label, based on the high dimen-
sional vector corresponding to those indices. Next, a softmax [16] function is
used to calculate the classification probabilities for each record where a record
is assigned to the class (match or non-match) with the highest probability. The
authors used crowd-sourcing to review the records with uncertain labels. In
experimental evaluations the proposed method was compared with a Jaccard
baseline technique using a Boeing data set of sensor information, consisting
of 1,950 records. CNN outperformed the Jaccard baseline in terms of linkage
quality by classifying 55% of the records correctly as opposed to only 41% with
Jaccard. However, CNN was less efficient (8.6 mins) than the Jaccard based
technique (1.27 mins).

• The Magellan tool proposed by Konda et al. [103] is the most comprehensive
and widely used state-of-the-art end-to-end RL system developed to date [60,
120, 166]. Magellan is distinctive from all other existing tools for RL such as
D-Dupe, DuDe, Febrl, and IBM InfoSphere BigMatch [35] since (1) Magellan
provides guidance to users to tackle RL problems, (2) it provides all the nec-
essary tools to conduct a RL project end-to-end (not only for blocking and
matching as provided by other RL tools), (3) it is built on top of the Python
data science stack allowing the advanced learning methods, visualisation capa-
bilities available in Python to be used in the RL task, and (4) Magellan allows
users to introduce their own functions into the system.

Magellan is primarily considered as a RL tool that supports supervised classi-
fication. It currently supports linking a pair of data sets using (1) supervised
learning techniques, (2) rule-based methods, and (3) supervised learning with
rules, where these techniques are made available through Python. The interface
made available in Magellan allows users to conduct tasks such as debugging
and selecting record pairs for training in a very interactive manner. Users can
initially load and sample a subset of the data set to explore and select the meth-
ods to use in the RL workflow. The sampled data can be cleaned and visualised
with Python packages such as pandas and matplotlib, which are made avail-
able through Magellan. Subsequently, blocking can be conducted in an iterative
manner to select the best blocking method, and the user can then label record
pairs for training also in an interactive manner. The best supervised learn-
ing technique and rules can also be selected interactively, where the user can
improve classification by reporting errors via the debugger tool. Experiments
conducted on data sets from twelve domains showed that the precision and re-

§3.2 Supervised Classification for Record Linkage 41

call achieved with Magellan ranged between 91.3% to 100% and 64.7% to 100%
respectively, whereas the supervised baseline techniques resulted in precision
from 56% to 100% and recall from 37.5% to 100%.

• Ebraheem et al. [60] proposed a novel DL based approach for linking records
(known as DeepER), which interestingly uses minimal human effort for obtain-
ing ground-truth data by considering prior knowledge of matched values. The
authors used distributed representation (DR) of record attribute values, since
DR allows to capture syntactic and semantic similarities and uses less memory.
In DR, each word in a vocabulary is mapped to a high dimensional vector space
with fixed length. Among the numerous methods of computing DRs of words,
the authors chose Global Vectors for Word Representation (GloVe) [140], since
it was observed that in GloVe the probability of co-occurrence of a word pair
has a relationship with the meaning of the pair.

The authors proposed two methods of converting records to DRs. The first
method is the simple averaging approach where for each attribute value, the
d-dimensional vectors of the words in that attribute value (as obtained from
GloVe) were averaged. Therefore, if the attribute list corresponding to a data
set is A, the dimension of the DR of a record is d · |A| as obtained with the sim-
ple averaging approach. The second method is the compositional approach which
takes the word order (linguistic structures) into account to find the DR of a
record. For this purpose, the authors used recurrent neural networks (RNN)
with long short term memory (LSTM) hidden units, which learn long range se-
quential dependencies among words and generate a DR for each record, where
the length of the DR is as determined by the LSTM. The authors used Lo-
cality Sensitive Hashing (LSH) based blocking [107], whereas pairwise record
similarities were calculated using the Cosine similarity, vector difference (sub-
tracting vectors), or the Hadamart product [48] (multiplying) depending on the
DR generation method used.

The proposed technique was evaluated against Magellan [103] as previously
described, and other non-learning, learning, and crowd-sourcing based ap-
proaches [47, 75, 104]. In the experiments conducted using six different data
sets, the proposed technique exceeded the quality of all baseline methods ex-
cept in two instances, where the performance of one baseline method was
marginally better (F-measure of 88.06 versus 89.3 and 97.67 versus 98.87 re-
spectively).

• Mudgal et al. [120] presented the first ever comprehensive analysis of the ap-
plication of DL for conducting RL, where they proposed four DL solutions
of varying complexity, namely SIF (an aggregate function model), RNN (a
sequence-aware model), Attention (a sequence alignment model), and Hybrid
(a sequence-aware with attention model). The architecture proposed by Mud-
gal et al. for DL solutions for RL has three primary modules. (1) In the attribute
embedding module word embedding vectors are generated for record pairs con-

42 Related Work

sidering the words contained in attribute values. (2) In the attribute similarity
representation module a vector of similarities is calculated using the word em-
bedding vectors reflecting the similarity of the corresponding record pair. This
module comprises of two steps, (2.1) attribute summarisation which aggregates
the information in the word embedding vectors, and (2.2) attribute comparison,
which applies a similarity function on the summarised vectors to obtain the
similarity vectors. (3) Finally, in the classifier module, a record pair is classified
as a match or a non-match based on the corresponding similarity vectors.

The four DL solutions are defined based on the techniques applied for steps
(a) and (b) above. In the simple SIF model, a weighted average method is used
for step (a) where word embedding vectors are summarised by calculating a
weighted average, and an element-wise absolute difference method is applied for
step (b). The medium complexity RNN method is different from SIF in using a
bidirectional RNN for step (a) which takes the order of words into account when
summarising embedding vectors. The attention model is also of medium com-
plexity which uses decomposable attention in step (a) and vector concatenation in
step (b), where both input sequences are analysed jointly while learning a sim-
ilarity representation. The hybrid model with highest representational power
uses a combination of these methods where step (a) is conducted using a bidi-
rectional RNN with decomposable attention and step (b) using vector concatenation
augmented with element-wise absolute difference.

The authors conducted experiments on eleven structured data sets, six textual
data sets, and six dirty data sets, and compared the proposed DL methods with
Magellan [103]. It was shown that the DL methods significantly outperform
Magellan on textual and dirty data (3% to 22% and 6.2% to 32.6% F-measure
improvements respectively) while for structured data the performance was on
par with Magellan. Furthermore, the hybrid model was shown to be the best at
exploiting the information encoded in training data, among the proposed DL
models. The authors have publicly released this solution as a Python module
names DeepMatcher.

• Li et al. [109] proposed a novel RL system based on pre-trained transformer-
based language models, which is known as Ditto (Deep Entity Matching with
Pre-Trained Language Models). Pre-Trained Language Models (LM) are deep
neural networks that are pre-trained on large text corpus in an unsupervised
manner. LM have the ability to learn the semantics of words better than con-
ventional word embedding techniques such as Word2Vec, GloVe, or FastText.
To leverage the power of Pre-Trained LM for RL, the authors represent record
pairs in two data sets to be linked as a pair of text token sequences, where
each sequence comprises a series of attribute and token pairs. Unlike in the
DeepER and DeepMatcher DL models, the serialisation process applied to con-
vert record pairs to token sequences in Ditto does not require them to adhere
to the same schema.

§3.3 Semi-supervised Classification for Record Linkage 43

Ditto uses three optimisation methods. The first embeds domain knowledge
into the system with span typing and span normalisation. In span typing Ditto
embeds the type of attributes (such as year, product ID, and brand) in the seri-
alisation which helps to reduce mismatches by for example not comparing the
year with product ID. In span normalisation, different strings with the same
meaning are converted to identical strings to have the same embeddings. The
second optimisation method summarises lengthy token sequences using a TF-
IDF-based summarisation technique such that only the most informative tokens
are provided as input to the LM. In the third optimisation approach, data aug-
mentation is used to generate additional training data, and to allow the model
to learn from difficult examples.

Experiments conducted on 13 data sets show that Ditto outperforms other state-
of-the-art RL systems such as Magellan, DeepER, and DeepMatcher (which we
have previously discussed under this section), by up-to 29% with regard to
the F-measure. When the proposed optimisation techniques are applied, the
linkage quality is further improved by up-to 9.8%. Furthermore, Ditto was
shown to achieve results comparable to existing state-of-the-art RL methods
with at most half the number of labelled data, whereas the effectiveness of Ditto
on linking real-world data sets was established with running experiments on
two company data sets consisting of 789,000 and 412,000 records achieving a
high F-measure of 96.5%.

Even though supervised classification approaches often result in high linkage
quality, as shown with the state-of-the-art work presented in this section, as we dis-
cussed earlier it is often not feasible to obtain an adequate number of labelled record
pairs (or ground truth data) to train supervised classification algorithms. We there-
fore propose unsupervised and semi-supervised classification techniques for RL in
Chapters 4, 5 and 7.

3.3 Semi-supervised Classification for Record Linkage

As we highlighted in Section 3.2, even though the application of supervised learn-
ing techniques for linking records has produced promising results, due to a lack of
ground-truth data supervised classification approaches often cannot be utilised in
real-world linkage applications. Therefore, semi-supervised classification techniques
such as active learning [169] and transfer learning [167] have gained attention in re-
cent years due to the possibility of exploiting the strength of supervised learning
methods where limited ground-truth data is available. While active learning ap-
proaches aim to effectively sample a subset of data for manual labelling such that
high classification quality can be obtained by training supervised classifiers on the
limited labelled data, transfer learning aims to use already available training data
from a semantically related domain to classify a target data set. Tejada et al. [165]
and Sarawagi and Bhamidipaty [155] conducted early work on the application of

44 Related Work

semi-supervised learning approaches such as active learning for RL, whereas in this
section we describe more recent developments in this research area.

To summarise the contributions on this topic, Li et al. [108] proposed a RL tech-
nique using clustering, where temporal aspects related to linkage are learnt from
a domain expert, Christen et al. [42] and Primpeli and Bizer [141] proposed active
learning strategies based on the informativeness of record pairs, and graph charac-
teristics respectively, and Kasai et al. [100] introduced a novel method that combines
active learning and transfer learning for applying on RL tasks. The issue of unstable
prediction models that is caused by the inadequacy of labelled record pairs in the
early iterations of active learning strategies was addressed by Primpeli et al. [142] in
their novel active learning approach. Furthermore, Meduri et al. [116] in their recent
work bridges the gap of the absence of a framework for conducting RL using numer-
ous active learning approaches. We now discuss these recent state-of-the-art active
learning approaches for RL in detail.

• Population data is often considered as temporal data, since the values of at-
tributes corresponding to a single entity often change with time. For example,
people may change their occupation over time and the address may change
with individuals changing their residence. The seminal work conducted by Li
et al. [108] on linking temporal records introduced the first known technique
of utilising temporal aspects in record linkage. We consider this as a semi-
supervised approach since even though the authors have used clustering for
linking records, the temporal aspects are learnt or obtained by domain experts.
Li et al. introduced the two concepts of disagreement decay which accounts for
the fact that in temporal data sets, certain attribute values of the same entity
could potentially change over time, and agreement decay which implies that over
a long period of time it is more likely to find two entities with the same attribute
value compared to a short time frame. As shown in the experiments conducted
by the authors, these decay values are highly reliant on the distribution of at-
tribute values across time for the respective data sets.

Using the agreement and disagreement decays, Li et al. introduced a novel
method of calculating the adjusted similarity between record pairs in a data
set. To calculate the adjusted similarity, the agreement decay probability pa

and the disagreement decay probability pd for each attribute are calculated,
and the attribute value similarities are weighted by 1− pa and 1− pd respec-
tively. That is, in the pairwise record similarity calculation which we described
in Definition 1, the agreement decay is used to reduce the weight (reward)
for similar attribute values and the disagreement decay is used to reduce the
weight (penalty) for dissimilar values. Three clustering techniques utilising
these adjusted similarities were proposed and experimentally evaluated us-
ing two real-world data sets. The proposed temporal clustering methods out-
performed three non-temporal baseline techniques by Hassanzadeh et al. [86]
(which are partitioning, centre and merge clustering which we described earlier
in Section 3.1), achieving a best result of 0.98 precision and 0.97 recall.

§3.3 Semi-supervised Classification for Record Linkage 45

• Kasai et al. [100] proposed a novel method which allows combining the po-
tential of active learning together with the capabilities of transfer learning to
utilise DL for linkage tasks. They first propose a DL framework which uses
transfer learning and extend it to adopt an active learning strategy when lim-
ited training data is available. The authors justify the use of DL instead of ML
methods (such as SVM and decision trees) since, unlike in DL, they require hu-
man effort in selecting classification features (feature engineering) which is ex-
pensive. In the DL framework, for each record pair in the data sets to be linked,
the attribute value tokens are obtained for which word embedding vectors are
generated through fastText [18]. Next, a recurrent neural network (RNN) is
used to combine the word vectors to obtain the representation vectors for each
attribute, which are compared element-wise and summed to obtain the similar-
ity vector for each record pair. Finally, a two-layer multilayer perceptron (MLP)
with highway connections [161] (called the matching classifier) is used to clas-
sify record pairs based on their similarity vectors, with the training objective to
minimise the negative log-likelihood loss.

To make this DL framework applicable in a transfer learning setting, the au-
thors model a data set classifier with the same architecture as in the matching
classifier, for predicting the source of the input record pair. A data set indepen-
dent internal representation is created by adding a gradient reversal layer, such
that the quality of transfer learning is less affected by properties specific to the
training data set. When limited training data is available, the authors propose
an iterative active learning method to sample ambiguous record pairs for man-
ual labelling and high confidence record pairs to increase the data available for
training. Ambiguity and high confidence of record pairs is reflected by high
and low entropy of the classification probabilities returned by the DL model.
To sample a balanced set from the ambiguous and high confidence pairs, the
authors first split the classified data set based on the predicted class, and from
each class the n record pairs with the highest and lowest entropy are selected
(ambiguous and high confident samples respectively). Experiments conducted
on six data sets showed that DL conducted with transfer learning and active
learning combined produced the best linkage results when compared against
six learning algorithms made available by the Magellan framework [103].

• Christen et al. [42] proposed a novel informativeness based active learning strat-
egy for RL, which, unlike previous work on active learning [5, 14, 175] does not
rely on specific learning methods for effective selection of record pairs for man-
ual labelling. Rather, the proposed method selects record pairs for labelling
based on the informativeness of record pairs that are already manually labelled.
A record pair is considered informative if it is surrounded by both matching and
non-matching record pairs rather than record pairs from just one class. The pro-
posed method uses a pairwise similarity vector si,j to represent a record pair
(ri, rj) where si,j is calculated as we defined in Definition 1. A set of such vec-
tors corresponding to unlabelled record pairs was denoted as Lu, and labelled

46 Related Work

vectors as Ll (where Lu ∩ Ll = ∅). This is an iterative approach where k record
pairs are selected in each iteration for manual labelling such that a total of up
to β record pairs (where k ≤ β) are labelled at the end of the process

In the initial step of this method, record pairs (similarity vectors) are sampled
from Lu using stratified sampling or the farthest first method. In stratified sam-
pling, the similarity vectors (record pairs) are clustered and the vectors closest
to the cluster centroids are sampled. In the farthest first method the vectors
farthest from the labelled vectors in Ll are selected. In the next step, the entropy
and uncertainty for each selected vector is calculated considering its proximity
to labelled vectors in Ll within a diameter up to the closest labelled vector from
the opposite class (which defines the search space). The entropy is high if a
selected vector is close to both matches and non-matches in Ll whereas the un-
certainty is high if there are fewer vectors from the same class as the selected
vector in Ll within the search space. Subsequently, n vectors are sampled based
on a threshold δt for the combined entropy and uncertainty value.

In the next step, the most k diverse vectors among the selected n vectors are cho-
sen for manual labelling with a farthest first approach. Experiments on three
data sets showed that the proposed approach significantly outperforms the ac-
tive learning approaches Entropy [158], Smallest Margin [168], Clu-AL [175],
and Uncertainty [119], while obtaining comparable results to supervised meth-
ods with a 99% reduction in labelling effort.

• Primpeli et al. [142] proposed a novel method to resolve the cold start problem
that is often encountered in active learning approaches, where the absence of
adequate labelled data in the early iterations of an active learning approach
leads to unstable prediction models. The authors developed an automatic la-
belling strategy that is applicable in the RL context to circumvent this cold start
problem. In the initial step of the proposed approach, an overall similarity
si,j is calculated for each compared record pair (ri, rj). Subsequently, confidence
weights are assigned to each record pair based on a threshold δ, where the au-
thors proposed a method named elbow point based on the cumulative histogram
of similarity scores to determine δ.

Let Ls be a list of overall similarities of record pairs and si,j ∈ Ls be the overall
similarity of a record pair (ri, rj). Then the confidence weight wi,j of record pair
(ri, rj) is calculated as:

wi,j =

|si,j−δ|

δ−min(Ls)
, if si,j < δ

|si,j−δ|
max(Ls)−δ

, if si,j > δ

0.0, if si,j = δ

(3.2)

With this approach, each record pair (ri, rj) is automatically assigned a class la-
bel (match label if si,j > δ and non-match otherwise) and a weight wi,j which re-

§3.3 Semi-supervised Classification for Record Linkage 47

flects the confidence of belonging to that class. These record pairs with weight-
ing are used to bootstrap the active learning model by training a random forest
classifier, using the confidence weights as training weights for learning. Next,
in an iterative approach, the most confident match and non-match labelled
record pairs are used to train five classifiers and record pairs which have the
highest disagreement rate in classification are selected for manual labelling. Ex-
perimental evaluation showed the improvement of quality by 86% in the cold
start phase and up to 3% in subsequent iterations compared to baseline active
learning approaches that do not use unsupervised bootstrapping. We use this
concept in the active learning based RL method we proposed in Chapter 7.

• Meduri et al. [116] proposed a novel benchmark framework for assessing dif-
ferent active learning strategies for RL applications. Active learning strategies
for RL often employ an iterative approach of obtaining a small labelled data
set (record pairs) from the oracle, training a classifier(s), and getting the most
ambiguous record pairs labelled by the oracle. The proposed framework al-
lows users to pair different classifiers and selection strategies (the method of
selecting ambiguous record pairs) as appropriate. The classification methods
supported by this framework are linear classifiers (such as SVM), tree-based
classifiers (such as random forests), non-linear classifiers (such as feed-forward
neural networks), and rule-based classifiers. The three types of selection strate-
gies supported are query by committee (QBC), margin-based, and heuristic.

In QBC, a committee of classifiers is used where several classifiers are initially
trained with a small oracle labelled set. Record pairs with the highest labelling
disagreement, which is calculated using the entropy among the classifier out-
comes, are given to an oracle for manual labelling. In the margin-based ap-
proaches, linear and non-convex non-linear classifiers are used, where in the
former the record pairs closest to the separating hyperplane are considered
most ambiguous, and high ambiguity is reflected with a classification probabil-
ity close to 0.5 in the latter. Likely False Positives / Negatives (LFP / LFN) is an
example heuristic selection strategy. Record pairs are classified using rules and
likely incorrect classifications are identified such as by using an attribute value
similarity heuristic. For example, if a record pair was classified as a match,
but if the majority of its attribute value pairs are highly different it could be
identified as a LFP and be given to an oracle of manual labelling. The time
and quality of active learning strategies were improved with blocking which
removes record pairs unlikely to be ambiguous, and active ensemble of linear
classifiers for margin-based methods, where rather than using a single linear
classifier, an ensemble of linear classifiers were used to improve recall.

An experimental evaluation on nine public data sets showed that several active
learning strategies made available in this framework outperformed state-of-
the-art RL approaches including DL strategies [120]. The random forest based
QBC method significantly outperformed all other active learning methods and
all the compared baseline techniques.

48 Related Work

• Primpeli and Bizer [141] proposed a graph-boosted Active Learning method for
Multi-Source Entity Resolution (ALMSER). Rather than using query by com-
mittee (QBC) and margin-based strategies where the former determines the
most informative (ambiguous) record pairs based on the disagreement among
classifiers, and the latter selects record pairs closest to a classifier’s decision
boundary as the most informative, the ALMSER method relies on graph char-
acteristics such as graph transitivity and minimum cuts to discover informative
record pairs.

The first step in ALMSER is the initialisation of active learning for which the
authors use an unsupervised bootstrapping method to circumvent the cold start
problem [142]. For the first twenty iterations in active learning, ALMSER uses
the state-of-the-art committee based query strategy HeALER [30] before switch-
ing to the graph-based query strategy since the graph-based model is highly
unstable in the beginning. Next, a correspondence graph is generated with all
records from multiple sources and edges between record pairs with a match
label for manual classifications. The remaining record pairs are labelled as a
match or a non-match with an associated confidence score as per the predic-
tion by the base model. A minimum cut of the graph is executed for each
non-matching record pair such that no paths exist between any non-matching
pairs. Next, graph inferred labels are assigned to record pairs to identify incor-
rect base learner predictions, by deriving clean connected components (with a
maximum size equal to the number of sources to be linked) in the correspon-
dence graph.

Record pairs with contradicting graph inferred labels and base learner pre-
dicted labels are identified as the most informative record pairs to be manually
classified. This method allows to effectively capture record pairs incorrectly la-
belled as non-matches (with graph inferred match labels based on transitivity),
and matches (with graph inferred non-match labels with the minimum cut ap-
proach). Subsequently, a boosted learner is trained with manual classifications
and graph inferred labels from the clean components of the correspondence
graph, and the process continues until a satisfactory accuracy is achieved for
the testing data prediction. The authors conducted an experimental evaluation
on five multi-source matching tasks (each containing four or five data sets to
link) and compare ALMSER with the QBC active learning method HeALER
and a margin-based strategy using an SVM classifier. Results showed that the
ALMSER method outperforms all baseline experiments as per the classification
quality.

As we discussed above, there are several existing semi-supervised classification ap-
proaches for RL. However, given this area is relatively new, and since existing re-
search work does not cover how active learning approaches can be utilised for effi-
ciency enhancement in the RL context, we propose an active learning-based filtering
technique in Chapter 6, and an active learning-based classification approach for RL
in Chapter 7, with the aim of further expanding the literature on this topic.

§3.4 Efficiency Enhancement in Record Linkage 49

3.4 Efficiency Enhancement in Record Linkage

As we discussed in Section 2.3.2, the quadratic complexity of naïve record pair com-
parison in RL has resulted in the requirement to apply methods such as indexing
and blocking to improve the linkage efficiency by reducing the number of record pair
comparisons [138]. Apart from indexing and blocking techniques, filtering methods
are sometimes used to efficiently identify record pairs that are likely to satisfy prede-
termined similarity thresholds prior to applying costly comparison functions [138].
In this section, we present methods proposed for efficiency enhancement of the RL
process.

To summarise the work in this area, Gu and Baxter [80] proposed a method to
improve the efficiency of the RL process by post-processing large blocks, whereas
Efthymiou et al. [61] proposed scalable algorithms for conducting meta-blocking.
Zhang et al. [184] developed a blocking technique based on supervised learning,
and a novel indexing approach was introduced by Akgün et al. [2]. A benchmark
of existing efficiency enhancement methods for RL was conducted by Caldeira et
al. [26]. We now discuss these state-of-the-art efficiency enhancement methods for
RL in detail.

• Gu and Baxter [80] proposed an adaptive filtering method to post-process large
blocks to enhance the blocking efficiency. The method is adaptive since it
adapts to the blocking method to determine the number of blocks to be filtered.
A filtering variable (a single attribute value or a combination of attribute values)
different from the blocking key is used to quickly filter the likely non-matches
prior to applying an expensive comparison method.

The authors used the approximate comparison method proposed by Gravano
et al. [77] for conducting adaptive filtering using the properties of edit dis-
tance without actually calculating the edit distance. The two properties of
this technique are as follows. The first property states that two strings Si
and Sj with an edit distance greater than a predetermined threshold δ, can-
not have a length difference greater than δ. The second property is based on
the fact that potentially matching strings must share a large number of com-
mon bi-grams. Considering that Bi and Bj contain all bi-grams of Si and Sj
respectively, if strings Si and Sj have an edit distance within δ then the con-
dition Bi ∩Bj = max(|Si|, |Sj|) − 2δ + 1 must hold. Experiments conducted
on four synthetic and one real-world data set showed that applying filtering
after blocking helped improve the reduction ratio up to 63% at the cost of pairs
completeness reduction by 5%.

• Efthymiou et al. [61] proposed scalable algorithms for conducting meta-blocki-
ng using the MapReduce framework [50] for parallelisation. In meta-blocking,
a blocking graph is generated where each record ri in a data set D (ri ∈ D) is rep-
resented as a vertex, whereas record pairs contained in a single block (ri, rj) ∈ b
are represented as edges. The edges are weighted to reflect the likelihood for
a record pair to correspond to the same entity (such as by assigning higher

50 Related Work

weights to record pairs occurring more frequently in blocks) whereas a prun-
ing step removes record pairs that are unlikely to be matches. The meta-blocks
are generated based on this pruned blocking graph which reduces redundant
(repetition of the same record pair in different blocks) and superfluous (record
pairs that correspond to non-matches) comparisons.

The authors proposed three methods to conduct parallel meta-blocking. (1) The
edge-based strategy explicitly creates a blocking graph with all the information
about edges and corresponding weights. (2) The comparison-based strategy
generates an implicit blocking graph where information used for calculating
the weights of edges is indexed rather than explicitly building a blocking graph.
(3) The entity-based strategy requires no blocking graph at all, where for each
record (that corresponds to an entity) the other records co-occurring with it in
at least one block is stored. All three methods explicitly or implicitly provide
the edge weights needed for pruning.

Four different pruning methods were explored, namely weighted edge prun-
ing (WEP), cardinality edge pruning (CEP), weighted node (vertex) pruning
(WNP), and cardinality node pruning (CNP). In WEP and CEP, edges are
pruned (filtered) based on a weight threshold or edge count threshold respec-
tively, whereas for WNP and CNP, the filtering is done based on the average
edge weight or edge count of a node’s neighbourhood. The authors also pro-
posed a new load balancing algorithm named MaxBlock which dynamically
splits the input blocks into partitions for parallel processing. Experiments
conducted on four data sets showed that on average, record pair comparison
with meta-blocking took 95.5 minutes whereas without meta-blocking it took
14 days (a 93% improvement in efficiency). Furthermore, it was shown that
the comparison-based strategy worked either with WEP and CEP whereas the
entity-based strategy worked with WNP and CNP, and that these two methods
were more efficient than the edge-based strategy in all experiments.

• Zhang et al. [184] proposed a novel learning based blocking method entitled
AutoBlock which frees users from laborious data cleaning and blocking key
tuning tasks while being efficient and scalable. The authors highlight the in-
ability of key-based blocking techniques to handle dirty data due to reliance on
exact attribute values. Even min-hashing based LSH can only conduct blocking
based on the lexical similarity of record pairs but not the syntactic or semantic
similarity. The AutoBlock method overcomes these issues by using a similarity-
preserving representation learning method and nearest neighbor (NN) search.

The similarity-preserving representation learning method comprises of four
steps. In the (1) token embedding step, each record is represented as a list
of tokens of attribute values, and the tokens are embedded using the fastText
algorithm [18]. Next, an (2) attribute embedding is generated using the token
embeddings for which the authors propose an attention-based attribute en-
coder. In this method attribute encoding is conducted by obtaining a weighted
average of the corresponding token embeddings, where the weights are learnt

§3.4 Efficiency Enhancement in Record Linkage 51

using a neural network depending on a token’s semantics, position and sur-
rounding tokens. Subsequently, a (3) tuple signature (signature of a record) is
generated based on the attribute embeddings such that signatures for matched
tuples have large Cosine similarity. The authors generate multiple such signa-
tures for each record pair to mitigate the issue of obtaining low Cosine sim-
ilarity due to lack of data quality (such as missing values). Then (4) model
training is conducted with the objective of maximising the differences of the
Cosine similarities between the tuple signatures of matched pairs and between
unmatched pairs.

A fast NN search is then applied after computing the signatures for all tuples
using the trained model. The authors use an LSH family for cosine similarity
to retrieve the nearest neighbors of each record to generate the blocks. Exper-
iments were conducted on three real-world data sets, where AutoBlock was
compared with traditional key-based blocking, min-hashing based LSH block-
ing, and blocking as conducted in the DeepER system [60] (which we described
in Section 3.2). It was shown that AutoBlock surpasses all baseline methods on
the pairs completeness measure (see Section 2.4.2) by 18.3% to 25.8%. Further-
more, the AutoBlock method was shown to have sub-quadratic time complexity
thus being scalable to millions of records.

• Akgün et al. [2] introduced a novel indexing technique for improving the ef-
ficiency of the RL process. They have introduced how Metric Space Indexing
(MSI) can be applied in the context of RL. A noteworthy significance of MSI
is its capability of combining three RL phases: indexing, pairwise comparison,
and classification, into one. The M-tree [44] data structure was utilised as the
MSI algorithm in this research.

MSI was evaluated with three other baseline indexing methods, namely brute
force (comparing each records pair), traditional linkage (blocking on attribute
values) and the Locality Sensitive Hashing (LSH) technique which we described
in Section 2.3.2. Overall, MSI outperformed both the LSH and traditional block-
ing techniques on precision and recall, whereas with MSI the same quality as
for brute force was achieved but with considerably fewer comparisons. With
certain parameter settings the precision achieved with LSH and traditional link-
age was better than the precision achieved with MSI, since highly similar non-
matching record pairs were captured by MSI but not by the other techniques
(which resulted in more false positives for MSI and thus the low precision
value). However, the precision improvements for the baseline techniques was
achieved at the cost of considerable recall degrade, thus resulting in MSI being
the overall superior approach. MSI is a desirable indexing approach due to its
capability of combining three RL phases, little requirement of domain knowl-
edge, and its capability to produce better RL results with improved precision.

• Caldeira et al. [26] conducted a comparative experimental evaluation of selected
state-of-the-art filtering and meta-blocking techniques. As we described earlier,

52 Related Work

these techniques aim to further improve the efficiency of RL by reducing the
number of record pair comparisons resulting from the blocking or indexing
step. Filtering approaches are based on the assumption that likely matches
have high pairwise similarity. Methods such as filtering based on a thresh-
old attribute value length difference (proposed by Gu and Baxter [80] as we
discussed earlier), or retaining record pairs with common attribute value pre-
fixes or suffixes, are used in this approach. Meta-blocking, on the other hand,
attempts to reduce or eliminate redundant and superfluous record pair com-
parisons as we explained earlier in this section.

The authors evaluated the filtering techniques PPJoin [181], PPJoin+ [181], and
AdaptJoin [171]. For each of these techniques the frequency of the attribute
value tokens are calculated for each record, and the least frequent tokens are
used as the prefix of each record. In the PPJoin technique, records are indexed
(blocked) using these least frequent tokens, and the record pairs within a block
are filtered based on a threshold size difference of the tokens. The PPJoin+ tech-
nique extends PPJoin by considering suffixes in the indexing, where all tokens
excluding prefixes are classified as suffixes. AdaptJoin too is an extension to
PPJoin, which dynamically calculates the prefix size based on the intuition that
an adaptive prefix size can be more effective in filtering likely non-matches.

The meta-blocking approaches evaluated by Caldeira et al. [26] are Reciprocal
Weighted Node Pruning (RecWNP) [137], Reciprocal Cardinality Node Prun-
ing (RecCNP) [137], BLAST [160], and Blocking Process Based on Relevance of
Terms (PBBRT) [25]. In all these methods, record pairs from the same block are
represented as vertices in a graph with an edge connecting them, whereas an
edge weight reflects the likelihood for a record pair to be a match. A threshold
edge weight and a threshold edge count (cardinality) are used to filter record
pairs in the RecWNP and RecCNP methods respectively. The BLAST method
is a Locality Sensitive Hashing [107] based technique that determines the most
informative attributes and accordingly improves the edge weights such that
likely non-matches can be discarded. The PBBRT method uses the entropy of
attribute value tokens to determine the likely matches to retain. An experi-
mental evaluation conducted on four real-world and three synthetic data sets
showed that even though filtering strategies performed well on smaller data
sets, only meta-blocking techniques could efficiently and effectively reduce the
comparison space in RL tasks [26].

As we discussed so far, all existing state-of-the-art efficiency enhancement meth-
ods proposed for RL attempt to improve the efficiency at the record pair compari-
son step. However, as we discussed in Section 1.2, the overall RL run-time is often
dominated by the classification step due to the many record pairs retained for com-
parison even after blocking or indexing has been applied. Therefore, in Chapter 6,
we propose a novel active learning-based filtering technique that aims to improve
the efficiency of the RL classification step by removing likely non-matches that result
from the comparison step.

§3.5 Evaluation Measures for Record Linkage 53

3.5 Evaluation Measures for Record Linkage

In the existing literature the linkage quality of RL techniques are often assessed us-
ing evaluation measures such as precision, recall, and the F-measure (which we dis-
cussed in Section 2.4) as commonly used for assessing classification approaches in
ML. However, as we also discussed in Section 2.4, these measures are sometimes
problematic when applied in the RL domain, especially where group RL is consid-
ered. In this section, we explore existing work on alternative methods for assessing
RL techniques.

To address the lack of evaluation measures to assess the quality of group RL tech-
niques, Menestrina et al. [117] proposed a measure which determines linkage quality
based on the number of cluster splits and merges required to convert the predicted
clusters to the ground truth cluster set, while Hassanzadeh et al. [86] introduced two
cluster measures which are based on the average number of record pairs that are cor-
rectly grouped together. Furthermore, in their recent work Hand and Christen [85]
show how the widely used F-measure can be a misleading measure in the context of
RL.

• Menestrina et al. [117] introduced a novel method to evaluate RL techniques,
named the Generalised Merge Distance (GMD). This method was proposed for
group RL techniques where a group (or cluster) of records is associated with a
single entity. GMD uses a basic merge and split concept to assess RL techniques
based on how many merges and splits are required to convert the clusters
resulting from a RL technique to the gold standard (ground-truth) clusters.
GMD allows the user to assign a cost to merges, fm, and splits, fs, as necessary,
to reflect the desired outcome. Furthermore, it was shown that several existing
evaluation measures, such as the F-measure (which we described in Section 2.4)
and the variation of information (which calculates the information loss and gain
when converting the predicted clusters to the ground-truth clusters) can be
derived using the GMD measure by certain configurations of the cost functions
fm and fs. Therefore, GMD has the potential of reflecting different aspects of
the compared RL methods, with different cost metrics.

Operation Order Independence (OOI) is an important aspect which needs to
be adhered to by the chosen cost functions. The OOI property states that when
there are three clusters, cx, cy and cz, the total cost of first merging cx with cy

and then merging the result with cz is similar to the total cost of merging cx with
cz and then merging the result with cy. In the GMD measure, a split first legal
path (a path where splits occur before merges, and each intermediate cluster
exists in the ground-truth) with minimum cost is identified by adhering to the
OOI property. With an empirical evaluation conducted on two Yahoo data sets
(related to shopping and hotels) the authors showed how different evaluation
techniques come to different conclusions in the presence of varying types of
error in the data sets. The GMD measure was shown to be superior to the other
compared measures which combine the average similarity of predicted clusters

54 Related Work

with respect to ground-truth clusters and vice versa due to its capability of
reflecting different strengths of each RL method, based on the split and merge
costs assigned.

• Hassanzadeh et al. [86] introduced two new evaluation measure to assess group
RL techniques which are as follows.

– Clustering Precision (CPr): CPr reflects the average number of record
pairs which are correctly grouped together in a single cluster. For each pre-
dicted cluster, the record pairs in the cluster are identified. Then the num-
ber of such pairs which occur together in a single cluster in the ground-
truth set is calculated. CPr is the average number of such pairs, across all
clusters which have at least two elements. Let k and k′ denote the number
of ground-truth clusters and the number of predicted clusters respectively.
Let Cp denote the list of predicted clusters where each predicted cluster
cp

i ∈ Cp contains at least two records, and let cg
j denote a ground-truth

cluster in the ground-truth cluster list Cg (cg
j ∈ Cg). The authors present

the clustering precision CPri for a predicted cluster ci as;

CPri =
|(rx, ry) ∈ cp

i × cp
i : x 6= y ∧ ∃j ∈ 1...k, (rx, ry) ∈ cg

j × cg
j |

(k′
2)

(3.3)

CPr = ∑k
i=1 CPri

|Cp|
(3.4)

However, with the CPr measure, the number of clusters in the prediction
and the ground-truth are not compared. Therefore, Hassanzadeh et al.
proposed a variation of CPr which is as follows.

– Penalised Clustering Precision (PCPr): PCPr penalises any algorithm
that creates fewer or a greater number of clusters than what occurs in
the ground-truth data set. PCPr is calculated as;

PCPr =

k
k′CPr, if k < k′

k′
k CPr, if k ≥ k′

(3.5)

• Hand and Christen [85] showed why the F-measure (F), can be an inadequate
evaluation measure for assessing RL techniques, when viewed as a weighted
arithmetic mean of precision (P) and recall (R). The F-measure formula could
be rewritten as F = θR + (1− θ)P, where θ = (FN + TP)/(FN + FP + 2TP)
and FN, TP, and FP represent the number of False Negatives, True Positives,
and False Positives respectively as we discussed in Section 2.4. Therefore, the
F-measure is actually a weighted mean of P and R, meaning that this weight θ

must be equal for all RL methods being compared, for the evaluation among

§3.6 Graph Anonymisation Techniques 55

them to be fair. However, since in practical applications different RL approaches
generate different numbers of predicted matches (TP + FP) on which the weight
θ relies, using the F-measure for assessing RL methods is inadvisable.

Hand et al. [83] attempt to address this issue with the F-measure in their recent
work from 2021. As per their analysis, another issue with the F-measure is that
even though precision and recall can be considered as empirical estimates of the
conditional probability of a correct classification given a predicted class and a
true class respectively, their harmonic average (which is the F-measure) cannot
be interpreted as a probability. Furthermore, the harmonic mean of two values
lies closer to the smaller of the two, and when one is zero, the harmonic mean
becomes zero as well, thus ignoring the value of the other value. To resolve this
issue, Hand et al. proposed the F∗-measure which is defined as F∗ = F/(2− F)
(see Eq. 2.5 for detail). F∗ is the number of true matches identified against the
misclassified and correctly classified matches [83].

Only a few works such as those discussed above have presented novel methods
of evaluating group RL approaches and question the applicability of widely used
measures such as the F-measure for assessing linkage results. In Chapter 8, we
therefore present a novel evaluation measure for group RL, where the linkage quality
is assessed based on how records are allocated into predicted clusters as compared to
ground truth clusters. Furthermore, we discuss the limitations of existing evaluation
measures such as precision and recall for assessing group RL techniques.

3.6 Graph Anonymisation Techniques

As we highlighted in the previous chapters, ensuring the privacy of sensitive data
sets used for RL is highly important especially when population data is being linked,
which is our focus in this thesis. Since the data sets to be linked are often represented
as pairwise similarity graphs (as we discussed in Section 2.3.3) we explore graph
anonymisation techniques for preserving the privacy of the data. Privacy-Preserving
Record Linkage (PPRL) techniques [40] are excluded from this section since they are
beyond our scope, as we highlighted in Section 1.5.

To summarise the work in this area, Zhou et al. [188] proposed graph anonymi-
sation techniques for social networks where anonymisation is conducted by adding
and/or deleting edges and vertices. Furthermore, novel graph anonymisation tech-
niques were proposed by Wang and Li [173], and Delanaux et al. [51] as we discuss
in detail below.

• Zhou et al. [188] conducted a survey of graph anonymisation techniques devel-
oped for social networks. They explained how anonymising graph data is more
complex than anonymising relational data due to the presence of more infor-
mation related to vertices and edges in a graph. Furthermore, they emphasised
the importance of understanding the utility of graph data prior to anonymi-

56 Related Work

sation, since otherwise an anonymised graph data set might be rendered of
limited use for the analytic purpose.

Zhou et al. presented existing graph anonymisation techniques under two cate-
gories, clustering-based approaches and graph modification approaches. Clust-
ering-based approaches can be further categorised based on whether vertices
or edges are being grouped into a cluster, where a cluster is then represented
as a super-vertex for anonymisation.

– Vertex clustering method: Hay et al. [89] proposed a vertex clustering
method which mimics the k-anonymity [162] approach for relational data.
Vertices are grouped such that each group contains at least k vertices, and
the number of vertices in each group and the densities of edges within and
across groups are published as the anonymised data set. The best group-
ing that maximises the utility and adheres to k-anonymity is identified
using a maximum likelihood approach.

– Edge clustering method: Zheleva and Getoor [185] proposed an edge clus-
tering method, where they focused on graphs having multiple types of
edges, and only a single type of vertices. One of the edge types is con-
sidered to be sensitive. The vertices are initially grouped and collapsed
into a single vertex and the edges between the collapsed vertices are re-
ported, for example by publishing the number of edges of a given type.
Since certain sensitive edges are removed in the process, the utility of this
anonymisation approach is measured by the number of edge deletions.

– Vertex and edge clustering method: Campan and Truta [27] proposed
a clustering technique for graphs where edges are not labelled but the
vertices have attributes, some of which are sensitive. The k-anonymity
model [162] was used to anonymise vertices. The super-vertex (group) is
labelled with the number of vertices and edges in the cluster. Even though
this approach is somewhat similar to the method proposed by Zheleva
and Getoor [185], the method proposed by Campan and Truta has the
flexibility of allowing the user to achieve a desirable trade-off between
preserving more structural information (edge related) or preserving more
vertex attribute information.

– Vertex attribute mapping clustering method: Cormode et al. [45] proposed
a method to anonymise bipartite graphs, where the vertices are of two dis-
tinct types, and edges appear across vertices of these two types. For the
two vertex types Vx ⊂ V and Vy ⊂ V, where V = Vx ∪ Vy, the pro-
posed method groups vertices of each type such that two vertices in the
same group of Vx have no common neighbors in Vy, and vice versa. Fur-
thermore, the anonymisation granularity is controlled by two user defined
parameters i and j where each group in Vx is constrained to have at least
i vertices, and j vertices for each group in Vy.

§3.6 Graph Anonymisation Techniques 57

In the graph modification approached proposed by Zhou et al. [188] a sensitive
graph is anonymised by inserting and/or deleting certain edges and vertices.
Methods in this category can be further categorised as follows.

– Optimisation graph construction method: Liu and Terzi [110] proposed
a graph modification technique to anonymise graph data for scenarios
where knowledge of the degree of vertices is used by attackers to iden-
tify the people represented by target vertices. The k-degree anonymity
method [162] is used such that for every vertex in the graph, there exist at
least k− 1 other vertices with the same degree.

– Randomised graph modification approaches: Several studies have used
this idea for graph anonymisation. Hay et al. [90] proposed a method
where anonymisation is achieved through deletion of n edges followed by
insertion of n edges. Ying and Wu [183] proposed a method of randomly
adding, deleting, or switching edges, while Liu et al. [111] proposed two
methods for anonymising a graph where the edge weights were consid-
ered to be sensitive. The first method proposed used Gaussian randomisa-
tion multiplication and the second used a greedy perturbation algorithm.

– Greedy graph modification approach: Zhou and Pei [186] proposed a k-
anonymisation based method for protecting graphs from neighbourhood
attacks (where the adversary attempts to identify target vertices based on
knowledge about their neighbourhood). They further extended their work
in [187] to handle the l-diversity problem [1] which ensures that the sen-
sitive attribute values of a record cannot be inferred with a confidence
greater than 1/l.

• Wang and Li [173] proposed a novel graph-based technique for anonymising
sensitive data with attributes of multiple types, which they abbreviated as AMT
data sets. The multiple types of attributes in an AMT data set are (1) the rela-
tional attributes which consist of quasi-identifiers (QIDs) A, such as age and zip-
code of individuals and sensitive information such as occupation and salary,
and (2) transactional attributes such as products bought by a person or dis-
eases they have, which can have some sensitive values. An AMT data set is
initially presented as a graph G with V vertices and E edges. The set of ver-
tices are categorised into four groups where Vi identifies records in the AMT
data set (such as people), Vr identifies sensitive relational attribute values, Vtn

identifies non-sensitive transaction attribute values, and Vts identifies sensitive
transaction attribute values. An edge e ∈ E connects a record vertex in Vi
and a sensitive relational vertex in Vr, or a record vertex and a non-sensitive
transaction vertex in Vts.

Their proposed method anonymises both sensitive relational and transactional
attributes, while maintaining the information required to analyse relationships
among them. The sensitive relational attributes are anonymised using a near-
est neighbour based fuzzy clustering approach which is defined as follows. For

58 Related Work

each QID attribute value a ∈ A, assuming the distance between two records
(vertices) vx ∈ Vi and vy ∈ Vi is given by |vx(a)− vy(a)| (or the semantic dis-
tance for non-numeric values), each record is linked with the sensitive relational
attribute value in Vr corresponding to the record with which it has the minimal
distance. In this manner, each record would be associated with more than one
sensitive relational attribute value thus ensuring privacy. The sensitive trans-
actional data is anonymised as follows. For each sensitive transaction vertex
vx ∈ Vts, the probability of encountering vx given a non-sensitive transaction
vy ∈ Vtn is calculated as the probability p(vx|vy), which is represented with
the directed edge from vy to vx. A similar probability calculation is applied for
pairs of sensitive transactions. Since there are no direct edges connecting record
vertices Vi and sensitive transactional vertices Vts an adversary will not be able
to directly associate a sensitive product with an individual (only a probability
is given). An experimental evaluation on two widely used benchmark data sets
showed that the method proposed by Wang and Li [173] resulted in minimal
information loss (and therefore retains maximum utility) when compared with
two k-anonymisation based techniques.

• Delanaux et al. [51] proposed a method to anonymise a Resource Description
Framework (RDF) graph such that it is not vulnerable to attacks subsequent
to being linked with an external RDF graph. RDF graphs store information
in the form of subject-predicate-object (known as triples), where the subject is
often used to identify individuals and the object can therefore reveal sensitive
information, especially when combined with other triples. For example t1 =
<mary, specialist of, cancer> and t2 = <bob, seen by, mary> are two triples
which reveal sensitive information about Bob. Even if the triple t2 is deleted in
an RDF graph, if that anonymised graph is linked with an external RDF that
contains triple t2, the sensitive information about Bob can still be revealed.

In the safe anonymisation model proposed by Delanaux et al. [51] every critical
subject and object which can reveal information if used in conjunction with
another triple, is replaced with an anonymised vertex. For example, the triples
t1 and t2 would be anonymised as t′1 = <b1, specialist of, cancer> and t′2 = <b2,
seen by, b1> respectively. The significance of this method is that it preserves the
results obtained with statistical queries such as counting the number of people
seen by ‘b1’. This task can be achieved by running the RDF graph against a set
of private conjunctive queries (which assess the privacy of a triple by joining it
with a given triple), and performing the necessary insertions or deletions to a
triple to anonymise it.

Furthermore, the authors introduce a privacy query that can detect triples,
where a subject or an object can be uniquely identified as representing the same
element from an external RDF graph, and replace such subjects / objects with
blank vertices. With an experimental evaluation conducted on three real-world
RDF graphs, where the largest contained approximately 6.5 million triples, the
authors showed that this graph anonymisation method can be conducted in

§3.7 Summary 59

under one second for each data set. Furthermore, the precision loss of the data
sets increases linearly with the number of blank vertices that are added to the
graph for anonymisation.

With the exception of this last described work by Delanaux et al. [51], all other
work we discussed generate anonymised graphs that cannot be interpreted by hu-
mans. Furthermore, existing graph anonymisation methods which we discussed in
this section do not preserve the graph structure, which renders them inapplicable in
the RL domain. In our work in Chapter 9 we highlight the need for anonymisation
techniques that produce human understandable anonymised graph data, while also
preserving the graph structure.

3.7 Summary

In this chapter, we presented the seminal and state-of-the-art methods for RL, fo-
cusing on supervised, unsupervised and semi-supervised classification techniques,
efficiency enhancement techniques for RL, evaluation measures developed to assess
linkage results, and graph anonymisation approaches. While high linkage quality
has been achieved with supervised RL methods, these methods are often not applica-
ble in real-world linkage projects due to the lack of availability of training data. Fur-
thermore, existing unsupervised and semi-supervised RL approaches do not utilise
the data characteristics (such as temporal and geographic information) available in
population data in the linkage process, which we address with our contributions. We
also contribute to the limited literature available on evaluation measure for assessing
group RL techniques, and propose a novel anonymisation technique for ensuring
the privacy of sensitive linked data. In the next chapter, we present three novel
graph-based clustering techniques which utilise data characteristics to improve link-
age quality.

60 Related Work

Chapter 4

Graph-based Clustering for Record
Linkage Using Data Characteristics

As we discussed in Section 1.2, the lack of availability of ground-truth data for real-
world Record Linkage (RL) applications hinders the use of supervised learning tech-
niques for linking records. In this chapter we address this limitation by proposing
three novel unsupervised graph-based clustering techniques for group RL. These
clustering approaches enhance linkage quality by utilising data characteristics such
as temporal and spacial information available in the data.

In Section 4.1 we provide an introduction to unsupervised group RL techniques
and how data characteristics available in population data can be utilised in these
linkage approaches. Next, in Section 4.2, we discuss how data characteristics in pop-
ulation data sets can be modeled and incorporated in the pairwise similarity graph G
where G is created as described in Definition 2. In Section 4.3 we describe the three
clustering algorithms we propose in detail, whereas in Section 4.4 we empirically
evaluate our proposed methods and compare them with RL clustering techniques
that do not incorporate data characteristics. Finally, in Section 4.5, we provide a
summary of the novel clustering techniques we presented in this chapter.

4.1 Introduction

Even though the applicability of supervised linkage approaches for RL has been
extensively explored [60, 76, 103, 120], such techniques are often of less value in
real-world RL projects due to the limited availability of training (ground-truth) data.
Numerous unsupervised RL techniques [3, 86, 105, 108, 153, 154] have therefore been
explored to address the linkage problem. The challenge with unsupervised learning,
however, is the necessity of distinguishing between matches and non-matches when
training data is unavailable to learn from. Therefore, domain knowledge of the data
is often employed in unsupervised RL techniques to determine the characteristics of
matching record pairs.

As we discussed in Chapter 2, group RL techniques have recently received sig-
nificant attention in contrast to traditional pairwise RL due to their applicability in
linking groups of individuals in population data sets, such as families and house-

61

62 Graph-based Clustering for Record Linkage Using Data Characteristics

holds [134]. The identification of relationships between individuals can enrich and
improve the quality of data, and thus facilitate more sophisticated analysis of differ-
ent socio-economic factors (such as health, wealth, occupation, and social structure)
of large populations [17]. Among the different unsupervised RL techniques explored
in the literature, clustering approaches are most applicable when conducting group
RL. Therefore, in this chapter we explore how groups of records can be linked using
unsupervised clustering approaches.

As we highlighted earlier in this section, unsupervised techniques for RL such
as clustering can employ domain knowledge of the data characteristics to identify
records corresponding to the same entity. Since the scope of this thesis is to ad-
dress linkage of population data, data characteristics such as temporal and spatial
information inherent to population data can be employed to classify record pairs as
matches and non-matches. While existing clustering methods have explored how re-
lationships among entities [105], and similarities in the pairwise similarity graph G
(see Definition 2) [86, 153, 154] can be manipulated to improve the clustering quality,
data characteristics as implied by time and space have not been utilised in clustering
for RL to the best of our knowledge. We therefore propose three novel graph-based
unsupervised clustering techniques for RL which employ data characteristics with
the aim to improve linkage quality.

4.2 Modelling Constraints Implied by Data Characteristics

In this section, we provide a formal definition of data characteristics in population
data, and how it corresponds to the likelihood of a record pair being a match. Fur-
thermore, we describe how we model the constraints implied by these data charac-
teristics to be employed in graph clustering for RL.

Definition 3 (Data Characteristics) Let G = (V, E) be a pairwise similarity graph (see
Definition 2). For each record pair (ri, rj) ∈ E, we define a data characteristic value c as a
comparison between records ri and rj (where ri ∈ V and rj ∈ V) with respect to a common
attribute a ∈ A. Furthermore, a given data characteristic value c has a corresponding proba-
bility p associated with it, which reflects the likelihood (plausibility) for a record pair to be a
match given value c.

Following Definition 3, a data characteristic value c can be the distance between
records ri and rj, where for data characteristics identified by a numerical attribute
(such as the time and geocode [102] which identifies a location), the distance is cal-
culated as the absolute difference in attribute values. If the attribute is a string (such
as the occupation or publication venue) the distance can be calculated as the semantic
difference in attribute values [151]. Domain experts can provide information about
the constraints implied by different data characteristics which we need to model
mathematically to be incorporated in our linkage algorithms.

Most population data sets contain a time related attribute such as the date of
birth in birth data sets, and the publication date in bibliographic data. Therefore,

§4.3 Graph-based Clustering Using Data Characteristics 63

we present our concept of modeling data constraints using temporal characteristics.
Temporal constraints can be modeled based on domain experts’ knowledge to reflect
the likelihood for a record pair with a given temporal difference to be a match. Tem-
poral constrains between records can include that the birth record of a person must
be before their death record, a marriage record can only occur once an individual has
reached a certain age, or that the same mother can only give birth to several babies
according to certain biological limitations (at least nine to ten months apart or within
a few days for multiple births such as twins) [149].

We model such temporal constraints as a list T of time intervals where for each
such interval it is plausible (or not) for two records to be linked (such as a mother
to give birth to two babies). We assume each record ri ∈ V includes a time-stamp,
ri.t, such as a date of birth, marriage, or death. Based on these time-stamps we can
calculate the absolute temporal difference ∆ti,j = |ri.t − rj.t| between two records.
Note that here the temporal difference is the data characteristic value (c = ∆ti,j).

The list T contains time intervals and temporal plausibilities (which are probabil-
ity values), p, where p = 1 means two records are temporally plausible and p = 0
means they are not, in the form of tuples (∆tstart, pstart, ∆tend, pend), with ∆tstart <
∆tend. For example, for birth records, T = [(0,1,2,1), (3,0,273,0), (333,1,12783,1),
(14610,0,99999,0)] means that two births by the same mother up to two days apart
are plausible, as are two births ten months to 35 years (274 to 12,783 days) apart, but
not two births between three days to ten months or more than 35 years apart. The
plausiblity list T is initially constructed based on domain experts’ knowledge which
is then expanded as follows.

We obtain all unique temporal differences ∆t (or data characteristic values c)
corresponding to all record pairs (ri, rj) ∈ E. Then we identify the time interval
(∆tstart, ∆tend) in T to which each temporal difference ∆t belongs (∆tstart ≤ ∆t ≤
∆tend), and calculate the temporal plausibility, p, corresponding to ∆t using linear
interpolation as:

p =

pstart, if ∆t = ∆tstart,

pend, if ∆t = ∆tend,

(pend − pstart) · (∆t−∆tstart)
(∆tend−∆tstart)

+ pstart, if ∆tstart < ∆t < ∆tend.
(4.1)

If the calculated p is below a given minimum temporal plausibility threshold δp,
then record pairs with the corresponding ∆t time difference are deemed not to be
temporally plausible and they will not be linked in the clustering algorithm, as we
discuss further in the following section. Figure 4.1 illustrates temporal constraints
applicable when identifying sibling groups (births by the same mother).

4.3 Graph-based Clustering Using Data Characteristics

In this section, we present three novel unsupervised graph-based clustering tech-
niques which incorporate the temporal constraints we modeled in the previous sec-
tion. As we described in Definition 2, the list of vertices V in a pairwise similarity

64 Graph-based Clustering for Record Linkage Using Data Characteristics

0.0
10 2 3 273 333 14,61012,783

Time difference between two births (in days)P
la

u
si

b
il

it
y
 o

f
tw

o
 b

ir
th

s 1.0

Figure 4.1: Temporal constraints as the plausibility for the same mother to be able
to give birth to two children, where the horizontal axis shows the time difference ∆t
(in days) and the vertical axis the plausibility p that two birth records are possible
for a certain time difference. Due to errors in registration dates, for multiple births
we allow for a few days difference for twins and triplets, and then have a plausible
interval between births from 10 months onwards up to 35 years. Two births by the
same woman more than 40 years (14,610 days) apart is deemed not to be plausible.

graph G = (V, E) represent records from a data set D to be linked. Therefore, a ver-
tex vi ∈ V represents a record ri (i.e. ri = vi) and in the clustering algorithms we refer
to a record ri as a vertex vi, and a record time-stamp ri.t as a vertex time-stamp vi.t.
Note that all the clustering methods proposed in this chapter are unconstrained by
the number of clusters (the clustering algorithms do not need the number of clusters
to be specified as input), and they produce disjoint clusters (each record appears only
in one cluster). That is, with our clustering approaches we aim to generate clusters
where each cluster represents only one true related group of entities, and for each
group of true related entities we have only one cluster.

We chose three clustering approaches named greedy, star, and CLIP clustering
to extend with incorporating data characteristics. The star and CLIP approaches
(we refer to CLIP with data characteristics incorporated as robust graph clustering)
by Saeedi et al. [153, 154] were chosen due to them being reported as algorithms
that surpass the performance of other state-of-the-art clustering algorithms in the
context of RL. We propose greedy clustering as a simple baseline method for group
RL. Note that even though the literature related to graph clustering comprises many
algorithms, not all of them are applicable in the RL context due to the constraints
applicable in RL tasks, such as the size of cluster growth not being linear with regard
to the data sets size, and clusters being disjoint [86].

4.3.1 Greedy Clustering

The greedy clustering approach is based on the idea of iteratively adding vertices
to clusters using a greedy selection method, as illustrated in Figure 4.2. We initially
create one cluster per record, and insert these singleton clusters into a priority queue
that is sorted according to time-stamps with the smallest time-stamp first. We then
process the earliest cluster first, and aim to expand this cluster with a new record

§4.3 Graph-based Clustering Using Data Characteristics 65

0.6

0.95

0.90.7

0.8

0.9 0.85

1

3 5

6

42

r

r r

r

rr

Time

Figure 4.2: Example of the greedy temporal linkage approach described in Sec-
tion 4.3.1, showing vertices (records) and edges (similarities) from the pairwise sim-
ilarity graph G. Records r1 to r3 show an existing cluster, and the question now is
which best future record (from r4, r5, and r6) is to be added to the cluster next. We
consider three selection methods: (a) the earliest next temporally possible record in
the graph G (in this example r4), (b) the future record with the highest maximum

similarity (r5), or (c) the future record with the highest average similarity (r6).

that is in the future (of the latest record in the cluster), as Figure 4.2 shows. In this
greedy approach the question is how to select the best future (next) vertex (record)
to add to a cluster. We implement three different such selection methods to identify
the next best record mn:

• Next: Select the next record (temporally plausible if temporal constraints are
considered) with the smallest time-stamp that is connected via an edge in the
graph G to any record in the cluster. This method does neither consider the
similarities between vertices (besides the edges in G) nor their connectivities,
and serves as a greedy baseline.

• Max-sim: Select the record in the future that is connected via an edge in the
graph G to any record in the cluster and that has the highest overall similarity
si,j (see Definition 1) with any record in the cluster. This method generates
clusters where vertices are connected via edges of high similarities, however,
these clusters might not be dense.

• Avr-sim: Select the record in the future that is connected via an edge in the
graph G to one or more records in the cluster and that has the highest average
similarity over these edges. This method generates dense clusters with high
similarity edges.

Algorithm 1 outlines our proposed greedy clustering approach where we can
consider temporal constraints when selecting the next record to be added into a
cluster, or we can ignore any temporal constraints.

The main input to the algorithm are the pairwise similarity graph, G, and a
list of temporal constraints, T, as discussed in Section 4.2 (if T is empty, temporal

66 Graph-based Clustering for Record Linkage Using Data Characteristics

Algorithm 1: Greedy clustering
Input: G - Undirected pairwise similarity graph

T - List of temporal constraints (as discussed in Section 4.2)
δp - Minimum plausibility for record pairs to be considered
δs - Minimum similarity for a record to be added to a greedy cluster
mn - Method on how to select the next vertex to add to a cluster

Output: C - Final list of clusters
1 GD = GenerateTempDirGraph(G, T, δp) // A temporal directed graph

2 C = [] // Initialise an empty list of clusters

3 Q = [] // Initialise an empty priority queue

4 for v ∈ GD.V do // Loop over all vertices in GD
5 if (|v.in()| = 0) ∧ (|v.out()| = 0) then
6 C.add({v}) // Add singletons to the final list of clusters

7 else
8 Q.add((v.t, {v})) // Add vertex with its time-stamp to queue Q

9 Sort(Q) // Sort queue according to time-stamps (earliest first)

10 while Q 6= [] do // Loop over temporal clusters until Q is empty

11 (t, c) = Q.pop() // Get first cluster tuple in Q
12 o = ∪vi.out(), vi ∈ c // Set of all outgoing vertices

13 if o = ∅ then
14 C.add(c) // Add cluster c with no outgoing edges to the final list C

15 else
16 if mn = Next then // Get vertex with smallest time-stamp

17 vn = vj ∈ o : argmin{vj.t : vi ∈ c, vj ∈ o, si,j ≥ δs}
18 else if mn = Max-sim then // Get vertex with highest similarity

19 vn = vj ∈ o : argmax{si,j : vi ∈ c, vj ∈ o, si,j ≥ δs}
20 else if mn = Avr-sim then // Get vertex with highest average similarity

21 vn = vj ∈ o : argmax{s̄ = ∑ si,j/|{(vi, vj) : vi ∈ c, vj ∈ o}|, s̄ ≥ δs}
22 p∆t = CheckTempConstr(vn.t, c, T) // Temporal plausibility

23 if p∆t ≥ δp then
24 Q.add((vn.t, c ∪ {vn})) // Add expanded c to Q
25 Sort(Q) // Sort queue according to time-stamps (earliest first)

26 else
27 C.add(c) // Add c to the list of final clusters

28 return C

constraints are ignored). We also input a minimum plausibility threshold δp which
is used to consider which record pairs are to be added into clusters based on their
temporal constraints, a minimum similarity threshold δs to decide whether a record
(vertex) can be added to a cluster, and the selection method mn (one of the three
methods described above) which determines which vertices to add into a cluster.

We first (in line 1) convert the undirected similarity graph G into a directed graph
where each vertex (birth record) has an outgoing edge to any future vertex, as shown
in Figure 4.2. The function GenerateTempDirGraph() generates such a directed

§4.3 Graph-based Clustering Using Data Characteristics 67

graph GD by considering the time differences between the pairs of vertices in G,
such that ∀(vi, vj) ∈ GD.E : vj.t ≥ vi.t. Furthermore, if the temporal constraints
are given (i.e. T is non-empty), then the pairwise similarities si,j are weighted by
the temporal plausibility values calculated as defined in Equation 4.1. In line 4, the
algorithm then loops over each vertex v ∈ GD and adds v to the final list of clusters
C if v does not have any incoming or outgoing edges to other vertices (lines 5 and
6), i.e. the vertex is a singleton. Otherwise, a new cluster is created containing only
vertex v, and this cluster is added together with its time-stamp, v.t, as a tuple into
the priority queue Q for further processing (line 8). In line 9 we sort Q according to
the time-stamps of each cluster such that the cluster with the smallest time-stamp is
at the beginning of the queue.

The main loop of the algorithm starts in line 10 where in each iteration we retrieve
the cluster c with the earliest time-stamp t (line 11). We then find for each vertex
vc ∈ c all its outgoing vertices in GD, and in line 12 we combine these into the set o
of all outgoing vertices for c. If o is empty for the current cluster c then c is added to
the final list of clusters C in line 14 because it cannot be expanded further.

On the other hand, if there are outgoing vertices (the set o is not empty), then
based on the selection method mn, as described above, the algorithm selects the next
best vertex, vn, to be added into the current cluster c in lines 16 to 21. For the
Next and Max-sim selection methods, the chosen vertex vn has to have a minimum
pairwise similarity of δs with at least one vertex in the cluster vi ∈ c, whereas for the
Avr-sim method, the average similarity s̄ of vn with all other records in cluster c has
to be at least δs.

Using the function CheckTempConstr() in line 22 we then check the temporal
plausibility p∆t between vertex vn and all vertices in c based on the list of temporal
constraints T (if this list is empty, i.e. no temporal constraints are given, then we set
p∆t = 1). If the calculated p∆t is at least δp (i.e. vn is temporary plausible with all
other vertices in c), then vn is added to the current cluster c and the expanded cluster
is added as a new tuple into Q with vn.t as the tuple’s time-stamp (line 24). Q is
sorted again in line 25 to ensure the cluster with the smallest time-stamp is selected
in the next iteration (line 25). If vn is not temporally plausible with at least one
vertex in c, then c is added to the final list of clusters C in line 27 because it cannot
be expanded further.

Complexity analysis: We now conduct a complexity analysis of our proposed greedy
clustering method. The initial for loop (lines 4 to 8) in Algorithm 1 iterates through
every vertex in the directed similarity graph v ∈ GD.V. Therefore, considering GD =
(V, E), the time complexity of the initial for loop is O(|V|). The priority queue
sorting (line 9) has a complexity of O(|V| · log(|V|)). The while loop (lines 10 to 27)
has a maximum time complexity of O(|E|), since for each record (vertex) in the graph
G, all edges connected to that vertex would be searched to find the next best vertex,
thus resulting in a linear search across all edges. Therefore the total time complexity
of the greedy clustering algorithm is O(|V|+ |V| · log(|V|) + |E|).

68 Graph-based Clustering for Record Linkage Using Data Characteristics

Algorithm 2: Star clustering
Input: G - Undirected pairwise similarity graph

T - List of temporal constraints (as discussed in Section 4.2)
δp - Minimum plausibility for record pairs to be added to a star cluster
δs - Minimum similarity for record pairs to be added to a star cluster
ms - Method to sort vertices for processing
mr - Method to resolve overlapping clusters

Output: C - Final list of clusters
1 C = [] // Initialise an empty list of clusters

2 U = [] // Initialise an empty list to hold unassigned vertices

3 for vi ∈ G.V do // Loop over all vertices in graph

4 ni = GetSimNeighbours(G, vi, δs) // Similar neighbours of vi
5 di = |ni| // Degree of vi
6 ai = CalcAvrSimNeighbours(G, vi, ni) // Calculate average similarity

7 U.add((vi, di, ni, ai)) // Add tuple to list of unassigned vertices

8 SortTuples(U, ms) // Sort according to sorting method

9 for (vi, di, ni, ai) ∈ U do
10 U.removeTuple(vi) // Remove assigned vertex from unassigned list

11 ci = {vi} // Initialise a new cluster with selected vertex as centre

12 while ni 6= ∅ do
13 vj = GetNextBestNeighbour(ci, ni) // Select next best neighbour

14 ni.remove(vj) // Remove selected next best neighbour

15 if IsTempPossSimNeighbour(vj, ci, T, δp) then
16 ci ∪ {vj} // Add temporally plausible vertex to cluster

17 U.removeTuple(vj) // Remove vertex added to the cluster

18 C.add(ci) // Add cluster to the final cluster list

19 vrep = GetRepeatVertices(C) // Get vertices that occur in multiple clusters

20 C = ResolveOverlap(C, vrep, mr, δs) // Assign vertices to best cluster

21 return C

4.3.2 Star Clustering

In the star clustering approach, records with the highest degree (maximum number
of neighbours) and similarity to neighbouring vertices are selected as cluster centers,
and their neighbouring vertices are added to the corresponding cluster. This algo-
rithm was shown to be one of the best performers in a previous evaluation study
of clustering algorithms for RL [153]. Our contribution to improve star clustering is
two-fold: (a) we introduce temporal constraints as discussed in Section 4.2, and (b)
we develop several methods for cluster centre selection and resolve cluster overlaps.

Algorithm 2 outlines our modified star clustering algorithm, which is able to
either consider temporal constraints (if the list of constraints T is provided) or ignore
them (if T is empty) in cluster generation. The input to the algorithm includes the
pairwise similarity graph, G, which is generated as specified in Definition 2, and
the list T of temporal constraints. We also require the minimum plausibility δp and
minimum similarity δs thresholds to decide if a vertex is to be added to a cluster, and
the sorting and overlap resolving methods, ms and mr.

§4.3 Graph-based Clustering Using Data Characteristics 69

The algorithm starts by initialising an empty list of clusters, C, and an empty list
U which will hold information about the vertices that are not yet assigned to clusters.
Initially, all vertices in the similarity graph G are marked as unassigned by adding
them to the list U in the loop starting in line 3. For each vertex vi ∈ G.V, using the
function GetSimNeighbours() in line 4 we get the set of its neighbours ni ⊆ G.V
that have an edge similarity of at least δs. We count the number of these neighbours
as the degree di of vertex vi in line 5, and also calculate the average similarity of all
edges between vi and its similar neighbours in ni in line 6. Next, in line 7 we append
a tuple containing vi, di, ni, and ai to the list of unassigned vertices U.

Once tuples for all vertices in G have been added into U, we sort U such that
the best vertex to select as a cluster centre is at the beginning of this list. We inves-
tigate three different methods of how to order vertices based on the sorting method
provided in ms:

• Avr-sim-first: We order the tuples in descending order based on their average
similarities ai first and then based on the degree di. With this ordering we will
process vertices that have high similarities to other vertices first.

• Degree-first: We order the tuples in descending order based on their degree di
first and then based on their average similarity ai. With this ordering we will
process vertices that have many high similarity edges to other vertices first.

• Comb: With this method we order vertices in descending order based on a
combined score where we multiply their average similarity with the logarithm
of their degree, i.e. ai × log(di). We take the logarithm of di because ai is
normalised into 0 ≤ ai ≤ 1 while di is a positive integer value and therefore
would dominate the combined score. With this method we aim to weigh both
degree and average similarities to obtain an improved ordering.

In lines 9 to 18 of the algorithm, we process one tuple in U after another. Only an
unassigned vertex can become the centre of a new star cluster. The tuple of vertex
vi ∈ U selected to become a star centre is removed from the list of unassigned ver-
tices and a new cluster ci is created in line 11. Then we find the next best vertex to
add to cluster ci, using the function GetNextBestNeighbour(). This function selects
the vertex vj ∈ ni which has the highest average similarity with the vertices that are
currently assigned to the cluster ci. The selected vertex vj is removed from ni in
line 14 so it cannot be selected as the best neighbour in the next iteration. For each
next best neighbour vj we check in line 15 if vj is plausible with every other vertex
in ci with regard to the temporal constraints given in the list T using the function
IsTempPossSimNeighour() (note that if T is empty then this function always re-
turns true), and the minimum plausibility threshold δp. We add each plausible vertex
vj to the cluster ci in line 16 and remove its corresponding tuple from U in line 17.
This means that these vertices cannot become the centre of another star cluster. In
line 18, each processed cluster ci is added to the final cluster list C.

70 Graph-based Clustering for Record Linkage Using Data Characteristics

The final steps of Algorithm 2 (lines 19 and 20), deal with those vertices that are
members of more than one cluster (note these are not star cluster centres). Overlap-
ping clusters are not allowed in RL because each cluster represents one entity. In line
19 we therefore identify the set vrep of vertices which occur in more than one cluster
in the list C, and in line 20 we use the function ResolveOverlap() to resolve over-
lapping clusters, where the method mr determines how we assign a vertex vj ∈ vrep

to its best cluster. We investigate three methods to resolve overlaps:

• Avr-all: We average the similarities between the vertex vj and all the vertices in
a cluster it is connected to in the similarity graph G by dividing this similarity
sum by n− 1 where n is the number of vertices in the cluster (including vj), i.e.
we do take vertices in a cluster which are not connected to vj in G into account.

• Avr-high: We calculate the average similarity between the vertex vj and all the
vertices in a cluster it is connected to in the similarity graph G, with similarities
of at least δs.

• Edge-ratio: In this method we count the number of edges between vj and ver-
tices in a cluster that have a similarity of at least δs and divide this number by
n− 1 where n is the number of vertices in the cluster (including vj).

For each vertex vj ∈ vrep, we assign it to the cluster with the highest value accord-
ing to the selected method to resolve overlaps. For all three methods, if for a given
vertex vj two or more clusters have the same calculated score then we assign vj to the
cluster where vj has the highest number of edges with a similarity of at least δs. At
the end of this process, the final list of clusters C contains no overlapping clusters.

Complexity analysis: We now conduct a complexity analysis of the star clustering
algorithm. The initial for loop (lines 3 to 7) iterates over every vertex in the pairwise
similarity graph v ∈ G.V and calculates the similarity to its connected (neighbouring)
vertices. This is equivalent to searching across all edges in the graph, and therefore,
the initial for loop has a total time complexity of O(|E|) where G = (V, E). The
list sorting (line 8) has a complexity of O(|V| · log(|V|)). The next for loop (lines 9
to 18) also runs for |V| iterations at most (if no record pairs are connected), and in
the worst case, if all record pairs are connected in the similarity graph G, the for
loop would execute once, and the internal while loop (lines 12 to 17) would execute
|V| − 1 number of times (all records would be added to one cluster). Therefore,
the time complexity of this for loop is O(|V|). The time complexity of resolving
cluster overlaps (lines 19 and 20) is O(|V|) in worst case, and therefore, the total time
complexity of the star clustering algorithm is O(|V|+ |V| · log(|V|) + |E|).

4.3.3 Robust Graph Clustering

Our robust graph clustering technique is inspired by the CLIP algorithm proposed
by Saeedi et al. [154] for conducting multi-source RL (which we discussed in Sec-
tion 3.1). We use their concept of link strength (categorising record pairs as strong,

§4.3 Graph-based Clustering Using Data Characteristics 71

normal, and weak, as we describe below), and furthermore incorporate temporal con-
straints in robust graph clustering. This clustering approach comprises of two steps,
where in the first step we generate a set of base clusters which need to be temporally
consistent if temporal characteristics are being considered. Base clusters are expected
to have high precision but may have low recall (see Section 2.4 for definitions) since
we only use links with higher strength (more confident links) in the base cluster gen-
eration. In the second step, these base clusters are iteratively merged in a greedy
manner (while maintaining temporal consistency if temporal constraints are being
considered) to improve the recall if the linkage result.

4.3.3.1 Generating Base Clusters

In the first step in our proposed robust graph clustering approach, we generate a set
of base clusters using the concept of link strength proposed by Saeedi et al. [154].
These base clusters are essentially connected components (i.e. sub-graphs in a graph
where any two vertices are connected via a path and not connected to any other
vertex in the parent graph [21]) which we generate using the pairwise similarity
graph G, where every pair of records in a cluster must be temporally consistent if
temporal constraints T are given. The original connected component based CLIP
clustering approach by Saeedi et al. [154] differs from ours in that it does not con-
sider temporal constraints, and also it assumes the linkage of records across multiple
data sources only. The requirement of incorporating temporal constraints makes the
problem more complex, since simply obtaining the connected components does not
ensure temporal consistency between all records within a component, as the example
in Figure 4.3 shows.

We initially filter graph edges G.E based on their pairwise similarity si,j (see
Definition 1) using a minimum similarity threshold δs (si,j ≥ δs). Next, extending the
ideas described by Saeedi et al. [154], we categorise the filtered edges into three types
as follows:

• Strong: An edge (ri, rj) is strong if the corresponding pairwise similarity si,j is
the highest similarity for both records ri and rj with regard to any other edges
they have with other records in G.

• Norm: An edge (ri, rj) is normal if the corresponding similarity si,j is the highest
similarity for either record ri or rj (but not both) with regard to any other edges
they have with other records in G.

• WeakHigh: An edge (ri, rj) is weak high if it is neither strong nor normal.

As detailed in Algorithm 3, one or several of these edge types are used to create
the initial connected components (named base clusters). Edges (ri, rj) with similarity
si,j < δs are ignored. The temporally implausible base clusters are then split further
until all are temporally consistent. Similar to the previous clustering algorithms, the
main inputs to the Algorithm 3 are an undirected pairwise similarity graph G and

72 Graph-based Clustering for Record Linkage Using Data Characteristics

0
.9
50

.8

0
.7

0.7

0
.8

0.95

0
.7
5

0
.9

0
.8

0.9

non-tem
p

non-temp

n
on
-t
em
p

a

c be

d

g

f h

(a)

0
.9
50

.8

0
.7

0
.8

0.95

0
.9

0
.8

0.9

n
on
-t
em
p

a

c be

d

g

f h

(b)
0
.9
50

.8

0
.8

0.95

0
.9

0
.8

0.9

a

c be

d

g

f h

(c)

Figure 4.3: Example iterative temporal cluster refinement in the base cluster genera-
tion phase, as detailed in Algorithm 3, where in each step we identify the best edge(s)

to be removed that most improves the temporal consistency of the cluster(s).

Algorithm 3: Robust graph clustering - Base cluster generation
Input: G - Undirected pairwise similarity graph

T - List of temporal constraints (as discussed in Section 4.2)
δp - Minimum plausibility for record pairs to be added to a cluster
δs - Minimum similarity for record pairs to be added to a cluster
eb - Type(s) of edges to use to create base clusters

Output: Cb - Set of generated base clusters
1 Cb = { } // Initialise an empty set of clusters

2 Eb = FindTempEdges(G, eb, T, δp, δs) // Get temporal edges of type eb

3 Ccc = GetConnComp(G, Eb) // Get the set of connected components

4 for ci ∈ Ccc do // Iterate through the connected components

5 if IsTempPlausibleCluster(ci, T, δp) then
6 Cb = Cb ∪ {ci} // Add the cluster to the final cluster set

7 Ccc = Ccc \ {ci} // Remove the processed cluster

8 while Ccc 6= ∅ do // Iterate through the temporally inconsistent clusters

9 cj = Ccc.pop() // Get the first connected component

10 I = [] // Initialise a list to hold cluster vertex information

11 for vi ∈ cj do // Iterate through the vertices in cluster cj
12 vn = GetNonTemp(cj, vi, T, δp) // Get temporally implausible vertices

13 I.add((CalcSim(vi, cj, G), GetNeigh(vi, cj), vn, vi))

14 nre f , nntre f , vre f = GetVertexToRefineCluster(I) // Get vertex to refine cj

15 Cr = GetTempImproved(cj, vre f , nre f , nntre f) // Partition cj based on vre f

16 for ci ∈ Cr do
17 if IsTempPlausibleCluster(ci, T, δp) then
18 Cb = Cb ∪ {ci} // Add cluster to the final base cluster set

19 else // If not temporal, add cluster to Ccc to be refined

20 Ccc = Ccc ∪ {ci}

21 return Cb

a list of temporal constraints T (which is empty if temporal constraints are being
ignored). Furthermore, we provide the minimum plausibility δp and minimum sim-

§4.3 Graph-based Clustering Using Data Characteristics 73

ilarity δs thresholds to decide if a vertex is to be added to a cluster, and the type(s)
of edges eb (one or several of Strong, Norm and WeakHigh link strengths, as described
above) to be considered for base cluster generation.

First, in lines 1 to 7 of Algorithm 3, we generate the connected components Ccc

based on the edges (record pairs) in G of the selected edge type(s) eb which we re-
trieve in the set Eb in line 2. Only the temporally plausible edges in G are considered
in this step if the list of temporal constraints T is not empty. We then check, in line
5, if all pairs of records in a connected component ci ∈ Ccc are temporally plausible.
This check is necessary since in the previous step we did not assess the temporal
consistency of record pairs not contained in the similarity graph G. If they are tem-
porally consistent, then ci is added to the set of base clusters, Cb, and removed from
the set of connected components Ccc. At the end of this step the clusters left in Ccc

are those that contain record pairs that are temporally implausible (like two birth
records five months apart).

We next process the clusters in Ccc (lines 8 to 20) one by one. We pick one
cj ∈ Ccc (line 9) and generate a list I which for each vertex vi ∈ cj contains its
average similarity with the other vertices in cj, its neighbours in cj, and the other
vertices in cj it is temporally not plausible with (vn). In line 14, using the function
GetVertexToRefineCluster() we identify from I the best vertex vre f ∈ cj to process
which reduces by most the number of temporal implausible edges in cj.

To select the best vertex vre f , in line 14 we first attempt to find the first vertex
in I with a non-empty intersection between its set of neighbours nre f and the set of
neighbours of vertices which vre f is temporally inconsistent with, nntre f . If the inter-
section is empty for all vertices in I, vre f will be the vertex with the lowest average
similarity in the cluster, the lowest number of neighbours, and that is involved in
the highest number of implausible edges in cj. In the example shown in Figure 4.3,
assuming the vertices with non-temporal connections are ordered as I = [f , e, a, g, c],
we select vertex f first since it is the first vertex in I with a non-empty intersection
(nre f ∩ nntre f = {b, d}). Subsequently, in Figure 4.3 (b), we check vertices e and a in
that order, for non-empty intersection. However, since the intersection is empty for
both vertices a and e, vertex e which has a lower average similarity in the cluster is
selected for removal.

Based on the selected vertex vre f , and sets nre f and nntre f , we then partition the
cluster cj (line 15) using the function GetTempImproved() which returns the set
Cr of two or more temporally improved clusters. In lines 16 to 20 we check each
cluster ci ∈ Cr if it is temporally consistent (in which case we add it to the set of base
clusters, Cb) or not (in which case we add it to the set of clusters Ccc to be processed
further). In Figure 4.3 (a), the edges that vertex f has with its neighbours {b, d} are
removed first, and then edges of vertex e are removed next resulting in the three
temporally consistent clusters shown in Figure 4.3 (c). The algorithm ends once all
clusters in Ccc have been processed and the set of temporally consistent base clusters,
Cb, that is to be refined in the next phase of our approach, is returned in line 21 of
Algorithm 3.

74 Graph-based Clustering for Record Linkage Using Data Characteristics

Complexity analysis: We first conduct a complexity analysis of the base cluster gen-
eration phase of robust graph clustering, in terms of the vertex and edge counts in
the pairwise similarity graph G = (V, E). The complexity of filtering temporal edges
of a given type (line 2) is O(|E|), whereas the time complexity for connected com-
ponent identification is O(|V|+ |E|). The for loop from line 4 to 7 iterates |V| times
at most, whereas in the implementation the temporally plausible vertices for each
vertex can be stored in a dictionary (O(1) complexity for line 5), thus resulting in a
time complexity of O(|V|) for the entire for loop. For the while loop running from
line 8 to 20, let us consider the worst case scenario of having one large connected
component containing all vertices from the similarity graph G. For one connected
component the while loop would execute only once, but the internal for loop (lines
11 to 13) would have a time complexity of O(|V|2) given that the similarity calcula-
tion step (line 13) would consider every record pair. Given that this is the most time
consuming phase of the base cluster generation algorithm, the total time complexity
of based cluster generation is O(|V|2). Note that in practice, the base cluster genera-
tion algorithm takes much less time as opposed to comparing all record pairs (which
also has quadratic time complexity) since in line 13 of Algorithm 3, we consider
pre-calculated similarity values and due to the application of blocking.

4.3.3.2 Iterative Cluster Merging

In this section we describe the second step in our proposed robust graph clustering
approach, where we merge base clusters that have high overall similarities between
all their individual records. This process is iterative, in that merged clusters will be
further compared until no cluster is highly similar with any other cluster. We ensure
that all merged clusters are temporally consistent.

The main inputs to Algorithm 4 are an undirected pairwise similarity graph G,
the list of base clusters resulting from Algorithm 3, and a list of temporal constraints
T (which is empty if temporal constraints are being ignored). We also provide the
minimum plausibility δp and minimum similarity δs thresholds to decide if clusters
can be merged, and the type(s) of edges em (one or several of Norm and WeakHigh
link strengths, as described above) to be considered for base cluster merging. Fur-
thermore, the pairwise cluster similarity calculation method mm and the weight w to
assign to cluster similarity, which we describe later, are provided as input.

As detailed in Algorithm 4, we use a priority queue and sets of similar clusters
to keep track of cluster pairs that are similar in order to prevent a full pairwise
recalculation of cluster similarities each time a merged cluster is generated. We start
the algorithm (lines 1 and 2) by initialising the empty list of final clusters to be
generated, C, and the empty priority queue, Q, which will hold cluster pairs and
their similarities.

In lines 3 to 5, we calculate the similarities between every pair of base clusters
in Cb, where we consider a set of edge types, em, different to Algorithm 3, with one
or several of Norm, and WeakHigh, as described before. Compared to the edge types
used for base cluster generation in Algorithm 3, the edge types used for cluster merg-

§4.3 Graph-based Clustering Using Data Characteristics 75

Algorithm 4: Robust graph clustering - Similar base cluster merging
Input: G - Undirected pairwise similarity graph

Cb - Base clusters (as generated in Algorithm 3)
T - List of temporal constraints (as discussed in Section 4.2)
δp - Minimum temporal plausibility for clusters to be merged
δs - Minimum similarity for clusters to be merged
em - Type(s) of edges to use to merge base clusters
mm - Method to merge base clusters (cluster similarity calculation method)
w - Weight to assign to cluster similarity (1− w weight for cluster coverage)

Output: C - Final list of clusters
1 C = [] // Initialise an empty list of clusters

2 Q = [] // Initialise an empty priority queue

3 Em = FindTempEdges(G, em, T, δp, δs) // Get temporal edges of type em

4 for (ci, cj) ∈ Cb, i < j do // Calculate pairwise cluster similarities

5 Q.add((CalcSim(ci, cj, G, Em, mm, w), ci, cj))

6 while Q 6= ∅ do // Iterate through cluster pairs in Q
7 sx,y, cx, cy = Q.pop() // Get the most similar cluster pair from Q
8 Cx = {cp : (cp, cx) ∈ Q ∧ sp,x ≥ δs, cp 6= cy} // Clusters similar with cx

9 Cy = {cq : (cq, cy) ∈ Q ∧ sq,y ≥ δs, cq 6= cx} // Clusters similar with cy

10 RemoveAllTuplesWithCluster(Q, cx) // Remove tuples with cx from Q
11 RemoveAllTuplesWithCluster(Q, cy) // Remove tuples with cy from Q
12 if (sx,y ≥ δs) and IsTempPlausibleClusterPair(cx, cy, T, δp) then
13 cx+y = cx ∪ cy // Merge highly similar, temporally plausible clusters

14 if Cx ∪ Cy = ∅ then // If no other clusters are similar with cx or cy
15 C.add(cx+y) // Add the merged cluster to final cluster list

16 else // Add cx+y with clusters similar to cx or cy into Q
17 for cz ∈ Cx ∪ Cy do
18 Q.add((CalcSim(cz, cx+y, G, Em, mm, w), cz, cx+y))

19 else // Add clusters cx and cy to the final cluster list if non-mergeable

20 C.add(cx), C.add(cy)

21 return C

ing in Algorithm 4 should have a lower strength, since base clusters are expected have
high precision as we highlighted earlier. Therefore, Strong edges, which are the edges
with the highest strength, are not considered for cluster expansion. Furthermore, if
the list of temporal constraints T is not empty, only temporally plausible record pairs
(edges) of type(s) em are considered.

In line 5 we calculate the similarity between a cluster pair ci and cj using the
edges Em of type em, merge method, mm, and a cluster similarity weight, w. The
merge method mm determines how the overall similarity between clusters is calcu-
lated, where it can be one of the aggregation functions minimum, average, or maxi-
mum. The aggregated similarity and the coverage between two clusters are assigned
weights w and 1− w respectively. The coverage is the ratio between the number of
edges across ci and cj in Em, and the number of edges across ci and cj in G, which

76 Graph-based Clustering for Record Linkage Using Data Characteristics

reflects the proportion of edges covered in our similarity calculation. The cluster sim-
ilarity, sx,y, returned by CalcSim() is the weighted sum of similarity and coverage.

The main loop starts in line 6 and iterates over each cluster pair tuple in the queue
Q. For both clusters in the tuple, cx and cy, we next (lines 8 and 9) identify all other
clusters that they are similar with, and we keep these clusters in two sets Cx and Cy,
respectively. We then remove all tuples in Q that contain cx or cy since they should
not be re-processed. In line 12 we check if the similarity between cx and cy is at least
the minimum cluster merge similarity δs and if they are temporally consistent with
each other. If this is the case we merge clusters cx and cy into cx+y in line 13.

If both cx and cy are not similar with any other clusters (i.e. both Cx and Cy are
empty), then based on the triangular inequality [35] we know that the merged cluster
cx+y cannot be merged further with any other clusters. Therefore cx+y is added to
the list of final clusters, C, in line 15. Otherwise, in line 17 we calculate the similarity
of the merged cluster, cx+y, with each cluster in Cx and Cy and add new tuples into
the queue Q in line 18.

If a cluster pair in the queue Q was not similar enough or not temporally consis-
tent, we do not merge cx and cy but instead add both into C in line 20. Finally we
return the set of merged and temporally consistent clusters, C.

Complexity analysis: We now conduct a complexity analysis of the iterative cluster
merging phase of robust graph clustering. Similar to the base cluster generation
phase, the complexity of filtering edges of a given type (line 3) is O(|E|), whereas
the initial for loop (lines 4 and 5) is quadratic by the number of base clusters, and
therefore has a time complexity of O(|Cb|2). The main while loop (lines 6 to 20)
iterates at most for |Cb|2 number of times, since even though we add new cluster
pairs to the queue Q in line 18, we delete a larger or equal number of entries from
the queue in lines 10 and 11 in such occurrences. All functions within the while
loop can be executed with O(1) complexity, except the for loop in lines 17 and 18
which has O(|Cb|) time complexity at worst (when a given merged cluster pair is
compared with every other base cluster). Therefore, the while loop has a total time
complexity of O(|Cb|3), which is the overall time complexity of Algorithm 4 given
that it is the dominant term. Hence, considering both the base cluster generation
phase and cluster merging phase, the overall time complexity of the robust graph
clustering technique is O(|V|2 + |Cb|3).

4.4 Experimental Evaluation

In this section, we present the results obtained with an empirical evaluation of our
three graph clustering methods using data characteristics. We conducted experi-
ments on the real-world Isle of Skye (IoS) and synthetic UK birth data sets which we
described in Section 2.5. Furthermore, we implemented our algorithms in Python 2.7,
and all experiments were conducted on a server running Ubuntu 18.04 with 64-bit
Intel Xeon 2.10 GHz CPUs and 512 GB of memory.

§4.4 Experimental Evaluation 77

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0
F

∗ -
m

e
a
su

re
mn : Max-sim

IoS (NT)

IoS (T)

UK (NT)

UK (T)

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

mn : Avr-sim

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

mn : Next

Figure 4.4: Greedy clustering results obtained with (T) and without (NT) temporal
constraints: Average of F∗ values obtained with different similarity graphs, shown
for different similarity thresholds δs, and different next vertex selection methods mn.

As discussed in Section 2.6, we generated three types of pairwise similarity
graphs G for each birth data set by comparing All attributes (GA), Parent names
and address attributes (GNA), and Parent names only (GN). For each algorithm, we
explored the similarity threshold values δs ranging from 0.7 to 1.0 in steps of 0.05,
whereas we set the plausibility threshold value δp to 0.5 subsequent to conducting
an initial set of experiments on temporal possibilities of record pairs in birth data
sets. As the baseline techniques, we used the proposed clustering techniques dis-
regarding the data characteristics. Since we linked the IoS and UK birth data sets
with the aim of identifying sibling groups, we applied temporal constraints based on
temporal data characteristics (such as a sibling link with a five month age gap being
biologically implausible) in our experiments.

For evaluation we used the F∗-measure presented in Equation 2.5. As shown
in Figure 2.2 (b), F and F∗ are monotonically related thus resulting in decisions
made based on F∗ being identical to the decisions made based on the F-measure.
Furthermore, based on Equation 2.5, F∗-measure values are always less than or equal
to the precision, recall and F-measure values. Therefore, the F∗-measure is a robust
and appropriate measure for evaluating our proposed clustering algorithms.

We also report the average of percentage improvements/declines in precision and
recall achieved by applying temporal constraints as opposed to not applying tempo-
ral constraints. Considering the precision values achieved with a certain algorithm
for a given parameter configuration disregarding (PNT) and applying (PT) temporal
constraints, the average precision improvement is calculated as (PT − PNT) · 100/PNT
(where a negative outcome is interpreted as a precision decline). The percentage
recall improvements can be calculated in a similar manner, whereas we report the
average of such percentage precision and recall improvements across the different
parameter configurations.

4.4.1 Linkage Quality Evaluation

We will now analyse the linkage quality improvements achieved by incorporating
temporal constraints, compared to disregarding temporal constraints. To summarise

78 Graph-based Clustering for Record Linkage Using Data Characteristics

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

ms : Avr-sim-first
mr : Avr-all

IoS (NT)

IoS (T)

UK (NT)

UK (T)

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

ms : Avr-sim-first
mr : Avr-high

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

ms : Avr-sim-first
mr : Edge-ratio

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

ms : Degree-first
mr : Avr-all

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

ms : Degree-first
mr : Avr-high

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

ms : Degree-first
mr : Edge-ratio

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

ms : Comb
mr : Avr-all

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

ms : Comb
mr : Avr-high

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0
F

∗ -
m
e
a
su

re

ms : Comb
mr : Edge-ratio

Figure 4.5: Star clustering results obtained with (T) and without (NT) temporal con-
straints: Average of F∗ values obtained with different similarity graphs, shown for
different similarity thresholds δs, different vertex sorting methods ms, and different

overlap cluster resolving methods mr.

the results we show the average of the F∗ values obtained for the three different
similarity graphs GA, GNA, and GN .

Figure 4.4 shows the linkage quality achieved with applying the greedy cluster-
ing approach discussed in Section 4.3.1 on the IoS and UK birth data sets. With the
greedy clustering approach an average percentage precision improvement of 16.72%
was achieved for the IoS data set, at the cost of a 2.31% decline in recall. However,
for the UK data set the precision declined by an average 0.92% whereas the recall
improved by an average 0.19%. As implied by these results and the F∗ values shown
in Figure 4.4, the precision improvement/decline achieved with applying temporal
constraints (T) was approximately equal to the decline/improvement in recall and
therefore the overall linkage quality was not improved by applying temporal con-
straints in greedy clustering.

The linkage quality achieved with star clustering is shown in Figure 4.5. Notice
how with the IoS data set the F∗ values have considerably improved when temporal
constraints are applied (T) compared to not applying temporal constraints (NT). The

§4.4 Experimental Evaluation 79

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re
em : Norm

mm : Minimum

IoS (NT)

IoS (T)

UK (NT)

UK (T)

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

em : Norm
mm : Average

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

em : Norm
mm : Maximum

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

em : Norm followed by WeakHigh
mm : Minimum

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -

m
e
a
su

re

em : Norm followed by WeakHigh
mm : Average

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -

m
e
a
su

re

em : Norm followed by WeakHigh
mm : Maximum

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su
re

em : Norm with WeakHigh
mm : Minimum

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su
re

em : Norm with WeakHigh
mm : Average

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su
re

em : Norm with WeakHigh
mm : Maximum

Figure 4.6: Robust graph clustering results obtained with (T) and without (NT) tem-
poral constraints: Average of F∗ values obtained with different similarity graphs,
shown for different types of edge combinations to merge clusters em, and different

cluster similarity calculation methods mm.

improvement is greater for lower similarity thresholds δs since at higher threshold
values the precision is already quite high even without applying temporal constraints
thus giving limited allowance for further improvement. With the IoS data set, a
significant average precision improvement of 74.33% was achieved at the cost of a
small 1.64% decline in recall when temporal constraints were applied. With the UK
data set, however, the precision improvement and decline in recall were 0.59% and
0.23% respectively, thus resulting in no significant improvement with the application
of temporal constraints. We believe this behaviour to be the result of the UK data set
being a synthetic one, which does not have temporal patterns as clearly defined as
in real-world data sets. We further explore if temporal star clustering is effective on
real-world data sets in Chapter 10.

Figure 4.6 shows the F∗ values obtained with conducting RL using the robust
graph clustering approach. With a set of preliminary experiments we identified that
the base clusters with the highest precision were obtained when only Strong edges
were used for base cluster generation (eb). Therefore, we show results achieved with

80 Graph-based Clustering for Record Linkage Using Data Characteristics

Table 4.1: The parameter configurations that produced the best F∗ value per each
data set and each clustering algorithm. Applying temporal constraints consistently
produced the best results, whereas the choice of algorithm specific parameter config-

urations was mostly consistent across the two data sets
Data set Algorithm F∗ Best parameter configurations

G δs Algorithm specific parameters Run-time (sec)

Greedy 0.75 GN 0.95 Temporal, mn = Next 150.82
Star 0.83 GN 0.95 Temporal, ms = Avr-sim-first, 30.02

IoS mr = Avr-all
Robust 0.83 GN 0.95 Temporal, mm = Average, 1,952.42

em = Norm with WeakHigh

Greedy 0.89 GA 0.85 Temporal, mn = Next 15.49
Star 0.91 GA 0.85 Temporal, ms = Degree-first, 5.78

UK mr = Avr-all
Robust 0.87 GA 0.9 Temporal, mm = Average, 225.28

em = Norm with WeakHigh

merging Strong link based base clusters. Furthermore, we set the weight w = 1.0 such
that only cluster similarity is considered in cluster merging, but not the cluster cover-
age since better linkage values were obtained with w = 1.0. While the linkage results
are not significantly different for applying or disregarding temporal constraints when
using the Norm type edges only for merging, a considerable quality improvement is
indicated for the IoS data set when both Norm and WeakHigh edges are used with
temporal constraints. We experiment with merging base clusters by first expanding
with Norm edges and then with WeakHigh edges, and expanding with both types
of edges at once. Only a minor improvement is shown when temporal constraints
are applied on the UK data set, which we believe to be a result of that being a syn-
thetic data set as highlighted before. With robust graph clustering, a large average
precision improvement of 5106.43% was achieved at the cost of a 2.05% reduction in
recall for the IoS data set, whereas the precision improvement and decline in recall
were 18.03% and 0.08% respectively, for the UK data set. The reason for the average
precision improvement achieved with the IoS data set being greater than 100% is due
to the linkage precision being very low when temporal constraints are disregarded.

In Table 4.1 we present the parameter configurations per each data set and each
clustering algorithm, which produced the best results with regard to the F∗-measure.
Notice how the best results have consistently been achieved when temporal con-
straints were incorporated, with the GN and GA pairwise similarity graphs for the
IoS and UK data sets respectively. Furthermore, the best results were obtained at
higher similarity thresholds (δ ≥ 0.85) for both data sets. Surprisingly, the vertex
selection method (mn) Next produced the best linkage results in the greedy approach
for both data sets. Furthermore, in the robust graph clustering approach, for both IoS
and UK data sets, merging base clusters with Norm and WeakHigh edges at once (em),
using an Average cluster similarity calculation method (mm) produced the best re-
sults. With star clustering, the cluster overlap resolving method (mr) Avr-all worked

§4.4 Experimental Evaluation 81

Table 4.2: The minimum (Min), maximum (Max), average (Avr), and median (Med)
run-times (in seconds) of each clustering algorithm per birth data set.

Data Algorithm Run-time (NT) Run-time (T)
set Min Max Avr Med Min Max Avr Med

Greedy 0.09 6,929.68 135.41 10.70 0.09 736.58 66.21 5.94
IoS Star 6.85 1,165.77 45.55 22.17 7.02 1,535.16 124.58 23.38

Robust 156.94 77,162.53 4,273.28 274.50 1,801.49 5,501.22 2,720.17 2,545.94

Greedy 0.07 13,827.01 128.42 6.21 0.07 47,634.59 399.27 11.79
UK Star 5.50 31.61 8.36 7.56 5.53 330.29 24.55 7.75

Robust 85.38 30,222.08 1,359.94 108.67 210.23 24,405.55 1,301.05 253.73

best for both data sets. The Avr-sim-first vertex sorting method (ms) produced best
results for the IoS data set, and the Degree-first method for the UK data set.

4.4.2 Run-time Evaluation

In the last column of Table 4.1, we show run-times in seconds achieved for the ex-
periments run with the best parameter configurations. Considering the trade-off
between the effectiveness and efficiency across the three proposed algorithms, it is
evident that temporal Star clustering is clearly the best performer as it produces the
highest linkage quality in the shortest run-times.

We present the minimum, maximum, average and median values of algorithm
run-times in seconds in Table 4.2. With the IoS data set, the minimum run-times have
either increased or not changed, whereas the maximum run-times have reduced for
all three algorithms, when temporal constraints were applied (T) compared to not
using temporal constraints (NT). The median run-time values have either decreased
(for greedy clustering) or increased (for star and robust) with the application of tem-
poral constraints due to the variations in these run-time ranges.

The minimum run-time values correspond to higher similarity thresholds δs,
where the additional computational effort required for checking temporal constraints
increases the temporal run-time. However, at lower δs, which correspond to the
maximum run-times, the computational effort for temporal constraint checks is out-
weighed by the advantage of removing many temporally implausible record pairs.
Therefore, the maximum temporal run-time values are less than the corresponding
maximum non-temporal run-times. The average run-time values have reduced with
the application of temporal constraints except for star algorithm, indicating it is often
more efficient than the baseline non-temporal technique.

As a result of the reduction in the maximum run-time, the average run-time was
slightly improved for conducting RL on the UK data set with robust graph clus-
tering using temporal constraints. Otherwise, the minimum, maximum, average,
and median run-time values have always increased with the application of tempo-
ral constraints compared to the non-temporal approach. This is due to the extra
computational effort required for checking temporal constraints in the UK data set
outweighing the benefit from the removal of temporally implausible record pairs.

82 Graph-based Clustering for Record Linkage Using Data Characteristics

Given that IoS is a real-world data set and UK is a synthetic one, the application
of temporal constraints is beneficial mostly for the former data set in terms of both
the linkage quality and efficiency since real-world data sets have more realistic data
characteristic patterns.

4.5 Summary

In this chapter, we have presented the novel concept of applying data characteristics
for RL to improve the linkage quality. This concept was presented using temporal
data characteristics and the corresponding temporal constraints which are available
in most population data sets. We proposed three unsupervised clustering techniques,
namely greedy clustering, star clustering, and robust graph clustering, which incor-
porate these temporal constraints in the classification process. Empirical evaluation
of the clustering techniques were conducted on one real-world and one synthetic
birth data set.

The empirical evaluation showed substantial quality improvements when tempo-
ral constraints were applied on the real-world data set with the star and robust graph
clustering approaches. The quality improvements were however not very significant
for the synthetic data set, due to the temporal patterns not being as realistic as for the
real-world data set. The greedy clustering approach too did not produce significant
quality improvements with the application of temporal constraints due to the pre-
cision improvement being approximately similar to the decline in recall. Therefore,
the temporal star and temporal robust graph clustering methods are more suitable
to be applied on real-world RL applications. We further assess the quality of these
algorithms using a novel evaluation measure in Chapter 8, and by applying them on
a new real-world data set in Chapter 10.

We furthermore showed that the run-time considerably improves when temporal
constraints are applied on robust graph clustering for real-world data sets. In the
next chapter, we further extend our concept of using data characteristics to include
transition probabilities, and conduct a comparative evaluation with the methods pro-
posed in this chapter.

Chapter 5

Record Linkage Using Transition
Probabilities on Data
Characteristics

In the previous chapter we presented the novel concept of applying data character-
istics to improve the quality of Record Linkage (RL) applications. In this chapter,
we further develop this concept to consider the transition probability distributions
corresponding to data characteristics, where we consider transitions across states as-
sociated with records. In Section 5.1 we provide an introduction to our concept of
using state transition probabilities on data characteristics, and describe what we refer
to as a state in population data. Next, in Section 5.2, we discuss how to model these
transition probabilities to determine the likelihood of a state transition in the real-
world (referred to as the population goodness of a state transition). In Section 5.3 we
then discuss how this population goodness measure can be combined with attribute
value-based record pair similarities to obtain a cluster goodness measure, which re-
flects the plausibility of a cluster that was generated with a RL clustering approach.
Furthermore, we propose a method to incorporate this cluster goodness measure in
the RL process to improve the linkage quality. Subsequently, in Section 5.4 we em-
pirically evaluate our cluster goodness-based RL techniques and compare them with
the data characteristics-based methods we proposed in the previous chapter. Finally,
in Section 5.5, we conclude this chapter with a summary of our findings.

5.1 Introduction

As we discussed in the previous chapter in page 61, group RL techniques using clus-
tering are more frequently used compared to traditional linkage approaches, due to
their applicability in linking groups of individuals in population data sets. In the
previous chapter, we therefore proposed a method to enhance the linkage quality
achieved with unsupervised clustering techniques by incorporating data characteris-
tics such as temporal and spatial information.

In the real-world, an entity may assume different states, where a state is an event
or a role attached to the entity. Such states may change over the lifetime of the

83

84 Record Linkage Using Transition Probabilities on Data Characteristics

0 3 6 9 12 15 18 21

o
f

tw
o
 b

ir
th

s

P
ro

b
ab

il
it

y

First to second birth

Second to third birth

Third to fourth birth

Fourth to fifth birth

Time difference in months between two births by the same mother

Figure 5.1: Temporal probability distributions for different pairs of birth records.

entity. For example, population data from national censuses and civil registries [149]
generally contain records that describe a group of individuals, where each has a
different role, such as a baby and her mother and father. These roles change over
time, for example, once old enough the baby can get married (becomes a bride on
a marriage certificate) and has her own children (becomes the mother on the birth
certificates of her babies). Furthermore, if we consider the group RL task of bundling
sibling records (births by the same parents), the birth records corresponding to each
parent assume events birth of baby 1, birth of baby 2 and so on, depending on the
number of children per family. Considering a bibliographic data set, the authors
may assume the roles of student, postdoctoral researcher and professor at different times.
A state transition refers to transitioning from one state to another, such as a person
transitioning from being a bride to a mother in a historic population data set.

In this chapter we investigate how the distribution of probabilities of transitioning
between states based on a data characteristic can be incorporated with group RL
techniques. We specifically explore how well a set of linked records (a group or
a cluster), where each record has data characteristics, fits the distribution of data
characteristics of such records as found in a large population. To achieve this task,
we introduce population goodness measures which reflect the goodness or quality of
each state transition in a cluster, compared to state transitions encountered in the
real-world. For example, are the linked birth records by a mother over time what
is common, or are her births timed rather unusual. This is illustrated in Figure 5.1,
which shows that the first two births by a mother are more likely to occur within a
shorter period of time compared to the fourth and fifth births [62].

In this chapter, we explore two novel population goodness measures based on
state transition probability calculation methods. The first assumes a Markov prop-
erty [150] of state transitions over data characteristic values. The second measure
considers all transition probabilities from one state to future states (such as the like-
lihood that a mother gives birth to three more children within five years after her
first birth). We assume that these probability distributions (or population goodness)
can be calculated based on a publicly available linked population data set from a
similar domain, or based on a domain expert’s knowledge. We then develop three
cluster goodness measures to assess the plausibility of clusters generated by a cluster-
ing technique for RL, by combining such a population goodness of fit with attribute
similarities of record pairs.

§5.2 Modelling Population Goodness 85

5.2 Modelling Population Goodness

In this section, we describe how we model the population goodness (or the state
transition probabilities with data characteristics) using two probabilistic techniques,
where the first is based on Markov chains and the second on overall transition prob-
abilities. As we described in Section 4.2, most population data sets contain temporal
data characteristics, and we therefore model population goodness considering the
temporal characteristics implied by the event time differences across records (such as
the time difference between the birth and marriage of a person).

To calculate population goodness we assume to have a set, Cg, of non-overlapping
ground-truth clusters. Each cluster cg ∈ Cg contains a group of records, where each
record ri ∈ cg has a time stamp, ri.t and an event type (or a state), ri.s. The set of
all states, S = {s1, s2, ..., sn} contains all possible event types, such as birth, marriage,
birth of a baby, and death [149].

5.2.1 Markov Chain-based Population Goodness

Here we assume the simplified view that events (or states) in people’s lives follow a
Markov process [72], where the probability of a certain event occurring only depends
upon the previous event in the person’s life.

For a set of ground-truth clusters, Cg, the Markov state transition probability of
sx −→ sy (from sx to sy) is calculated as the ratio of the total number of consecutive
transitions from sx −→ sy across all ground-truth clusters cg ∈ Cg, divided by the
number of all consecutive transitions from sx to any other state sz ∈ S. Consecutive
transitions are identified using ri.s −→ rj.s where (ri, rj) ∈ cg, ∀cg ∈ Cg, and where
ri.t ≤ rj.t. Furthermore, ri and rj need to occur consecutively in time and no record
in cg can be between them. This means @rx such that ri.t ≤ rx.t ∧ rx.t ≤ rj.t. We can
then calculate such a Markov-based population goodness at two levels:

• Markov chain independent of time: In this method, probabilities (or pop-
ulation goodness values) are calculated for each consecutive state transition
sx −→ sy in all record pairs (ri, rj) in all cg ∈ Cg. These transitions are assumed
to hold the Markov property with the requirements discussed above, but we do
not consider the actual time when these records occur.

PGm(sx −→ sy) =
|∀(ri.s −→ rj.s), ri.s = sx, rj.s = sy|

|∀(ri.s −→ rj.s), ri.s = sx, rj.s = sz, ∀sz ∈ S| . (5.1)

• Markov chain based on time: Probabilities for each consecutive state transition
sx −→ sy can also be calculated for a specific time interval (or temporal differ-
ence), ∆t. We use kernel density estimation (KDE) [159] to obtain smoothed
probability curves (as shown in Figure 5.1) to reduce overfitting the ground-
truth. Furthermore, we assume that ri.t ≤ rj.t.

PGmt(sx −→ sy, ∆t) =
|∀(ri.s −→ rj.s), ri.s = sx, rj.s = sy, (rj.t− ri.t) = ∆t|

|∀(ri.s −→ rj.s), ri.s = sx, rj.s = sy|
. (5.2)

86 Record Linkage Using Transition Probabilities on Data Characteristics

��

0.9 * 0.7 0.8 * 0.65 0.95 * 0.7

0.8 * 0.8

0.9 * 0.7

0.7 * 0.8

1.0 * 0.5

0.8 * 0.3

c3

c1

c2

b1

b1

b1

b4

b4

b4

b2 b3

b5 b6

b7

Time

Cluster

Cluster

Cluster

Figure 5.2: Example of overlapping clusters (all three contain birth records b1 and
b4) with pairwise attribute similarities multiplied by population goodness.

For the example cluster c1 in Figure 5.2, the Markov transitions consist of b1 −→
b2, b2 −→ b3, and b3 −→ b4. The Markov chain-based population goodness calculation
method is justifiable when we assume that the state transitions encountered in a
population are influenced only by the current state. For example, with this approach
we can calculate the probability of a person immediately transitioning to becoming
a professor from his or her current occupation.

5.2.2 Overall Transition Probability-based Population Goodness

Transition probabilities can also be applied independent of the Markov property. For
a set of ground-truth clusters, Cg, the overall state transition probability of sx −→
sy can be calculated as the ratio of the total number of transitions from sx −→ sy

across all ground-truth clusters cg ∈ Cg, over the total number of times state sx was
encountered in clusters in Cg. Overall transitions within ground-truth clusters are
identified using ri.s −→ rj.s where (ri, rj) ∈ cg, ∀cg ∈ Cg, such that ri.t ≤ rj.t (this
means state or event rj.s occurs after ri.s but not necessarily consecutively). Such an
overall transition probability-based population goodness can again be calculated on
two levels:

• Overall transition probability independent of time: In this method, probabil-
ities are calculated for every possible state transition sx −→ sy, where state sx is
encountered before sy.

PGo(sx −→ sy) =
|∀(ri.s −→ rj.s), ri.s = sx, rj.s = sy|
|∀ri ∈ cg, ∀cg ∈ Cg, ri.s = sx|

. (5.3)

• Overall transition probability based on time: Probabilities are calculated for
every state transition sx −→ sy for a given time interval, ∆t. For example, we can
calculate the probability of a death event following a birth event either within a

§5.3 Record Linkage Clustering with Population Goodness 87

few days or many years apart (where other states or events for a person might
have occurred in between, such as a marriage or the birth of a baby). We again
apply KDE to minimise overfitting.

PGot(sx −→ sy, ∆t) =
|∀(ri.s −→ rj.s), ri.s = sx, rj.s = sy, (rj.t− ri.t) = ∆t|

|∀(ri.s −→ rj.s), ri.s = sx, rj.s = sy|
. (5.4)

For the example cluster c1 in Figure 5.2, the overall transitions comprise of b1 −→
b2, b1 −→ b3, b1 −→ b4, b2 −→ b3, b2 −→ b4, and b3 −→ b4. Unlike in the Markov
method, the overall transition probability-based population goodness calculation
method is justifiable when we assume that all previous states encountered in a pop-
ulation data set influence the transitions to future state. For example, with this ap-
proach we can calculate the probability of a person transitioning from any occupation
to being a professor in the future, regardless of the other occupations they may hold
in between. Modelling population goodness using both these methods is useful for
identifying which is more applicable in real-world population data sets.

5.3 Record Linkage Clustering with Population Goodness

We now describe how the population goodness measures can be used in the RL pro-
cess. As we described in the previous section, these measures reflect the likelihood
of state transitions in a population data set based on a domain expert’s knowledge,
or a publicly available linked data set from a related domain. Our aim is to refine
the clusters generated by a RL clustering technique based on the knowledge of these
state transition probabilities. Therefore, we propose a method to rank clusters gen-
erated by a RL clustering technique that generates overlapping clusters, such that
clusters with a higher ranking can be retained and the others can be discarded. The
methods we propose in this section are applicable to any clustering technique for RL
that generates a set of overlapping clusters Co. Therefore, the clustering algorithm
can be treated as a black box which produces overlapping clusters.

We first discuss the three methods to calculate the cluster goodness (i.e. goodness of
a predicted cluster) based on the population goodness measures. Next, we describe
how clusters are ranked based on the selected cluster goodness measure to refine
clusters, such that cluster overlaps are resolved. In the following we denote the size
of an overlapping cluster co ∈ Co by n = |co|.

5.3.1 Markov Chain-based Cluster Goodness (MC)

In this approach we use the Markov chain-based population goodness calculation
described in Section 5.2.1 to determine the probability for a record to transition
from one state to another, either independent of (Equation 5.1), or dependent on
(Equation 5.2) time. For every consecutive record pair (ri, rj) ∈ co, ∀co ∈ Co, where
ri.t ≤ rj.t and @rx such that ri.t ≤ rx.t ∧ rx.t ≤ rj.t, the transition probability pi,j is
obtained for transition ri.s −→ rj.s, using the Markov-based population goodness cal-
culation in Equation 5.1 or Equation 5.2, where the similarity si,j for (ri, rj) is obtained

88 Record Linkage Using Transition Probabilities on Data Characteristics

from a pairwise similarity graph G = (V, E) as we described in Section 2.3.3. The
overall cluster goodness for cluster co is then calculated as:

CGMC(co) = ∑
(ri ,rj)∈co

pi,j · si,j

n− 1
. (5.5)

The denominator in Equation 5.5 is n − 1 since there are n − 1 consecutive (or-
dered) record pairs in a cluster with n records. Once we have calculated cluster
goodness for each cluster, we order (rank) all clusters by their cluster goodness (with
highest goodness first) and iteratively select the best cluster into a final set of non-
overlapping clusters. Any record encountered in a selected cluster is marked as be-
ing assigned, and when we select the next best cluster we check for already assigned
records and remove these from the selected cluster. This ensures that no clusters are
overlapping.

Figure 5.2 provides an example of such a Markov chain-based cluster goodness
calculation, where the goodness of cluster c1 is calculated as CGMC(c1) = ((0.9×
0.7) + (0.8× 0.65) + (0.95× 0.7))/3 which is equal to 0.605. Similarly, the goodness
of clusters c2 and c3 can be calculated as CGMC(c2) = 0.567 and CGMC(c3) = 0.435
respectively, and therefore cluster c1 with the highest goodness is selected into the
final set of clusters.

5.3.2 All Pairs-based Overall Cluster Goodness (AP)

This approach uses the overall transition probability-based population goodness cal-
culation described in Section 5.2 to determine state transition probabilities, indepen-
dent of (Equation 5.3), or dependent on (Equation 5.4) time. For every record pair
(ri, rj) ∈ co, ∀co ∈ Co, where ri.t ≤ rj.t, the transition probability pi,j is obtained
for ri.s −→ rj.s, using the overall transition-based population goodness calculation,
whereas the similarity si,j for (ri, rj) is again obtained from the pairwise similarity
graph G = (V, E). Note that for record pairs which are potentially removed from
the pairwise similarity graph G due to application of methods such as blocking or
indexing (described in Section 2.3), we set si,j = 0.0. The overall cluster goodness for
co is then calculated as:

CGAP(co) = ∑
(ri ,rj)∈co

pi,j · si,j · 2
n · (n− 1)

. (5.6)

The denominator in Equation 5.6 is n · (n− 1)/2 since there are that many record
pairs in total in a cluster with n records. To resolve overlaps, the cluster with the
highest goodness is iteratively selected. As with the Markov chain method described
above, once a record has been assigned to a cluster of the final cluster set it is removed
from all other clusters to ensure no cluster is overlapping.

§5.3 Record Linkage Clustering with Population Goodness 89

Algorithm 5: Resolving cluster overlaps with goodness measures
Input: G - Undirected pairwise similarity graph

Co - List of overlapping clusters
P - Transition probability matrix
f - Flag to indicate dependence on time
m - Cluster goodness measure (one of MC, AP, or RB)

Output: C - List of non-overlapping clusters
1 C = [] // Initialise an empty list of non-overlapping clusters

2 I = {} // Initialise index of goodness per record or cluster

3 for co ∈ Co do // Iterate through the overlapping clusters

4 for (ri, rj) ∈ co do // Iterate through each record pair in the cluster

5 si,j = GetPairwiseSim(G.E, (ri, rj)) // Get similarity of record pair

6 pi,j = GetTransitionProb(P , (ri, rj), f) // Get transition probability

7 if m = RB then // Update goodness per each record in a record pair

8 UpdateGoodnessPerRecord(I , ri, rj, co, si,j, pi,j)

9 else // Update goodness per cluster

10 UpdateGoodnessPerCluster(I , co, si,j, pi,j)

11 if (m = RB) then // Resolve cluster overlaps as per record level goodness

12 for ri ∈ G.V do // Only keep a record in its best cluster

13 C = RemoveOverlappingRec(Co, ri,I)

14 else // Resolve cluster overlaps as per cluster level goodness

15 C′o = SortByGoodness(I) // Get clusters sorted by their goodness

16 for co ∈ C′o do // Add clusters without already assigned records

17 C.add(co \ RecordsInClusters(C))

18 return C

5.3.3 Record-based Overall Cluster Goodness (RB)

This approach uses the overall transition probability-based population goodness cal-
culation described in Section 5.2 to determine state transition probabilities, indepen-
dent of (Equation 5.3), or dependent on (Equation 5.4) time. For each record ri ∈ co,
its pairwise record similarities, si,j, and transition probabilities, pi,j with every other
record rj ∈ co, ri 6= rj, are obtained based on their time-stamps, ri.t and rj.t, and
states, ri.s and rj.s. Instead of an overall cluster goodness we calculate a record level
goodness for each record ri in cluster co as:

CGRB(ri, co) = ∑
rj∈co

pi,j · si,j

n− 1
. (5.7)

Subsequently, we retain each record ri in the cluster co only where it has the
highest cluster goodness and remove this record from all other clusters. At the end
of this process we again obtain a set of final, non-overlapping clusters.

Algorithm 5 outlines how our three cluster goodness measures MC, AP, and RB
are used to resolve cluster overlaps. The input to the algorithm includes a pairwise
similarity graph, G, a list of overlapping clusters, Co, and the transition probability

90 Record Linkage Using Transition Probabilities on Data Characteristics

matrix, P containing population goodness values calculated as described in Sec-
tion 5.2. The flag f identifies whether population goodness was calculated depen-
dent on or independent of time, whereas parameter m specifies the cluster goodness
measure to use. The output of the algorithm is a set of non-overlapping clusters, C.

In lines 1 and 2, we initialise an empty list C to contain non-overlapping clusters,
and an empty index I to hold goodness values (per record within a cluster if m = RB,
or per cluster otherwise). In lines 3 to 6 we obtain the pairwise record similarities si,j
and transition probabilities pi,j for every record pair (ri, rj) ∈ co, ∀co ∈ Co. Then, in
lines 7 and 8, if m = RB, we calculate the goodness for each record ri and rj (in record
pair (ri, rj)) in cluster co as per Equation 5.7 for the RB method, and store this value
in index I . Otherwise, if m = MC or m = AP, the overall goodness is calculated for
cluster co in lines 9 and 10 and stored in I .

Lines 11 to 13 execute the cluster overlap resolving for the RB method, as de-
scribed in Section 5.3.3, whereas lines 14 to 17 execute the MC or AP method, as
described in Sections 5.3.1 and 5.3.2 respectively. Note that the distinction between
the MC and AP methods comes from the population goodness values contained in
I . Finally, a list of non-overlapping clusters C is returned in line 18.

Complexity analysis: We now conduct a complexity analysis of our proposed clus-
ter goodness measures, and the cluster overlap resolving technique outlined in Al-
gorithm 5. Note that we do not conduct a complexity analysis of the population
goodness calculation we discussed in Section 5.2 since it is a one time calculation,
based on a domain expert’s knowledge or an already available public linked data set,
which can be reused in several RL projects. The cluster goodness measure MC has
a complexity of O(n · |Co|) (where n = |co|) given that only consecutive record pairs
in each overlapping cluster co ∈ Co are considered as shown in Equation 5.5. For the
cluster goodness measures AP and RB, however, the complexity is O(n2 · |Co|) given
that every record pair in a cluster is considered, as shown in Equations 5.6 and 5.7.

In lines 3 to 10 of Algorithm 5, we iterate through every record pair in each
overlapping cluster co ∈ Co. There are n · (n − 1)/2 comparisons per cluster co.
Therefore, the for loop from lines 3 to 10 has a time complexity of O(n2 · |Co|). For
the cluster goodness measure m = RB, we iterate over every record (or vertex) in the
similarity graph G = (V, E) in lines 11 to 13, which has a complexity of O(|V|). For
the cluster goodness measures m = MC and m = AP, we first sort the clusters by
their goodness values in line 15, which has a time complexity of O(|Co| · log(|Co|)|),
and then we iterate over each cluster in lines 16 and 17 which has a time complexity of
O(|Co|). Therefore, the total time complexity for conducting cluster overlap resolving
with the MC, AP, and RB cluster goodness measures are O(n2 · |Co|+ |Co| · log(|Co|)),
O(2 · n2 · |Co|+ |Co| · log(|Co|)), and O(2 · n2 · |Co|+ |V|) respectively.

5.4 Experimental Evaluation

In this section, we present the results obtained with an empirical evaluation of clus-
ter overlap resolving using our three cluster goodness measures. We conducted ex-

§5.4 Experimental Evaluation 91

periments on the real-world Isle of Skye (IoS) and the synthetic UK birth data sets
which we described in Section 2.5.1. Furthermore, we implemented our algorithms
in Python 2.7, and all experiments were conducted on a server running Ubuntu 18.04
with 64-bit Intel Xeon 2.10 GHz CPUs and 512 GB of memory.

As we discussed in Section 5.3, our proposed methods can be combined with RL
clustering techniques that generate overlapping clusters. Since the temporal star clus-
tering technique which we proposed in Chapter 4 generates overlapping clusters, we
use this clustering algorithm to evaluate cluster overlap resolving with our proposed
cluster goodness measures. Note that we therefore disregard the overlap resolving
methods Avr-all, Avr-high, and Edge-ratio which we used with the star approach in the
previous chapter (see page 70) and replace them with the method proposed in Algo-
rithm 5 using one of the cluster goodness measures MC, AP, or RB. As the baseline
technique we used the star clustering approach with temporal (T) data characteristics
using the best algorithm specific parameter configurations and similarity graph for
each data set, as we specified in the previous chapter in Table 4.1. The same con-
figurations were used with the technique outlined in Algorithm 5 to comparatively
evaluate our overlap resolving technique with the baseline approach. Furthermore,
we evaluated different similarity threshold values δs (see Algorithm 2) ranging from
0.7 to 1.0 in steps of 0.05 in star clustering.

For evaluation we used the F∗-measure presented in Equation 2.5 since it is mono-
tonically related to, but is relatively more robust, than the F-measure in evaluating
RL outcomes, as we discussed in the previous chapter (see page 77). Furthermore,
we report the run-times of our algorithm for efficiency analysis.

Given that the aim of linking the IoS and UK birth data sets is identifying births
by the same parents, the state transitions for these data sets are of the format birth
of baby x −→ birth of baby x + 1 for the Markov chain-based probability calculations
(Equations 5.1 and 5.2), and birth of baby x −→ birth of baby y where y > x for the overall
transition probability-based calculations (Equations 5.3 and 5.4). For each cluster
goodness measure (MC, AP, and RB) we ran cluster overlap resolving experiments
dependent on and independent of time, where each experiment was further split into
two cases, where pairwise record similarities si,j in Equations 5.5 to 5.7 were either
set to 1.0 (to measure the effect of population goodness only), or retrieved from the
pairwise similarity graph edge weights G.E.

5.4.1 Linkage Quality Evaluation

Figure 5.3 shows the linkage quality achieved when cluster overlap resolving was
conducted with our proposed cluster goodness measures MC, AP, and RB, using
different parameter configurations on the IoS (top six plots) and UK (bottom six
plots) birth data sets. For the IoS data set, the baseline temporal constraints-based (T)
star clustering approach has clearly performed better compared to the methods we
proposed in this chapter. However, with the UK data set, we can observe improved
quality with our proposed methods at lower similarity thresholds δs.

92 Record Linkage Using Transition Probabilities on Data Characteristics

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su
re

Data set: IoS
f: Time independent, m: MC

Baseline (T)

si,j∈G.E

si,j=1

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -

m
e
a
su

re

Data set: IoS
f: Time independent, m: AP

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -

m
e
a
su

re

Data set: IoS
f: Time independent, m: RB

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -

m
e
a
su

re

Data set: IoS
f: Time dependent, m: MC

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -

m
e
a
su

re
Data set: IoS

f: Time dependent, m: AP

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -

m
e
a
su

re

Data set: IoS
f: Time dependent, m: RB

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su
re

Data set: UK
f: Time independent, m: MC

Baseline (T)

si,j∈G.E

si,j=1

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

Data set: UK
f: Time independent, m: AP

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re
Data set: UK

f: Time independent, m: RB

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

Data set: UK
f: Time dependent, m: MC

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

Data set: UK
f: Time dependent, m: AP

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

Data set: UK
f: Time dependent, m: RB

Figure 5.3: Clustering with transition probabilities: F∗ values obtained for different
similarity threshold values δs (discussed in Chapter 4), shown for time independent
and dependent population goodness calculations (f) for different cluster goodness
measures (m). The pairwise similarity is either set to a constant value (si,j = 1)
or taken from the edge weights in the pairwise similarity graph (si,j ∈ G.E) in the
cluster goodness calculations, and clustering with temporal (T) constraints (proposed

in Chapter 4) is used as the baseline.

Further investigation on this behaviour showed that for most similarity thresh-
olds, the slight improvement in precision is outweighed by a considerable decrease
in recall. This behaviour is potentially caused by the overfitting that occurs in the
real-world IoS birth data set that has a few infeasible patterns in the birth transition

§5.4 Experimental Evaluation 93

Table 5.1: The minimum (Min), maximum (Max), average (Avr), and median (Med)
run-times (in seconds) of star clustering using the goodness measures MC, AP, and

RB for cluster overlap resolving, for the IoS and UK birth data sets.
Data set and Algorithm Run-time
baseline run-times Min Max Avr Med

IoS MC 6.90 8,369.94 638.16 27.21
Min = 6.85, Max = 1,165.77 AP 6.92 8,530.93 638.21 29.18
Avr = 45.55, Med = 22.17 RB 6.79 8,782.38 644.65 29.22

UK MC 5.48 18,319.60 1,087.24 12.79
Min = 5.50, Max = 31.61 AP 5.42 19,010.33 1,030.46 10.02
Avr = 8.36, Med = 7.56 RB 5.48 21,529.71 1,116.76 11.57

distributions due to data quality issues (such as siblings with a birth difference of
five days). When there are errors in the transition distributions, a relatively higher
cluster goodness can be assigned to record groups which are not feasible in the real-
world. Therefore, overlapping records can be removed from the correct clusters due
to them having lower cluster goodness, which can result in lower recall. However, in
the UK data set, for lower thresholds, the precision improves significantly at the cost
of only a slight decline in recall, due to the absence of infeasible patterns in the birth
transition distributions.

Including the pairwise similarity in the cluster goodness measure (si,j ∈ G.E) has
produced slightly better results compared to considering only the population good-
ness of state transitions (si,j = 1) in the RB method only, for both the IoS and UK data
sets. Given that the data characteristics-based clustering methods we proposed in the
previous chapter have produced better results compared to the transition probability-
based methods we proposed in this chapter (especially for the real-world IoS data
set) we can conclude that incorporating data characteristics alone is adequate for im-
proving RL results. Furthermore, even small mistakes in the data used for calculating
population goodness can significantly reduce results quality.

5.4.2 Run-time Evaluation

Table 5.1 shows the minimum, maximum, average, and median run-times obtained
for star clustering incorporating overlap resolving with our proposed cluster good-
ness measures MC, AP, and RB for each birth data set. Note that these run-times
also include the time taken to generate the overlapping star clusters. For both data
sets, the time taken for executing star clustering with our proposed overlap resolving
methods is considerably greater than the time taken to run the baseline star cluster-
ing approach with temporal constraints, especially considering the maximum and
average run-times.

The run-times do not vary largely across the different algorithms for a given data
set. Interestingly, the average algorithm run-times obtained with the IoS data set is
less than the average run-times obtained with the UK data set, even though a higher
run-time was reported for the IoS data set for the baseline approach. This is probably

94 Record Linkage Using Transition Probabilities on Data Characteristics

due to a higher number of overlapping clusters being generated with the UK data
set compared to the IoS data set, which results in more time being consumed for the
overlap resolving. The run-time results also suggest that applying data characteristics
alone, as proposed in the previous chapter is more efficient and effective in the RL
context, as opposed to considering the transition probabilities on data characteristics.

5.5 Summary

In this chapter, we have extended the concept of applying data characteristics for
RL which we presented in the previous chapter, by including the transition proba-
bilities on data characteristics. We proposed two population goodness measures which
can be used to calculate the likelihood of state transitions encountered in the real-
world based on a linked population data set or domain experts’ knowledge. We then
proposed three cluster goodness measures which combine the population goodness
values with pairwise similarities to assess the overall goodness of a cluster gener-
ated by a RL clustering technique. We also developed a method to use these cluster
goodness measures to resolve cluster overlaps in clustering techniques that generate
overlapping clusters.

We empirically evaluated our proposed goodness-based cluster overlap resolv-
ing methods using one real-world and one synthetic birth data set. As the baseline,
we used the data characteristics-based star clustering method which we presented
in the previous chapter. We observed linkage quality improvements at lower simi-
larity thresholds for the synthetic birth data set when our proposed cluster overlap
resolving methods were applied, compared to the baseline technique. However, the
methods we proposed in this chapter were less effective and efficient compared to
the baseline for all other experiments. Therefore, we can conclude that incorporating
data characteristics alone as proposed in the previous chapter produces better linkage
results compared to applying transition probabilities on data characteristics. How-
ever, we further explore the applicability of our transition probability-based methods
on real-world data sets in Chapter 10. In the next chapter we explore how these data
characteristics can be utilised to improve the efficiency of population RL using an
active learning approach.

Chapter 6

Active Learning-based Graph
Filtering for Record Linkage

As we highlighted in Section 1.2, the quadratic time complexity of conducting naïve
pairwise comparison of records has made the application of methods such as block-
ing and indexing a requirement (as we discussed in Section 2.3) to improve the scala-
bility of Record Linkage (RL) projects. However, as we also highlighted in Section 1.2,
the majority of record pairs retained for comparison even after applying blocking and
indexing methods still correspond to true non-matches due to the class imbalance in
RL projects, which is detrimental to the efficiency of the RL classification step. In
this chapter, we present a novel approach that, based on the expected number of
true matches between databases to be linked, applies active learning to remove com-
pared record pairs that are likely non-matches before a computationally expensive
classification or clustering algorithm is employed to classify record pairs.

In Section 6.1, we provide an introduction to our method of filtering record pairs
using an active learning strategy. Next, in Section 6.2, we discuss in detail our pro-
posed active learning-based record pair filtering method. In Section 6.3, we then
conduct an empirical evaluation and compare the efficiency improvement obtained
when RL classification is conducted after applying our filtering technique as opposed
to conducting RL classification without filtering. Finally, in Section 6.4, we conclude
this chapter with a summary of our findings.

6.1 Introduction

Due to the quadratic time complexity when comparing every possible pair of records
across two databases to be linked, the comparison step in RL is often preceded by a
blocking or indexing step [138] as we discussed in Section 2.3, where similar records
are grouped into blocks such that only pairs of records within a block are compared.
Additional meta-blocking [61] methods can be applied to further reduce the number of
record pairs that need to be compared by analysing records within and across blocks
to prevent redundant and superfluous record pair comparisons [138].

As we discussed in Section 2.3, the pairwise comparison step of RL then consists
of the calculation of similarities between two records, generally using string com-

95

96 Active Learning-based Graph Filtering for Record Linkage

parison functions applied on attributes such as names and addresses [35]. A pair-
wise similarity graph G can then be generated as shown in Definition 2 on page 20,
where nodes correspond to records and edges to the calculated similarities between
them. However, even with blocking, indexing, and meta-blocking applied, many
of these similarities will be low, and furthermore they do not correspond to true
matches [35, 138]. In the classification step all compared record pairs are then clas-
sified as matches (records assumed to correspond to the same entity) or non-matches
(records assumed to correspond to different entities) using a decision model that can
be as simple as a similarity threshold, that can take match and error probabilities into
account, or that uses training data to learn a supervised classification model [35].

While blocking, indexing, and meta-blocking can significantly reduce the num-
ber of record pairs that need to be compared in the comparison step, the similarity
graph generated from pairwise comparisons can still be very large. As we showed
in Table 2.4 on page 30, applying a min-hashing based Locality Sensitive Hashing
(LSH) [107] blocking technique on the birth data sets we use for evaluation in this
thesis resulted in similarity graphs G containing over four million edges (record
pairs), even though the number of true matches is less than 69,000, as shown in Ta-
ble 2.1 on page 25. Such large graphs are commonly required to ensure that the
majority of true matches are included in order to obtain a high recall of the final
linkage results [35].

Large similarity graphs can, however, challenge any algorithm used to classify
record pairs because these graphs are likely very imbalanced and contain a major-
ity of non-matching record pairs. The size of these graphs can also result in the
classification step to become the computational bottleneck of the RL process [58].

In our work we remove record pairs from a similarity graph that are unlikely
true matches before this graph is being used for clustering or classification. We
assume that for a given linkage problem an approximate number of expected true
matches can be obtained from a domain expert. For example, when linking product
databases from two online stores (where one-to-one links are expected), then the
number of true matches is limited by the number of records in the smaller of two
databases being linked. On the other hand, when linking birth records of families,
then the known distribution of family sizes in a population can be used to estimate
an expected number of true matches [149].

We develop an active learning process where we bin the record pairs in a similar-
ity graph according to a suitable data dimension, such as time or space. For example,
work on temporal linkage [94] has shown that people will move over time and pos-
sibly even change their names, resulting in lower similarities for true matches. Sim-
ilarly, if people move longer distances then a larger number of their address details
will change (such as state or even country). Our approach recursively splits a simi-
larity graph into bins, where we then obtain, via active learning, information from a
domain expert about the distribution of matches and non-matches in these bins. We
finally select a desired number of record pairs with the highest similarities from each
bin, resulting in a much reduced similarity graph that still has a high recall, which
facilitates accurate clustering or classification with substantially reduced run-times.

§6.2 Active Learning-based Record Pair Filtering 97

Database A

Database B

standardisation
Cleaning and

standardisation
Cleaning and

Blocking /
Indexing blocking

Meta− Record pair
comparison

Similarity
filtering Classification

Clustering /
Evaluation

database
Linked

Figure 6.1: The steps of the record linkage process, with our contribution highlighted.

6.2 Active Learning-based Record Pair Filtering

We now describe our record pair similarity filtering approach based on domain
knowledge. Domain experts often have a good understanding about what the num-
ber of true matches in their databases might be, depending upon the linkage situation
(such as one-to-one or many-to-many links) and application [35]. As shown in Fig-
ure 6.1, similarity filtering is an additional step applied between the comparison and
classification steps in the RL process [35]. The aim of filtering is to improve effective-
ness and run-time of the classification step by reducing the number of non-matching
record pairs (represented by their similarities) that are given to a classification or
clustering algorithm [15, 58, 86, 154].

6.2.1 Problem Definition

We assume that for a data set(s) D to be linked, a pairwise similarity graph G =
(V, E) has been generated as described in Definition 2 on page 20, where a vertex
vi ∈ V represents a record in the data set ri ∈ D (ri = vi) and an edge represents a
record pair (ri, rj) ∈ E. Furthermore, we assume that an edge represents the overall
attribute similarity of a record pair si,j as we showed in Definitions 1 and 2. We also
assume each record pair has a distance, di,j, in a specific data dimension, such as
time and/or space. For example, records about people often contain addresses, and
using geocoding [102] these can be used to calculate geographical distances between
records. Similarly, for records that contain time-stamps (such as publication records,
birth, marriage, or death certificates, or census records) temporal distances can be
calculated between record pairs [94]. The problem we aim to solve can now be
defined as follows.

Definition 4 (Similarity Graph Filtering) Let G = (V, E) be a pairwise similarity graph
generated as shown in Definition 2, βt be a budget of the number of manual classifications of
record pairs that can be conducted by an oracle, om be the expected number of true matches
in G, and ε be a multiplier for the number of links to select. The aim of similarity filtering
is to select a subset of record pairs (ri, rj) ∈ E into a similarity graph G f = (V f , E f), with
V f ⊆ V and E f ⊂ E, based on manual classification of up to βt record pairs in E, such that
the number of matches in E f is maximised while |E f | = om · ε.

Our similarity filtering approach is based on the assumption that record pairs
that have a higher similarity are generally more likely to be true matches. While

98 Active Learning-based Graph Filtering for Record Linkage

i,jd

s
i,

j o True matching record pairs

True non−matching record pairsx

o

1
oo o

o

oo

xx

x

xx

x

x xx

xx

x x

x

o

o

x

x

x

x

x

x
x

Bin 1 Bin 2 Bin 3

x x

o

x

o
o

x

0
0

R
ec

o
rd

 p
ai

r
si

m
il

ar
it

ie
s

Distances between records

x

x

x

x

x

o
o

x

x

o

o

x
x

x x

x

x

x
x

x

x

x

xx

o

x

xxxx

x
x

x xx

x
o

x x
o o

x

Global threshold for the top 20
selected from 80 record pairs

selected from 80 record pairs

selected from 80 record pairs
Binwise thresholds for the top 20

Bin 4

Binwise thresholds for the top 30

Figure 6.2: Filtering of record pairs (links) with the highest similarities. Compared
to using all 80 links, with om = 20 and ε = 1, the filtered similarity graph contains
a much smaller number of true non-matches at the cost of losing only few true
matches. If the top 20 links are chosen globally (no binning), then the recall of the
filtered graph is only 0.8 (4 out of 20 true matches are missed), whereas when links
are chosen locally using bin specific thresholds, then recall would be 0.9 (only 2 true
matches are removed by the filtering process). If we set ε = 1.5 and select 30 record

pairs then recall will be 1 for the binned approach.

this assumption does not necessarily hold for every record pair in G, it is a common
assumption used in RL [5, 164]. We also assume that the distances, di,j, of record
pairs affect the values in their corresponding similarity vectors, si,j, as is illustrated in
Figure 6.2. For example, the further people move the more details in their addresses
will likely change. While a local move will result in a changed street address only,
a move further away can also lead to changed city, zip-code, and even state values.
As we discuss next, we employ a binning-based active learning approach to identify
different similarity thresholds for filtering on different subsets (bins) of record pairs
in E using the distances di,j of record pairs.

6.2.2 Binning-based Filtering

Algorithm 6, which outlines our filtering technique, takes a pairwise similarity graph
G, the total manual classification budget for an oracle (domain expert) βt, the mini-
mum budget per bin βm (βm ≥ 1), the expected number of true matches as identified
by a domain expert om, a multiplier for the number of record pairs to select ε, and
the binning method (either equal width or equal depth) γ as input.

In lines 1 and 2 of Algorithm 6 the main data structures, a list of bins B, and a
queue Q, are initialised to store the final bins, and the bins that need to be further
processed respectively. Next, in line 3, we generate the first bin b1 that contains
the full similarity graph G, and set the level of this bin to b1.l = 1. The budget
β1, of how many record pairs are manually classified (labelled) by the human oracle
(domain expert) in this first bin is calculated with the CalcBudget() function. Due
to the recursive process of splitting a bin into two in each iteration, we allocate a
labelling budget that depends on the level of a bin. With a total budget of βt, for a
bin at level l we allocate a budget of βl = βt/(22l−1), such that a budget of βt/2l is

§6.2 Active Learning-based Record Pair Filtering 99

Algorithm 6: Binning-based similarity graph filtering using active learning
Input: G - Undirected pairwise similarity graph

βt - Total budget (maximum number of manual record pair classifications)
βm - Minimum number of manual classifications a bin must contain
om - Expected number of true matches
ε - Multiplier for number of record pairs (links) to select
γ - Binning method (either equal width or equal depth)

Output: G f - Filtered pairwise similarity graph containing om · ε selected links
1 B = [] // Initialise an empty list to store the final bins

2 Q = [] // Initialise a queue to hold bins to be processed further

3 b1 = InitBin(G); b1.l = 1 // Initialise first bin and set bin level to 1

4 β1 = CalcBudget(βt, 1) // Get budget for the first bin

5 b1.δ = GetTopPairsThresh(b1, om · ε) // Get threshold for the top om · ε links

6 b1.l = GetOracleLabels(b1, β1, γ) // Manual Classification of β1 links

7 b1.s = CalcScore(b1) // Calculate the score for bin b1
8 Q.add(b1) // Add the first bin to the queue

9 while (Q 6= []) do // Process queue sorted by bin scores

10 bp = Q.pop() // Get the next (parent) bin to process based on its score

11 bl , br = SplitBin(bp, γ) // Split parent bin based on binning method γ

12 βc = CalcBudget(βt, bp.l + 1) // Get the budget for the two child bins

13 if (|bl .l|+ βc) ≥ βm ∧ (|br.l|+ βc) ≥ βm then
14 bl .l = bl .l ∪GetOracleLabels(bl , βc, γ)
15 br.l = br.l ∪GetOracleLabels(br, βc, γ)

16 δl , δr = CalcBestThresh(bl , br) // Get optimal bin thresholds

17 if (δl == bp.δ) ∧ (δr == bp.δ) then // Same threshold as for parent bin

18 B.add(bp); go to line 9 // Add parent bin to final bin list

19 bl .δ = δl ; bl .s = CalcScore(bl); Q.add(bl) // Add child bins to queue

20 br.δ = δr; br.s = CalcScore(br); Q.add(br)

21 else if (|bl .l|+ βc) ≥ βm) then // Only the left child bin has enough labels

22 bl .l = bl .l ∪GetOracleLabels(bl , βc, γ); bl .s = CalcScore(bl); Q.add(bl)
23 B.add(br) // Add right child bin to final bin list

24 else if (|br.l|+ βc) ≥ βm) then // Only the right child bin has enough labels

25 br.l = br.l ∪GetOracleLabels(br, βc, γ); br.s = CalcScore(br); Q.add(br)

26 B.add(bl) // Add left child bin to final bin list

27 else
28 B.add(bp) // Add parent bin to the final bin list

29 G f = (V f = ∅, E f = ∅) // Initialise empty similarity graph of selected links

30 for b ∈ B do // Iterate through the bins in the final bin list

31 G f .insert(GetLinks(b, b.δ)) // Generate the filtered similarity graph

32 return G f // Return the final filtered pairwise similarity graph

allocated across all bins at level l. For example, with βt = 1, 000, we will manually
label β1 = 500 record pairs in b1 (with level l = 1), β2 = 125 in each of the two
bins at level l = 2, β3 = 31 in each of the four bins at level l = 3, and so on. Note
that the set of manually labelled (classified) record pairs in a bin b, denoted by b.l,

100 Active Learning-based Graph Filtering for Record Linkage

is propagated from a parent bin to its two child bins in the recursive bin splitting
process.

In line 5 of Algorithm 6 we calculate the optimal similarity threshold b1.δ cor-
responding to the om · ε record pairs with the highest similarities in b1. In line
6 the oracle then manually classifies β1 record pairs in bin b1 as b1.l using the
GetOracleLabels() function. This function conducts labelling such that both the
child bins of b1 inherit labelled record pairs from b1 based on the binning method
γ (which we describe below). The function selects record pairs for labelling that are
close to the bin threshold b1.δ, with β1/2 pairs selected above and β1/2 pairs below
the threshold. This helps to effectively shift the bin threshold depending upon the
manual labels obtained, as we discuss below. We then calculate the score b1.s of bin
b1 in line 7, where we describe four score functions in Section 6.2.4, and add bin b1

to the queue Q in line 8 for processing. These scores are used to order the queue Q
and determine which bin to process next in the iterative phase of our approach.

We iteratively process bins in Q starting in line 9 as long as the queue is not
empty. In line 10 we select the next (parent) bin, bp, with the highest score, which we
then split into two child bins, bl and br, using the binning method γ. The function
SplitBin() performs either equal width or equal depth binning [82] on the parent bin
bp as specified by γ, using the distances di,j of each record pair in bp. SplitBin() also
increases the level of the child bins as bl .l = bp.l + 1 and br.l = bp.l + 1, propagates
the optimal threshold (bl .δ = bp.δ and br.δ = bp.δ), and splits the set of manual
classifications in bp according to the binning method such that bl .l ∪ br.l = bp.l.

In line 12 we calculate the oracle budget βc for the child bins based on their level,
and in line 13 we check if both child bins will contain enough manual classifications
(based on their allocated budgets as well as the labels inherited from their parent).
The reason for checking if a bin can have at least βm labels (where βm ≥ 1) is to
avoid underfitting (where not enough manual labels are available in a bin to calculate
an optional similarity threshold). If both bins can have βm labels, then in line 14
and 15 we obtain new manual classifications (bl .l and br.l) for them, and in line
16 we calculate the new optimal similarity thresholds for the child bins using the
function CalcBestThres(), as we describe in Sect 6.2.3. If it turns out that the optimal
threshold of the parent, bp.δ cannot be improved (in line 17) because the distribution
of the similarities of links in both child bins is homogeneous (highly similar), then
we add the parent bin bp to the final list of bins B in line 18, and go back to line 9 to
process the next bin in Q.

Otherwise, in lines 19 and 20, for each child bin bl and br, the threshold is set
to its calculated optimal value, its bin score is calculated, and then both child bins
are added to the queue Q. On the other hand, if only one of the two child bins can
have at least βm labels, in lines 21 to 26 we obtain manual classifications for that bin,
update the remaining budget and the score of that bin, and add it to Q, while the
other child bin (the one not having enough labels) is added to the final list of bins B.
If neither child bin can have at least βm labels then in line 28 we add the parent bin
bp to the final list of bins B, because having bins with very few labels (less than βm)
can result in overfitting.

§6.2 Active Learning-based Record Pair Filtering 101

Algorithm 7: Calculate optimal bin similarity thresholds - CalcBestThres()

Input: bl , br - Left and right child bins
Output: δl , δr - Optimal bin threshold pair

1 fnl = GetFalseNeg(bl , bl .δ); fnr = GetFalseNeg(br, br.δ) // Get false negatives

2 ft = |fnl |+ |fnr| // Get the initial total false negative count

3 L = [(ft, bl .δ, br.δ)] // List with bin thresholds and total false negative count

4 for f n ∈ fnl ⊕ fnr do // Iterate through list of false negative record pairs

5 δl , δr = ShiftThresh(bl , br, f n) // Shift thresholds in child bins

6 fnl = GetFalseNeg(bl , δl); fnr = GetFalseNeg(br, δr) // New false negatives

7 if (|fnl | > ft) ∨ (|fnr| > ft) then // One bin exceeds the false negative total

8 break // Stop shifting threshold in a given direction

9 else
10 L.add((|fnl |+ |fnr|, δl , δr)) // Add thresholds and false negative count

11 δl , δr = GetMinFalseNegThres(L) // Get optimal thresholds

12 return δl , δr // Return the optimal thresholds

Subsequent to processing all bins in Q, we generate the filtered similarity graph
of selected links (record pairs), G f , in lines 29 to 31 by looping over all bins in b ∈ B,
and adding all record pairs with a pairwise similarity of at least the bin threshold
b.δ into the graph G f . Finally, in line 32 the filtered pairwise similarity graph G f is
returned.

6.2.3 Calculating Optimal Bin Similarity Thresholds

We now describe the functionality of the CalcBestThresh() function (used in line 16
in Algorithm 6), as outlined in Algorithm 7. The input to Algorithm 7 is a bin pair
bl and br, and the function calculates a pair of optimal thresholds, δl and δr, which
minimise the total number of false negatives across both bins. The algorithm starts
with obtaining the lists of false negatives, fnl and fnr, in the two bins, where true
matching record pairs (as manually classified by the oracle) that have a similarity
below the thresholds bl .δ and br.δ are considered as false negatives. We assume that
record pairs in a bin are sorted based on their similarities. In lines 2 and 3, we then
calculate the initial total number of false negatives, ft, and initialise a list L with a
tuple made of ft and the initial thresholds.

The loop starting in line 4 (with ⊕ representing list concatenation) then shifts
thresholds for each false negative record pair f n in both child bins, where the func-
tion ShiftThresh() sets the threshold of one of the bins (bl or br) to the similarity
value of f n. The threshold of the other child bin is adjusted such that the total num-
ber of record pairs with a similarity greater than the thresholds is unchanged. This
ensures that we select om · ε links at any time, despite the changing thresholds. The
new thresholds δl and δr are returned by ShiftThresh(), and we then obtain the lists
of false negatives fnl and fnr for δl and δr. In lines 7 and 8 we check if at least one
of the bins has more false negatives than the original total false negative count, ft. If

102 Active Learning-based Graph Filtering for Record Linkage

this is the case we end further shifting of thresholds because no more improvement
can be gained (a threshold combination that results in one of the bins having more
false negatives compared to the original cannot be improved). If the condition in line
7 is not met, in lines 9 and 10 we add the new total false negative count |fnl |+ |fnr|
together with the new threshold pair δl and δr to the list L. In line 11, we finally ob-
tain the optimal bin threshold pair δl and δr that has a minimum total false negative
count, and in line 12 we return this threshold pair.

Complexity analysis: We now conduct a complexity analysis of Algorithms 6 and 7.
In Algorithm 6, the steps in lines 3 to 8 have O(|E|) time complexity since the initial
bin contains all edges in the similarity graph G = (V, E). The while loop starting at
line 9 can iterate a maximum of 2 · βt − 1 times in the worst case considering βm = 1,
since that would result in a number of 2 · βt − 1 bins with one labelled record pair in
each. All steps, except the CalcBestThresh() function within the while loop can be
executed in constant or O(|E|) time.

Considering Algorithm 7 which outlines the CalcBestThresh() function, the
steps in lines 1 to 3 have constant time complexity O(1) considering set represen-
tation of manually classified record pairs. The loop starting at line 4 in Algorithm 7
iterates a maximum of βt times, since only labelled false negative (f n) record pairs
are considered. All steps within this loop can be executed in constant time whereas
the step in line 11 has O(βt) time complexity given the list L can contain a maximum
of βt tuples. The time complexity of the filtered graph G f generation step (lines 29
to 31) in Algorithm 6 is O(βt) assuming the worst case where βm = 1. Therefore,
the total time complexity of our filtering algorithm is O(β2

t + βt · |E|) as determined
by the while loop in Algorithm 6 and the function CalcBestThresh() outlined in
Algorithm 7.

6.2.4 Bin Scoring Functions

An important aspect of our recursive binning approach is the ordering of the queue
Q based on the bin scores, b.s, which determine how bins are being processed. Our
aim is to calculate an optimal threshold for each bin such that the total number of
false negatives is minimised before the budget is used up. We now describe four
variations of the function CalcScore(). In all variations we only consider the record
pairs manually classified by the oracle in a given bin, b.l.

1. False negative count (score f n): With this approach we calculate the number of
false negative record pairs contained in a bin b, where a false negative is a pair
that has been classified as a true match by the oracle and that has a similarity
below the bin threshold b.δ. Using this scoring function means bins that contain
more false negatives will be at the top of the queue Q, and processed first.

2. Bin recall (scorer): With this approach we calculate the recall of bin b as the
proportion of manually classified true matches with a similarity above b.δ over
all manually classified true matches in b. With this scoring function we pro-
cess bins in Q such that those bins with lowest recall are processed first. This

§6.3 Experimental Evaluation 103

allows us to further explore bins that have fewer true positives and adjust their
thresholds to improve their recall.

3. Normalised false negative count (scoren f n): This approach is similar to the
score f n approach, except that we divide the false negative count by the bin size
|b|, to find the bins with the largest proportion of false negatives.

4. Adjusted bin recall (scorear): This approach is similar to the scorer function
except that we adjust the original scorer value by dividing it by the bin size
|b|. With this approach, larger bins that have a lower bin recall value will be
processed first.

6.3 Experimental Evaluation

In this section, we present the results of the experimental evaluation we conducted
to assess the linkage quality achieved with applying our proposed graph filtering
technique. For evaluation, we used the real-world Isle of Skye (IoS) birth data set,
the synthetic UK birth data set, and the real-world North Carolina Voter Registra-
tion data set (NCVR) which we presented in Section 2.5. For the birth data sets,
we used the pairwise similarity graphs generated by comparing record pairs using
All attribute values GA as shown in Table 2.4 on page 30. This is because consid-
ering more attributes in the comparison results in more widely distributed pairwise
similarities, which helps in effectively selecting record pairs with a higher overall
similarity within each bin using our approach. We implemented our algorithms in
Python 2.7, and all experiments were conducted on a server running Ubuntu 18.04
with 64-bit Intel Xeon 2.10 GHz CPUs and 512 GB of memory.

The pairwise similarity graphs GA corresponding to the IoS and UK birth data
sets contain approximately 5.4 million and 4.3 million record pairs (edges) respec-
tively, as shown in Table 2.4, whereas the similarity graph corresponding to the
NCVR data set contains approximately 34.6 million record pairs as shown in Ta-
ble 2.6. By applying our graph filtering technique, we can significantly reduce the
sizes of these graphs by retaining only om number of record pairs (the expected num-
ber of true matches), which is 17,613, 14,027, and approximately 7 million for the IoS,
UK, and NCVR data sets, respectively, as shown in Table 2.1 on page 25. For evalua-
tion we used the precision and recall measures which we discussed in Section 2.4.

For the data dimensions used for binning, we calculated time distances as the
number of days between two birth records in IoS and UK, and the number of months
between two voter records in NCVR, while we calculated geographical (space) dis-
tances using address geocoding [102] for IoS and UK, and the distances between
zip-codes using a database of zip-code locations for NCVR, respectively. As illus-
trated in Figure 6.2, as baseline we explore a simple filtering approach using a global
threshold for selecting the om record pairs with the highest similarity, assuming om

was provided by a domain expert. We then investigate our proposed method of
binning record pairs to help improve the quality of the filtered similarity graph.

104 Active Learning-based Graph Filtering for Record Linkage

full global βt : 200
βm : 25

βt : 200
βm : 50

βt : 200
βm : 100

βt : 500
βm : 25

βt : 500
βm : 50

βt : 500
βm : 100

βt : 1000
βm : 25

βt : 1000
βm : 50

βt : 1000
βm : 100

Similarity graph obtained with different parameter settings

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n
/R
e
ca
ll

0.008

0.728 0.745 0.728 0.728 0.729 0.729 0.729 0.73 0.73 0.729

0.994
IoS | γ: Width (Time dimension)

Precision Recall

full global βt : 200
βm : 25

βt : 200
βm : 50

βt : 200
βm : 100

βt : 500
βm : 25

βt : 500
βm : 50

βt : 500
βm : 100

βt : 1000
βm : 25

βt : 1000
βm : 50

βt : 1000
βm : 100

Similarity graph obtained with different parameter settings

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n
/R
e
ca
ll

0.005

0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.947 0.946 0.9460.996
UK | γ: Width (Time dimension)

full global βt : 200
βm : 25

βt : 200
βm : 50

βt : 200
βm : 100

βt : 500
βm : 25

βt : 500
βm : 50

βt : 500
βm : 100

βt : 1000
βm : 25

βt : 1000
βm : 50

βt : 1000
βm : 100

Similarity graph obtained with different parameter settings

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n
/R
e
ca
ll

0.202

0.814 0.814 0.814 0.814 0.814 0.814 0.814 0.813 0.814 0.814

1.0
NCVR | γ: Width (Time dimension)

Figure 6.3: Graph filtering with equal width binning based on the time data dimen-
sion: Precision and recall results of the full similarity graph compared with the qual-
ity of the graphs filtered with a global threshold (top om links), or binwise thresholds
for different total budgets βt and manual classifications per bin βm. Precision and
recall results are the same for all the filtered graphs since the number of record pairs

retained in the graph is equal to the number of true matches.

We explored the parameter settings βt = [200, 500, 1000] for total manual classifi-
cation budget, and βm = [25, 50, 100] for the threshold number of manual classifica-
tions per bin. With a set of initial experiments we conducted, we found that retaining
exactly om record pairs in the filtering by setting ε = 1 produced better linkage re-
sults, and therefore present results obtained for ε = 1. Furthermore, we explored the
different score calculation methods (CalcScore()) described under Section 6.2.4.

§6.3 Experimental Evaluation 105

full global βt : 200
βm : 25

βt : 200
βm : 50

βt : 200
βm : 100

βt : 500
βm : 25

βt : 500
βm : 50

βt : 500
βm : 100

βt : 1000
βm : 25

βt : 1000
βm : 50

βt : 1000
βm : 100

Similarity graph obtained with different parameter settings

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n
/R
e
ca
ll

0.008

0.728 0.729 0.729 0.728 0.729 0.729 0.729 0.73 0.73 0.73

0.994
IoS | γ: Depth (Time dimension)

Precision Recall

full global βt : 200
βm : 25

βt : 200
βm : 50

βt : 200
βm : 100

βt : 500
βm : 25

βt : 500
βm : 50

βt : 500
βm : 100

βt : 1000
βm : 25

βt : 1000
βm : 50

βt : 1000
βm : 100

Similarity graph obtained with different parameter settings

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n
/R
e
ca
ll

0.005

0.945 0.944 0.944 0.945 0.945 0.945 0.945 0.94 0.945 0.9460.996
UK | γ: Depth (Time dimension)

full global βt : 200
βm : 25

βt : 200
βm : 50

βt : 200
βm : 100

βt : 500
βm : 25

βt : 500
βm : 50

βt : 500
βm : 100

βt : 1000
βm : 25

βt : 1000
βm : 50

βt : 1000
βm : 100

Similarity graph obtained with different parameter settings

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n
/R
e
ca
ll

0.202

0.814 0.813 0.814 0.814 0.825 0.814 0.814 0.813 0.812 0.812

1.0
NCVR | γ: Depth (Time dimension)

Figure 6.4: Graph filtering with equal depth binning based on the time data dimen-
sion: Precision and recall results of the full similarity graph compared with the qual-
ity of the graphs filtered with a global threshold (top om links), or binwise thresholds

for different total budgets βt and manual classifications per bin βm.

6.3.1 Filtered Similarity Graph Quality

In Figures 6.3 to 6.6 we show the precision and recall results obtained for the original
full similarity graph, compared with the quality of the filtered graphs obtained with
applying a global threshold, as well as our binning method using different total bud-
gets βt and different manual classification thresholds per bin βm. The filtered results
were averaged across the score calculation methods described in Section 6.2.4 since
they produced similar graph quality, with the adjusted bin recall method (scorear)
producing slightly better results. For all filtered graphs, both precision and recall
values are the same because we limit the number of record pairs in the filtered graph
to om, which results in the number of classified record pairs (TP+ FP in Equation 2.2)

106 Active Learning-based Graph Filtering for Record Linkage

full global βt : 200
βm : 25

βt : 200
βm : 50

βt : 200
βm : 100

βt : 500
βm : 25

βt : 500
βm : 50

βt : 500
βm : 100

βt : 1000
βm : 25

βt : 1000
βm : 50

βt : 1000
βm : 100

Similarity graph obtained with different parameter settings

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n
/R
e
ca
ll

0.008

0.728 0.728 0.728 0.728 0.727 0.728 0.728 0.726 0.729 0.729

0.994
IoS | γ: Width (Space dimension)

Precision Recall

full global βt : 200
βm : 25

βt : 200
βm : 50

βt : 500
βm : 25

βt : 500
βm : 50

βt : 500
βm : 100

βt : 1000
βm : 25

βt : 1000
βm : 50

βt : 1000
βm : 100

Similarity graph obtained with different parameter settings

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n
/R
e
ca
ll

0.005

0.945 0.945 0.945 0.944 0.945 0.945 0.937 0.944 0.9460.996
UK | γ: Width (Space dimension)

full global βt : 200
βm : 25

βt : 200
βm : 50

βt : 200
βm : 100

βt : 500
βm : 25

βt : 500
βm : 50

βt : 500
βm : 100

βt : 1000
βm : 25

βt : 1000
βm : 50

βt : 1000
βm : 100

Similarity graph obtained with different parameter settings

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n
/R
e
ca
ll

0.202

0.814
0.755

0.814 0.814 0.814 0.814 0.814 0.814 0.814 0.814

1.0
NCVR | γ: Width (Space dimension)

Figure 6.5: Graph filtering with equal width binning based on the space data di-
mension: Precision and recall results of the full similarity graph compared with
the quality of the graphs filtered with a global threshold (top om links), or binwise

thresholds for different total budgets βt and manual classifications per bin βm.

being the same as the number of true matches (TP + FN in Equation 2.3). We can see
that the precision of the filtered graphs are far better compared to the original graph
(full), since our filtering approach was able to remove a large proportion of the true
non-matching record pairs.

In Figures 6.3 and 6.4, we show the quality of the filtered graphs obtained with
applying binning on the time data dimension, using equal width and equal depth
binning respectively. For all three data sets, the graph quality has slightly improved
compared to the baseline (global) at least for one parameter setting, except for NCVR
with equal width binning on the time data dimension. Our binning approach has
worked for the IoS and UK data sets on the time dimension, since for birth record
pairs we find patterns such as no true matches between zero to nine months (an

§6.3 Experimental Evaluation 107

full global βt : 200
βm : 25

βt : 200
βm : 50

βt : 200
βm : 100

βt : 500
βm : 25

βt : 500
βm : 50

βt : 500
βm : 100

βt : 1000
βm : 25

βt : 1000
βm : 50

βt : 1000
βm : 100

Similarity graph obtained with different parameter settings

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n
/R
e
ca
ll

0.008

0.728 0.73 0.73 0.728 0.733 0.733 0.73 0.716 0.715 0.733

0.994
IoS | γ: Depth (Space dimension)

Precision Recall

full global βt : 200
βm : 25

βt : 200
βm : 50

βt : 200
βm : 100

βt : 500
βm : 25

βt : 500
βm : 50

βt : 500
βm : 100

βt : 1000
βm : 25

βt : 1000
βm : 50

βt : 1000
βm : 100

Similarity graph obtained with different parameter settings

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n
/R
e
ca
ll

0.005

0.945 0.951 0.95 0.945 0.945 0.945 0.945 0.938 0.944 0.9450.996
UK | γ: Depth (Space dimension)

full global βt : 200
βm : 25

βt : 200
βm : 50

βt : 200
βm : 100

βt : 500
βm : 25

βt : 500
βm : 50

βt : 500
βm : 100

βt : 1000
βm : 25

βt : 1000
βm : 50

βt : 1000
βm : 100

Similarity graph obtained with different parameter settings

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n
/R
e
ca
ll

0.202

0.814 0.814 0.814 0.814

0.62 0.62

0.814 0.81 0.81 0.813

1.0
NCVR | γ: Depth (Space dimension)

Figure 6.6: Graph filtering with equal depth binning based on the space data di-
mension: Precision and recall results of the full similarity graph compared with
the quality of the graphs filtered with a global threshold (top om links), or binwise

thresholds for different total budgets βt and manual classifications per bin βm.

impossible age gap for siblings). However, with NCVR, there are less distinct differ-
ences in the bins generated on the time dimension, whereas equal width binning has
failed to capture the limited time related patterns available in this data set.

Figures 6.5 and 6.6 show the quality of the filtered graphs obtained with applying
binning on the space data dimension, using equal width and equal depth binning re-
spectively. While some graph quality improvements have been obtained for the IoS
and UK data sets on the space data dimension with filtering compared to the base-
line, considerable reductions in precision and recall can be seen for certain parameter
configurations with the NCVR data set. In the historic IoS and UK birth data set, we
see siblings being born in nearby geographic locations (often the same household).
Therefore, true matches often have smaller distances and true non-matches larger

108 Active Learning-based Graph Filtering for Record Linkage

distances in the space dimension for the birth data sets. This argument often does
not hold true for the more modern NCVR data set, where we see the same indi-
vidual (corresponding to true matches) relocating in different counties. Because of
this reason we get much worse graph quality for NCVR with filtering on the space
dimension for certain parameter configurations, compared to the baseline.

6.3.2 Linkage Quality and Efficiency Improvement

In this section, we apply the graph clustering techniques (greedy, star, and robust
graph clustering) which we proposed in Chapter 4 on the filtered graphs, and com-
pare the quality of the resulting clusters with the linkage quality obtained with clus-
tering the full similarity graph. We consider the best clustering parameters for the IoS
and UK birth data sets as specified in Table 4.1, and the same parameters as for IoS
on the experiments conducted with NCVR given both are real-world data sets. Since
the aim of these experiments is to show the inefficiency of applying RL classification
on large graphs, we used low similarity threshold values δs for the clustering. We set
δs = 0.55 for the IoS and UK birth data sets and δs = 0.45 for the NCVR data set such
that the majority of true matching record pairs were retained for clustering. We have
only applied the greedy and star clustering approaches on the large NCVR data set
because RL could not be executed in feasible time (within a month) by applying the
robust graph clustering approach on the full NCVR similarity graph. Furthermore,
for each data set we have considered the best filtered graph with binning on the time
dimension (since that produced better results compared to binning in the space di-
mension) for a given total budget βt, and binning method γ (either equal depth or
equal width).

Figures 6.7 to 6.9 show the clustering quality achieved with the full and filtered
pairwise similarity graphs. As shown in Figure 6.7, both the precision and recall
significantly improve when clustering is applied on the IoS and UK filtered similarity
graphs, whereas the precision considerably improves at the cost of a slight decline in
recall for the NCVR filtered similarity graphs, compared to clustering with the full
graph. For the IoS data set, the best clustering quality was achieved with βt = 1,000
and γ set to equal width which has produced better quality compared to using a
global threshold (the baseline). While the same configurations have resulted in an
improvement in recall for the UK data set, the precision has declined compared to the
baseline. For the NCVR data set the linkage quality results achieved with clustering
the filtered graphs are similar as well as for the global threshold technique.

Figure 6.8 shows the linkage quality results obtained for the star clustering ap-
proach. Compared to applying star clustering on the full similarity graph, clustering
the filtered graphs has improved both the precision and recall for the UK data set,
whereas the precision has considerably improved at a slight decline in recall for the
IoS data set. However, for the NCVR data set, the precision improvement has been
slightly outweighed by the decline in recall. Applying greedy and star clustering on
the filtered NCVR similarity graphs have therefore not yielded good results which is
due to the quality of the graphs not being improved for the NCVR data set with the

§6.3 Experimental Evaluation 109

full global βt : 200
γ: Depth

βt : 500
γ: Depth

βt : 1000
γ: Depth

βt : 200
γ: Width

βt : 500
γ: Width

βt : 1000
γ: Width

Similarity graph obtained with different parameter settings

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n
/R
e
ca
ll

0.006

0.742 0.743 0.742 0.744 0.735 0.718 0.747

0.032

0.671 0.671 0.67 0.671 0.658 0.66 0.674

IoS | Greedy

Precision Recall

full global βt : 200
γ: Depth

βt : 500
γ: Depth

βt : 1000
γ: Depth

βt : 200
γ: Width

βt : 500
γ: Width

βt : 1000
γ: Width

Similarity graph obtained with different parameter settings

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n
/R
e
ca
ll

0.001

0.929 0.929 0.923 0.92 0.924 0.923 0.919

0.319

0.937 0.937 0.938 0.938 0.937 0.938 0.941

UK | Greedy

full global βt : 200
γ: Depth

βt : 500
γ: Depth

βt : 1000
γ: Depth

βt : 200
γ: Width

βt : 500
γ: Width

βt : 1000
γ: Width

Similarity graph obtained with different parameter settings

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

/R
e

ca
ll

0.535

0.808 0.808 0.808 0.803 0.808 0.808 0.808

0.907

0.823 0.823 0.821 0.82 0.823 0.823 0.823

NCVR | Greedy

Figure 6.7: Precision and recall results obtained by applying greedy clustering on
the full similarity graph, the graph filtered with a global threshold (top om links),
or graphs filtered with equal depth and equal width binning using different total

budgets βt.

application of our binning approach, as we discussed in the previous section. The
parameter configurations βt = 200 and βt = 1,000 using equal width binning have

110 Active Learning-based Graph Filtering for Record Linkage

full global βt : 200
γ: Depth

βt : 500
γ: Depth

βt : 1000
γ: Depth

βt : 200
γ: Width

βt : 500
γ: Width

βt : 1000
γ: Width

Similarity graph obtained with different parameter settings

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n
/R
e
ca
ll

0.474

0.941 0.941 0.942 0.942 0.944 0.942 0.944

0.701
0.645 0.645 0.647 0.648 0.658 0.66 0.646

IoS | Star

Precision Recall

full global βt : 200
γ: Depth

βt : 500
γ: Depth

βt : 1000
γ: Depth

βt : 200
γ: Width

βt : 500
γ: Width

βt : 1000
γ: Width

Similarity graph obtained with different parameter settings

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n
/R
e
ca
ll

0.106

0.941 0.941 0.943 0.942 0.941 0.942 0.942

0.809

0.948 0.948 0.949 0.949 0.948 0.949 0.951

UK | Star

full global βt : 200
γ: Depth

βt : 500
γ: Depth

βt : 1000
γ: Depth

βt : 200
γ: Width

βt : 500
γ: Width

βt : 1000
γ: Width

Similarity graph obtained with different parameter settings

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n
/R
e
ca
ll

0.774

0.87 0.87 0.896 0.875 0.87 0.87 0.87
0.91

0.766 0.766 0.778 0.764 0.766 0.766 0.766

NCVR | Star

Figure 6.8: Precision and recall results obtained by applying star clustering on the full
similarity graph, the graph filtered with a global threshold (top om links), or graphs
filtered with equal depth and equal width binning using different total budgets βt.

produced the best star clustering results for the IoS and UK data sets respectively,
both of which exceed the corresponding baseline results achieved with the global
threshold method.

§6.3 Experimental Evaluation 111

full global βt : 200
γ: Depth

βt : 500
γ: Depth

βt : 1000
γ: Depth

βt : 200
γ: Width

βt : 500
γ: Width

βt : 1000
γ: Width

Similarity graph obtained with different parameter settings

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n
/R
e
ca
ll

0.302

0.819 0.819 0.819 0.819 0.8 0.798
0.831

0.904
0.834 0.834 0.835 0.836 0.845 0.849 0.836

IoS | Robust

Precision Recall

full global βt : 200
γ: Depth

βt : 500
γ: Depth

βt : 1000
γ: Depth

βt : 200
γ: Width

βt : 500
γ: Width

βt : 1000
γ: Width

Similarity graph obtained with different parameter settings

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n
/R
e
ca
ll

0.001

0.871 0.871 0.875
0.84

0.875 0.874 0.858

0.996
0.952 0.952 0.952 0.956 0.952 0.952 0.956

UK | Robust

Figure 6.9: Precision and recall results obtained by applying robust graph clustering
on the full similarity graph, the graph filtered with a global threshold (top om links),
or graphs filtered with equal depth and equal width binning using different total

budgets βt.

Figure 6.9 shows the linkage quality results obtained for the robust graph clus-
tering approach. For both the IoS and UK data sets, the precision has considerably
improved at the cost of a slight decline in recall when clustering was applied on the
filtered graphs, as compared to clustering the full similarity graph. The best linkage
results were achieved with the parameter configurations βt = 1000 using equal width
binning for the IoS data set, whereas both βt = 500 using equal depth binning, and βt

= 200 using equal width binning produced the best linkage results for the UK data
set, which are better than the corresponding baseline (global) results. These cluster-
ing experiments further show that our active learning-based graph filtering approach
can improve the linkage results when clear patterns along the binning dimensions
are available, such as for the IoS and UK data sets. Furthermore, these results show
that applying RL clustering on filtered graphs produces far better linkage quality
compared to clustering the full similarity graphs.

112 Active Learning-based Graph Filtering for Record Linkage

Table 6.1: The run-times (in seconds) of graph clustering using the full similarity
graph, graph filtered with a global threshold (top om links), or graphs filtered with
equal depth (EDB) and equal width (EWB) binning using different total budgets βt.

Graph Greedy Star Robust
IoS UK NCVR IoS UK NCVR IoS UK

Full 108.31 254,134.09 1,315.90 178.93 3,293.42 398.05 7,097.54 4,725.97
Global 0.66 0.48 286.22 1.12 0.41 247.35 1,920.05 126.31
βt: 200, γ: EDB 0.62 0.48 286.24 1.11 0.40 257.55 1,889.20 124.47
βt: 500, γ: EDB 0.65 0.48 288.90 1.07 1.06 251.41 1,835.67 125.25
βt: 1000, γ: EDB 0.69 0.47 278.12 1.12 0.40 253.31 1,849.90 124.79
βt: 200, γ: EWB 0.61 0.49 285.96 1.07 0.40 254.73 1,864.82 125.94
βt: 500, γ: EWB 0.69 0.52 287.22 1.14 0.40 253.85 1,881.64 126.39
βt: 1000, γ: EWB 0.64 0.44 285.95 1.13 0.39 242.94 1,848.45 127.94

As shown in Figures 6.7 to 6.9, we cannot see a significant variation in linkage
quality with regard to the different parameter settings that we have explored for
filtering. This indicates that our proposed filtering method is quite robust to pa-
rameter variations, and that regardless of the choice of parameter settings, the final
linkage precision significantly improves at the cost of minor reduction in recall when
a filtered graph is clustered, compared to applying clustering on the full graph.

Table 6.1 shows the run-times obtained with applying graph clustering on the full
and filtered pairwise similarity graphs. For every data set and clustering algorithm,
the RL classification time has been reduced an entire order of magnitude when clus-
tering was applied on the filtered graphs compared to clustering the full similarity
graphs. Therefore, applying graph filtering improves both the quality and the effi-
ciency of RL. The run-times reported in Table 6.1 do not include the overhead of the
filtering technique proposed in this chapter. The overhead of filtering for the IoS and
UK data sets is approximately 250 seconds, and 2,500 seconds for the NCVR data set.
Note that even though this overhead seems significant, given our filtering approach
requires to be executed only once, and numerous computationally expensive cluster-
ing techniques can be applied on the filtered graphs multiple times, allocating time
on our graph filtering step is justifiable and beneficial for the overall RL process.

6.4 Summary

In this chapter we have presented a novel active learning-based graph clustering
technique which utilises a domain expert’s knowledge of the approximate number
of true matches om, and the distribution of pairwise similarities across a suitable data
dimension (such as time or space) to effectively filter likely non-matches from a large
pairwise similarity graph corresponding to a data set. In this approach, we apply
iterative binning of record pairs (edges in a similarity graph) on a data dimension
and retain the top record pairs in each bin (and a total of om · ε across the bins, where
ε is a multiplier for record pair selection) based on the assumption that record pairs
with a higher similarity are more likely to be true matches.

§6.4 Summary 113

We experimentally evaluated our proposed active learning-based graph cluster-
ing technique using two real-world and one synthetic data set. We observed signifi-
cantly improved graph and RL clustering quality compared to the quality of the full
graph, when our filtering method was applied on data sets with clear patterns along
the chosen data dimensions. The RL efficiency too was improved considerably when
clustering was applied on the filtered graphs compared to clustering the full graph.
Therefore, applying graph filtering can improve both the linkage quality and effi-
ciency when clear patterns in the data are available along data dimensions. Further-
more, we showed that the linkage quality obtained with filtering graphs using our
binning approach was slightly better compared to filtering with a global threshold.
Even though this justifies our proposed binning method, applying a global threshold
is seemingly adequate when a slight reduction in linkage quality is acceptable. In
the next chapter, we present a novel active learning-based method for conducting RL
classification while improving the classification efficiency with filtering.

114 Active Learning-based Graph Filtering for Record Linkage

Chapter 7

Active Learning-based Record
Linkage With Filtering

As we highlighted in Section 1.2, a lack of availability of ground-truth data in the
form of true matching and non-matching record pairs, and the difficulty of scaling
most existing algorithms to link large data sets due to quadratic record pair compar-
isons, are two of the key issues in the Record Linkage (RL) domain. When ground-
truth data is unavailable, supervised classifiers cannot be trained to be utilised in
RL projects. In this chapter, we propose a novel RL approach which uses an iter-
ative active learning strategy which labels a small, selected number of record pairs
for training such that supervised classifiers can be effectively used for RL. Further-
more, we incorporate record pair filtering into this active learning approach such
that the record pairs with the most confident classifications in previous iterations are
disregarded from future classification steps to improve RL efficiency.

In Section 7.1 we provide an introduction to conducting RL with active learning
and highlight our contribution to the literature with the methods we propose in this
chapter. Next, in Section 7.2 we describe our active learning-based technique for RL
filtering and classification in detail. In Section 7.3 we experimentally evaluate our
proposed method using four real-world and one synthetic data set, and finally, in
Section 7.4 we conclude this chapter with a summary of our findings.

7.1 Introduction

Identifying records that refer to the same entity as conducted in RL requires the
comparison of record pairs across the data sets to be linked [136]. However, as we
discussed in Section 1.2, the sizes of most real-world databases have rendered such
naïve comparison computationally infeasible [56]. Linking two databases contain-
ing a thousand records each results in a million record pairs, and with increasing
database sizes the number of comparisons grows quadratically. Therefore, as we dis-
cussed in Section 2.3, different blocking and indexing techniques have been proposed
to reduce the comparison space [138], where record pairs that are highly unlikely to
be matches are discarded prior to the expensive comparison step. However, the ma-
jority of record pairs retained after having been compared are often non-matches

115

116 Active Learning-based Record Linkage With Filtering

Table 7.1: The number of matching and non-matching record pairs (edges) in the
pairwise similarity graph of each data set, with the approximate match to non-match
ratio. For the IoS, Kilm, and UK birth data sets we have considered the pairwise
similarity graphs generated by comparing All attribute values GA (see Section 2.6).

Data set Matches in graph Non-matches in graph Match to non-match ratio

IoS 40,993 5,332,505 1:130
Kilm 67,057 24,978,921 1:373
UK 21,922 4,246,421 1:194

NCVR 6,978,001 27,611,477 1:4

DBLP-ACM 2,220 10,143 1:5
DBLP-Scholar 5,347 23,360 1:4

due to the high class imbalance encountered in linkage applications [35, 138]. As a
result, the pairwise similarity graph G = (V, E) generated at the comparison phase
(see Definition 2 on page 20) is also generally very large, and mostly contain non-
matching record pairs. Table 7.1 shows the match to non-match record pair ratio in
the similarity graphs of the data sets we use for evaluation in our thesis, where the
number of matches are highly outweighed by the number of non-matches, especially
for the birth data sets IoS, Kilm, and UK. Having a pairwise similarity graph G of
considerable size subsequent to the comparison step significantly hinders the perfor-
mance of classification or clustering methods applied on such similarity graphs as
the final step in the RL process [58]. Even though many blocking techniques have
been proposed to reduce the number of record pair comparisons, very limited re-
search has explored how to reduce the number of record pairs resulting from the
comparison step to enhance the efficiency of the classification step [125].

As we discussed in Section 1.2, another significant issue hindering the use of su-
pervised linkage methods is the lack of ground-truth data for training supervised
classification models [42], where ground-truth would consist of a set of record pairs
where their true match status is determined by a human with expertise in the rele-
vant domain. However, due to the sizes of real-world databases, the cost and time
required for constructing a ground-truth set for even a single linkage application
is substantial and often infeasible. As we discussed in Section 3.3, methods such as
active learning have been developed to select a subset of record pairs for manual classi-
fication to be later utilised as a training set for classification tasks [5, 41, 144, 145, 155].
The class imbalance resulting from the number of true matches being highly outnum-
bered by the number of true non-matches, however, makes the process of selecting a
high quality subset of record pairs for manual labelling challenging [145]. It is there-
fore important to develop techniques to sample a balanced subset of record pairs for
labelling that better reflects the characteristics of the full comparison space.

As outlined in Figure 7.1 and described in detail in Section 7.2, we propose a
novel active learning-based classification approach with filtering which addresses
the two significant issues in RL highlighted above. The challenge of lack of ground-
truth data for conducting supervised learning is addressed by an active learning

§7.1 Introduction 117

i

n
c

up−to iterations

automatic labelling

classify active record pairs

− Select record pairs for
manual (oracle) labelling

− Apply high confidence

− Train classifier and

(input) estimated number
of matches classifier

Domain expert

G

e

b

r

x

x

r

x
x

3

1

2

4

0.9

0.8

x
5

rc

rd0.95

0.85

0.95

0.75

r

x6

a

states vector
scores matrix and
Classification

Z

Final classification

non−matches N

of matches andM

GSimilarity graph of
record pairs

S

x

x
x

1

2

x
3

4

5

0.9
0.85 l

i

a

0.95

x 0.8

Z S

l

i0.75
0.75
0.65
0.85
0.9
0.99

. . .

x

x
x

1

2

x
3

4

5

0.75
0.9
0.85

a

a

a

a

a

0.95

. . .

x 0.8

. . .

pairs with highest
similarity as matches

− Classify remaining
record pairs as
non−matches

o
m

− Classify top record

until no active record pairs
left, or the maximum number
of iterations reached

Iterative refinement step,

Z S

− Final match

and non−match

classification

NM

x

Figure 7.1: Overview of our active learning and filtering approach for efficient RL, as
we describe in Section 7.2. Record pairs can be in the state active (a) and still need
to be classified, manually labelled by the oracle (state l), or inactive (state i) if they
have been automatically labelled as a match or non-match with high confidence, and

filtered to improve efficiency.

method that iteratively selects record pairs for manual labelling based on knowledge
gained from previous rounds of active learning and automated labelling. Making
such informed decisions in the link selection process helps build a training data
set that is reflective of the features in the full data set. Furthermore, the selection
of record pairs is conducted in a manner that helps deal with the class imbalance
problem, by selecting an equal number of likely matches and non-matches.

Since the number of record pairs that can be manually labelled is limited (because
this is generally a cumbersome and costly process), we introduce a method to auto-
matically label high confidence match and non-match pairs. This automated labelling
approach helps us obtain a larger training data set rather than being constrained by
the limited number of manual labels obtained with the active learning approach only.
To improve the efficiency of our approach we iteratively utilise this training data set
to classify record pairs as matches and non-matches, while concurrently filtering out
pairs that are automatically and manually labelled in each iteration. Furthermore,
we use traditional machine learning classifiers rather than deep learning approaches
due to the generally high time complexity of deep learning algorithms [10].

Even though the concept of combining manually and automatically labelled pairs
is not novel [144], their limited application in the RL domain makes our proposed
technique a valuable contribution. Furthermore, while we proposed an active learn-
ing based filtering technique in Chapter 6, here we develop an active learning strat-
egy that combines filtering and classification steps, as shown in Figure 6.1.

118 Active Learning-based Record Linkage With Filtering

7.2 Active Learning with Filtering

In this section, we describe our approach to active learning with filtering for RL
in detail, as illustrated in Figure 7.1. We begin with an overview to provide the
main ideas of our approach. In Section 7.2.2 we then describe the first phase of our
approach where we obtain an initial classification outcome based on the expected
number of matching record pairs. In Section 7.2.3 we discuss how we iteratively
refine our classification, and in Section 7.2.4 we provide an overall algorithmic outline
of our approach.

7.2.1 Overview

We assume a single (or multiple) data set(s) D is to be linked, where no ground-truth
data in the form of known true matches and non-matches are available. Supervised
learning algorithms can therefore not be applied, requiring either unsupervised clus-
tering techniques [15, 58, 86, 154], or active learning [5, 41, 142, 145], the methodology
we use here. Furthermore, we assume that a pairwise similarity graph G = (V, E)
is generated as described in Definition 2, where the set of vertices, V, corresponds
to records from a data set (ri = vi where ri ∈ D and vi ∈ V), and the set of undi-
rected edges, E, between vertices represent the attribute value similarities calculated
between them ((ri, rj) ∈ E). These similarities can either be a single numerical value
si,j that encapsulates the overall similarity between two records, or they can be a vec-
tor of individual similarities si,j as calculated between the values of the compared
attributes [35] (see Definitions 1 and 2).

In our approach, this similarity graph, G, is the main input from where we build
a succession of classification models. We consider both selected record pairs for man-
ual classification by a domain expert (named as the oracle), as well as an automatic
classification of those record pairs where our approach provides a high confidence
that the pair is a match or non-match, as we describe below.

Our approach has two phases. In the first we build an initial classifier based
on the expected number of matches, om, as provided by a domain expert who can
often estimate this number based on context related knowledge of the data. For
example, when RL is conducted to identify sibling groups, the knowledge about the
size distribution of families in a population can be used to estimate om [149]. On
the other hand, when linking two product databases, where one-to-one matches are
expected, om is limited by the number of records in the smaller of the two databases
being linked.

In the second phase of our approach, we generate a series of increasingly more
accurate classification models to iteratively refine the classification outcomes. A sim-
ilar approach was proposed by Wang et al. [172] for image classification, which we
adapt here for linking records. In each iteration we select a certain number of record
pairs for manual classification by the oracle, while concurrently we automatically
classify pairs as matches or non-matches that consistently have obtained high match
or non-match classification scores over the last k ≥ 1 iterations. This automatic clas-

§7.2 Active Learning with Filtering 119

sification provides both high quality classification results and it also substantially
reduces the problem space by lowering the number of record pairs to be considered
for classification in the following iterations.

The main data structure in our approach is a matrix Z that holds the classification
scores for each record pair (ri, rj) ∈ G.E over all iterations. This matrix has one row
per record pair (ri, rj), with nr = |G.E| rows in total, and nc columns, where nc is the
maximum number of iterations (including the first initial classification phase). For
ease of presentation, we denote a record pair (ri, rj) by its row number x in matrix Z
throughout this chapter. The matrix element Z[x, y] corresponds to the classification
score the record pair x has obtained in iteration y. We denote row x in this matrix
with C[x, :], where 1 ≤ x ≤ nr, and column y with C[:, y], where 1 ≤ y ≤ nc.

Each record pair can be in one of three states. At the beginning all record pairs
are active (a). If a record pair was selected for manual classification we set its state
to oracle labelled (l), while if it was classified automatically we set the pair’s state to
inactive (i). We denote the vector used to store the states of record pairs as S, where
|S| = nr, and the entry for the record pair in row x in the matrix Z is indicated with
S[x], where S[x] ∈ {a,l, i}.

We also assume there is an oracle labelling budget (number of record pairs to
be manually classified by the oracle) per iteration, β, and therefore a total budget of
β · nc, where nc is the maximum number of iterations. Our approach proceeds as
long as there are active record pairs, which means |{x : S[x] = a, 1 ≤ x ≤ nr}| > 0,
and the maximum number of iterations nc has not been exceeded.

7.2.2 Initial Classification Based on the Expected Number of Matches

As described in Section 7.2.1, the first phase of our approach is to build an initial
classifier based on the expected number of true matches, om, as provided by a do-
main expert. Furthermore, our initial classification is based on the assumption that
record pairs that have a higher pairwise similarity are generally more likely to be
true matches. While this assumption does not necessarily hold for every record pair
in graph G, it is a common assumption used in RL [5, 125, 164]. We therefore use the
pairwise similarity sx (assumed to be normalised into [0, 1]) of each record pair x in
G.E as an approximation of the pair’s match probability (the probability of a record
pair corresponding to the same entity). The initial classifier generates the vector of
such match probabilities, p, where we set p[x] = sx, and assume 0 ≤ sx ≤ 1.

The initial classifier determines the threshold δp for classifying record pairs as
matches and non-matches based on the estimated true match count om, and the
assumption that record pairs with higher similarities are more likely to be true
matches [5, 125, 164]. In this initial phase, we therefore select the top om record
pairs with the highest values in p as matches, and set all others as non-matches.

We also initialise the vector S to S[x] = a, where 1 ≤ x ≤ nr to indicate that all
record pairs are in the active state a. At the end of this first phase we now have two
initial sets of record pairs labelled as matches and non-matches, respectively, which
we aim to refine in the second phase.

120 Active Learning-based Record Linkage With Filtering

7.2.3 Iterative Classification Refinement

In the second phase of our approach, we conduct the iterative refinement of the clas-
sification using an active learning approach. This iterative phase comprises of five
steps as we describe in this section. In the first step we convert the match probabilities
into classification scores to reflect the class (match or non-match) and the confidence of
the classification. In the second step, the classification scores for each active record
pair are averaged over k ≥ 1 iterations, and these averages are then utilised in the
third step to decide which record pairs to inactivate with automatic labelling. Sub-
sequently, in step four, β record pairs are sampled to be manually classified by an
oracle and to be used for training the next classifier C. Finally, in step five, this new
classifier C is trained and record pairs in the active state are classified to obtain new
match probabilities p, where p[x] indicates the probability for record pair x to be a
match, with 0 ≤ p[x] ≤ 1. This iterative refinement process continues until there are
no more active record pairs left, |{x : S[x] = a}| = 0, or the maximum number of
iterations nc is reached. We next describe each of these steps in more detail.

Step 1: Calculating Classification Scores

The classification score Z[x, y] reflects the likelihood for a record pair x to be either
a match or a non-match in iteration y, based on the threshold δp where 0 ≤ δp ≤ 1.
A positive Z[x, y] value indicates that a record pair x was classified as a match (if
p[x] > δp), a negative value of Z[x, y] indicates that the pair was classified as a non-
match (p[x] < δp), and a score of Z[x, y] = 0 (if p[x] = δp) indicates an ambiguous
classification outcome. We consider two methods to calculate a score Z[x, y] from a
classifier probability p[x].

• Without confidence scaling: In this method we convert match probabilities into
classification scores by setting Z[x, y] = p[x] when p[x] > δp, Z[x, y] = −(1−
p[x]) when p[x] < δp, and Z[x, y] = 0 when p[x] = δp. Here we assume that
the probability of a non-match for record pair x is 1− p[x] because match and
non-match probabilities must add to 1.

• Applying confidence scaling: The closer a match probability p[x] of a record pair
x is to the classification threshold δp, the higher the ambiguity of its classifi-
cation. When we calculate the classification scores without confidence scaling,
this ambiguity of the classification is not evident. Furthermore, the ranges of the
classifier match probabilities p[x] returned in different iterations may be differ-
ent, potentially resulting in an implicit bias of the classification result to certain
iterations.

For example, if the match probabilities obtained in the first iteration are in the
range [0.4, 0.9], while in the second iteration they are in the range [0.1, 0.8], then
the final classification result (averaged over the two iterations, as we discuss
below in Step 2) has an implicit bias to the results obtained in the first iteration
due to it having higher probability values. To resolve this issue, we adapt the

§7.2 Active Learning with Filtering 121

confidence scaling technique as proposed by Primpeli et al. [142] (which we
described in Section 3.3, and presented in Equation 3.2) as follows:

Z[x, y] =

p[x]−δp
δp−min(p) , if p[x] < δp

p[x]−δp
max(p)−δp

, if p[x] > δp

0.0, if p[x] = δp

(7.1)

When confidence scaling is applied as shown in Equation (7.1), we normalise
score values into the [−1, 1] range to adjust for the ambiguity of classification
in different iterations. The min() and max() functions return the minimum and
maximum values in the input list provided, respectively (here the minimum and
maximum match probabilities of active record pairs in p). A classification score
Z[x, y] closer to 0 indicates higher ambiguity and a value closer to ±1 indicates
higher confidence of the classification outcomes for record pair x in iteration y.

Step 2: Weighted Average Score

We now describe how we calculate the vector of weighted average classification
scores, z, using the classification scores in the matrix Z. This vector of averaged
scores z is used to decide whether a record pair should be inactivated, and if its
final classification should be as a match or a non-match. We consider the classifica-
tion scores of the k most recent iterations when calculating these weighted averages.
We use a linear discounting approach where the most recent score is given a higher
weight compared to earlier scores. This is because we expect the classification models
in latter iterations to have better predictive power since they have been trained with
a larger and more refined training data set that contains more record pairs labelled
by the oracle, as well as more inactive record pairs of improved quality.

Specifically, we calculate a vector of weights, w, where we set w[j] = j, with 1 ≤ j ≤
k. The classification score of the earliest iteration among the iterations considered
for the average score calculation will receive a weight of w[1] = 1, with weights
incremented by one for subsequent iterations as w[j + 1] = w[j] + 1. Note that
alternative discounting methods would be possible, such as setting each w[j] to half
of w[j + 1]. This would however give too much weight to the classification score of
the most recent iteration. In each iteration y, we then apply this weighted averaging
approach on each active record pair x to calculate its overall score z[x], as shown
in Equation (7.2). If less than k iterations have been performed (y < k), then the
averaging calculations are only applied on these first y iterations.

z[x] =

∑k

j=1 w[j]·Z[x,y−k+j]

∑k
j=1 w[j]

, if y ≥ k

∑
y
j=1 w[k−y+j]·Z[x,j]

∑
y
j=1 w[k−y+j]

, if y < k
(7.2)

Note that −1 ≤ z[x] ≤ 1 due to every score in the matrix Z being in the [−1, 1] range.

122 Active Learning-based Record Linkage With Filtering

Step 3: Automatic Record Pair Classification

The third step of the iterative refinement phase is the automatic classification (la-
belling) of record pairs where we are highly confident that they are either a match
or a non-match. We automatically label and inactivate selected record pairs such
that the efficiency of the linkage process is improved by not considering all inactive
record pairs in subsequent iterations. We inactivate record pairs only when at least k
iterations have elapsed by calculating the average of their classification scores across
the k most recent iterations. We consider two methods to inactivate a record pair x
based on its average overall score z[x].

• Threshold: In this method all record pairs in the active state (S[x] = a) with
an absolute weighted average score z[x] (we consider the absolute value since
−1 ≤ z[x] < 0 for potential non-matches) above a given threshold value δa are
inactivated. The absolute z[x] value being above a given threshold δa indicates
that the corresponding record pair has been classified as a match or a non-match
with high confidence in the k most recent iterations.

• Percentage: A given percentage δb of record pairs in the active state with the
highest absolute weighted average scores z[x] are made inactive in this method.

The inactivated record pairs with a positive weighted average score z[x] ≥ 0 are then
automatically labelled as matches, while the inactivated record pairs with a negative
weighted average score z[x] < 0 are labelled as non-matches. Furthermore, the state
of all inactivated record pairs is changed from active (a) to inactive (i) in the vector
S of states (S[x] = i). Note that we do not require the consistent classification of
record pairs into a single class in the last k iterations for their inactivation because the
classifiers in early iterations tend to make erroneous classifications. Therefore, the
weighted average of scores across k iterations, as given in Equation (7.2), is a more
apt measure for selecting the record pairs to be inactivated.

Step 4: Record Pair Sampling for Classifier Training

Subsequent to the inactivation step, active record pairs (S[x] = a) are sampled to be
manually classified by the oracle, and inactive record pairs (S[x] = i) are sampled to
train a next classifier C together with the oracle labelled record pairs. We consider the
following two variations of sampling methods, where in both β is the oracle labelling
budget for one iteration.

• Random: With this method, β/2 record pairs in the active state are chosen ran-
domly from the potential matches (record pairs where their z[x] ≥ 0) and β/2
from the potential non-matches (where z[x] < 0) in the active state. Because
no manual labelling is required for the sampled inactive record pairs (that have
been classified automatically as we described above), without costs we can sam-
ple more such inactive record pairs into the training set. Assuming o to be the
set of manually labelled record pairs through all iterations (where |o| = β · y),
we calculate the sampling budget for the inactive set as a multiplier ε of the
number of oracle labelled record pairs, and then randomly select |o| · ε/2 record

§7.2 Active Learning with Filtering 123

pairs from each of the automatically labelled set of matches and non-matches in
the inactive state.

• Extreme: With this method, the most ambiguous β record pairs in the active
state are selected for manual classification. Higher ambiguity is indicated by
weighted average scores z[x] being closer to 0. We select an equal number of
β/2 record pairs from either sides of the z[x] = 0 boundary, such that both
highly ambiguous potential matches and potential non-matches are manually
labelled [41]. When sampling inactive record pairs for training the classifier, we
select record pairs with the highest absolute weighted average scores z[x] being
closest to 1. These are the match and non-match record pairs with the most
confident automated labelling. As with the random sampling method described
above, the sampling budget for the inactive set is calculated as a multiplier ε of
the number of oracle labelled record pairs. We therefore select the |o| · ε most
confident record pairs in the inactive state, allocating an equal budget of |o| · ε/2
to automatically labelled matches and non-matches.

Step 5: Classifier Training and Record Pair Classification

The final step in the iterative refinement phase is to train a classifier C with the
sampled inactive record pairs as well as the oracle labelled pairs, and subsequently
to classify all record pairs x which are still in the active state (S[x] = a) to obtain
their new match probabilities p[x]. These will then be used in the next iteration as
described above.

7.2.4 Algorithmic Outline

Algorithm 8 outlines our proposed active learning based RL technique with filtering.
As main input, the algorithm takes G = (V, E), an undirected pairwise similarity
graph, and a supervised classification algorithm, C. The parameters provided to
Algorithm 8 are the confidence scaling flag f (True or False) we described in Step 1,
the record pair inactivation method mi (Threshold or Percentage based) as described
in Step 3, and the sampling method ms (Random or Extreme) that identifies how to
sample record pairs for oracle labelling and training the classifier C, as we described
in Step 4. The parameter k (k ≥ 1) specifies the number of past iterations to take
into consideration when deciding which record pairs to set to inactive state. The
maximum number of iterations to consider and the budget allocated per iteration
are given by nc and β, respectively, whereas the sampling ratio for deciding the
number of inactive record pairs to use for training the classifier C is given by ε. The
number of matches as estimated by the domain expert for the initial classification
phase is specified by om. The final output of the algorithm are the sets of classified
matching and non-matching record pairs M and N.

In line 1 of the algorithm, we initialise a classification score matrix Z with nr =
|G.E| rows and nc columns, as described in Section 7.2.1. The classification score
obtained for a given record pair x in a certain iteration y is stored in the matrix
cell Z[x, y], where 1 ≤ x ≤ nr and 1 ≤ y ≤ nc. Next, in line 2, the function

124 Active Learning-based Record Linkage With Filtering

Algorithm 8: Record linkage with active learning and filtering (RALF)
Input: G - Undirected pairwise similarity graph

C - Supervised classifier
f - Confidence scaling flag (True or False)
mi - Method to inactivate record pairs (Threshold or Percentage)
ms - Method to sample record pairs (Extreme or Random)
k - Number of most recent iterations to consider for inactivation
nc - Maximum number of iterations
β - Budget per iteration
ε - Inactive sampling ratio
om - Estimation of the expected number of true matches by domain expert

Output: M, N - Classified match and non-match record pairs
1 Z = InitScoreMatrix(nr = |G.E|, nc) // Initialise the score matrix

2 p, δp = ApproxMatchClass(G, om) // Get initial classification

3 y = 1;S[x] = a, 1 ≤ x ≤ nr // Initialise iteration counter and score vector

4 while y ≤ nc ∧ |{x : S[x] = a}| > 0 do // While iterations / active pairs

5 z = CalcScore(Z, p, δp, f , y, k) // Calculate the scores and averages

6 if y ≥ k then
7 SetInactive(Z, mi, z,S) // Inactivate selected record pairs

8 o = Oracle({x : S[x] = a}, ms, z, β,S) // Oracle labelling of active pairs

9 Dt = GetTrainData(o, ms, z, {x : S[x] = i}, |o| · ε) // Get training data

10 C.train(Dt) // Train the classifier

11 p, δp = C.classi f y({x : S[x] = a}) // Classify active record pairs

12 y = y + 1 // Increment the iteration counter

13 M, N = GetFinalClass(Z, z,S) // Get final matches and non-matches

14 return M, N // Return the final matches and non matches

ApproxMatchClass() conducts the initial classification of record pairs in G based
on the estimated number of true matches om, as we described in Section 7.2.2. This
function returns a list of match probabilities, p, containing one probability for each
record pair in the graph G, and a threshold probability δp for classifying record pairs
as matches and non-matches. In line 3 the current iteration y is initialised to 1, and
the score vector S is initialised by setting all record pairs to active state (S[x] = a).

The iterative active learning based classification phase described in Section 7.2.3
starts at line 4. This phase continues until the maximum number of iterations nc is
reached, or there are no active record pairs left, identified by |{x : S[x] = a}| = 0.

In line 5, using the function CalcScore(), the classification scores for iteration y
are calculated and stored in the matrix Z, as we described in Step 1, using the match
probabilities p, the threshold value δp, and the confidence scaling flag f . Further-
more, the weighted average scores z[x] are calculated for all record pairs, where we
consider the classification scores obtained across up to the k most recent iterations,
as we discussed in Step 2.

Subsequently, the record pairs in Z are automatically labelled and inactivated
according to the inactivation method mi, and the weighted average scores in z, as
we discussed in Step 3. This record pair inactivation is conducted if at least k itera-
tions have elapsed (lines 6 and 7), whereas the states of inactivated record pairs are

§7.2 Active Learning with Filtering 125

changed from active a to inactive i in vector S (S[x] = i). In lines 8 and 9, we then
sample record pairs for manual classification and for training the classifier, as we de-
scribed in Step 4, based on the weighted average scores of record pairs in z. In line 8
the oracle is given a sample of β active record pairs (with {x : S[x] = a}), where the
sampling method is identified by ms. The states of the record pairs labelled by the
oracle are changed to oracle labelled (S[x] = l), and the set of record pairs labelled by
the oracle across all iterations o is returned. Then, in line 9, we sample |o| · ε record
pairs from the inactive set ({x : S[x] = i}) using the same sampling method ms.
These sampled inactive record pairs, together with all oracle labelled record pairs
o are used in line 10 to train the classifier C. Next, in line 11, record pairs in the
active state are classified using the trained classifier C, which returns a new vector of
match probabilities p and a match probability threshold δp. The iteration counter y
is incremented by one in line 12.

The final classification results are determined for all record pairs in matrix Z in
line 13. Each record pair x in the active state (S[x] = a) with a positive weighted
average score (z[x] ≥ 0), together with the record pairs automatically and manually
labelled as matches among the inactive and oracle labelled record pairs, respectively,
are added to the final match set M. The remaining record pairs in the matrix Z are
added to the final non-match set N, and these two final sets are returned in line 14.

Complexity analysis: We now describe the complexity of our proposed method.
Since we consider the classification algorithm C as a black box, we exclude the com-
plexity of the training and classification functions of C from our analysis. For ease
of presentation, we will refer to the number of record pairs in the active state as na

where na = |{x : S[x] = a}|. The initial classification step (line 2 in Algorithm 8)
has a complexity of O(nr · log(nr)), with nr = |G.E|, because we can use a heap-sort
algorithm [91] to sort the edges G.E in the similarity graph to obtain the om record
pairs with the highest similarities that are expected to correspond to matches, as
estimated by the domain expert.

For each iteration, the classification score calculation step has a complexity of
O(na), where we conduct a linear scan through the active record pairs in S. For
record pair inactivation using the Threshold based technique, the complexity is O(na),
whereas for the Percentage based technique the complexity is O(na · log(na)) because
this technique requires sorting of the active record pairs. Similarly, record pair sam-
pling for oracle labelling and classifier training has a time complexity of O(na) if the
Random sampling technique is used, and O(na · log(na)) if Extreme sampling is used.
Since the iterative phase of our approach is mostly dependent on the number of ac-
tive record pairs, na, if these record pairs are inactivated rapidly then the efficiency
of the algorithm improves.

The worst case time complexity of the algorithm considering a maximum of nc

iterations is O(nr · log(nr) + nc · na · log(na)). Given nr � nc and nr ≥ na, the overall
complexity of our approach is dominated by the initial classification phase, whereas
the iterative refinement phase will be dependent upon the complexity of the classifier
C used in lines 10 and 11 of Algorithm 8.

126 Active Learning-based Record Linkage With Filtering

7.3 Experimental Evaluation

We evaluated our novel active learning with filtering-based RL approach (which we
abbreviate as RALF) using the real-world bibliographic data sets DBLP-ACM and
DBLP-Scholar, the real-world birth data set IoS, the synthetic birth data set UK, and
the real-world voter data set NCVR, which we described in Section 2.5. We use the
large NCVR data set only to evaluate the efficiency of our approach compared to
employing fully supervised classification methods. For the birth data sets, we use
the pairwise similarity graphs generated by comparing All attribute values GA (see
Section 2.6 on page 30) since they contain the maximum number of features for a
classifier C to learn from.

We conduct experiments with various parameter settings on the remaining four
data sets. Ground-truth data is available for all five data sets in the form of true
matching record pairs as assessed by domain experts in the relevant fields, and we
use the number of true matches in these ground-truth data sets as the estimation of
the expected number of true matches, om (see Table 2.1 on page 25), in the initial
classification phase of our approach, as we discussed in Section 7.2.2.

We implemented our algorithm in Python 2.7, and all experiments were con-
ducted on a server running Ubuntu 18.04 with 64-bit Intel Xeon 2.10 GHz CPUs
and 512 GB of memory. The classification algorithms C we used are a Decision Tree
(Tree), Logistic Regression (Reg), Support Vector Machines (SVM), and AdaBoost
(Ada) [20], as provided by the Scikit-learn [139] Python machine learning library. We
used the default parameter settings for all classifiers, and for repeatability we set the
random_state parameter (which identifies how record pairs would be shuffled) to 0.

As we described in Section 7.2.4, we set the confidence scaling flag f to True
or False, the record pair inactivation method mi to Threshold or Percentage, and the
record pair sampling method ms to either Extreme or Random. We set the number
of most recent iterations to consider for inactivation as k ∈ [1, 5, 10, 15], whereas the
maximum number of iterations nc we set to 10 or 20. The oracle labelling budget per
iteration was set to β ∈ [20, 50, 100], and inactive sampling ratio as ε = [0, 1, 2], where
ε = 0 implies that no inactive (automatically classified) record pairs were used to
train the classifier C. Based on nc and β, we evaluated total budgets β · nc as 200, 500,
1000, and 2000. Furthermore, for the inactivation method mi = Threshold, we set the
threshold values δa ∈ [0.99, 0.95, 0.9, 0.85, 0.8], while for mi = Percentage, we set the
percentage values δb ∈ [0.005, 0.01, 0.015, 0.02].

For evaluating the linkage quality of our active learning-based filtering approach,
we use the measures of precision (P) and recall (R) which we described in Section 2.4.
We also use the recently proposed F∗-measure (see Equation 2.5) which can be used
as an alternative to the F-measure as we discussed in Chapter 4 in page 77.

7.3.1 Linkage Quality With Different Parameter Settings

We first discuss how the linkage quality achieved with our proposed technique varies
when different parameter settings are used.

§7.3 Experimental Evaluation 127

Table 7.2: Comparison of the parameter settings for sampling, inactivation, and con-
fidence calculation.

Data Linkage Sampling method ms Inactivation method mi Confidence scaling f
set quality Random Extreme Threshold Percentage True False

DBLP P 0.95 ± 0.1 0.87 ± 0.2 0.89 ± 0.2 0.93 ± 0.1 0.91 ± 0.2 0.90 ± 0.2
ACM R 0.97 ± 0.0 0.85 ± 0.3 0.91 ± 0.2 0.92 ± 0.2 0.92 ± 0.2 0.91 ± 0.2

F∗ 0.92 ± 0.1 0.73 ± 0.3 0.81 ± 0.3 0.85 ± 0.2 0.84 ± 0.3 0.82 ± 0.3
DBLP P 0.94 ± 0.1 0.97 ± 0.1 0.95 ± 0.1 0.96 ± 0.1 0.95 ± 0.1 0.96 ± 0.1

Scholar R 0.96 ± 0.1 0.18 ± 0.3 0.55 ± 0.5 0.58 ± 0.5 0.58 ± 0.5 0.56 ± 0.5
F∗ 0.90 ± 0.1 0.15 ± 0.3 0.51 ± 0.4 0.55 ± 0.4 0.54 ± 0.4 0.52 ± 0.4
P 0.70 ± 0.3 0.90 ± 0.2 0.89 ± 0.2 0.68 ± 0.4 0.79 ± 0.3 0.80 ± 0.3

IoS R 0.84 ± 0.2 0.20 ± 0.2 0.51 ± 0.4 0.53 ± 0.4 0.53 ± 0.4 0.50 ± 0.4
F∗ 0.59 ± 0.3 0.14 ± 0.1 0.44 ± 0.4 0.28 ± 0.3 0.38 ± 0.3 0.35 ± 0.3
P 0.72 ± 0.3 0.88 ± 0.3 0.88 ± 0.3 0.69 ± 0.4 0.79 ± 0.3 0.81 ± 0.3

UK R 0.93 ± 0.1 0.68 ± 0.1 0.80 ± 0.2 0.81 ± 0.2 0.81 ± 0.2 0.80 ± 0.2
F∗ 0.66 ± 0.3 0.57 ± 0.2 0.69 ± 0.2 0.52 ± 0.3 0.61 ± 0.3 0.62 ± 0.3

Averages F∗ 0.76 0.40 0.61 0.55 0.59 0.58

• Quality Analysis for Functional Parameters: Table 7.2 shows a comparison of the
linkage quality achieved for different values for sampling method ms, inactiva-
tion method mi, and confidence scaling method f . The presented quality values
are averages and standard deviations across different parameter settings, with
the opposing parameter value ignored. For example, when calculating the av-
erages and standard deviations for Random we ignored all results obtained with
the Extreme parameter setting.

While the Random sampling method has performed better than extreme sam-
pling with regard to both precision and recall on the DBLP-ACM data set,
Extreme sampling has achieved slightly better precision and much worse recall
than the Random method for the remaining data sets. With further investiga-
tion, we were able to identify that for data sets DBLP-Scholar, IoS and UK, the
average recall with Extreme sampling is very low due to early termination of
our algorithm when k > 1. With k > 1, no record pairs would be inactivated in
the first iteration itself, and as a result, the next classifier = C has to be trained
only using the oracle labelled record pairs. When the Extreme method is used
to sample record pairs, depending upon the distribution of the similarities be-
tween records, there is a possibility of sampling record pairs from a single class.
Since the classifier C cannot be trained with data from a single class (match or
non-match) only, our algorithm terminates after only one iteration. The average
F∗ values in Table 7.2 show that Random is superior to Extreme sampling.

For the two inactivation methods (mi) considered, the Percentage method pro-
duces better precision and recall on average for the smaller bibliographic data
sets, whereas the Threshold method achieves better results for the IoS and UK
data sets with considerably better precision and slightly lower recall only.

For all data sets except DBLP-ACM, recall improves and precision declines
slightly when confidence scaling is applied (f = True) compared to not apply-

128 Active Learning-based Record Linkage With Filtering

ing confidence scaling, whereas with DBLP-ACM both measures show a slight
improvement with confidence scaling. The F∗ values however have improved
for all except the UK data set when confidence scaling was applied, which in-
dicates that the improvement in recall surpasses the slight decline in precision
in most experiments.

In summary, as shown with the highlighted average F∗ values in Table 7.2, Ran-
dom sampling is better than Extreme sampling, Threshold inactivation is superior
to Percentage based inactivation, and applying confidence scaling (f = True)
produces slightly better linkage results than when no scaling is applied.

We also analysed the trade-off between the efficiency and the quality of our al-
gorithm considering the larger IoS and UK data sets with regard to the choice of
functional parameter settings. We did not consider the DBLP data sets because
they are too small in size to obtain a proper understanding of the algorithm
efficiency. For both the IoS and UK data sets, Random sampling indicated a
five-fold increase in run-time compared to Extreme sampling, the Threshold in-
activation method was approximately twice as efficient as the Percentage method,
and the choice between applying or disregarding confidence scaling did not
show a considerable difference in the run-time. Extreme sampling takes less
time since it leads to early termination of the algorithm, and therefore, it is not
necessarily better than the Random approach with regard to efficiency.

• Quality Analysis for Other Parameters: Figure 7.2 shows how the linkage quality
of our active learning technique changes with varying parameter values. As
shown in Figure 7.2 (a), the performance of the AdaBoost, SVM, and Decision
Tree classifiers on the four data sets are quite similar, whereas the Logistic Re-
gression classifier has the worst performance. Figure 7.2 (b) shows an upward
trend in F∗ results obtained with increasing oracle budgets β and ratio values ε,
since when both β and ε are large we have more manually and more automat-
ically labelled record pairs for training the classifier C. For a given oracle bud-
get and increasing values of ε, however, the quality does not seem to improve
much which is potentially caused by increased possibility of making errors in
the automatic labelling when more record pairs are labelled automatically.

The quality as measured with F∗ improves for increasing values of k (the num-
ber of iterations to consider for inactivating record pairs) as shown in Figure 7.2
(c). This is to be expected because with larger k we take the classification out-
come of more classifiers into account when deciding which record pairs to
automatically label and inactivate, thereby improving the reliability of our de-
cisions. Similarly, as shown in Figure 7.2 (d), with larger oracle budgets β · nc,
the classifier has more manually labelled data to learn from, thus improving
the linkage quality. However, the run-time of the algorithm also increases with
the total oracle budget. This is because we calculate the total budget as a mul-
tiplication of the budget per iteration, β, and the total number of iterations, nc.
Therefore, a larger total oracle budget β · nc means that the algorithm executes
a higher number of iterations, which takes more time.

§7.3 Experimental Evaluation 129

ada reg svm tree
(a) Classifier C

0.5

0.6

0.7

0.8

0.9

1.0
F*

 v
a

lu
e

IoS DBLP-ACM DBLP-Scholar UK

β: 20
ǫ: 0

β: 20
ǫ: 1

β: 20
ǫ: 2

β: 50
ǫ: 0

β: 50
ǫ: 1

β: 50
ǫ: 2

β: 100
ǫ: 0

β: 100
ǫ: 1

β: 100
ǫ: 2

(b) Oracle budget β and ratio ǫ

0.5

0.6

0.7

0.8

0.9

1.0

F*
 v
a
lu
e

1 5 10 15
(c) Iterations used for inactivation k

0.5

0.6

0.7

0.8

0.9

1.0

F*
 v

a
lu

e

IoS

DBLP-ACM

DBLP-Scholar

UK

200 500 1000 2000
(d) Total oracle budget β ·nc

0.5

0.6

0.7

0.8

0.9

1.0

F*
 v
a
lu
e

0.8 0.85 0.9 0.95 0.99
(e) Threshold values δa

0.5

0.6

0.7

0.8

0.9

1.0

F*
 v
a
lu
e

0.005 0.01 0.015 0.02
(f) Percentage values δb

0.5

0.6

0.7

0.8

0.9

1.0

F*
 v
a
lu
e

Figure 7.2: F∗ values obtained with different parameter settings.

130 Active Learning-based Record Linkage With Filtering

Table 7.3: Comparison of the linkage quality (F∗) of our proposed RALF technique
with state-of-the-art deep learning and active learning baselines. The oracle labelling
budgets for the active learning techniques are shown within brackets. For the DBLP-

Scholar data set F∗ = 0.95 was obtained with a budget of 1,000 for RALF method.
Data Meduri et Mudgal et Magellan Christen RALF
Set al. [116] al. [120] [103] et al. [41]

DBLP-ACM 0.98 (260) 0.97 0.97 0.92 (1,000) 0.98 (1,000)
DBLP-Scholar 0.98 (1,770) 0.90 0.86 0.90 (1,000) 0.98 (2,000)

The last two plots in Figures 7.2 (e) and 7.2 (f) indicate how linkage quality
changes with different thresholds δa when record pairs are inactivated using
the Threshold technique, and different percentage values δb when the Percentage
inactivation method is used, respectively. As can be seen, the quality does not
change much for varying δa due to an improvement in precision and decrease
in recall as δa is increased. Changing δb also does not affect linkage quality
of the smaller DBLP data sets. However, linkage quality does decline with
increasing values of δb for the larger IoS and UK data sets because of a reduction
in precision resulting from the automatic labelling of too many record pairs.

For all the results presented in this section, we assumed a perfect oracle with
100% accuracy in conducting manual labelling. With only 90% oracle accuracy, the
F∗ values are reduced by 14.5% on average. We also experimented with two values,
10 and 20, for the maximum number of iterations nc, and found the F∗ results to
improve by 8% on average for larger values of nc.

7.3.2 Linkage Quality Comparison With State-of-the-art Techniques

Table 7.3 shows the linkage quality achieved with our proposed RALF technique,
and existing state-of-the-art active learning based linkage approaches by Meduri et
al. [116] and Christen et al. [41], deep learning based RL techniques proposed by
Mudgal et al. [120], and Magellan, a renowned machine learning based framework
for RL proposed by Konda et al. [103]. We have used the DBLP data sets as commonly
used for evaluating linkage quality in the corresponding papers.

We were able to achieve the best average quality of F∗ = 0.98 with Decision Tree-
based classification and k = 15, using a total oracle labelling budget β · nc of 1,000
for DBLP-ACM and 2,000 for DBLP-Scholar. With β · nc = 1, 000 for DBLP-Scholar,
we obtained an average quality of F∗ = 0.95. We were able to surpass the linkage
quality achieved with all state-of-the-art techniques, while being comparable with the
performance of the active learning framework proposed by Meduri et al. [116]. On
average, we have been able to improve linkage quality by an average 6.7% compared
to these baselines. The full data set was used for training with Magellan and the
framework proposed by Mudgal et al., whereas for the active learning technique
proposed by Christen et al. [41], an oracle labelling budget of 1,000 was used. Meduri
et al. [116] used a budget of 260 for DBLP-ACM and 1,770 for DBLP-Scholar, whereas

§7.3 Experimental Evaluation 131

200 500 1K 2K All
Sample / Total oracle budget (β ·nc)

0.0

0.2

0.4

0.6

0.8

1.0

F*
 v
a
lu
e

DBLP-ACM

Tree

Reg

Ada

SVM

RALF

200 500 1K 2K 10K All
Sample / Total oracle budget (β ·nc)

0.0

0.2

0.4

0.6

0.8

1.0

F*
 v
a
lu
e

DBLP-Scholar

200 500 1K 2K 10K 20K 50K All
Sample / Total oracle budget (β ·nc)

0.0

0.2

0.4

0.6

0.8

1.0

F*
 v
a
lu
e

IoS

200 500 1K 2K 10K 20K 50K All
Sample / Total oracle budget (β ·nc)

0.0

0.2

0.4

0.6

0.8

1.0

F*
 v
a
lu
e

UK

Figure 7.3: The F∗ results obtained with different supervised classification algorithms
with different training sample sizes, and our proposed active learning technique with

different total oracle labelling budgets β · nc.

a Random Forest classifier with 20 decision trees produced the best results in their
active learning framework. Considering the labelling budgets, the method proposed
by Meduri et al. [116] is still slightly better than our RALF approach.

7.3.3 Linkage Quality and Efficiency Comparison With Supervised Clas-
sification Techniques

In this section we first compare the linkage quality of RALF and supervised classi-
fication techniques, with the aim of justifying using our RALF approach rather than
applying supervised classification with a randomly sampled set of labelled record
pairs for training. As shown in Figure 7.3, we increased the training sample size for
supervised classifiers from 200 to the full data set size, where record pairs are ran-
domly sampled such that an equal number of matches and non-matches are selected
for training, except in the instance where training is conducted on the full data set.
We consider total budgets β · nc of 200, 500, 1,000 and 2,000 for oracle labelling in our
RALF method, and report the average quality obtained for each total budget.

When applied on the DBLP data sets, our RALF method is either on par with, or
only marginally surpasses the linkage quality achieved with supervised classifiers.
The reason for this is due to the DBLP data sets being clean, structured, and rel-
atively small in size. However, for the larger IoS and UK data sets which lack in
data quality, the improvement in linkage quality achieved with our RALF method is
higher when compared to using supervised learning techniques. The linkage quality

132 Active Learning-based Record Linkage With Filtering

Table 7.4: Time taken in seconds to run fully supervised (FullSup) classification and
our proposed RALF technique, and the percentage run-time reduction.

Data IoS UK NCVR
Set FullSup RALF Reduction FullSup RALF Reduction FullSup RALF Reduction

Ada 1,998 986 50.65% 1,119 803 28.24% 14,994 9,525 36.47%
SVM 116,876 753 99.36% 55,462 580 98.95% 2,592,000 6,747 99.74%

we have been able to achieve with only 2,000 oracle labels has been surpassed by
the supervised techniques only when much larger sets of labelled record pairs, or
the full data sets, were used for training. This implies that for large and dirty data
sets (which is often the nature of real-world databases), randomly sampled training
data is inadequate for achieving high linkage quality. Rather, we need a careful se-
lection strategy for deciding which record pairs to use for classifier training as done
in our RALF method. The quality improvements seen for the IoS and UK data sets in
Figure 7.3 justify our approach to selecting record pairs for manual and automated
labelling based on a weighted average score value, and the method we adopt for
subsequent training data selection.

Table 7.4 shows a comparison of the average time taken to run RALF and the time
taken with the supervised classification techniques. We only compare our method
with AdaBoost and SVM since they are the best performing supervised algorithms
on the larger data sets. Furthermore, we disregard the smaller DBLP data sets, since
linking those does not consume much time, whereas we consider a very large data
set NCVR with 34.5 million record pairs (as we showed in Table 2.6 in page 31),
together with IoS and UK. While we consider the average time across all parameter
settings for IoS and UK, for NCVR we only consider k = 5 and maximum iterations
n = 10, since high linkage quality could be achieved with these settings in less time.

As shown in Table 7.4, the RALF method is significantly more efficient than
running supervised classification on the full data sets, for both the AdaBoost and
SVM algorithms and especially with SVM. This is due to the training complexity of
SVM being exponential (between O(n2) and O(n3)) by the number of training record
pairs [22]. On average, our RALF method has achieved an efficiency improvement
(reduction in run-time) of 28% to 50% for AdaBoost, and above 98% for SVM, com-
pared to running fully supervised classification with AdaBoost and SVM.

7.4 Summary

In this chapter, we have presented a novel active learning-based RL technique with
filtering, where we propose a novel strategy to select record pairs to conduct manual
labelling, and utilise an iterative classification method to obtain a larger training data
set. Ours is the first method to propose a record pair filtering strategy based on active
learning for improving the efficiency of the classification step in the RL process.

§7.4 Summary 133

With an empirical evaluation conducted on four real-world and one synthetic
data set, we have shown that our proposed technique is on average 28% to 99%
more efficient than using complex supervised classification techniques for RL. Fur-
thermore, we showed that our method outperforms state-of-the-art active learning,
deep learning, and machine learning linkage approaches by an average 6.7% with
regard to linkage quality. Our experiments also showed that our proposed method
is more suitable for linking large data sets which lack in data quality.

As future work, we hope to explore whether the linkage quality can be further im-
proved by classifying an equal number of matches and non-matches in the automatic
labelling step, rather than using a threshold-based or percentage-based technique,
which can be affected by the class imbalance. Furthermore, as future work we intend
to experiment with a Random Forest classifier, given the active learning method pro-
posed by Meduri et al. [116] slightly outperforms our approach with regard to the
number of labelled record pairs when a Random Forest classifier is used. In the next
chapter, we discuss limitations in existing evaluation approaches for assessing group
RL techniques and propose a novel evaluation measure for group RL.

134 Active Learning-based Record Linkage With Filtering

Chapter 8

An Evaluation Technique for
Group Record Linkage

As we discussed in Section 2.3, group Record Linkage (RL) methods, as opposed
to traditional pairwise RL techniques, have recently gained popularity due to their
applicability in linking groups of entities, such as individuals in a household or pub-
lications by the same author. However, as we highlighted in Section 1.2, limited
research has been conducted on the suitability of existing evaluation measures to
assess group RL methods. In this chapter we discuss why existing evaluation mea-
sures may produce ambiguous results, and we propose a novel evaluation measure
for assessing group RL techniques.

In Section 8.1 we provide an overview of the issue of using existing evaluation
methods on group RL with an example, and in Section 8.2 we present our proposed
new measure. Next, in Section 8.3 we apply this novel evaluation measure on three
group RL techniques and compare the results with the assessments made based on
existing RL evaluation measures. Finally, in Section 8.4 we provide a summary of
this new evaluation measure and conclude this chapter.

8.1 Introduction

While with traditional RL approaches the aim is to identify individual records re-
ferring to the same entity, the purpose of applying group RL methods is to identify
related sets of entities [134]. Graph-based clustering [86, 153] approaches are com-
monly applied to tackle the problem of group RL, where a similarity graph is initially
created representing records as vertices and the pairwise similarities as the weights
of the edges connecting vertex pairs, as we described in Definition 2. As we showed
in Chapter 4, a graph-based clustering technique applied on such a similarity graph
aims to cluster the densely connected areas of the graph (where there are many
vertices connected by edges indicating that these records belong to the same group
of entities), whereas sparsely connected or unconnected vertices represent entities
which do not belong to that particular group [153].

As automated linkage techniques are now increasingly being used across many
domains [17], one crucial question is how well do such techniques perform - i.e.

135

136 An Evaluation Technique for Group Record Linkage

Clustering 3Ground truth clusters Clustering 1 Clustering 2

Figure 8.1: Examples of different cluster predictions. Node colors represent the five
true clusters, solid edges show true matches (correctly predicted links), dotted black
edges show wrong matches (incorrectly predicted links), and dotted coloured edges

show missed matches (true matches not linked in the prediction).

how accurate are the links identified by these techniques? In order to calculate a
numerical linkage accuracy measure, ground-truth data in the form of true matches
(pairs of records believed - with a predetermined level of certainty - to refer to the
same entity) and non-matches (pairs of records believed - with a predetermined level
of certainty - to refer to different entities) need to be available.

However, the evaluation of the quality of clustering approaches for group RL
is not a straightforward undertaking. The reason for this is that some predicted
clusters might only be partially correct (a cluster might contain some correct links
and some wrong links). This can make the identification of which ground-truth
cluster is represented by which predicted cluster difficult.

As an example, when bundling birth records by the same parents, each cluster is
supposed to represent the children of one mother and father. However, a clustering
algorithm might generate some predicted clusters that are only partially correct. For
instance, the true sibling group {ra, rb, rc} might be split into two clusters {ra, rb} and
{rc, rd}, where birth record rd by other parents was wrongly linked to record rc.

So far, most researchers working on group RL (or clustering) problems have
adopted the traditional classification evaluation measures of precision and recall,
which we formally defined in Section 2.4. Precision is calculated as the ratio of how
many of the predicted links between records are in fact true matches (i.e. seen in
the ground-truth matches), while recall is calculated as the ratio of how many of
the true matches were correctly predicted as matches by the classification algorithm.
Both these measures however are based on the evaluation of links between individual
records (record pairs) rather than clusters of records.

Despite the widespread use of these two measures to evaluate the quality of
clustering and group RL results, obtaining the same precision and recall values for
different clustering results does not necessarily reflect linkage outcomes of compara-
ble quality, as we describe later in this section. For traditional pairwise RL, precision
and recall are suitable measures, assuming one is interested in the quality of the

§8.1 Introduction 137

predicted links between individual records [35, 85]. However, for group RL these
measures do not provide detailed enough information about the predicted clusters.
Let us explain this limitation of precision and recall with an example.

In Figure 8.1, we show a simple ground-truth clustering of five entity groups
(clusters) in the left-most plot, and three different cluster prediction outcomes in the
other three plots. In this example, we assume the five ground-truth clusters (two
made of three records and three made of two records) were created manually by an
experienced domain expert whose linkage outcome can be seen to be correct with
high confidence. The three clustering outcomes 1, 2 and 3, on the other hand, are the
linkage outcomes generated by three different automated RL clustering algorithms.
Each ground-truth cluster in Figure 8.1 is represented using a different vertex colour.
In each of the three predicted clustering results, we can see that:

• the number of true matches (true positives as defined in Section 2.4) is 6,

• the number of false matches (false positives) is 4, and

• the number of missed true matches (false negatives) is 3.

Therefore, all three of these very contrasting clustering results obtain the same
precision, P, and recall, R, values of P = 6/10 = 0.6 and R = 6/9 = 0.667, respec-
tively. However, the three clustering results generated by the algorithms are all very
different from one another. Depending upon the use of these linked data, for exam-
ple in a public health or social science research study, one or the other of these three
clustering outcomes might be more useful. For example, a health researcher who
is interested in studying siblings of larger families would likely prefer clustering 2,
where two of the three clusters of size three are correct (whereas for clustering 1 only
one of the three clusters of size three is correct, and for clustering 3 there is a large
wrong cluster of size four). This example shows how misleading, in the domain of
group RL, the use of link-based evaluation measures such as precision and recall
can sometimes be, and that the comparison of different linkage methods based on
precision and recall might not be suitable.

As we presented in Equations 3.4 and 3.5, Hassanzadeh et al. [86] proposed two
measures named clustering precision (CPr) and penalised clustering precision (PCPr)
for evaluating group RL algorithms. CPr reflects the average number of record pairs
which are correctly grouped together in a single cluster. The PCPr method is the
same as CPr but it penalises algorithms that generate fewer or a larger number of
clusters compared to the ground-truth cluster count. A major drawback of these
two evaluation measures, however, is the possibility of mapping several predicted
clusters to a single ground-truth cluster. For example, assume a ground-truth clus-
ter {ra, rb, rc, rd} was split into two in the prediction as {ra, rb} and {rc, rd}. In the
evaluation with CPr and PCPr, both clusters {ra, rb} and {rc, rd} are considered as
correct groupings with respect to the ground-truth cluster, which means that a single
ground-truth cluster is mapped to two different predicted clusters. Such a one-to-
many mapping between ground-truth and predicted clusters is unacceptable in the

138 An Evaluation Technique for Group Record Linkage

group RL domain, since it is incorrect to interpret two different groups as a single
group (such as two predicted families as referring to one true family).

To address the problem of the lack of suitable linkage evaluation measures for
group RL, we propose a novel method for evaluating the quality of the clusters gen-
erated in a linkage process, which assesses records (rather than links) according to
how correctly they have been grouped when compared to the ground-truth clusters.
We aim to answer the question “which linkage method has generated clusters that
are closest to the ground-truth”. We also aim to resolve the issue of one-to-many
and many-to-many mappings between ground-truth clusters and predicted clusters
as done in the group RL evaluation measure proposed by Hassanzadeh et al. [86].
Since our proposed evaluation method relies on the linkage outcome alone, it is ap-
plicable for assessing any group RL method regardless of the sources being multiple
data sets or a single data set.

8.2 Proposed Evaluation Method

Assuming a linkage of large data sets, our proposed clustering quality evaluation
method considers how individual records have been allocated into predicted group-
s/clusters (the result of a clustering algorithm), with respect to how they appear in
the ground-truth clusters. Each ground-truth cluster contains true matching record
pairs that were manually identified by a domain expert.

We follow a standard RL process as we described in Section 2.3 where we block a
pre-processed and cleaned data set(s), and compare record pairs within these blocks.
We then generate a pairwise similarity graph G as detailed in Definition 2, on which a
clustering algorithm such as those described in Chapter 4 is applied to conduct group
RL. While the clustering technique itself is considered to be a black box (meaning that
the functionality of the clustering algorithm is of disinterest to us) we assume that
the used technique results in non-overlapping predicted clusters, where each cluster
is assumed to represent a single entity group. Some of these clusters are singletons
(contain a single record) whereas others contain several records. The union of all
predicted clusters contains all records in the data set(s) on which RL was conducted.

8.2.1 Record-based Cluster Evaluation

As we highlighted earlier in this chapter, traditionally the precision and recall mea-
sures (or measures derived from the precision and recall such as the F-measure and
the area under the precision-recall curve or AUPRC) are used to assess the correct-
ness of the compared record pairs [35, 85]. The precision and recall are calculated
as detailed in Section 2.4 by categorising record pairs as true positives, false posi-
tives, true negatives and false negatives, based on how record pairs appear in the
ground-truth clusters and the predicted clusters.

As shown in Figure 8.1, precision and recall are not suitable for evaluating group
RL methods that generate clusters of records because they can produce ambiguous
results. They are based on the classification of links, but not of records. A user who

§8.2 Proposed Evaluation Method 139

Table 8.1: Classification of records into categories for our evaluation measure.
Category Description

Correct singleton (SS) Records which appear as singletons in both the ground-
truth and the predicted clusters.

Wrongly grouped singleton (SG) Records which appear as singletons in the ground-truth
but were assigned to a group of records in the prediction.

Exact group match (GGE)

Records contained in a predicted cluster that exactly
matches a ground-truth cluster (i.e. each record in the
predicted cluster appears in the same ground-truth clus-
ter, and vice versa), where the size of the cluster is larger
than one.

Majority group match (GGM)

A majority group match occurs when at least 50% of the
records in a predicted cluster (with more than one record)
come from a single ground-truth cluster. For this clas-
sification, the best representative predicted cluster of a
ground-truth cluster (which contains at least two records
from the ground-truth cluster) must be identified. For
a majority group match, all the records which appear in
both the ground-truth cluster and predicted cluster are as-
signed to category GGM, while all other records are clas-
sified either into category GS or GGW .

Minority group match (GGm)

A minority group match is similar to a majority group
match, however less than 50% of the records in a pre-
dicted cluster come from the corresponding ground-truth
cluster.

Wrongly assigned member (GGW)

These are all the records from a ground-truth cluster (with
more than one record) which appear in a predicted clus-
ter (with more than one record) different to the majority
or minority group match. That is, once we find the best
representative cluster for a given ground-truth cluster, all
the records which appear in a predicted cluster other than
the representative cluster are assigned to this category.

Missed group member (GS) These are the records which appear in a group in the
ground-truth, and singletons in the prediction.

employs several RL clustering methods and wishes to find the best such method (or
the best setting of parameters when using only one linkage method) therefore cannot
make a clear decision based on precision and recall only.

To resolve this issue, our proposed method is based on classifying records in-
stead of links for evaluation. Prior to record classification, we find the predicted
cluster which best represents each ground-truth cluster. Then each record from a
ground-truth cluster which appears in the corresponding best representative pre-
dicted cluster is considered a correct classification whereas the other records are
considered to be misclassified. While this new evaluation measure is not necessarily
a replacement for existing evaluation measures, it avoids the ambiguities caused by
measures such as precision and recall.

We now describe our proposed clustering quality evaluation method in detail.
We assume that a pairwise similarity graph G = (V, E) is generated as described in

140 An Evaluation Technique for Group Record Linkage

Table 8.2: Confusion matrix for the seven categories described in Table 8.1
True Singleton True Group

Predicted Singleton SS GS

Predicted Group SG GGE, GGM, GGm, GGW

Definition 2, by comparing record pairs in a data set D to be linked. Note that V
denotes the vertices in the graph (all records in D) and E denotes the set of edges
(the similarities calculated between records in D as explained in Definition 1). After
applying a clustering technique on graph G, the predicted clusters contain all the
records from D, where each cluster may be a singleton (one record) or a group of
two or more records. The ground-truth clusters too may be singletons or contain
several records.

We now classify each record in the ground-truth into one of seven categories,
based on how they have been clustered by an algorithm. The seven categories are
described in Table 8.11. This classification of records into seven categories based on
their clustering can also be represented in an error or confusion matrix as shown in
Table 8.2, where the vertical columns show the true status of records (if they are a
singleton or part of a cluster/group of more than one record), while the rows show
the way records are predicted (again as singletons or parts of a group of records).

Identifying records which belong to categories correct singleton (SS), wrongly grou-
ped singleton (SG), missed group member (GS) and exact group match (GGE) is straightfor-
ward. It can be accomplished by a single scan over the set of ground-truth clusters
and the set of predicted clusters to identify all singletons in either, as well as all
exactly matching groups. However, to identify records which belong to categories
majority group match (GGM), minority group match (GGm), and wrongly assigned member
(GGW), we first require to do a mapping between ground-truth and predicted clusters
such that the best representative prediction for a ground-truth cluster is identified.
Subsequent to this mapping, we can identify whether each record in the ground-truth
cluster appears in the correct predicted cluster or not. The reason for this require-
ment is that each predicted cluster can only represent one ground-truth cluster but
not several. For example, if we consider clustering sibling birth records (children of
the same parents), each predicted cluster can only represent the births by one mother
and father; it is not possible that two predicted clusters represent the same parents.

The cluster mapping is conducted as follows. For each ground-truth cluster cg ∈
Cg (which is a group, |cg| > 1) with no exact match in the prediction, we identify
all candidate predicted clusters Cp′ ⊆ Cp in which more than one record from the
ground-truth cluster appear. Predicted clusters with more than one record from the
ground-truth cluster alone are considered as candidates, because a predicted cluster
containing just one record from the ground-truth does not contain a single true link,
and is therefore inadequate to become the best representative cluster. For example,

1The category naming format indicates whether a record is a singleton or belongs to a group in the
ground-truth and prediction respectively (for example SG refers to a Singleton record in the ground-
truth allocated to a Group in the prediction).

§8.2 Proposed Evaluation Method 141

if the ground-truth cluster cg = {ra, rb, rc} was split as {ra}, {rb}, and {rc} in the
prediction, it would be incorrect to identify any one of the predicted clusters to be
a representation of the ground-truth cluster, because none of the true links (record
pairs), (ra, rb), (rb, rc), or (ra, rc) are included in the prediction. Next, we calculate
the similarity of each ground-truth cluster cg ∈ Cg, with each candidate predicted
cluster cp′ ∈ Cp′ , using the Jaccard similarity [35] and the true link similarity which
are defined as:

• Jaccard similarity (sJ = |cg ∩ cp′ |/|cg ∪ cp′ |): The ratio between the records
common to both the ground-truth and candidate predicted cluster, and the
total number of records in the union of the two clusters. The Jaccard similarity
always returns a similarity between 0 and 1.

• True link similarity (sT = |cg ∩ cp′ |): The number of records common to both
the ground-truth and predicted cluster. This gives a positive integer similarity.

We use Jaccard similarity sJ because of its capability of rewarding the number of
records in the candidate predicted cluster which are from the ground-truth cluster,
and penalising the records which are missed or added to the wrong predicted cluster.
In an instance where the Jaccard similarities are equal for two cluster pairs, we prefer
to map the cluster pair with the larger number of records first by selecting the pair
with the higher true link similarity, sT.

Once the similarity is calculated between each ground-truth cluster, cg ∈ Cg, and
the candidate predicted clusters Cp′ ⊆ Cp, the cluster pairs are sorted in descending
order of their similarities. Cluster mapping is done in a greedy manner, where the
most similar clusters are mapped first. In case a ground-truth cluster is split equally
into several clusters, only one is mapped to the ground-truth cluster. For example, if
the ground-truth cluster cg = {ra, rb, rc, rd} is split into two predicted clusters {ra, rb}
and {rc, rd}, only one of the two would be mapped to {ra, rb, rc, rd}. Once a ground-
truth or predicted cluster is mapped, it is removed from the similarity list to ensure
we obtain a one-to-one mapping, such that a predicted cluster represents at most one
ground-truth cluster.

This process results in finding the best representative cluster for each ground-
truth cluster. However, some of the ground-truth clusters may not have a corre-
sponding best match due to complete cluster splitting (each record in the ground-
truth cluster appears in a separate cluster in the prediction) or due to a candidate
predicted cluster being mapped to a different ground-truth cluster. The greedy algo-
rithm always ensures that a ground-truth cluster is mapped to the largest candidate
predicted cluster (cluster with most matches), for as long as the corresponding pre-
dicted cluster is not already matched to another ground-truth cluster. For example, a
ground-truth cluster {ra, rb, rc, rd, re} with predictions {ra, rb, rc} and {rd, re} is guar-
anteed to be mapped to the larger predicted cluster {ra, rb, rc}. However, if we have
two ground-truth clusters {ra, rb, rc, rd, re} and {r f , rg, rh} with a common largest pre-
dicted cluster {ra, rb, rc, r f , rg}, this predicted cluster would only be mapped with the
ground-truth cluster {ra, rb, rc, rd, re} because it has higher cluster similarity.

142 An Evaluation Technique for Group Record Linkage

p6

Paul

Ozgur

Paul

Ozgur

Ground truth clusters

Hugo

RayInes

Chris

Alice

Eric

DianeBob

Ray

TimSimon

Felix

Ines

Hugo

Alice

Chris

Felix

Eric

Diane

Tim

John

Bob

John Simon

Predicted clusters

g1Cluster c

Cluster Cluster c Cluster c Cluster c

Cluster c Cluster c

Cluster c

Cluster c Cluster c Cluster c Cluster c

Cluster c

cg2 g3 g5

g4 g6

g7

p1
p2 p3 p4

p5

Figure 8.2: An example set of ground-truth clusters (sibling groups) reflecting the
births by the same parents, and the linkage result when the corresponding birth
records are clustered using a group record linkage technique. Vertices of the same
colour identify records belonging to the same group (ground-truth cluster), whereas

correct links are identified by solid lines and wrong links by dashed lines.

The best representative cluster is labelled as a majority or minority group match,
GGM or GGm, based on its record composition, as described in Table 8.1. Once the
records belonging to categories GGM and GGm are identified, all the records from
the ground-truth clusters cg ∈ Cg which belong to neither of these categories, nor
the GS category, are classified into the wrongly assigned members category GGW (as
described in Table 8.1).

8.2.2 Example Cluster Evaluation

We will now illustrate our proposed evaluation measure considering an example
bundling (clustering) of sibling birth records (children born to the same parents).
A singleton represents an only child in a family. Each child birth record in the
clusters predicted by an automated linkage method is classified into one of the seven
categories as specified above.

Figure 8.2 shows the birth bundling example, where there are seven ground-
truth clusters and six predicted clusters. We will describe the classification of records
with respect to each ground-truth cluster and the corresponding predicted clusters

§8.2 Proposed Evaluation Method 143

containing the records from the ground-truth cluster. In Figure 8.2, correct links
are marked with solid lines, whereas wrong links are shown with dashed lines, and
records belonging to a single ground-truth cluster are shown in the same colour.

Let us first consider the ground-truth cluster (sibling group) cg1 containing birth
records corresponding to Alice, Bob, Chris, Diane, and Eric in Figure 8.2. Among
the predicted clusters, we initially find all the candidate clusters where records Alice,
Bob, Chris, Diane, and Eric appear, which are cp2 and cp4 (cluster cp6 does not qualify
as a candidate due to having no true links from cg1). Among these, the ground-truth
cluster cg1 has the highest similarity (sJ = 0.4 and sT = 2) with the predicted cluster
cp4. Therefore, we select cp4 as the best representative cluster of the sibling group
cg1, and classify records Diane and Eric to be majority group matches (GGM) since all
records in the predicted cluster cp4 come from the ground-truth cluster cg1. Record
Bob is classified as a missed group member (GS), whereas records Alice and Chris
are classified as wrongly assigned members (GGW).

Let us now consider the ground-truth cluster cg2 with birth records correspond-
ing to Felix, Hugo, and Ines, as shown in Figure 8.2. It has one candidate predicted
cluster cp1 (with sJ = 0.33 and sT = 2), whereas cluster cp2 is not considered a can-
didate due to containing no true links from cg2. Therefore, the predicted cluster cp1

represents the sibling group cg2, and records Hugo and Ines are classified as mi-
nority group matches (GGm) because less than 50% of records in cp1 come from the
ground-truth cluster cg2. Record Felix is classified as a wrongly assigned member
(GGW).

As illustrated in Figure 8.2, the ground-truth cluster cg3 with records Paul and
Ozgur appears as it is in the prediction as well (cluster cp3). Therefore, both records
Paul and Ozgur are classified as exact group matches (GGE). Furthermore, record
John appears as a singleton both in the ground-truth (cluster cg4) and the prediction
(cluster cp5). Therefore, this record is classified as a correct singleton (SS). All the
other three records corresponding to Ray, Simon, and Tim appear as singletons in
the ground-truth (clusters cg5, cg6, and cg7), but were assigned to a group in the pre-
diction (cluster cp1). Therefore, these three records are classified as wrongly grouped
singletons (SG).

8.2.3 Area Under the Curve

Most clustering algorithms have a variety of parameters that can be set by users, and
based on these parameter settings different clustering results will be generated. One
parameter common to most clustering algorithms is the minimum similarity δs to
consider between records such that the edge between the records is included in the
similarity graph G to be clustered [86, 122, 123, 153]. As a result, for different such
similarities (or different other parameter settings), different clustering outcomes for
the seven categories described in Table 8.1 will be obtained. Since it is difficult to
individually analyse seven different evaluation values for each parameter setting per
clustering algorithm, it is worth to explore a method of summarising these values
such that the relatively better algorithm can be chosen for a RL application.

144 An Evaluation Technique for Group Record Linkage

The Area Under the Curve (AUC) [84] is a frequently used measure for summaris-
ing the linkage quality results over a range of parameter settings in RL algorithms.
For example, the Area Under the Precision-Recall Curve (AUPRC), which we de-
scribed in Section 2.4, summarises the precision and recall values obtained across
different parameter settings in a RL algorithm. Similarly, we propose the following
approach to calculate the AUC for each of the seven categories. The values obtained
for the seven categories are initially normalised such that for a given clustering al-
gorithm, and a given parameter configuration, fn(GGE) + fn(GGM) + fn(GGm) +
fn(SS) + fn(GSW) + fn(GS) + fn(SG) = 1.0, where fn() is a normalisation function.
These normalised proportions of records corresponding to the seven categories are
then plotted against the similarity threshold values δs, subsequent to which the AUC
for each plot is calculated.

For a high quality RL approach, the AUC values of correct singleton (SS), exact
group match (GGE), majority group match (GGM), and minority group match (GGm)
categories should be higher whereas the AUC values of the other categories should
be lower. The differences of such AUC values allow us to describe how much better
one clustering technique is over another. We therefore use a simple AUC average
calculated as follows, which rewards AUC values for categories SS, GGE, GGM, and
GGm and penalises AUC values for the other three categories:

AUCavr =
fa(GGE) + fa(GGM) + fa(GGm) + fa(SS)

4
− fa(GSW) + fa(GS) + fa(SG)

3
, (8.1)

where function fa() returns the AUC of a given category. Note that even though
we have used equal weights for each category in Equation 8.1, it is possible to assign
different weights to give more importance to certain types of categorisations (such
as assigning a higher weight to GGE compared to GGm) depending on the linkage
requirement.

8.3 Experimental Evaluation

In this section, we experimentally evaluate our proposed evaluation measure to as-
sess its suitability in the context of group RL. Note that we cannot assess how good
or bad this evaluation measure is (just as we cannot determine the quality of existing
measures such as precision and recall), but rather aim to show its robustness and
lack of ambiguity compared to existing RL evaluation measures.

We assessed our novel proposed evaluation technique by applying it on the link-
age results obtained with the three graph clustering methods we proposed in Chap-
ter 4, namely greedy clustering, star clustering, and robust graph clustering. These
clustering algorithms were applied on the real-world Isle of Skye (IoS) and synthetic
UK birth data sets which we described in Section 2.5, to conduct birth bundling of
siblings (linking birth records of children by the same parents). As highlighted in
Table 4.1 on page 80, the best linkage results were obtained with the pairwise simi-
larity graph generated considering the attributes Parent names only (GN) for the IoS

§8.3 Experimental Evaluation 145

data set and the graph considering All attributes (GA) for the UK data set. Therefore,
we used the GN and GA graphs for the IoS and UK data sets respectively, for the
experimental results presented in this section. Furthermore, the algorithm specific
parameters were set as shown in Table 4.1 for each data set since they produced the
best linkage results.

Figure 8.3 shows the precision-recall (PR) curves (where we show the precision
and recall values obtained for different similarity thresholds δs as described in Sec-
tion 2.4), the F∗-measures (described in Section 2.4), and the penalised clustering
precision (PCPr) values (described in Section 3.5) obtained for the greedy, star and
robust graph clustering approaches, for the IoS and UK birth data sets. For the IoS
data set, the star and robust graph clustering approaches have clearly performed bet-
ter than the greedy algorithm as indicated by all three measures. The PR curve for the
greedy algorithm indicates a rapid decline in both precision and recall for decreas-
ing similarity thresholds δs, which is due to many non-matching record pairs being
grouped together and true matches being missed with the vertex selection method
(mn) Next (which is the best parameter configuration for the greedy algorithm) at
lower similarity thresholds.

In Table 8.3 we show the area under the PR curves (AUPRC) which shows robust
graph clustering as the best algorithm. However, as per the F∗ and PCPr plots in
Figure 8.3, the star clustering algorithm has performed slightly better than the robust
graph clustering method which is somewhat contradicting. For the UK data set,
the PR plots in Figure 8.3 and the AUPRC values in Table 8.3 indicate that star
and robust graph clustering produced better linkage results compared to greedy
clustering. However, as per the F∗ plot in Figure 8.3, the greedy clustering method
has performed better than robust graph clustering for the UK data set, whereas the
PCPr plot does not clearly distinguish among the different clustering algorithms’
performance. This shows the possibility for ambiguities to occur among various
existing evaluation measures.

Figure 8.4 shows the plots for our novel cluster evaluation method for the three
clustering techniques. The normalised proportions of the seven categories from Ta-
ble 8.1 are shown against the similarity threshold δs used in each clustering algorithm
to filter record pairs. As we described previously, for better clustering results the val-
ues of SS, GGE, GGM, and GGm should be higher whereas the values of SG, GS, and
GGW should be lower.

According to Figure 8.4, the proportion of records in the GGM category is consis-
tently larger than the proportion of records in the GGW category for both star and
robust graph clustering approaches for the IoS data set. The greedy algorithm has
a much higher GGW proportion for the majority of similarity threshold values. Fur-
thermore, the GGE proportion is relatively higher for star and robust graph clustering
compared to the greedy technique. Note that the highest value of GGE is obtained at
similarity threshold 0.95 for all three clustering algorithms, which is complementary
to the results shown in Figure 8.3 for the IoS data set. These results show that as
per our evaluation method, star and robust graph clustering outperform the greedy
method for IoS, which agrees with the conclusion made based on existing cluster

146 An Evaluation Technique for Group Record Linkage

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

IoS: F ∗ plot

Robust

Star

Greedy

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

UK: F ∗ plot

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

IoS: Precision-recall plot

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
P
re
ci
si
o
n

UK: Precision-recall plot

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

P
C
P
r
v
a
lu
e

IoS: PCPr plot

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

P
C
P
r
v
a
lu
e

UK: PCPr plot

Figure 8.3: The precision-recall (PR), F∗, and penalised clustering precision (PCPr)
plots corresponding to the linkage results obtained by conducting record linkage on
the IoS (left) and UK (right) birth data sets using the greedy, star, and robust graph

clustering approaches.

evaluation measures as shown in Figure 8.3. For the UK data set, the novel evalua-
tion plots shown in Figure 8.4 have only minor variations across the three algorithms.
The most noteworthy difference is that robust graph clustering is producing more in-
correct clusters (GGW) followed by greedy clustering for lower thresholds.

§8.3 Experimental Evaluation 147

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0
N
o
rm

a
lis
e
d
 p
ro
p
o
rt
io
n

IoS: Greedy clustering

GGW

GS

SS

GGE

GGM

GGm

SG

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
lis
e
d
 p
ro
p
o
rt
io
n

UK: Greedy clustering

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
lis
e
d
 p
ro
p
o
rt
io
n

IoS: Star clustering

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
lis
e
d
 p
ro
p
o
rt
io
n

UK: Star clustering

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
lis
e
d
 p
ro
p
o
rt
io
n

IoS: Robust graph clustering

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
lis

e
d
 p

ro
p
o
rt

io
n

UK: Robust graph clustering

Figure 8.4: Plots for new evaluation measure corresponding to the linkage results
obtained by conducting record linkage on the IoS (left) and UK (right) birth data sets

using the greedy, star, and robust graph clustering approaches.

We further compare the new evaluation results with existing evaluation results in
Table 8.3, where we present the area under the curve (AUC) of PR (based on the PR
curves in Figure 8.3), the AUC of our new cluster evaluation plots (based on the plots
in Figure 8.4) and a simple averaging of the AUC values across the seven categories
AUCavr as defined in Equation 8.1. For the IoS data set, the best clustering algorithm

148 An Evaluation Technique for Group Record Linkage

Table 8.3: Area under the curve (AUC) values for the three clustering techniques
with the best value(s) highlighted in each column per each data set.

Data set Algorithm Area under the curve (AUC) Average
AUPRC GGE GGM GGm SS GGW GS SG (AUCavr)

Greedy 0.69 0.22 0.12 0.07 0.04 0.45 0.02 0.08 -0.071
IoS Star 0.81 0.33 0.33 0.03 0.04 0.16 0.02 0.08 0.096

Robust 0.90 0.33 0.27 0.07 0.04 0.19 0.02 0.08 0.081

Greedy 0.85 0.59 0.14 0.02 0.09 0.09 0.06 0.01 0.157
UK Star 0.95 0.62 0.15 0.01 0.09 0.06 0.06 0.01 0.174

Robust 0.95 0.59 0.11 0.01 0.09 0.13 0.06 0.01 0.133

as per our evaluation measure AUCavr is star, followed by robust graph clustering.
This conclusion complements the F∗ and PCPr values shown in Figure 8.3 but slightly
varies from the assessment made based on the AUPRC values which shows robust
graph clustering as the best performer.

For the UK data set, the star algorithm is again shown as the best performer
followed by the greedy clustering approach as per our evaluation measure AUCavr.
While this outcome is again consistent with the assessment made based on the F∗-
measure, it is different from the conclusion made based on the AUPRC values which
show the robust graph clustering algorithm to be better than the greedy approach.
This shows that our novel evaluation approach complements the F∗-measure but can
sometimes produce different results to AUPRC. Furthermore, as opposed to existing
evaluation measures, our proposed evaluation approach clearly shows which algo-
rithms have generated the largest number of correct record groupings.

8.4 Summary

In this chapter, we have presented a novel evaluation measure for assessing group RL
techniques. We showed how existing evaluation measures such as precision and re-
call can produce ambiguous results in a group RL context due to considering record
pairs in the evaluation rather than considering the correct assignment of records into
groups. Our proposed evaluation measure mitigates this issue by classifying records
into seven categories which reflects how correctly records have been clustered by a
group RL algorithm compared to the ground-truth clusters. We conducted experi-
ments to compare our novel evaluation measure with existing evaluation measures.

The empirical evaluation was performed based on the group RL results obtained
by applying three clustering algorithms on one real-world and one synthetic data set.
The assessment of these linkage results using our evaluation method was consistent
with the assessment made based on the F∗-measure. Furthermore, unlike with pre-
cision and recall values, the proposed method does not provide ambiguous results.
That is, the proposed method ensures that identical evaluation results are obtained
for two different linkage approaches, if and only if they both have generated identical
cluster predictions.

§8.4 Summary 149

In the next chapter, we address a different issue pertaining to RL which is the pri-
vacy concerns associated with publishing linked data sets. We propose a novel graph
anonymisation technique which can be used in the RL context to ensure the privacy
of linked data sets without compromising the interpretability of linkage results.

150 An Evaluation Technique for Group Record Linkage

Chapter 9

Graph Data Anonymisation for
Record Linkage

As we discussed in Section 1.2, ensuring the privacy of sensitive linked data is cru-
cial in Record Linkage (RL) applications. Even though Privacy-Preserving Record
Linkage (PPRL) is beyond the scope of this thesis (as we highlighted in Section 1.5),
since we aim to link population data which often contain sensitive information about
people, it is still important to explore alternative methods of anonymising linked
population data. In this chapter, we propose a novel method of anonymising graph
data which is applicable in the RL context. Our proposed anonymisation technique
can be employed not only in RL applications but in other domains where data can
be represented using graphs.

In Section 9.1 we provide a concise introduction to the topic of graph anonymi-
sation and highlight the necessity for developing novel anonymisation techniques
in application domains such as RL. Next, in Section 9.2, we describe our proposed
graph anonymisation technique in detail, whereas in Section 9.3 we provide a brief
overview of the our web tool which is based on the graph anonymisation technique
proposed in this chapter. In Section 9.4 we then evaluate our anonymisation method
using real-world and synthetic population data, and finally in Section 9.5, we con-
clude this chapter with a summary of our findings.

9.1 Introduction

Representing databases as graphs is often necessary in modern data analysis tasks
due to many databases having inter-relationships among their records [24]. For ex-
ample, a social network data set would represent individuals as vertices and their
relationships as edges, whereas in the RL context, several census data sets may be
connected with edges to show the records that potentially belong to members of the
same family (such as siblings) [43]. The types of data which require a graph repre-
sentation are often sensitive (such as population data that represent real people) and
therefore cannot be shared publicly [96]. This requires the anonymisation of a graph
such that sensitive data cannot be re-identified, while the structure of the graph, the
relationships between vertices and their attributes, are being preserved.

151

152 Graph Data Anonymisation for Record Linkage

As we discussed in Section 3.6, anonymisation of graph data is a topic that has
been explored by several previous studies [63, 174]. However, these studies focus
on protecting a data set against privacy attacks [46, 188] and therefore often com-
promise the structure of the original graph by removing or adding edges and/or
vertices that are vulnerable to re-identification due to their unique characteristics.
Furthermore, the data sets resulting from existing anonymisation techniques do not
necessarily have to be interpretable by humans. Rather, the aim of these techniques
is to anonymise a graph such that identifying the real-world entities represented by
vertices in the graph is made difficult, while it is still possible to conduct analysis on
the anonymised graph with suitable machine learning algorithms [46, 188].

Therefore, existing graph anonymisation tools are not useful in generating an
anonymised, human interpretable version of a given sensitive graph data set. Such an
anonymised human interpretable data set is however important to allow inspection
of the data set in the context of transparency of how a machine learning algorithm
performs on that data set, or to allow a data set to be published for educational pur-
poses. Furthermore, compromising the graph structure is particularly detrimental in
RL applications since the structure of the graph (reflected by the edge weights and
the neighbourhood of vertices) is often used to determine the likelihood for record
pairs to refer to the same entity [148, 154].

In this paper, we propose a novel graph anonymisation technique, and present
our related web tool DOYEN1 (Data anOnYmiser for sENsitive Graph Data) which is
based on our anonymisation method. This method generates an anonymised version
of a sensitive graph data set while maintaining its graph structure by replacing the
sensitive attribute values of vertices with values from a public lookup table using
a cluster-based mapping technique. The initial implementation of the DOYEN tool
anonymises family data where graph connectivity represents sibling relationships.
Such family data is required for social science studies and for the reconstruction of
(historical) populations [17]. We anticipate that our graph anonymisation method
would be instrumental in mitigating hindrances to such research work due to the
inability of publishing sensitive graph data. In the next section we describe the steps
in our anonymisation approach.

9.2 Mapping-based Graph Data Anonymisation

Our proposed technique anonymises a given sensitive input graph data set by re-
placing (mapping) sensitive attribute values with values from a public lookup table.
It also maintains the structure of the graph and the similarities between its vertices
by conducting attribute value replacement in a way that preserves the similarities
between vertices.

1https://dmm.anu.edu.au/doyen/

https://dmm.anu.edu.au/doyen/

§9.2 Mapping-based Graph Data Anonymisation 153

...

a) Date range: 01−01−2000 to 31−12−2010

b) Random date shift range: +/− 15 days

Input parameters

Public lookup table

Name: Name:
Family: F2Family: F1

DOB: DOB:

R2 R3

Name:

DOB:

R1

Family: F1
Name:

DOB:

R2

Family: F2
Name:

DOB:

R3

Family: F1

Family: F1
Name:

DOB:

R1

Steven

Mathieson

05−06−1895

Jonah

Matheson

06−01−1897

John

Mclean

18−09−1900

Richie

Fernandes

08−09−2005

Bobby

Fernando

15−04−2007

Bob

Whitacre

02−12−2010

Records from sensitive input graph

Mathieson

Matthewson

Matheson

Fernandes

Fernanders

Fernando

Steven

Stevenson

Maclean

Mclean

John

Jonah

Bob

Bobby

Richie

Richard

Whittacre

Whitacre

Cluster based mapping Anonymised records

Bob
Bobby
Richard

Male FN

Richie

Fernanders
Fernando

Surname
Fernandes

Whitacre

Ann
Anna
Elizabeth

Female FN

Whittacre
...

...

Figure 9.1: Overview of our anonymisation technique.

9.2.1 Method Overview

Figure 9.1 provides a high level overview of our anonymisation method. The sensi-
tive graph data set and a lookup table with attribute values extracted from a public
data source are given as input to this technique. As an example we show a family
graph data set where siblings have the same family identifier and colour, and highly
similar first name and last name pairs (where similarity is calculated with an ap-
proximate string similarity function [128] as we described in Section 2.3) are shown
as edges (dashed lines). Our approach first clusters the sensitive attribute values
from the input graph data set and a public lookup table separately, and then maps
the generated clusters of sensitive values to the clusters generated from a lookup
table using a mapping approach as we describe in Section 9.2.2.

For each vertex in the input graph data set an anonymised vertex is then gen-
erated by replacing each sensitive attribute value with the corresponding mapped
value from a public lookup table. If the graph data contains date values, as shown
in our example in Figure 9.1, they are anonymised by shifting dates within a user
specified range as we discuss in Section 9.2.3.

9.2.2 Cluster-based Attribute Value Mapping and Anonymisation

We now describe our anonymisation approach for sensitive attribute values. As-
sume we have a sensitive input data set Ds containing records r ∈ Ds that represent
entities, and an external lookup table Tl of attribute values. The data set Ds can
be represented as a graph Gs = (Vs, Es), where a vertex in Vs represents a record
ri ∈ Ds, and an edge in Es corresponds to the pairwise attribute similarity of the
record pair (ri, rj). Such similarities, as calculated by comparing attribute values (as

154 Graph Data Anonymisation for Record Linkage

Algorithm 9: Cluster-based attribute value mapping
Input: Ds - Sensitive input data set

A - List of sensitive attributes
Tl - Attribute value lookup table
w - Weight assigned to attribute value similarities in cluster comparison

Output: Tm - Attribute value mapping table
1 Tm = { } // Initialise empty attribute value mapping table

2 for ai ∈ A do // Iterate over sensitive attributes

3 Cs = GetClusters(Ds.ai) // Cluster sensitive input attribute values

4 Cl = GetClusters(Tl .ai) // Cluster lookup attribute values

5 for cj ∈ Cs do // Iterate over sensitive attribute value clusters

6 c′j = BestMatch(cj.s, cj.l, |cj.v|, Cl , w) // Find best match

7 Cl .remove(c′j) // Remove selected cluster from lookup clusters

8 MapValues(Tm, cj.v, c′j.v) // Map attribute values in clusters

9 return Tm

we described in Definition 1 on page 19), are often used to show the strength or
importance of relationships in graph data [180]. We refer to the list of sensitive at-
tributes in Ds as A = {a1, . . . , an}, and the values from each sensitive attribute ai in
the input data set and the lookup table as Ds.ai and Tl .ai, respectively.

Assuming that the sensitive attributes A have been used to calculate the pair-
wise similarities between records in Ds, we need to ensure that these similarities are
maintained in the anonymised data set we generate. This means that we need to
retain the similarity structure of Gs = (Vs, Es) in the generated anonymised graph
Ga = (Va, Ea) which represents the anonymised data set Da. To achieve this goal, we
use a one-to-one cluster mapping approach where we map an attribute value clus-
ter from the sensitive input data set Ds to an attribute value cluster from the public
lookup table Tl such that the intra-cluster similarities are highly similar across the
two clusters.

Algorithm 9 outlines the initial steps of our anonymisation technique, where we
map attribute values in the sensitive input data set Ds to attribute values in a pub-
lic lookup table Tl using a clustering-based approach. The input to the algorithm
includes the sensitive graph data set Ds, the list of sensitive attributes A (such as
names and addresses of people), a public lookup table Tl which contain values that
attributes ai ∈ A could assume, as taken from an external publicly available source,
and a weight w (0 ≤ w ≤ 1) to assign in the cluster comparison.

The algorithm starts by initialising an empty table Tm to hold the final attribute
value mappings. In lines 2 to 4, the algorithm iterates over the sensitive attributes
ai ∈ A, and clusters the corresponding attribute values in the sensitive input data
set Ds.ai and the lookup table Tl .ai. Next, in lines 5 and 6, we iterate over the
sensitive attribute value clusters cj ∈ Cs from the input data set Ds and find the
best matching attribute value cluster from the lookup attribute value clusters Cl . For
a given sensitive attribute value cluster cj, we obtain its sorted sensitive attribute

§9.2 Mapping-based Graph Data Anonymisation 155

values cj.v = [v1, v2, . . . vm], the vector of pairwise similarities of attribute values
in cluster cj.s = [sv1,v2 , . . . , sv1,vm , sv2,v3 , . . . , svm−1,vm], and the attribute value length
vector cj.l = [|v1|, |v2|, . . . , |vm|]. The best matching cluster for cj is identified with
the function BestMatch(), which takes as input the pairwise similarities vector cj.s,
the vector of attribute value lengths cj.l, the number of attribute values in cluster
|cj.v|, the set of lookup attribute value clusters Cl , and a weight w. The function
BestMatch() finds the most similar lookup cluster c′j to the sensitive attribute value
cluster cj from the set of lookup clusters Cl (which are of the same size as cj) using
Euclidean distances [35] calculated between their similarity vectors and their attribute
value length vectors. A weight of w and 1− w is assigned to the similarity vectors
and the length vectors, respectively, in the Euclidean distance calculation. The cluster
c′j ∈ Cl with the minimal weighted Euclidean distance between similarity and length
vectors is selected to be mapped to cluster cj. If Cl does not contain clusters of size
|cj.v| then subsets of clusters from Cl which are larger than |cj.v| are considered.

In line 7, we remove the selected cluster c′j from Cl to obtain unique cluster map-
pings. In line 8, we then map the sorted attribute values in cj.v to the corresponding
values in cluster c′j.v, such that each attribute value from data set Ds has a unique
mapping to a value in the lookup table Tl . These unique mappings are stored in an
attribute value mapping table Tm which we return in line 9.

In the second step of our anonymisation technique, an anonymised graph data
set Da is generated for the sensitive input graph data set Ds in the following manner.

For each record from the input data set ri ∈ Ds, we create a synthetic record
r′i ∈ Da, and for each sensitive attribute value in ri, we replace the original attribute
value with the corresponding mapped attribute value from Tm.

Complexity analysis: We now describe the complexity of our proposed cluster-based
attribute value mapping algorithm. In line 2 of Algorithm 9, the for loop executes
|A| times. Out of the cluster generation steps in lines 3 and 4, the time complexity
of generating connected component clusters for lookup tables Tl is dominant, given
that Tl is much larger than the sensitive input data set Ds. Therefore, considering
only line 4, the time complexity of cluster generation is O((Tl .ai)

2), which is the
total number of edges across unique attribute values for a given attribute ai ∈ A.
The for loop in lines 5 to 8 has a maximum time complexity of O(|Cs| · |Cl)| since it
searches for the best matching pairs among all sensitive and lookup table attribute
value cluster pairs. Therefore, the overall time complexity of Algorithm 9 is O(|A| ·
((Tl .ai)

2 + |Cs| · |Cl)|)).

9.2.3 Generating Anonymised Date Values

Given that many data sets have dates associated with their records (such as dates of
birth or dates of hospital admission), our method also provides an anonymisation
approach for date values while maintaining the temporal distances across connected
records. Prior to date anonymisation, the records in Ds are grouped such that related
records are contained in a single group. These groupings reflect records that repre-
sent a related group of entities, such as the siblings of the same family. Subsequent to

156 Graph Data Anonymisation for Record Linkage

grouping records, our anonymisation method sorts the date values associated with
the records in a group.

Our method allows the user to define a minimum (dmin) and a maximum (dmax)
date range within which they want the earliest date value from a specific group to
appear. Thus, for the earliest date d1 from a record group, we create a corresponding
date d′1 where dmin ≤ d′1 ≤ dmax. Then, the remaining date values in the record
group are shifted by d′1− d1 days and each newly generated date value, excluding the
earliest date d′1, is randomly shifted by ±∆d days such that any temporal constraints
across the generated date values are maintained. For example, if Ds contains birth
records of sibling groups, then the temporal constraints of the birth dates would
reflect that it is not possible for two births by the same mother to be less than nine
months apart unless they are twins [123]. Let us consider the following example
for further clarification. Assume we have a sibling group of three children with
birth dates d1 = 01/01/1991, d2 = 23/12/1991, and d3 = 05/10/1994. Given dmin =
01/01/2000 and dmax = 01/01/2001, assume we randomly generated an anonymised
date for d1 within the [dmin, dmax] range as d′1 = 09/07/2000, which means that the
original value has been shifted by 3, 477 days (i.e. d′1 − d1 = 3, 477). We therefore
shift dates d2 and d3 by 3, 477 days to obtain d′2 = 30/06/2001 and d′3 = 12/04/2004.
Assuming ±∆d = 10, we obtain the final anonymised date values d′1 = 09/07/2000,
d′2 = 20/06/2001 (by subtracting 10 days), and d′3 = 22/04/2004 (by adding 10 days).
We use these anonymised date values in the synthetic records r′i ∈ Da.

9.3 Web Tool Demonstration

We developed a web tool named DOYEN2 which is based on the anonymisation
technique presented in this chapter. The initial implementation of the DOYEN tool
demonstrates sensitive graph data anonymisation using two synthetic input data sets
which we generated based on two real-world historical birth data sets. These exam-
ple data sets contain name and address variations to help demonstrate the capability
of DOYEN to anonymise a graph while maintaining its similarity structure. Further-
more, they contain several twin births as well as missing values for the last names
of fathers and children, as seen in the original birth data sets. A lookup table con-
taining values for the sensitive attributes first name, last name, and address, was
generated using the publicly available North Carolina Voter Registration (NCVR)
data set (which we described in Section 2.5) as well as Australian addresses. In this
section, we provide a brief overview of the DOYEN tool’s interface.

Figure 9.2 shows the input screen of the DOYEN web tool. The two buttons
Example 1 and Example 2 will load one of the input graph data sets and suitable
parameter values. A sample of the input data set can be viewed by clicking on the
View Input Data Sample button, whereas the full data set can be downloaded as well.
The four parameters to be specified are:

2https://dmm.anu.edu.au/doyen/

https://dmm.anu.edu.au/doyen/

§9.3 Web Tool Demonstration 157

Figure 9.2: Input screen of the DOYEN web tool.

• Group size and their counts: This parameter allows control of the number
of families of a given size that are to be generated. When a sensitive graph
data set is loaded, this field is automatically populated with the family size
distribution of the loaded input data set. The user can change the values as
desired. However, the current implementation restricts the user to specifying
only up to a maximum number of families as appearing in the input data set,
for a given family size. That is, if there are ten families (clusters) of size five in
the input data set, then currently the user can only generate a maximum of ten
families of size five.

• Minimum / Maximum dates for the first birth: For each family in the anonym-
ised data set, the first birth record in the family is expected to have a birth date
within (including) the given minimum and maximum date range (dmin and
dmax), where dmin < dmax as we described in Section 9.2.3.

• Random time offset: This is the ±∆d time range which is used to further
shift (randomly perturb) the dates of birth in each anonymised synthetic family
(except the first date) as we also described in Section 9.2.3.

The user has the flexibility of editing the values with which the parameter fields
are automatically populated after an example data set has been loaded. When the
Generate Data button is clicked, the anonymisation and data generation process is
executed in the back end. The tool internally calculates the string similarity of at-
tribute values by first applying a blocking technique [35]. We use Soundex encoding
for names and Locality Sensitive Hashing for addresses, as we discussed in Sec-
tion 2.3.2. We then apply a pairwise string similarity calculation method, where we
use Jaro-Winkler for names and the Dice coefficient based approach for addresses
which we discussed in Section 2.3.3 [128].

158 Graph Data Anonymisation for Record Linkage

Figure 9.3: Sample of the synthetic sensitive input data set and the anonymised data
set as generated by the DOYEN web tool.

Subsequently, the attribute value clusters are identified with the components clus-
tering approach [86] (discussed in Section 3.1) with a similarity threshold of 0.8 [35]
which we set after conducting experiments with different similarity thresholds. Next,
all attribute value clusters from the input graph are mapped to clusters from the
lookup table using the Euclidean distance vector similarity measure, as we described
in Algorithm 9. Since the vector of similarities between attribute value pairs in clus-
ters (cj.s) is more important than the vector of attribute value lengths (cj.l), we assign
a relatively higher weight w (w > 0.5) to cj.s and a weight of 1− w to cj.l when cal-

§9.4 Evaluation 159

culating the overall Euclidean distance between sensitive and lookup attribute value
clusters.

After the attribute value mapping is completed, the DOYEN tool generates the
anonymised graph data set by replacing the attribute values of each record in the
input data set with the corresponding mapped attribute values, and by shifting the
dates of birth as we described in Section 9.2.3. Once the anonymised data is gener-
ated, the user can view a sample of the attribute value mappings. Furthermore, the
user can view a sample of the anonymised data set created by DOYEN, or download
the full data set. Figure 9.3 shows a sample of the sensitive input data set and the cor-
responding anonymised records as generated by DOYEN. Notice how, for example,
the address values ‘monkstadt’ and ‘monkstodt’ (in R8 and R9) with a high pairwise
string similarity have been replaced with values ‘narembure’ and ‘naremburn’ which
have a similar pairwise similarity.

9.4 Evaluation

In this section we present the results we obtained by applying our graph anonymi-
sation technique on the real-world Isle of Skye (IoS) and the synthetic UK birth data
sets which we discussed in Section 2.5. We set the parameter configurations of our
algorithm as specified in the previous section. After conducting an initial set of
experiments, we assigned weights w = 0.75 to the vector of similarities cj.s, and
w = 0.25 to the length vector cj.l in the cluster pair comparison.

Table 9.1 shows how our anonymisation method maps sensitive attribute values
(from the IoS and UK data sets) to public attribute values from a lookup table, such
that the pairwise similarities and attribute value lengths are maintained. For exam-
ple, if we consider the female (F) first name mappings for the IoS data set, notice
how the names ‘kate’ and ‘katew’ with shorter string lengths have been mapped
to similarly short string values ‘verla’ and ‘verle’, whereas longer names ‘catharine’
and ‘catherene’ are mapped to relatively longer public attribute values ‘nicholett’ and
‘nicholette’ respectively, while maintaining pairwise similarities.

To illustrate the quality of the anonymised graphs generated by our anonymisa-
tion technique, Figure 9.4 shows the distribution of the pairwise similarity for record
pairs from the IoS and UK data sets. We have used a randomly sampled subset of 1
million record pairs including all true matching pairs from each data set for plotting.
For each record pair, the similarity is calculated using the Jaro-Winkler similarity
measure on names and the Dice coefficient similarity measure on addresses [128]
(described in Section 2.3.3), followed by an averaging of these values. As can be seen
from this figure, the similarity distribution of both the sensitive input values and the
generated anonymised values are highly similar for both the IoS and UK data sets.
This shows the capability of our anonymisation method to anonymise sensitive graph
data, while maintaining its structure, as reflected by these pairwise similarities.

160 Graph Data Anonymisation for Record Linkage

Table 9.1: Sample of sensitive to public female (F) first name, male (M) first name, last
name, and address attribute value mappings conducted by our graph data anonymi-

sation technique.
Sensitive attribute values Mapped public attribute values

kate, katew, katie, kattie, katty,
katy, keith, ketie, ketty, kitty

verla, verle, verlee, verley, verlie,
verly, viral, viril, virl, virlee

First name (F)
marian, marion, maron, marrion,
mary-ann, mary-anna, mary-anne,
maryann, mearon

gevaun, gevonne, gevony, giovana,
giovanna, giovanni, giovannia,
giovannie, gvonnia

catharine, catherene, catherin,
catherine, catherinw, cathrine

nicholett, nicholette, nicoletta,
nicolette, nicollette, nikoletta

john, johnie, johnina, johnnie,
johny, joney

vasil, vasile, vasili, vasiliy, vasily,
vasyl

First name (M)
lachlaen, lachlain, lachlan,
lachlean, lachlen, lachlin, lauchlan,
lauchlen, lauchlin

octave, octavia, octavian, octaviano,
octavio, octavion, octavious,
octavis, octavius

IoS
torquel, torquell, torquhol,
torquihol, torquil, torquill

jefferies, jefferson, jeffres, jeffreyj,
jeffreys, jeffries

macbride, maciver, macpherson,
mciver, mcpherson

maitland, mathlin, matilainen,
mattlin, matulonis

Last name
macinnes, macinnews, macinnis,
macinnnes, mackenzie, mcinnes,
mcinnis, mcinnnes, mckenzie

gallimore, galmore, gillmer,
gillmore, gilmartin, gilmer,
gilmore, gilmour, gollmar

macgillivray, macgillvray,
macgilvray, mcgillivray, mcgillvray

eisenbarth, eisenbath, eisenbeis,
eisenbraun, eisenhofer

monkstadt, monkstodd,
monkstodt, monstodd

mac gregor, macgregor, mc gregor,
mcgregor

Address
garrylapin, garylapin, gerrylapen,
gerrylapin, gerycapin, gerylapen,
gerylapin

stathfield, strahtfield, straithfield,
stratfield, strathfie, strathfield,
strathield

aird bernisdale, airdbernisdale,
aridbernisdale

o halloran hill, o’halloran hill,
ohalloran hill

emili, emilu, emily hazel, hazely, hazle

First name (F)
elane, elen, elena, ell3n, ell4n,
ellan, ellem, ellen

weili, wila, wiley, willa, willia,
willie, willo, willow

henrietta, henriette, henriettia hildagard, hildegard, hildegarde

dafid, dav8d, david pablo, pavel, pavlo

First name (M)
elias, elijah, elijsh, elisha, eliza,
elizah, ellis, ellix

zabian, zabion, zavan, zaveon,
zavian, zavion, zevin, zubin

UK evelen, evelin, evelyn korben, korbin, korbyn
mackill, maskell, maxwell, mixell ragsdale, rasdall, rosdahl, rosdol

Last name
barmes, barmison, barnes, barnest,
barnez, brines, burns

huckaba, huckabee, huckaby,
huckoby, huispe, husby, huseby

handman, hindman, hinton laviner, leviner, libner
old row eawtehstall, old row
rawtdnstall, old row rawtenstall

huie rd olin nc 28660, rash rd olin
nc 28660, reece rd olin nc 28660

Address
rise vale street, rose street, rose
vale st5eet, rose vale street, rose
vale strset, roze street

penannt hills, penant hills, pennant
hills, pennatn hills, pennenat hills,
pennent hills

laubd street, laund dtreet, laund
street

banks meadow, banksmeadow,
banksmeadows

§9.5 Summary 161

0.0 0.2 0.4 0.6 0.8 1.0
Pairwise similarity

100

101

102

103

104

105
N
u
m

b
e
r
o
f
re

co
rd

 p
a
ir
s

(l
o
g
) IoS data set

Sensitive

Anonymised

0.0 0.2 0.4 0.6 0.8 1.0
Pairwise similarity

100

101

102

103

104

105

N
u
m
b
e
r
o
f
re
co

rd
 p
a
ir
s
(l
o
g
) UK data set

Figure 9.4: Comparison of pairwise record similarities of the sensitive input and the
generated anonymised graph data sets.

9.5 Summary

In this chapter we have presented a novel graph anonymisation technique. We dis-
cussed how existing graph anonymisation methods are often inapplicable in the RL
context since they compromise the structure and the human understandability of the
original sensitive data to ensure privacy. In contrast, our proposed anonymisation
method preserves the structure of the graph while ensuring the human interpretabil-
ity of the graph data. The initial step in our anonymisation approach maps attribute
values in a sensitive graph data set to attribute values from a public lookup table,
whereas in the second step these mapped values are used to anonymise each record
in the sensitive data set. We also proposed a method to anonymise date values since
many sensitive population data sets contain a date attribute.

We evaluated our anonymisation method using one real-world and one synthetic
birth data set. The results showed that our proposed method successfully preserves
the structure of the original graph data as reflected by similar pairwise similarity
distributions before and after the anonymisation. While in this approach we con-
sidered an attribute value mapping method to anonymise all sensitive string values,
for attributes such as addresses it is possible to apply alternative methods such as
perturbing address geocodes within a specific radius [157]. We aim to consider such
alternative anonymisation techniques as future work. In the next chapter, we con-
duct an overall experimental evaluation of all the RL techniques we proposed from
Chapters 4 to 9, using a new real-world data set.

162 Graph Data Anonymisation for Record Linkage

Chapter 10

Overall Experimental Evaluation

In this chapter, we discuss how our techniques proposed in this thesis fit together,
and individually evaluate all these techniques using a real-world birth data set which
we did not use for evaluation in the previous chapters. The aim of conducting a new
set of experiments is to establish the applicability of our methods for real-world
Record Linkage (RL) projects, and further verify the conclusions we made in Chap-
ters 4 to 9. In Section 10.1 we highlight the cohesion among our proposed methods,
and discuss how they can be used to develop a comprehensive RL framework. Next,
in Sections 10.2 to 10.7, we evaluate each of our proposed methods using a new real-
world data set, and finally, in Section 10.8, we conclude this chapter with a summary
of our findings.

10.1 Introduction

In this thesis, we have proposed solutions to the problems and limitations in the
RL domain which we highlighted in Section 1.2. Since so far we discussed them
independently, we now provide a concise overview of how our techniques can be
combined to develop an end-to-end RL framework.

Figure 10.1 shows how the different methods we proposed in each chapter (high-
lighted in red) fit into the overall RL process. We assume that a population data set
containing sensitive attribute values Ds is to be linked. We further assume that a
pairwise similarity graph Gs = (Vs, Es) has been generated as we showed in Defini-
tion 2, where vertices vi ∈ Vs represent records in the data set to be linked ri ∈ Ds (i.e.
vi = ri), and edges represent compared record pairs (ri, rj) ∈ Es. Considering that
the population data set Ds contains sensitive information, the corresponding similar-
ity graph Gs also contains sensitive data. Therefore, as shown in Figure 10.1, we first
anonymise this sensitive similarity graph Gs using the graph anonymisation tech-
nique we proposed in Chapter 9, which results in an anonymised similarity graph
Ga = (Va, Ea). We use this anonymised pairwise similarity graph in the remaining
steps of the RL process.

Next, we apply the active learning-based filtering approach which we proposed
in Chapter 6, on this anonymised similarity graph Ga to generate a filtered graph
G f = (V f , E f) by removing likely non-matching record pairs from the set of edges

163

164 Overall Experimental Evaluation

Active learning−based

s
G

s
E

s
G

a
E

a
V
a

= (,)

E
f

V
f

G
f

Cleaning and standardisation

Blocking / Indexing

Record pair comparison
(Chapter 9)

for record linkage
Graph data anonymisation

= (,) V
s

graph filtering for
record linkage
(Chapter 6)

= (,)

Graph−based clustering for record linkage

using data characteristics (Chapter 4)

Active learning−based record linkage
with filtering (Chapter 7)

An evaluation technique for
group record linkage (Chapter 8)

Existing evaluation measures
for pairwise record linkage

Record linkage using transition probabilities
on data characteristics (Chapter 5)

D

Figure 10.1: Flow diagram indicating how our proposed techniques (highlighted in
red) can be integrated to conduct end-to-end record linkage.

Ea. Filtering the anonymised similarity graph in this manner enhances the efficiency
of the subsequent classification step. One of the RL classification / clustering ap-
proaches which we proposed in Chapters 4, 5 or 7, where the former two employ
unsupervised clustering techniques incorporating data characteristics, and the latter
employs an active learning method for record pair classification, can then be applied
on this filtered, anonymised graph G f . Finally, the linkage results we obtain with
applying the unsupervised clustering approaches (Chapters 4 and 5) can be assessed
with the novel group RL evaluation technique we proposed in Chapter 8. Since the
active learning-based classification approach we developed in Chapter 7 conducts
pairwise classification of records, but not groups of records, existing evaluation mea-
sures such as precision and recall can be used to evaluate those results.

Next, in Sections 10.2 to 10.7 we present the further experimental evaluations
conducted using the real-world Kilmarnock (Kilm) birth data set which we discussed
in Section 2.5. As shown in Tables 2.1 and 2.4 on pages 25 and 30, respectively,
the Kilm data set and its pairwise similarity graphs are much larger than the other
two birth data sets (IoS and UK) which we used for evaluation in Chapters 4 to 9.
Furthermore, the Kilm data set contains many missing values and errors, while the
frequency distribution of attribute values are very skewed (similar to the IoS data
set) as we discussed in Section 2.5. Therefore, the Kilm data set can be considered
more challenging compared to the IoS and UK data sets given its larger size and
lower data quality. We conducted all experiments on a server running Ubuntu 18.04
with 64-bit Intel Xeon 2.10 GHz CPUs and 512 GB of memory.

10.2 Graph-based Clustering Using Data Characteristics

In this section we evaluate our proposed graph-based clustering techniques (greedy,
star, and robust) using data characteristics such as temporal and spacial informa-
tion, which we presented in Chapter 4. Similar to the experiments we conducted in
Chapter 4, we applied temporal constraints based on temporal data characteristics

§10.2 Graph-based Clustering Using Data Characteristics 165

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0
F

∗ -
m
e
a
su

re
mn : Max-sim

NT T

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

mn : Avr-sim

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

mn : Next

Figure 10.2: Greedy clustering results obtained with (T) and without (NT) temporal
constraints: Average of F∗ values obtained with different similarity graphs, shown
for different similarity thresholds δs, and different next vertex selection methods mn

for the Kilm data set.

on the Kilm data set as well. Furthermore, as done in Chapter 4, we evaluated the
linkage quality using the F∗-measure and the average of percentage improvements
and declines in precision and recall when we applied temporal constraints compared
to not using temporal constraints. In addition, we present precision-recall plots in
this chapter to provide a better understanding of the behaviour of our proposed
algorithms.

Figure 10.2 shows the linkage quality achieved with applying the greedy clus-
tering approach discussed in Section 4.3.1 on page 64, on the Kilm birth data set.
With the greedy clustering approach an average percentage precision improvement
of 9.64% was achieved at the cost of a 1.78% decline in recall. As implied by these
results and the F∗ values shown in Figure 10.2, the precision improvement / de-
cline achieved with applying temporal constraints (T) was approximately equal to
the decline / improvement in recall and therefore the overall linkage quality was not
significantly improved by applying temporal constraints in greedy clustering. This is
similar to our observation with linking the IoS (Isle of Skye) and UK data sets using
greedy clustering as discussed in Chapter 4.

Figure 10.3 shows the linkage quality achieved when the Kilm data set was linked
using the star clustering approach discussed in Section 4.3.2 on page 68. Similar to
our observations with the evaluations on the real-world IoS data set in Chapter 4, the
F∗ values have improved for Kilm with the application of temporal constraints (T)
compared to not applying them (NT). With the Kilm data set, a significant average
precision improvement of 58.77% was achieved at the cost of a small 1.89% decline in
recall when temporal constraints were applied. Based on these results, we can show
that star clustering using data characteristics performs well on real-world data sets.

In Figure 10.4, we show the F∗ values obtained with conducting RL using the
robust graph clustering approach. Given that this clustering technique is computa-
tionally more expensive compared to greedy and star clustering approaches, we only
executed experiments for the parameter configurations eb =Strong (base cluster gen-
eration with Strong links only) and em =Norm with WeakHigh (base clusters merged
using both Norm and WeakHigh edges) since they produced better linkage results for
both IoS and UK data sets as we showed in Chapter 4. Similar to our observations

166 Overall Experimental Evaluation

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

ms : Avr-sim-first
mr : Avr-all

NT T

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

ms : Avr-sim-first
mr : Avr-high

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

ms : Avr-sim-first
mr : Edge-ratio

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

ms : Degree-first
mr : Avr-all

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

ms : Degree-first
mr : Avr-high

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

ms : Degree-first
mr : Edge-ratio

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

ms : Comb
mr : Avr-all

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

ms : Comb
mr : Avr-high

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0
F

∗ -
m
e
a
su

re

ms : Comb
mr : Edge-ratio

Figure 10.3: Star clustering results obtained with (T) and without (NT) temporal
constraints: Average of F∗ values obtained with different similarity graphs, shown for
different similarity thresholds δs, different vertex sorting methods ms, and different

overlap cluster resolving methods mr for the Kilm data set.

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -

m
e
a
su

re

em : Norm with WeakHigh
mm : Minimum

NT T

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su
re

em : Norm with WeakHigh
mm : Average

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su
re

em : Norm with WeakHigh
mm : Maximum

Figure 10.4: Robust graph clustering results obtained with (T) and without (NT)
temporal constraints: Average of F∗ values obtained with different similarity graphs,
shown for different types of edge combinations to merge clusters em, and different

cluster similarity calculation methods mm for the Kilm data set.

in Chapter 4, for the real-world IoS data set, a considerable quality improvement is
indicated for the Kilm data set when both Norm and WeakHigh edges are used with
temporal constraints. With robust graph clustering, over 30-fold average precision

§10.2 Graph-based Clustering Using Data Characteristics 167

Table 10.1: The parameter configurations that produced the best F∗ value for the
Kilmarnock birth data set for each clustering algorithm.

Algorithm F∗ Best parameter configurations
G δs Algorithm specific parameters

Greedy 0.90 GN 0.95 Temporal / Non-temporal, mn = Next
Star 0.91 GN 0.95 Temporal, ms = Degree-first, mr = Avr-all
Robust 0.91 GN 0.95 Temporal, mm = Average

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

Greedy

T NT

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

Star

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

Robust

Figure 10.5: The precision-recall (PR) curves obtained for the best parameter con-
figurations for the Kilm data set which consist of the similarity graph GN (Parent
names only attribute value comparison), vertex selection method mn = Next for the
greedy algorithm, vertex sorting method ms = Degree-first, and cluster overlap resolv-
ing method mr = Avr-all for the star algorithm, and edge combinations eb = Strong,
em = Norm with WeakHigh, and cluster similarity calculation method mm = Average
for the robust graph clustering algorithm. Results are shown for incorporating (T) or
disregarding (NT) temporal constraints in clustering, for similarity threshold values

δs ranging from 1.0 to 0.7 in steps of 0.05.

improvement was achieved at the cost of a minor 2.42% reduction in recall for the
Kilm data set. As we discussed in Chapter 4, the average precision improvement
is greater than 100% due to the linkage precision being very low when temporal
constraints are disregarded.

In Table 10.1 we present the parameter configurations which produced the best
results with regard to the F∗-measure for the Kilm data set. For greedy clustering, the
vertex selection method mn=Next produced the best linkage results, which is similar
to the linkage results we presented for the IoS and UK birth data sets in Table 4.1
on page 80. However, these best clustering results were obtained for both with and
without temporal constraints which further shows that greedy graph clustering using
data characteristics fails to improve linkage quality compared to the baseline. With
star clustering, the cluster overlap resolving method (mr) Avr-all worked best for
Kilm (similar to IoS and UK data sets as shown in Table 4.1), whereas the Degree-first
method was best for vertex sorting (ms). For robust graph clustering, the Average
cluster similarity calculation method (mm) produced the best results for the Kilm
data set, similar to the IoS and UK data sets.

Next, in Figure 10.5, we show the precision-recall (PR) plots for the best algorithm
specific parameter configurations presented in Table 10.1. We plot the precision and

168 Overall Experimental Evaluation

Table 10.2: The minimum (Min), maximum (Max), average (Avr), and median (Med)
run-times (in seconds) of each clustering algorithm for Kilm birth data set.

Algorithm Run-time (NT) Run-time (T)
Min Max Avr Med Min Max Avr Med

Greedy 0.19 48,415.20 648.68 23.86 0.19 4,020.95 254.06 29.25
Star 34.80 1,783.67 114.74 79.73 34.95 2,827.55 221.29 80.34
Robust 690.30 591,269.97 49,294.48 1,015.26 18,063.94 46,633 28,032.57 28,236.32

recall values for similarity threshold values δs ranging from 1.0 to 0.7 in steps of
0.05. With greedy clustering, both precision and recall have rapidly declined for
decreasing δs values. This is due to many non-matching record pairs being grouped
together and true matches being missed with the vertex selection method (mn) Next at
lower similarity thresholds. Notice how greedy clustering with temporal constraints
(T) has only produced slightly better results compared to the non-temporal (NT)
approach, as we discussed earlier. Similarly, with the star clustering approach, both
precision and recall decline for decreasing thresholds even though not as rapidly as
with greedy clustering. For both star and robust graph clustering, relatively higher
precision values have been maintained when temporal constraints were applied (T),
compared to not applying temporal constraints (NT).

In Table 10.2, we present the minimum, maximum, average, and median values
of algorithm run-times in seconds for the Kilm data set. The maximum and aver-
age run-times were considerably reduced for the greedy and robust clustering tech-
niques when temporal constraints were applied (T) compared to not using temporal
constraints (NT). However, the average run-time slightly increased when temporal
constraints were considered for the star clustering approach, which was potentially
caused by the extra computational effort required for checking temporal constraints.
The run-time results obtained for the Kilm data set are similar to the efficiency anal-
ysis done for the real-world IoS data set in Table 4.2 on page 81. Based on the exper-
imental evaluations we conducted in this chapter and in Chapter 4, we can state that
our proposed star and robust graph-based clustering techniques using data charac-
teristics improve the linkage quality, and often the efficiency of real-world RL tasks,
compared to when using unsupervised techniques without data characteristics.

10.3 Record Linkage Using Transition Probabilities

In this section, we evaluate the three cluster goodness measures we proposed in
Chapter 5 using the Kilm data set. As the baseline technique we used the star cluster-
ing approach with temporal (T) data characteristics using the best algorithm specific
parameter configurations, and the pairwise similarity graph GN , as we specified in
Table 10.1. We executed star clustering with the technique outlined in Algorithm 5 to
comparatively evaluate our overlap resolving technique with the baseline approach.
The experimental setup was the same as for the experiments conducted in Chapter 5,
as described on page 91.

§10.3 Record Linkage Using Transition Probabilities 169

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0
F
∗ -
m
e
a
su

re
f: Time independent, m: MC

Baseline (T)

si,j∈G.E

si,j=1

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

f: Time independent, m: AP

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

f: Time independent, m: RB

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

f: Time dependent, m: MC

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

f: Time dependent, m: AP

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

f: Time dependent, m: RB

Figure 10.6: Clustering the Kilm data set with transition probabilities: F∗ values
obtained for different similarity threshold values δs (as we discussed in Chapter 4),
shown for time independent and dependent population goodness calculations (f)
for different cluster goodness measures (m). The pairwise similarity is either set to
a constant value (si,j = 1) or taken from the edge weights in the pairwise similarity
graph (si,j ∈ G.E) in the cluster goodness calculations, and clustering with temporal

(T) constraints (proposed in Chapter 4) is used as the baseline.

Table 10.3: The minimum (Min), maximum (Max), average (Avr), and median (Med)
run-times (in seconds) of star clustering using the goodness measures MC, AP, and

RB for cluster overlap resolving, for the Kilm birth data set.
Baseline run-times Algorithm Run-time

Min Max Avr Med

Min = 34.95, Max = 2,827.55 MC 114.50 15,858.74 2,770.52 183.79
Avr = 221.29, AP 118.37 16,294.75 2,878.05 182.09
Med = 80.34 RB 120.06 16,957.62 2,969.14 237.78

Figure 10.6 shows the linkage quality achieved when cluster overlap resolving
was conducted with our proposed cluster goodness measures Markov Chain (MC),
All pairs (AP), and Record-based (RB), using different parameter configurations on
the Kilm birth data set. The baseline temporal constraints-based (T) star clustering
approach has performed better compared to the linkage quality achieved when the
cluster goodness measures were incorporated. These results are similar to the obser-
vations we made based on the evaluation conducted in Chapter 5 for the real-world
IoS data set. Similar to the IoS data set, the Kilm data set too has few infeasible
patterns in the birth transition distributions due to data quality issues, which results
in mistakes in the goodness calculations leading to reduced linkage quality.

Table 10.3 shows the summary of run-times obtained for star clustering incor-
porating overlap resolving with our proposed cluster goodness measures MC, AP,
and RB for the Kilm birth data set. The time taken for executing star clustering

170 Overall Experimental Evaluation

full global βt : 200
βm : 25

βt : 200
βm : 50

βt : 200
βm : 100

βt : 500
βm : 25

βt : 500
βm : 50

βt : 500
βm : 100

βt : 1000
βm : 25

βt : 1000
βm : 50

βt : 1000
βm : 100

Similarity graph obtained with different parameter settings

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n
/R
e
ca
ll

0.003

0.883 0.884 0.883 0.883 0.884 0.884 0.884 0.884 0.884 0.884

0.983

 γ: Width (Time dimension)

Precision Recall

full global βt : 200
βm : 25

βt : 200
βm : 50

βt : 200
βm : 100

βt : 500
βm : 25

βt : 500
βm : 50

βt : 500
βm : 100

βt : 1000
βm : 25

βt : 1000
βm : 50

βt : 1000
βm : 100

Similarity graph obtained with different parameter settings

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n
/R
e
ca
ll

0.003

0.883 0.883 0.883 0.883 0.884 0.884 0.884 0.886 0.89 0.889

0.983

 γ: Depth (Time dimension)

Figure 10.7: Graph filtering with binning on the time data dimension for the Kilm
data set: Precision and recall results of the full similarity graph compared with the
quality of the graph filtered with a global threshold (top om links), or binwise thresh-

olds for different total budgets βt and manual classifications per bin βm.

with our proposed overlap resolving methods is considerably greater than the time
taken to run the baseline star clustering approach with temporal constraints accord-
ing to these results. The run-time results too for the Kilm data set are similar to the
run-times we obtained for the IoS data set in Chapter 5. Based on the experimental
evaluation conducted in this section and Chapter 5, we can conclude that incorporat-
ing data characteristics alone produces better RL results compared to incorporating
transition probabilities, considering both the linkage quality and efficiency.

10.4 Active Learning-based Graph Filtering

In this section, we evaluate the active learning-based graph filtering technique we
proposed in Chapter 6 using the Kilm data set. We used the pairwise similarity
graph GA (where All attribute values are compared) since it has more widely dis-

§10.4 Active Learning-based Graph Filtering 171

full global βt : 200
βm : 25

βt : 200
βm : 50

βt : 200
βm : 100

βt : 500
βm : 25

βt : 500
βm : 50

βt : 500
βm : 100

βt : 1000
βm : 25

βt : 1000
βm : 50

βt : 1000
βm : 100

Similarity graph obtained with different parameter settings

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n
/R
e
ca
ll

0.003

0.883 0.884 0.883 0.883 0.884 0.884 0.883 0.884 0.884 0.884

0.983

 γ: Width (Space dimension)

Precision Recall

full global βt : 200
βm : 25

βt : 200
βm : 50

βt : 200
βm : 100

βt : 500
βm : 25

βt : 500
βm : 50

βt : 500
βm : 100

βt : 1000
βm : 25

βt : 1000
βm : 50

βt : 1000
βm : 100

Similarity graph obtained with different parameter settings

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n
/R
e
ca
ll

0.003

0.883 0.883 0.883 0.883 0.884 0.884 0.885 0.86 0.884 0.886

0.983

 γ: Depth (Space dimension)

Figure 10.8: Graph filtering with binning on the space data dimension for the Kilm
data set: Precision and recall results of the full similarity graph compared with the
quality of the graph filtered with a global threshold (top om links), or binwise thresh-

olds for different total budgets βt and manual classifications per bin βm.

tributed pairwise similarities, and set parameter configurations as specified in the
experiments section of Chapter 6. The pairwise similarity graph GA corresponding
to the Kilm birth data set contains approximately 25 million record pairs as shown in
Table 2.4 on page 30, which is significantly reduced to only om = 68,215 record pairs
as shown in Table 2.1 on page 25 by applying our graph clustering method.

In Figures 10.7 and 10.8 we show the precision and recall results obtained for
the original full similarity graph, as compared with the filtered graphs for the global
threshold (the baseline technique where we select the top om record pairs), as well as
results for our binning method when using different total budgets βt and different
manual classification thresholds per bin βm. According to these figures, applying
graph filtering has resulted in a considerable precision improvement at the cost of
a minor decline in recall, compared to the quality of the full similarity graph. Fig-
ures 10.7 and 10.8 show the quality of the filtered graphs when binning was applied
on the time and space dimensions, respectively, whereas a slight improvement in

172 Overall Experimental Evaluation

full global βt : 200
γ: Depth

βt : 500
γ: Depth

βt : 1000
γ: Depth

βt : 200
γ: Width

βt : 500
γ: Width

βt : 1000
γ: Width

Similarity graph obtained with different parameter settings

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n
/R
e
ca
ll

0.001

0.798 0.798 0.798 0.793 0.799 0.799 0.8

0.014

0.771 0.771 0.771 0.764 0.771 0.771 0.771

Greedy

Precision Recall

full global βt : 200
γ: Depth

βt : 500
γ: Depth

βt : 1000
γ: Depth

βt : 200
γ: Width

βt : 500
γ: Width

βt : 1000
γ: Width

Similarity graph obtained with different parameter settings

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si
o
n
/R

e
ca

ll

0.405

0.945 0.945 0.945 0.945 0.946 0.946 0.947

0.744

0.875 0.875 0.875 0.887 0.875 0.875 0.874

Star

full global βt : 200
γ: Depth

βt : 500
γ: Depth

βt : 1000
γ: Depth

βt : 200
γ: Width

βt : 500
γ: Width

βt : 1000
γ: Width

Similarity graph obtained with different parameter settings

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n
/R
e
ca
ll

0.253

0.81 0.81 0.811 0.802 0.811 0.811 0.814

0.96 0.936 0.936 0.936 0.937 0.936 0.936 0.936

Robust

Figure 10.9: Precision and recall results obtained by applying greedy, star and robust
graph clustering on the full similarity graph, graph filtered with a global threshold
(top om links), or graphs filtered with equal depth and equal width binning using

different total budgets βt for the Kilm data set.

graph quality was observed for at least one parameter configuration when our filter-
ing method was applied compared to filtering using the global threshold method.

§10.5 Active Learning-based Record Linkage With Filtering 173

Table 10.4: The run-times (in seconds) of graph clustering using the full similarity
graph, graph filtered with a global threshold (top om links), or graphs filtered with
equal depth (EDB) and equal width (EWB) binning using different total budgets βt,

for the Kilm data set.
full global βt: 200 βt: 500 βt: 1000 βt: 200 βt: 500 βt: 1000

γ: EDB γ: EDB γ: EDB γ: EWB γ: EWB γ: EWB

Greedy 1,060.28 1.45 1.43 1.43 1.41 1.49 1.45 1.47
Star 1,661.94 6.22 3.82 3.67 3.71 6.73 3.74 3.78
Rubust 101,067.32 19,362.61 19,138.77 19,094.53 19,241.75 20,118.98 20,126.56 20,111.43

Figure 10.9 shows the clustering quality achieved with the full and filtered pair-
wise similarity graphs for the Kilm data set. While both the clustering precision and
recall have significantly improved for greedy and star techniques, the precision has
improved considerably at the cost of a minor decline in recall for the robust method
when clustering was conducted on the filtered graphs compared to clustering the
full similarity graph. For all three clustering methods, βt = 1000 produced the best
results, where equal width binning worked best for the greedy and robust graph
clustering techniques while equal depth binning worked best for star clustering. The
corresponding baseline (global) clustering quality was slightly exceeded with these
parameter settings.

In Table 10.4 we present the run-times obtained with applying graph clustering
on the full and filtered pairwise similarity graphs for the Kilm data set. Notice
how the RL classification time has been reduced considerably when clustering was
applied on the filtered graphs compared to clustering the full similarity graphs for
every clustering algorithm. Based on the experiments conducted in this section and
in Chapter 6, we can further validate our proposed method of active learning-based
graph filtering for improving both the quality and the efficiency of RL.

10.5 Active Learning-based Record Linkage With Filtering

In this section, we present the evaluation results obtained with applying our active
learning with filtering approach for RL (RALF) which we proposed in Chapter 7 on
the Kilm data set. Similar to the experiments conducted in Chapter 7, we used the
pairwise similarity graph generated by comparing All attribute values GA for the
Kilm data set as well, since it contains the largest number of features for classifier
training. According to the quality analysis of functional parameters in RALF we con-
ducted in Chapter 7, the record pair sampling method ms = Random, the inactivation
method mi = Threshold, and applying confidence scaling f = True produces better
linkage results compared to using the other configurations for the corresponding pa-
rameters (see Table 7.2 on page 127). We therefore set the functional parameters to
these values, and the remaining parameters were set as specified in Chapter 7.

Figure 10.10 shows how the linkage quality of our active learning technique
changes with varying parameter values for the Kilm data set. The AdaBoost and

174 Overall Experimental Evaluation

ada reg svm tree
(a) Classifier C

0.5

0.6

0.7

0.8

0.9

1.0

F*
 v
a
lu
e

β: 20
ǫ: 0

20
1

20
2

50
0

50
1

50
2

100
0

100
1

100
2

(b) Oracle budget β and ratio ǫ

0.5

0.6

0.7

0.8

0.9

1.0

F*
 v
a
lu
e

1 5 10 15
(c) Iterations used for inactivation k

0.5

0.6

0.7

0.8

0.9

1.0

F*
 v
a
lu
e

200 500 1000 2000
(d) Total oracle budget β ·nc

0.5

0.6

0.7

0.8

0.9

1.0

F*
 v
a
lu
e

0.8 0.85 0.9 0.95 0.99
(e) Threshold values δa

0.5

0.6

0.7

0.8

0.9

1.0

F*
 v
a
lu
e

Figure 10.10: F∗ values obtained with different parameter settings for executing ac-
tive learning-based RL on the Kilm data set.

SVM algorithms have performed best on Kilm as shown in Figure 10.10 (a), which
is similar to the behaviour we observed for the experiments with the larger data sets
in Chapter 7. Figure 10.10 (b) shows an upward trend in F∗ results when the oracle
budget β is increased from 20 to 50, but not beyond that value, which is potentially
caused by the linkage quality already being quite high for β = 50 which leaves little
room for further quality improvement. As shown in Chapter 7 as well, changing the
ratio ε has minimal impact on the linkage results.

Similar to the results shown in Chapter 7, the quality as measured with F∗ gen-
erally improves for increasing values of k (the number of iterations to consider for
inactivating record pairs) for the Kilm data set as shown in Figure 10.10 (c). This
is due to considering the classification outcome of a larger number of classifiers to

§10.5 Active Learning-based Record Linkage With Filtering 175

200 500 1K 2K 10K 20K 50K All
Sample / Total oracle budget (β ·nc)

0.0

0.2

0.4

0.6

0.8

1.0

F*
 v

a
lu

e

Tree

Reg

Ada

SVM

ALF

Figure 10.11: The F∗ results obtained with different supervised classification algo-
rithms with different training sample sizes, and our proposed RALF technique with

different total oracle labelling budgets β · nc for the Kilm data set.

Table 10.5: Time taken in seconds to run fully supervised (FullSup) classification and
our proposed RALF technique, and the percentage run-time reduction for the Kilm

data set.
FullSup RALF Percentage run-time reduction

Ada 8,929 6,836 23.44%
SVM 1,209,019 4,643 99.62%

decide which record pairs to automatically label and inactivate, being more reliable
than considering fewer classification outcomes. Our observation with increasing the
oracle budget per iteration β in plot (b) is further attested by the trend in linkage
quality for increasing total oracle budget values β · nc as shown in Figure 10.10 (d).
The last plot in Figure 10.10 (e) shows how the linkage quality does not change much
for varying threshold values da, similar to the results obtained for experiments con-
ducted in Chapter 7. Unlike in Chapter 7, we do not explore the percentage values
δb since we set the inactivation method mi = Threshold for experiments in this section.

In Figure 10.11 we compare the linkage quality of RALF and supervised classi-
fication techniques for the Kilm data set, similar to the experiments we conducted
in Chapter 7. We increased the training sample size for supervised classifiers from
200 to 50,000 with random record pair sampling of an equal number of matches and
non-matches, and also conducted classifier training on the full data set. We consid-
ered total budgets β · nc of 200, 500, 1,000 and 2,000 for oracle labelling in our RALF
method, and report the average quality obtained for each total budget.

As observed for the experiments conducted with the larger data sets in Chapter 7,
our RALF method exceeds the linkage quality obtained with supervised classifiers
with random sampling for corresponding budget values. Furthermore, the linkage
quality achieved with only β · nc = 2,000 labelled record pairs is similar to the linkage
quality achieved with using the full data set for classifier training. This further jus-

176 Overall Experimental Evaluation

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

F
∗ -
m
e
a
su

re

F ∗ plot

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

Precision-recall plot

Robust

Star

Greedy

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

P
C
P
r
v
a
lu
e

PCPr plot

Figure 10.12: The F∗, precision-recall (PR), and penalised clustering precision (PCPr)
plots corresponding to the linkage results obtained by conducting record linkage on
the Kilm birth data set using the greedy, star, and robust graph clustering approaches.

tifies the application of our RALF technique for linking real-world data sets, rather
than conducting supervised classification with randomly selected training data.

Table 10.5 shows a comparison of the average time taken to run RALF with the
time taken to run the supervised classification techniques on the Kilm data set. We
only compared our method with AdaBoost and SVM since they produced the best
linkage results for Kilm as shown in Figure 10.10 (a). As shown in Table 10.5, the
RALF method is significantly more efficient than running supervised classification
on the full data sets, which is similar to the observations we made based on the
experiments conducted in Chapter 7. Our RALF method has achieved an efficiency
improvement (reduction in run-time) of 23% for AdaBoost, and above 99% for SVM,
compared to running fully supervised classification with the same algorithms. The
linkage quality and efficiency analysis conducted in this section as well as Chapter 7
show the effectiveness of our proposed RALF method for RL.

10.6 An Evaluation Technique for Group Record Linkage

In this section, we apply the novel evaluation measure we proposed in Chapter 8
for assessing group RL techniques on the Kilm data set. Similar to the experiments
we conducted in Chapter 8, we assess the greedy, star and robust graph clustering
approaches which we proposed in Chapter 4 using this novel evaluation measure. In
this section, we only consider the clustering results obtained with the Parent names
only (GN) pairwise similarity graph generated for the Kilm data set since it produced
the best clustering results as shown in Table 10.1. Furthermore, the algorithm specific
parameters were also set as shown in Table 10.1 for the Kilm data set since they
produced the best linkage results.

Figure 10.12 shows the PR curves, the F∗-measures (described in Section 2.4), and
the penalised clustering precision (PCPr) values (described in Section 3.5) obtained
for the greedy, star and robust graph clustering approaches, for the Kilm birth data
set. According to these evaluation measures, the star and robust graph clustering
approaches have clearly performed better than the greedy algorithm as indicated by
all three measures. In Table 10.6 we show the area under the PR curves (AUPRC)

§10.6 An Evaluation Technique for Group Record Linkage 177

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0
N
o
rm

a
lis
e
d
 p
ro
p
o
rt
io
n Greedy clustering

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
lis
e
d
 p
ro
p
o
rt
io
n Star clustering

GGW
GS
SS
GGE

GGM
GGm
SG

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Similarity threshold δs

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
lis
e
d
 p
ro
p
o
rt
io
n Robust graph clustering

Figure 10.13: Plots for new evaluation measure corresponding to the linkage results
obtained by conducting record linkage on the Kilm birth data set using the greedy,

star, and robust graph clustering approaches.

Table 10.6: Area under the curve (AUC) values for linking the Kilm data set using
the three clustering techniques with the best value highlighted in each column.

Algorithm Area under the curve (AUC) Average
AUPRC GGE GGM GGm SS GGW GS SG (AUCavr)

Greedy 0.82 0.30 0.11 0.06 0.06 0.38 0.02 0.08 -0.028
Star 0.86 0.38 0.29 0.04 0.07 0.14 0.02 0.07 0.118

Robust 0.95 0.36 0.21 0.09 0.06 0.18 0.02 0.08 0.087

which shows robust graph clustering as the best algorithm. However, as per the F∗

and PCPr plots in Figure 10.12, the star clustering algorithm has performed slightly
better than the robust graph clustering method. Similar to our observations based on
the experiments conducted in Chapter 8 on the IoS and UK birth data sets, this fur-
ther shows the possibility for ambiguities to occur among various existing evaluation
measures.

Figure 10.13 shows the plots for our novel cluster evaluation method for the three
clustering techniques. The normalised proportions of the seven categories from Ta-
ble 8.1 on page 139 are shown against the similarity threshold δs used in each clus-
tering algorithm to filter record pairs. As we described previously, for better cluster-
ing results the values of correct singleton (SS), exact group match (GGE), majority group
match (GGM), and minority group match (GGm) should be higher whereas the values of
wrongly grouped singleton (SG), missed group member (GS), and wrongly assigned member
(GGW) should be lower.

According to Figure 10.13, the proportion of records in the GGE and GGM cate-
gories are much higher for the star and robust graph clustering approaches compared
to greedy clustering. Furthermore, with the greedy clustering method, most records
have been assigned to the incorrect cluster (group) as indicated by the large GGW
proportions. These results show that as per our evaluation method, star and robust
graph clustering outperform the greedy method for Kilm, which agrees with the con-
clusion made based on existing cluster evaluation measures as shown in Figure 10.12.

We further compare the new evaluation results with existing evaluation results
in Table 10.6, where we present the area under the curve (AUC) of PR (based on
the PR curves in Figure 10.12), the AUC of our new cluster evaluation plots (based

178 Overall Experimental Evaluation

on the plots in Figure 10.13) and a simple averaging of the AUC values across the
seven categories AUCavr as defined in Equation 8.1 on page 144. For the Kilm data
set, the best clustering algorithm as per our evaluation measure AUCavr is star, fol-
lowed by robust graph clustering. The negative AUCavr value obtained for the worst
performing greedy algorithm indicates that it generates more incorrect clusters than
correct clusters. This conclusion complements the F∗ and PCPr values shown in Fig-
ure 10.12 but slightly varies from the assessment made based on the AUPRC values
which shows robust graph clustering as the best performer. These results are similar
to the results we obtained for the real-world IoS birth data set based on the experi-
ments we conducted in Chapter 8. The experimental results presented in this chap-
ter further show that our novel evaluation approach complements the F∗-measure,
and clearly indicates which algorithms have generated the largest number of correct
record groupings.

10.7 Graph Data Anonymisation

In this section we evaluate the graph anonymisation technique we proposed in Chap-
ter 9 using the Kilm data set. We apply the same parameter configurations as used
in the evaluation conducted in Chapter 9 with the IoS and UK birth data sets.

Table 10.7 shows how our anonymisation method maps sensitive attribute values
from the Kilm data set to public attribute values from a lookup table, such that
the pairwise similarities and attribute value lengths are maintained. Notice how
the last names ‘cree’ and ‘crorie’ with shorter string lengths have been mapped to
similarly short string values ‘asby’ and ‘ashby’, whereas longer last names ‘mcclure’
and ‘mcilroy’ are mapped to relatively longer public attribute values ‘rehburg’ and
‘rhuberg’, respectively, while maintaining pairwise similarities.

To illustrate the quality of the anonymised graphs generated by our anonymi-
sation technique, Figure 10.14 shows the distribution of the pairwise similarity for
record pairs from the Kilm data set. Similar to the experiments we conducted in
Chapter 9, we have used a randomly sampled subset of 1 million record pairs includ-
ing all true matching pairs from the Kilm data set for plotting. For each record pair,
the similarity is calculated using the Jaro-Winkler similarity measure on names and
the Dice coefficient similarity measure on addresses [128] (described in Section 2.3.3),
followed by an averaging of these values. As can be seen from this figure, the sim-
ilarity distribution of both the sensitive input values and the generated anonymised
values are highly similar for the Kilm data set.

As shown in Figure 10.15, we also compared the linkage quality achieved with ap-
plying the graph clustering techniques we proposed in Chapter 4 on both the original
sensitive input as well as the anonymised Kilm graph data sets. While we conducted
experiments using the best algorithm specific parameters as listed in Table 10.1, both
the sensitive and anonymised pairwise similarity graphs were generated by compar-
ing the Parent names and address attributes (GNA) as described in Section 2.6, since our
proposed anonymisation technique supports anonymising names and addresses.

§10.7 Graph Data Anonymisation 179

Table 10.7: Sample of sensitive to public female (F) first name, male (M) first name,
last name, and address attribute value mappings conducted by our graph data

anonymisation technique for the Kilm data set.
Sensitive attribute values Mapped public attribute values

wilhelmina, william melchorita, melzora

First name (F) mary, mr, mr0 yara, yura, yuri

agnes, akns peiyi, piya

francis, frnss papanii, pavan
First name (M) andrew, antr ollice, olsi

gunnion joseph
carter, cartwright, charters maneval, mannepalli, manville

Last name mcclure, mcilroy, mcilwraith, mclarty,
mcleary, mclure

rehburg, rhuberg, ripberger, roberge,
roberson, ropers

cree, crorie, crow, currie asby, ashby, aspey, ausby
back causeway, back causey, back
causey?, back causway

palmer oakey, palmer oaky, palmers
oakey, palmers oaky

Address
west woodstock st, woodstock st,
woodstock st wesst, woodstock st west,
woodstock st - west, woodstock street

lethbrdge park, lethbride park,
lethbridge park, lethbrige park,
letherbridge park, letheridge park

onthank farm, top onthank farm,
toponthank farm

glen warning, glenn warming, glenn
warning

0.0 0.2 0.4 0.6 0.8 1.0
Pairwise similarity

101

102

103

104

105

N
u
m

b
e
r
o
f
re

co
rd

 p
a
ir
s

(l
o
g
) Kilm data set

Sensitive

Anonymised

Figure 10.14: Comparison of pairwise record similarities of the sensitive input and
the generated anonymised Kilm graph data sets.

Figure 10.15 shows the PR curves for each algorithm for decreasing similarity
threshold values δs (see Chapter 4) from 1.0 to 0.7 in steps of 0.05. Notice how the PR
curves for both the sensitive input and the anonymised Kilm graph data sets are sim-
ilar for each clustering algorithm. The only noteworthy difference in these patterns
is that a significant recall improvement is observed for different similarity threshold
δs changes for the sensitive input (δs decreased from 0.9 to 0.85), and the anonymised
graph data sets (δs decreased from 0.85 to 0.8). Such minor differences in linkage
results can be caused by the slight variations in the similarity distributions of the
sensitive input and the anonymised graph data sets, as we showed in Figure 10.14.

180 Overall Experimental Evaluation

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

Greedy

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

Star

Sensitive

Anonymised

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

Robust

Figure 10.15: Comparison of the linkage quality achieved by applying the greedy,
star, and robust graph clustering techniques (described in Chapter 4) on the sensitive
input and the generated anonymised Kilm graph data sets. Results are shown for

similarity threshold values δs ranging from 1.0 to 0.7 in steps of 0.05.

All the experiments conducted in this chapter and Chapter 9 show the capability
of our anonymisation method to anonymise sensitive graph data, while maintaining
its structure, as reflected by the pairwise similarity distributions and the clustering
results obtained with the sensitive input and the anonymised graph data sets.

10.8 Summary

In this chapter, we discussed how the different techniques we proposed in this thesis
can be integrated into an end-to-end RL framework, and we conducted an overall
experimental evaluation using a real-world birth data set which we did not use for
evaluation in the previous chapters. The experimental results presented in this chap-
ter further verified the conclusions we made in the previous chapters. Note that
while this chapter provides an overview of how our proposed techniques can be
integrated into a RL framework, it does not necessarily demonstrate this with the
new real-world data set that we have used for experiments. Rather, we further verify
the generalisability of our proposed techniques for the application on real-world RL
tasks, using a new population data set.

Based on the experiments conducted in this and the previous chapters, we showed
that applying data characteristics (such as temporal and spacial information) on real-
world unsupervised data linkage tasks improves the linkage quality compared to
conducting unsupervised RL without considering data characteristics. However, ex-
tending our proposed methods to consider the probability of transitioning between
states in a population data set (such as a person changing their occupation) did
not improve results. We showed that our proposed active learning-based filtering
technique improves the efficiency of the RL classification step while improving the
linkage precision at the cost of a minor loss in recall. The active learning-based RL
technique we proposed was shown to be on par with or exceeding the linkage quality
obtained with existing active learning and supervised RL approaches.

We then discussed the issues with existing evaluation measures for group RL, and
showed that our proposed novel evaluation measure provides more insightful infor-
mation regarding the linkage results based on how records have been assigned into

§10.8 Summary 181

clusters and the resulting cluster sizes. Finally, we evaluated a graph anonymisation
technique which can effectively anonymise sensitive graph data (used for RL and
in other domains) without compromising their human intepretability and similarity
structure as shown in this and previous chapters. In the following final chapter, we
summarise the work presented in our thesis and discuss future research directions.

182 Overall Experimental Evaluation

Chapter 11

Conclusion and Future Work

In this thesis we have proposed efficient and effective algorithms for Record Linkage
(RL), while ensuring that the privacy of the resulting linked data set is preserved,
and that the linkage quality of group RL techniques can be assessed in a robust
manner. Our proposed techniques, which we discussed in Chapters 4 to 9, aim to
address limitations in the existing literature of the domain of RL. In this chapter,
we conclude our thesis by highlighting the research problems in Section 11.1, and
summarising our contributions to address these research problems in Section 11.2.
Furthermore, we summarise the main research findings of our thesis in Section 11.3.
Next, we discuss potential directions for future research in Section 11.4, and finally,
in Section 11.5 we provide the final concluding remarks for our thesis.

11.1 Summary of the Research Problems

As we discussed in Section 1.2, there are several challenges in the Record Linkage
(RL) domain which are still widely explored by the research community. A summary
of these research problems is as follows.

• Data Set Size: The massive amount of data available in the modern world has
resulted in the infeasibility of conducting RL with naïve record pair compari-
son. Even though methods such as blocking and indexing [12, 36] are applied to
improve the efficiency of the RL process, due to the high class imbalance (true
matches being considerably outweighed by the number of true non-matches),
more advanced filtering techniques need to be developed to conduct RL effi-
ciently.

• Data Quality: Real-world data sets, especially population data, often lack data
quality due to errors introduced in data collection and transcription [11, 93,
143]. The task of RL is made more challenging when data quality issues are
present, since reduced data quality makes it more difficult to distinguish be-
tween matches and non-matches when comparing attribute values.

• Data Privacy: Ensuring the privacy of linked data sets is a major concern, and
is sometimes detrimental to research in the domain of RL [40]. Even though

183

184 Conclusion and Future Work

Privacy-Preserving Record Linkage (PPRL) techniques and existing graph data
anonymisation methods can be used to enhance the privacy of linked data, they
often compromise the human interpretability and the relationships among the
original data.

• Lack of Ground-truth Data: Due to the presence of a large number of record
pairs across data sets to be linked, it is infeasible to manually label all record
pairs in the RL context [35]. This commonly leads to a lack of ground-truth
data in the form of known matches and non-matches. Supervised classification
techniques are therefore often inapplicable in RL projects due to the limited
availability of training (ground-truth) data.

• Evaluating Linkage Results: The existing evaluation measures used for assess-
ing the quality of RL techniques were originally developed to assess machine
learning or information retrieval approaches [35, 82, 85]. These methods are
used to evaluate the linkage quality of group RL methods as well, by consid-
ering the record pairs in each group. However, conducting evaluation using
individual record pairs does not provide insightful information about how ac-
curately records have been grouped together (such as the distribution of clus-
ter sizes). Therefore, it is necessary to conduct a proper assessment of these
evaluation measures to determine their applicability for evaluating group RL
methods.

11.2 Summary of Contributions

In this section, we provide a summary of our contributions where we proposed new
techniques to address the challenges highlighted in the previous section.

• Graph-based Clustering for Record Linkage Using Data Characteristics: In
Chapter 4 we proposed three novel unsupervised graph clustering techniques,
named greedy, star, and robust, which incorporate data characteristics such as
temporal and spatial information to improve linkage quality [122, 123]. With an
empirical evaluation conducted on two real-world and one synthetic birth data
set in Chapters 4 and 10, we showed that the linkage quality achieved with the
unsupervised star and robust graph clustering techniques can be significantly
improved by considering data characteristics, even when data quality issues are
present in the data sets being linked.

• Record Linkage Using Transition Probabilities on Data Characteristics: In
Chapter 5, we then further developed our concept of incorporating data char-
acteristics in the RL process by considering transition probability distributions
corresponding to data characteristics. That is, we proposed methods of mod-
elling the goodness of groups of records (clusters) based on the probability for
entities to transition between states (such as occupations, and roles as daughter
or mother in population data) based on a data characteristic (such as within a

§11.2 Summary of Contributions 185

given time duration). The experiments conducted with two real-world and one
synthetic birth data sets in Chapters 5 and 10 showed that this method is prone
to errors when data quality is lacking, whereas considering data characteris-
tics alone, as we proposed in Chapter 4, was shown to produce better linkage
quality.

• Active Learning-based Graph Filtering for Record Linkage: Next, in Chap-
ter 6, we proposed a novel active learning-based graph filtering technique,
which, based on a domain expert’s knowledge about the expected number
of true matches and the data patterns along data dimensions (such as time
and space), filters record pairs to improve the efficiency of the RL classification
step [125]. With an experimental evaluation conducted using three real-world
and one synthetic data set in Chapters 6 and 10 we showed that applying RL
clustering methods on filtered graphs considerably improves the efficiency of
the RL process while improving the precision at the cost of a minor decline in
recall.

• Active Learning-based Record Linkage With Filtering: In Chapter 7, we then
proposed a new iterative active learning-based RL approach which manually
classifies a limited number of record pairs by a human oracle (domain expert),
and employs an automatic classification method to obtain a larger training data
set. Furthermore, this method filters record pairs based on the confidence of
record pair classifications in previous iterations to improve the RL classifica-
tion efficiency. We evaluated this method using two real-world bibliographic
data sets, two real-world and one synthetic birth data sets, and a real-world
voter data set in Chapters 7 and 10. With these evaluations we showed that our
active learning-based RL technique is more efficient than complex supervised
classification techniques, while being on par with or exceeding the linkage qual-
ity achieved with state-of-the-art active learning, deep learning, and machine
learning RL approaches.

• An Evaluation Technique for Group Record Linkage: Subsequently, in Chap-
ter 8 we discussed the ambiguous results which may be generated by existing
evaluation techniques in the group RL context, and proposed a novel evaluation
measure for group RL [126]. We assessed this group RL evaluation measure in
Chapters 8 and 10, using the linkage result obtained by applying the three
unsupervised clustering techniques (greedy, star, and robust) we proposed in
Chapter 4 on two real-world and one synthetic data set. These assessments
showed that our evaluation measure complements the results obtained with
the F∗-measure while providing more insightful, unambiguous information on
the distribution of predicted cluster sizes.

• Graph Data Anonymisation for Record Linkage: Finally, in Chapter 9 we in-
troduced a new graph anonymisation technique which can be utilised in the
RL domain to ensure the privacy of linked data, while preserving the struc-
ture of the original graph and ensuring the human interpretability of the graph

186 Conclusion and Future Work

data [124]. With experiments conducted on two real-world and one synthetic
data set in Chapters 9 and 10, we showed that our proposed graph anonymisa-
tion method successfully preserves the human interpretability and the structure
of the original graph data. Furthermore, we applied the three unsupervised
graph clustering techniques we proposed in Chapter 4 on both the original
sensitive and anonymised graph data sets, and showed that the linkage results
obtained with both data sets are similar.

11.3 Research Findings

In this section, we provide a summary of the main research findings of this the-
sis, based on the RL methods we have proposed and the experiments conducted in
Chapters 4 to 10. In Chapter 4, we presented three unsupervised clustering tech-
niques which utilise population data characteristics (such as temporal and spatial
constraints), which was further developed in Chapter 5 to consider patterns (or tran-
sition probability distributions) corresponding to data characteristic. With empirical
evaluations we showed that incorporating data characteristics can help achieve signif-
icant improvements in linkage quality with no decline in average efficiency. However,
developing this approach to consider patterns in data characteristics was prone to er-
rors in the presence of data quality issues, and therefore we do not recommend the
method proposed in Chapter 5 to be used for real-world population RL applications.

We showed that the active learning-based graph filtering method we proposed
in Chapter 6 significantly improves the efficiency and the overall quality of the RL
process compared to conducting RL with no filtering. However, the advanced data
dimension binning-based filtering method that we proposed in this chapter did not
show noteworthy improvements over the simple global threshold based filtering ap-
proach. This indicates that even though active learning-based graph filtering (where
the global threshold is set based on domain knowledge) is useful, allocating more re-
sources for the binning approach may not be justifiable in real-world RL applications
due to the potential efficiency improvements being limited.

While active learning has been previously applied for RL tasks, we explored this
further in Chapter 7 due to the related literature being relatively novel and limited.
We showed how our proposed active learning method achieves linkage quality on
par with or superior to existing state-of-the-art supervised and semi-supervised RL
approaches. The evaluation measure we proposed for assessing group RL techniques
in Chapter 8 is more robust and unambiguous compared to existing evaluation mea-
sures such as precision and recall. The discussion in this chapter emphasises on the
need for further research to be conducted on the topic of evaluation measures for RL.

In Chapter 9 we proposed an anonymisation technique which preserves the struc-
ture and human interpretability of data to be linked unlike in existing anonymisation
methods. It is important to further develop anonymisation methods for RL applica-
tions to address their inadequacy in the literature. We further verified these findings
with the experiments conducted on a new population data set in Chapter 10.

§11.4 Future Work 187

11.4 Future Work

Based on the exploration of the literature and the contributions we have made, we
have identified the following as potential directions for future work in the RL do-
main.

• Efficiency Enhancement of the RL Process: While the majority of previous
related RL research work has focused on improving the efficiency of the com-
parison step in RL, in this thesis we aimed to enhance the RL classification
efficiency. Therefore, in Chapters 6 and 7 we proposed methods to reduce the
number of record pairs considered in the classification step of RL. While these
techniques were shown to be successful, further research on improving the ef-
ficiency of the overall RL process is valuable. Furthermore, since we mainly
focused on improving the linkage quality of the unsupervised clustering meth-
ods we proposed in Chapter 4, we can further explore how the efficiency of
techniques such as robust graph clustering can be enhanced. Research on the
parallelisation of RL algorithms and techniques is also of significant value for
improving the efficiency of the linkage process.

• Learning Data Characteristics: In the techniques we proposed in Chapters 4
and 5, we assumed that the constraints implied by data characteristics and
their probability distributions can be modeled based on the knowledge of a
domain expert. However, in certain RL projects this information may not be
fully available or it might be expensive to entirely rely on human expertise for
such constraint modelling. Therefore, it is useful to explore how we can employ
semi-supervised methods such as active learning to model constraints related
to data characteristics when it is expensive to consult domain experts.

• Automatic Identification of Optimal Parameters: The RL methods we pro-
posed in Chapters 4 to 7 have several parameter settings where the optimal
configurations need to be identified with experimental evaluation. Even though
we were able to identify the best parameter configuration for some of our ap-
proaches irrespective of the data set used, for the remaining RL techniques we
proposed, the optimal parameter settings are data set dependent. In a real-
world RL application it is useful to have a mechanism of automatically iden-
tifying the best parameter configurations [135] and therefore supervised and
semi-supervised techniques for automatic parameter tuning can be explored as
future work.

• Population Goodness-based Evaluation Measure: In Chapter 5 we proposed
a method of modelling the goodness of a population using the probability distri-
butions related to data characteristics. We then used this population goodness
measure to calculate the goodness of a set of overlapping clusters (cluster good-
ness) generated by a RL clustering technique, and used this cluster goodness to
resolve overlaps. Even though this approach did not result in much improved

188 Conclusion and Future Work

linkage quality, this population goodness measure can be adapted as an eval-
uation measure for population RL. Such an evaluation measure would reflect
how closely a cluster prediction resembles the population distributions in the
real-world from a related domain.

• Improve the New Group Record Linkage Evaluation Measure: In the novel
group RL evaluation measure we introduced in Chapter 8, we used a greedy
cluster mapping approach to map predicted clusters to ground-truth clusters.
This approach can be further improved to dynamically map clusters, such that
the globally optimal cluster mapping is guaranteed. However, the efficiency of
the evaluation measure too needs to be improved when a dynamic approach
is followed. Furthermore, it is valuable to develop unsupervised methods to
evaluate group RL approaches where ground-truth data is not required [53].

• Incremental Record Linkage: The population data sets we have considered
in this thesis are static historical data sets, where record attribute values, and
the data set sizes stay constant throughout the linkage process. However, an
important topic for future work would be incremental RL [79, 170], where the
goal is to integrate data sources in an effective and efficient way as more records
are added to them or the existing records are updated. Since real-world data
sets, such as COVID-19 vaccination history data sets, are frequently updated,
exploring incremental RL techniques is of paramount importance.

11.5 Conclusion

In this thesis we have presented our contributions to the domain of RL where we
address limitations in existing solutions. We initially conducted a comprehensive
literature review to study the state-of-the-art RL techniques and to identify the re-
search problems, which we addressed with our proposed novel techniques for RL.
We initially proposed three novel unsupervised graph clustering techniques utilis-
ing data characteristics and showed that incorporating data characteristics helps en-
hance the linkage quality of unsupervised RL clustering approaches with an empiri-
cal evaluation. Our attempt to further develop this concept to consider the transition
probabilities related to data characteristics was shown to be ineffective in real-world
applications where data can be error prone.

Another significant contribution we made in this thesis is the proposal of novel
methods to improve the efficiency of the RL classification step. We proposed an
active learning-based filtering technique to remove the likely non-matching record
pairs, and another iterative active learning-based RL classification approach, where
we classify record pairs while reducing the number of record pairs to be considered
for classification in future iterations. We also proposed a novel evaluation measure
for group RL techniques since existing RL evaluation measures can sometimes pro-
duce ambiguous results. Furthermore, we introduced a new graph anonymisation
technique which can be used in the RL context to ensure the privacy of linked data.

§11.5 Conclusion 189

With a comprehensive empirical evaluation, we have shown that all our proposed
methods, except the method utilising transition probabilities on data characteristics,
can be used to conduct real-world RL tasks in an efficient and effective manner.

190 Conclusion and Future Work

References

1. Aggarwal, C. C., and Yu, P. S. Privacy-preserving data mining: models and algo-
rithms, vol. 34 of Advances in Database Systems. Springer, 2008. (cited on page
57)

2. Akgün, Ö., Dearle, A., Kirby, G., and Christen, P. Using metric space in-
dexing for complete and efficient record linkage. In PAKDD (Melbourne, 2018),
pp. 89–101. (cited on pages 49 and 51)

3. Antonie, L., Grewal, G., Inwood, K., and Zarti, S. Automatic household
identification for historical census data. In Advances in Artificial Intelligence
(2017), M. Mouhoub and P. Langlais, Eds. (cited on pages 14, 33, 38, and 61)

4. Antonie, L., Inwood, K., Lizotte, D. J., and Ross, J. A. Tracking people over
time in 19th century Canada for longitudinal analysis. Machine Learning 95
(2014), 129–146. (cited on pages 14 and 25)

5. Arasu, A., Götz, M., and Kaushik, R. On active learning of record matching
packages. In ACM SIGMOD (Indianapolis, 2010), pp. 783–794. (cited on pages
45, 98, 116, 118, and 119)

6. Aslam, J. A., Pelekhov, E., and Rus, D. The star clustering algorithm for
static and dynamic information organization. Journal of Graph Algorithms and
Applications 8, 1 (2004), 95–129. (cited on page 34)

7. Bailey, M., Cole, C., et al. How well do automated methods perform in histor-
ical samples? Evidence from new ground truth. Tech. rep., NBER, 2017. (cited
on pages xxii and 14)

8. Bansal, N., Blum, A., and Chawla, S. Correlation clustering. Machine Learning
56, 1 (Jul 2004), 89–113. (cited on pages 34 and 35)

9. Bansal, N., Chiang, F., Koudas, N., and Tompa, F. Seeking stable clusters in
the blogosphere. In VLDB Endowment (2007), p. 806–817. (cited on page 35)

10. Barlaug, N., and Gulla, J. A. Neural networks for entity matching: A survey.
ACM Trans. Knowl. Discov. Data 15, 3 (Apr. 2021). (cited on page 117)

11. Batini, C., and Scannapieco, M. Data quality: Concepts, methodologies and tech-
niques. Data-Centric Systems and Applications. Springer, 2006. (cited on page
183)

191

192 References

12. Baxter, R., Christen, P., and Churches, T. A comparison of fast blocking
methods for record linkage. In ACM SIGKDD Workshop on Data Cleaning, Record
Linkage and Object Consolidation (Washington DC, 2003), pp. 25–27. (cited on
pages 17 and 183)

13. Bellahsene, Z., Bonifati, A., and Rahm, E. Schema Matching and Mapping.
Data-Centric Systems and Applications. Springer, 2011. (cited on page 16)

14. Bellare, K., Iyengar, S., Parameswaran, A. G., and Rastogi, V. Active sam-
pling for entity matching. In ACM SIGKDD (Beijing, 2012), pp. 1131–1139.
(cited on page 45)

15. Bhattacharya, I., and Getoor, L. Collective entity resolution in relational
data. ACM TKDD 1, 1 (2007). (cited on pages 3, 97, and 118)

16. Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2006. (cited
on page 40)

17. Bloothooft, G., Christen, P., Mandemakers, K., and Schraagen, M. Popula-
tion Reconstruction. Springer, 2015. (cited on pages 2, 62, 135, and 152)

18. Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. Enriching word vec-
tors with subword information. Transactions of the Association for Computational
Linguistics 5 (2017), 135–146. (cited on pages 45 and 50)

19. Bomze, I. M., Budinich, M., Pardalos, P. M., and Pelillo, M. The maximum
clique problem. In Handbook of combinatorial optimization. Springer, 1999, pp. 1–
74. (cited on page 36)

20. Bonaccorso, G. Machine Learning Algorithms: A Reference Guide to Popular Algo-
rithms for Data Science and Machine Learning. Packt Publishing, 2017. (cited on
page 126)

21. Bondy, J. A., Murty, U. S. R., et al. Graph theory with applications, vol. 290.
Macmillan London, 1976. (cited on page 71)

22. Bordes, A., Ertekin, S., Weston, J., and Bottou, L. Fast kernel classifiers with
online and active learning. JMLR 6, 54 (2005), 1579–1619. (cited on page 132)

23. Boyd, K., Eng, K. H., and Page, C. D. Area under the precision-recall curve:
Point estimates and confidence intervals. In Proceedings of the 2013th European
Conference on Machine Learning and Knowledge Discovery in Databases (Berlin, Hei-
delberg, 2013), ECMLPKDD’13, Springer-Verlag, p. 451–466. (cited on page
22)

24. Buerli, M., and Obispo, C. The current state of graph databases. Department
of Computer Science, Cal Poly, San Luis Obispo 32, 3 (2012), 67–83. (cited on page
151)

References 193

25. Caldeira, L., and Ferreira, A. Improvements in the blocking process for en-
tity resolution based on the term relevance. In Brazilian Symposium on Databases
(SBBD) (2018), pp. 61–72. (cited on page 52)

26. Caldeira, L. S., Bianco, G. D., and Ferreira, A. A. Experimental evalua-
tion among reblocking techniques applied to the entity resolution. In European
Conference on Advances in Databases and Information Systems (2021), pp. 229–243.
(cited on pages 49, 51, and 52)

27. Campan, A., and Truta, T. A clustering approach for data and structural
anonymity in social networks. In ACM SIGKDD Workshop on Privacy, Security,
and Trust in KDD (PinKDD) (2008), vol. 5456 of Lecture Notes in Computer Science,
Springer, pp. 33–54. (cited on page 56)

28. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., and Tzoumas,
K. Apache flink: Stream and batch processing in a single engine. Bulletin of the
IEEE Computer Society Technical Committee on Data Engineering 36, 4 (2015). (cited
on page 35)

29. Chen, H., Chung, W., Xu, J., Wang, G., Qin, Y., and Chau, M. Crime data
mining: a general framework and some examples. Computer 37, 4 (2004), 50–56.
(cited on page 2)

30. Chen, X., Xu, Y., Broneske, D., Durand, G. C., Zoun, R., and Saake, G. Het-
erogeneous committee-based active learning for entity resolution (healer). In
European Conference on Advances in Databases and Information Systems (ADBIS)
(2019), Springer, pp. 69–85. (cited on page 48)

31. Chierichetti, F., Dalvi, N., and Kumar, R. Correlation clustering in mapre-
duce. Proceedings of the ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (2014). (cited on page 35)

32. Christen, P. A comparison of personal name matching: Techniques and prac-
tical issues. Tech. Rep. TR-CS-07-03, Department of Computer Science, The
Australian National University, Canberra, Australia, 2006. (cited on page 17)

33. Christen, P. Automatic training example selection for scalable unsupervised
record linkage. In PAKDD (Osaka, 2008), Springer, pp. 511–518. (cited on page
20)

34. Christen, P. Febrl: An open source data cleaning, deduplication and record
linkage system with a graphical user interface. In ACM SIGKDD (Las Vegas,
2008), pp. 1065–1068. (cited on page 18)

35. Christen, P. Data Matching – Concepts and Techniques for Record Linkage, En-
tity Resolution, and Duplicate Detection. Data-Centric Systems and Applications.
Springer, Heidelberg, 2012. (cited on pages 1, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 37, 38, 39, 40, 76, 96, 97, 116, 118, 137, 138, 141, 155, 157, 158,
and 184)

194 References

36. Christen, P. A survey of indexing techniques for scalable record linkage and
deduplication. Transactions on Knowledge and Data Engineering 24, 9 (2012), 1537–
1555. (cited on page 183)

37. Christen, P. Application of advanced record linkage techniques for complex
population reconstruction. ArXiv abs/1612.04286 (2016). (cited on page 3)

38. Christen, P. Data linkage: The big picture. Harvard Data Science Review 1, 2
(2019). (cited on page 16)

39. Christen, P., Hegland, M., Roberts, S., Nielsen, O., Churches, T., Lim, K.,
and Branch, S. Parallel computing techniques for high-performance proba-
bilistic record linkage. Symposium on Health Data Linkage (04 2002). (cited on
page 8)

40. Christen, P., Ranbaduge, T., and Schnell, R. Linking Sensitive Data. Springer,
Heidelberg, 2020. (cited on pages 3, 4, 6, 8, 55, and 183)

41. Christen, P., Vatsalan, D., and Wang, Q. Efficient entity resolution with
adaptive and interactive training data selection. In IEEE ICDM (Atlantic City,
2015), pp. 727–732. (cited on pages 116, 118, 123, and 130)

42. Christen, V., Christen, P., and Rahm, E. Informativeness-based active learn-
ing for entity resolution. In PKDD/ECML DINA (Würzburg, 2019). (cited on
pages 44, 45, and 116)

43. Christen, V., Groß, A., Fisher, J., Wang, Q., Christen, P., and Rahm, E. Tem-
poral group linkage and evolution analysis for census data. In EDBT (Venice,
Italy, 2017), pp. 620–631. (cited on pages 2, 3, 14, 21, 27, and 151)

44. Ciaccia, P., Patella, M., Rabitti, F., and Zezula, P. Indexing metric spaces
with m-tree. In Italian Symposium on Advanced Database Systems (SEBD) (1997),
vol. 97, p. 67–86. (cited on page 51)

45. Cormode, G., Srivastava, D., Yu, T., and Zhang, Q. Anonymizing bipartite
graph data using safe groupings. VLDB Endowment 1 (2008), 833–844. (cited on
page 56)

46. Das, S., Egecioglu, O., and Abbadi, A. Anónimos: An LP-based approach for
anonymizing weighted social network graphs. IEEE TKDE 24, 4 (2012), 590–604.
(cited on page 152)

47. Das, S., G.C., P. S., Doan, A., Naughton, J. F., Krishnan, G., Deep, R., Arcaute,
E., Raghavendra, V., and Park, Y. Falcon: Scaling up hands-off crowdsourced
entity matching to build cloud services. In Proceedings of the 2017 ACM Interna-
tional Conference on Management of Data (SIGMOD) (New York, NY, USA, 2017),
SIGMOD ’17, Association for Computing Machinery, p. 1431–1446. (cited on
page 41)

References 195

48. Davis, C. The norm of the schur product operation. Numerische Mathematik 4, 1
(Dec 1962), 343–344. (cited on page 41)

49. Davis, J., and Goadrich, M. The relationship between Precision-Recall and
ROC curves. In ACM ICML (Pittsburgh, 2006), pp. 233–240. (cited on page 10)

50. Dean, J., and Ghemawat, S. Mapreduce: simplified data processing on large
clusters. Communications of the ACM 51, 1 (2008), 107–113. (cited on page 49)

51. Delanaux, R., Bonifati, A., Rousset, M., and Thion, R. Rdf graph anonymiza-
tion robust to data linkage. In Web Information Systems Engineering (WISE)
(2019), vol. 11881 of Lecture Notes in Computer Science, Springer, pp. 491–506.
(cited on pages 7, 55, 58, and 59)

52. Dillon, L. Y. Integrating nineteenth-century Canadian and American census
data sets. Computers and the Humanities 30, 5 (1996), 381–392. (cited on page 14)

53. Doidge, J. C., and Harron, K. L. Reflections on modern methods: linkage
error bias. International Journal of Epidemiology 48, 6 (2019), 2050–2060. (cited on
pages 21 and 188)

54. Dong, X. L. Challenges and innovations in building a product knowledge
graph. In Proceedings of the 24th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (New York, NY, USA, 2018), KDD ’18, Associa-
tion for Computing Machinery, p. 2869. (cited on page 2)

55. Dong, X. L., and Rekatsinas, T. Data integration and machine learning: A
natural synergy. In Proceedings of the 2018 International Conference on Management
of Data (New York, NY, USA, 2018), SIGMOD ’18, Association for Computing
Machinery, p. 1645–1650. (cited on pages 20 and 39)

56. Dong, X. L., and Srivastava, D. Big Data Integration. Synthesis Lectures on
Data Management. Morgan and Claypool Publishers, 2015. (cited on pages 3
and 115)

57. Dongen, S. v. Graph Clustering By Flow Simulation. PhD thesis, PhD thesis,
University of Utrecht, 2000. (cited on page 35)

58. Draisbach, U., Christen, P., and Naumann, F. Transforming pairwise dupli-
cates to entity clusters for high-quality duplicate detection. ACM JDIQ 12, 1
(2019), 1–30. (cited on pages 5, 20, 33, 36, 96, 97, 116, and 118)

59. Dunn, H. Record linkage. American Journal of Public Health 36, 12 (1946), 1412.
(cited on pages 1 and 13)

60. Ebraheem, M., Thirumuruganathan, S., Joty, S. R., Ouzzani, M., and Tang,
N. Distributed representations of tuples for entity resolution. VLDB Endowment
11 (2018), 1454–1467. (cited on pages 39, 40, 41, 51, and 61)

196 References

61. Efthymiou, V., Papadakis, G., Papastefanatos, G., Stefanidis, K., and Pal-
panas, T. Parallel meta-blocking for scaling entity resolution over big hetero-
geneous data. Information Systems 65 (2017), 137–157. (cited on pages 4, 49,
and 95)

62. El-Shalakani, M., and Pandey, A. Distribution of births in an abrupt se-
quence: a stochastic model. Mathematical biosciences 95, 1 (1989), 1–11. (cited on
page 84)

63. Feder, T., Nabar, S., and Terzi, E. Anonymizing graphs. arXiv Preprint (2008).
(cited on page 152)

64. Fellegi, I. P., and Sunter, A. B. A theory for record linkage. Journal of the
American Statistical Association 64, 328 (1969), 1183–1210. (cited on pages 13
and 14)

65. Flake, G., Tarjan, R., and Tsioutsiouliklis, K. Graph clustering and mini-
mum cut trees. Internet Mathematics 1 (01 2003). (cited on page 35)

66. Ford, L. R., and Fulkerson, D. R. Maximal flow through a network. Canadian
Journal of Mathematics 8 (1956), 399–404. (cited on page 35)

67. Fu, Z. Linking Historical Census Data Across Time. PhD thesis, The Australian
National University, 2014. (cited on page 27)

68. Fu, Z., Boot, M., Christen, P., and Zhou, J. Automatic record linkage of
individuals and households in historical census data. International Journal of
Humanities and Arts Computing (2014). (cited on pages 2 and 3)

69. Fu, Z., Christen, P., and Boot, M. A supervised learning and group linking
method for historical census household linkage. In AusDM, CRPIT (Ballarat,
Australia, 2011), vol. 125. (cited on page 20)

70. Fu, Z., Christen, P., and Zhou, J. A graph matching method for historical
census household linkage. In PAKDD (Tainan, Taiwan, 2014). (cited on pages
3, 14, and 25)

71. Fu, Z., Zhou, J., Christen, P., and Boot, M. Multiple instance learning for
group record linkage. In PAKDD (Kuala Lumpur, 2012). (cited on page 21)

72. Gagniuc, P. A. Markov chains: from theory to implementation and experimentation.
John Wiley & Sons, 2017. (cited on page 85)

73. García, S., Luengo, J., and Herrerar, F. Data Preprocessing in Data Mining.
Intelligent Systems Reference Library. Springer, 2015. (cited on page 15)

74. Gill, L. Methods for Automatic Record Matching and Linkage and Their Use in
National Statistics. No. 25 in National statistics methodology series. Office for
National Statistics, London, 2001. (cited on page 1)

References 197

75. Gokhale, C., Das, S., Doan, A., Naughton, J. F., Rampalli, N., Shavlik, J.,
and Zhu, X. Corleone: Hands-off crowdsourcing for entity matching. In Pro-
ceedings of the 2014 ACM International Conference on Management of Data (SIG-
MOD) (New York, NY, USA, 2014), SIGMOD ’14, Association for Computing
Machinery, p. 601–612. (cited on page 41)

76. Gottapu, R. D., Dagli, C., and Ali, B. Entity resolution using convolutional
neural network. In Conference Organized by Missouri University of Science and
Technology (Los Angeles, CA, 2016), pp. 153–158. (cited on pages 39 and 61)

77. Gravano, L., Ipeirotis, P. G., Jagadish, H. V., Koudas, N., Muthukrishnan,
S., and Srivastava, D. Approximate string joins in a database (almost) for free.
In VLDB (Roma, 2001), pp. 491–500. (cited on page 49)

78. Gravano, L., Ipeirotis, P. G., Koudas, N., and Srivastava, D. Text joins in an
rdbms for web data integration. In WWW (2003). (cited on page 37)

79. Gruenheid, A., Dong, X. L., and Srivastava, D. Incremental record linkage.
Proc. VLDB Endow. 7, 9 (2014), 697–708. (cited on page 188)

80. Gu, L., and Baxter, R. Adaptive filtering for efficient record linkage. In SIAM
international conference on data mining (Orlando, Florida, 2004). (cited on pages
49 and 52)

81. Hamm, N. C., Hamad, A. F., Wall-Wieler, E., Roos, L. L., Plana-Ripoll,
O., and Lix, L. M. Multigenerational health research using population-based
linked databases: An international review. International Journal of Population
Data Science 6, 1 (2021). (cited on page 15)

82. Han, J., Kamber, M., and Pei, J. Data mining: concepts and techniques, 3 ed.
Morgan Kaufmann, 2012. (cited on pages 13, 20, 100, and 184)

83. Hand, D., Christen, P., and Kirielle, N. F*: an interpretable transformation
of the f-measure. Machine Learning 110 (03 2021), 451–456. (cited on pages xxii,
23, and 55)

84. Hand, D. J. Measuring classifier performance: a coherent alternative to the area
under the roc curve. Machine learning 77, 1 (2009), 103–123. (cited on page 144)

85. Hand, D. J., and Christen, P. A note on using the f-measure for evaluating
record linkage algorithms. Statistics and Computing 28, 3 (2018). (cited on pages
xxii, 5, 10, 22, 53, 54, 137, 138, and 184)

86. Hassanzadeh, O., Chiang, F., Lee, H., and Miller, R. Framework for evalu-
ating clustering algorithms in duplicate detection. VLDB 2, 1 (2009). (cited on
pages 20, 33, 34, 35, 37, 44, 53, 54, 61, 62, 64, 97, 118, 135, 137, 138, 143, and 158)

198 References

87. Hassanzadeh, O., and Miller, R. Probabilistic management of duplicated
data. Tech. Rep. Technical Report CSRG-568, University of Toronto, Toronto,
2007. (cited on page 34)

88. Haveliwala, T., Gionis, A., and Indyk, P. Scalable techniques for clustering
the web (extended abstract). In Proceedings of the International Workshop on the
Web and Databases (WebDB) (2000), p. 129–134. (cited on page 34)

89. Hay, M., Miklau, G., Jensen, D., Towsley, D., and Weis, P. Resisting structural
identification in anonymised social networks. VLDB Endowment 1 (2008), 102–
114. (cited on page 56)

90. Hay, M., Miklau, G., Jensen, D., Weis, P., and Srivastava, S. Anonymizing
social networks. Tech. Rep. Technical Report 07-19, University of Massachusetts,
Amherst, 2007. (cited on page 57)

91. Heineman, G., Pollice, G., and Selkow, S. Algorithms in a Nutshell. O’Reilly
Media, Inc., 2008. (cited on page 125)

92. Hernández, M., Koutrika, G., Krishnamurthy, R., Popa, L., and Wisnesky,
R. Hil: A high-level scripting language for entity integration. In EDBT (New
York, NY, USA, 2013), Association for Computing Machinery, p. 549–560. (cited
on page 3)

93. Herzog, T., Scheuren, F., and Winkler, W. Data quality and record linkage
techniques. Springer Verlag, 2007. (cited on pages 2, 16, 20, and 183)

94. Hu, Y., Wang, Q., Vatsalan, D., and Christen, P. Improving temporal record
linkage using regression classification. In PAKDD (2017), Springer, pp. 561–573.
(cited on pages 96 and 97)

95. Jaro, M. A. Advances in record-linkage methodology a applied to matching
the 1985 Census of Tampa, Florida. Journal of the American Statistical Association
84 (1989), 414–420. (cited on pages 18 and 19)

96. Ji, S., Mittal, P., and Beyah, R. Graph data anonymization, de-anonymization
attacks, and de-anonymizability quantification: A survey. IEEE Communications
Surveys & Tutorials 19, 2 (2016), 1305–1326. (cited on page 151)

97. Jiang, H., Gurajada, S., Lu, Q., Neelam, S., Popa, L., Sen, P., Li, Y., and Gray,
A. LNN-EL: A neuro-symbolic approach to short-text entity linking. In Proceed-
ings of the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers) (Online, 2021), Association for Computational Linguistics. (cited
on page 19)

98. Jones, K. H., and Ford, D. V. Population data science: advancing the safe use
of population data for public benefit. Epidemiology and health 40 (2018). (cited
on page 8)

References 199

99. Karapiperis, D., Gkoulalas-Divanis, A., and Verykios, V. S. Lshdb: A paral-
lel and distributed engine for record linkage and similarity search. In 2016 IEEE
16th International Conference on Data Mining Workshops (ICDMW) (2016), pp. 1–4.
(cited on page 8)

100. Kasai, J., Qian, K., Gurajada, S., Li, Y., and Popa, L. Low-resource deep
entity resolution with transfer and active learning. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics (2019), pp. 5851–
5861. (cited on pages 44 and 45)

101. Kelman, C. W., Bass, J., and Holman, D. Research use of linked health data
– A best practice protocol. Aust NZ Journal of Public Health 26 (2002), 251–255.
(cited on page 15)

102. Kirielle, N., Christen, P., and Ranbaduge, T. Outlier detection based accu-
rate geocoding of historical addresses. In Australasian Conference on Data Mining
(Adelaide, 2019), Springer, pp. 41–53. (cited on pages 62, 97, and 103)

103. Konda, P., Das, S., Suganthan G. C., P., Doan, A., Ardalan, A., Ballard,
J. R., Li, H., Panahi, F., Zhang, H., Naughton, J., Prasad, S., Krishnan, G.,
Deep, R., and Raghavendra, V. Magellan: Toward building entity matching
management systems. Proc. VLDB Endow. 9, 12 (Aug. 2016), 1197–1208. (cited
on pages 20, 39, 40, 41, 42, 45, 61, and 130)

104. Köpcke, H., Thor, A., and Rahm, E. Evaluation of entity resolution approaches
on real-world match problems. VLDB Endowment 3, 1-2 (2010), 484–493. (cited
on pages 29 and 41)

105. Kouki, P., Pujara, J., Marcum, C., Koehly, L., and Getoor, L. Collective
entity resolution in familial networks. In 2017 IEEE International Conference on
Data Mining (ICDM) (2017), pp. 227–236. (cited on pages 33, 38, 39, 61, and 62)

106. Kum, H.-C., Krishnamurthy, A., Machanavajjhala, A., and Ahalt, S. C.
Social genome: Putting big data to work for population informatics. Computer
47, 1 (2014). (cited on page 2)

107. Leskovec, J., Rajaraman, A., and Ullman, J. D. Mining of massive datasets.
Cambridge University Press, 2014. (cited on pages 17, 41, 52, and 96)

108. Li, P., Dong, X., Maurino, A., and Srivastava, D. Linking temporal records.
VLDB Endowment 4, 11 (2011). (cited on pages 44 and 61)

109. Li, Y., Li, J., Suhara, Y., Doan, A., and Tan, W.-C. Deep entity matching with
pre-trained language models. Proc. VLDB Endow. 14, 1 (2020), 50–60. (cited on
pages 39 and 42)

110. Liu, K., and Terzi, E. Towards identity anonymization on graphs. In Proceed-
ings of the ACM SIGMOD International Conference on Management of Data (SIG-
MOD’08) (2008), pp. 93–106. (cited on page 57)

200 References

111. Liu, L., Wang, J., Liu, J., and Zhang, J. Privacy preserving in social networks
against sensitive edge disclosure. Tech. Rep. Technical Report CMIDA-HiPSCCS
006-08, University of Kentucky, Department of Computer Science, Kentucky,
2008. (cited on page 57)

112. Lo, W.-C., Wang, F.-C., Lin, L.-Y., Jyan, H.-W., Wu, H.-C., Huang, Y.-L., Parng,
I.-M., and Chiou, H.-Y. Enhancing data linkage to break the chain of covid-19
spread: The taiwan experience. Journal of Medical Internet Research 23, 5 (May
2021). (cited on page 15)

113. Lu, C., Huang, G., and Xiang, Y. Community enhanced record linkage method
for vehicle insurance system. In Advanced Data Mining and Applications (2019),
pp. 761–776. (cited on page 15)

114. McGrail, K., and Jones, K. Population data science: The science of data about
people. International Journal of Population Data Science 3, 4 (2018). (cited on page
8)

115. McGrail, K., Jones, K., Akbari, A., Bennett, T. D., Boyd, A., et al. A po-
sition statement on population data science: The science of data about people.
International Journal of Population Data Science 3, 1 (2018). (cited on page 8)

116. Meduri, V. V., Popa, L., Sen, P., and Sarwat, M. A comprehensive benchmark
framework for active learning methods in entity matching. In ACM SIGMOD
(New York, 2020), pp. 1133–1147. (cited on pages 44, 47, 130, 131, and 133)

117. Menestrina, D., Whang, S., and Garcia-Molina, H. Evaluating entity reso-
lution results. VLDB Endowment 3, 1–2 (2010), 208–219. (cited on page 53)

118. Morgan, O., Aguilera, X., Ammon, A., Amuasi, J., Fall, I., Frieden, T., Hey-
mann, D., Ihekweazu, C., kyeong Jeong, E., Leung, G., Mahon, B., Nken-
gasong, J., Qamar, F., Schuchat, A., Wieler, L., and Dowell, S. Disease
surveillance for the covid-19 era: time for bold changes. Lancet (London, Eng-
land) (2021). (cited on page 1)

119. Mozafari, B., Sarkar, P., Franklin, M., Jordan, M., and Madden, S. Scaling
up crowd-sourcing to very large datasets: a case for active learning. Proceedings
of the VLDB Endowment 8, 2 (2014), 125–136. (cited on page 46)

120. Mudgal, S., Li, H., Rekatsinas, T., Doan, A., et al. Deep learning for en-
tity matching: A design space exploration. In ACM SIGMOD (Houston, 2018),
pp. 19–34. (cited on pages 20, 29, 30, 39, 40, 41, 47, 61, and 130)

121. Munkova, D., Munk, M., and Vozar, M. Influence of stop-words removal
on sequence patterns identification within comparable corpora. Advances in
Intelligent Systems and Computing 231 (01 2014), 67–76. (cited on pages 16 and 40)

References 201

122. Nanayakkara, C., Christen, P., and Ranbaduge, T. Temporal graph-based
clustering for historical record linkage. In MLG, held at ACM SIGKDD (London,
2018). (cited on pages 143 and 184)

123. Nanayakkara, C., Christen, P., and Ranbaduge, T. Robust temporal graph
clustering for group record linkage. In PAKDD (Macau, 2019). (cited on pages
143, 156, and 184)

124. Nanayakkara, C., Christen, P., and Ranbaduge, T. An anonymiser tool for
sensitive graph data. In International Workshop on Entity Retrieval and Learning
(EYRE) co-located with CIKM (2020). (cited on pages xxii and 186)

125. Nanayakkara, C., Christen, P., and Ranbaduge, T. Active learning based
similarity filtering for efficient and effective record linkage. In PAKDD (Delhi,
2021). (cited on pages 116, 119, and 185)

126. Nanayakkara, C., Christen, P., Ranbaduge, T., and Garrett, E. Evaluation
measure for group-based record linkage. International Journal of Population Data
Science 4, 1 (2019). (cited on page 185)

127. Naumann, F., and Herschel, M. An introduction to duplicate detection. Synthesis
Lectures on Data Management. Morgan and Claypool Publishers, 2010. (cited
on page 22)

128. Navarro, G. A guided tour to approximate string matching. ACM Computing
Surveys 33, 1 (2001), 31–88. (cited on pages 153, 157, 159, and 178)

129. Newcombe, H., and Kennedy, J. Record linkage: making maximum use of the
discriminating power of identifying information. Communications of the ACM 5,
11 (1962), 563–566. (cited on page 13)

130. Newcombe, H., Kennedy, J., Axford, S., and James, A. Automatic linkage of
vital records. Science 130, 3381 (1959), 954–959. (cited on page 13)

131. Newcombe, H. B. Handbook of record linkage: methods for health and statistical
studies, administration, and business. Oxford University Press, Inc., New York,
NY, USA, 1988. (cited on page 1)

132. Nguyen, L., Stoové, M., Boyle, D., Callander, D., McManus, H., Asselin,
J., Guy, R., Donovan, B., Hellard, M., and El-Hayek, C. Privacy-preserving
record linkage of deidentified records within a public health surveillance sys-
tem: Evaluation study. Journal of Medical Internet Research 22, 6 (Jun 2020). (cited
on page 15)

133. Odell, M., and Russell, R. The Soundex coding system. US Patents 1261167
(1918). (cited on page 17)

202 References

134. On, B.-W., Koudas, N., Lee, D., and Srivastava, D. Group linkage. In IEEE
ICDE (Istanbul, 2007), pp. 496–505. (cited on pages 2, 3, 21, 33, 37, 38, 62,
and 135)

135. Paganelli, M., Del Buono, F., Marco, P., Guerra, F., and Vincini, M. Auto-
mated machine learning for entity matching tasks. In EDBT (2021). (cited on
page 187)

136. Papadakis, G., Ioannou, E., Thanos, E., and Palpanas, T. The four generations
of entity resolution. Synthesis Lectures on Data Management 16, 2 (2021), 1–170.
(cited on page 115)

137. Papadakis, G., Papastefanatos, G., Palpanas, T., and Koubarakis, M. Scaling
entity resolution to large, heterogeneous data with enhanced meta-blocking. In
EDBT (2016), pp. 221–232. (cited on page 52)

138. Papadakis, G., Skoutas, D., Thanos, E., and Palpanas, T. Blocking and filter-
ing techniques for entity resolution: A survey. ACM CSUR 53, 2 (2020), 1–42.
(cited on pages 3, 4, 17, 49, 95, 96, 115, and 116)

139. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. Scikit-learn:
Machine learning in Python. The Journal of Machine Learning Research 12, Oct
(2011), 2825–2830. (cited on page 126)

140. Pennington, J., Socher, R., and Manning, C. Glove: Global vectors for word
representation. In Proceedings of the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP) (2014). (cited on page 41)

141. Primpeli, A., and Bizer, C. Graph-boosted active learning for multi-source
entity resolution (preprint). In The 20th International Semantic Web Conference
(ISWC) (2021). (cited on pages 44 and 48)

142. Primpeli, A., Bizer, C., and Keuper, M. Unsupervised bootstrapping of active
learning for entity resolution. In ESWC (Crete, 2020), pp. 215–231. (cited on
pages 20, 44, 46, 48, 118, and 121)

143. Pyle, D. Data preparation for data mining. Morgan Kaufmann, 1999. (cited on
page 183)

144. Qian, K., Chozhiyath Raman, P., Li, Y., and Popa, L. Learning structured
representations of entity names using active learning and weak supervision.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP) (Online, 2020), Association for Computational Linguistics,
pp. 6376–6383. (cited on pages 116 and 117)

145. Qian, K., Popa, L., and Sen, P. Active learning for large-scale entity resolution.
In ACM CIKM (Singapore, 2017), p. 1379–1388. (cited on pages 20, 116, and 118)

References 203

146. Rahm, E. Discovering product counterfeits in online shops: A big data integra-
tion challenge. ACM Journal on Data and Information Quality 5, 1–2 (2014). (cited
on page 2)

147. Rastogi, V., Dalvi, N., and Garofalakis, M. Large-scale collective entity
matching. VLDB Endowment 4 (2011), 208–218. (cited on page 3)

148. Reas, R., Ash, S., Barton, R., and Borthwick, A. Superpart: Supervised
graph partitioning for record linkage. In 2018 IEEE International Conference on
Data Mining (ICDM) (2018), pp. 387–396. (cited on pages 19, 20, and 152)

149. Reid, A., Davies, R., and Garrett, E. Nineteenth-century Scottish demogra-
phy from linked censuses and civil registers: A ’sets of related individuals’
approach. History and Computing 14, 1–2 (2002), 61–86. (cited on pages 2, 24,
25, 26, 63, 84, 85, 96, and 118)

150. Richardson, M., and Domingos, P. Markov logic networks. Machine Learning
62, 1-2 (2006), 107–136. (cited on page 84)

151. Roddick, J. F., Hornsby, K., and de Vries, D. A unifying semantic distance
model for determining the similarity of attribute values. In Proceedings of the
26th Australasian computer science conference (2003), vol. 16, pp. 111–118. (cited
on page 62)

152. Ruggles, S., Fitch, C. A., and Roberts, E. Historical census record linkage.
Annual Review of Sociology 44, 1 (2018), 19–37. (cited on pages xxii and 14)

153. Saeedi, A., Peukert, E., and Rahm, E. Comparative evaluation of distributed
clustering schemes for multi-source entity resolution. In ADBIS (Nicosia, 2017),
pp. 278–293. (cited on pages 20, 33, 35, 36, 61, 62, 64, 68, 135, and 143)

154. Saeedi, A., Peukert, E., and Rahm, E. Using link features for entity clustering
in knowledge graphs. In ESWC (Greece, 2018), pp. 576–592. (cited on pages 19,
20, 33, 36, 61, 62, 64, 70, 71, 97, 118, and 152)

155. Sarawagi, S., and Bhamidipaty, A. Interactive deduplication using active
learning. In Proceedings of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (New York, NY, USA, 2002), KDD ’02, As-
sociation for Computing Machinery, p. 269–278. (cited on pages 43 and 116)

156. Schnell, R., Bachteler, T., and Reiher, J. Privacy-preserving record linkage
using Bloom filters. BMC Medical Informatics and Decision Making 9, 1 (2009).
(cited on page 6)

157. Schnell, R., Klingwort, J., and Farrow, J. M. Locational privacy-preserving
distance computations with intersecting sets of randomly labeled grid points.
International Journal of Health Geographics 20, 1 (2021), 1–16. (cited on page 161)

204 References

158. Settles, B. Active learning literature survey. Tech. rep., University of
Wisconsin-Madison Department of Computer Sciences, 2009. (cited on page
46)

159. Silverman, B. W. Density Estimation for Statistics and Data Analysis. CRC Press,
1986. (cited on page 85)

160. Simonini, G., Bergamaschi, S., and Jagadish, H. Blast: a loosely schema-
aware meta-blocking approach for entity resolution. Proceedings of the VLDB
Endowment 9, 12 (2016), 1173–1184. (cited on page 52)

161. Srivastava, R. K., Greff, K., and Schmidhuber, J. Training very deep net-
works. In Proceedings of the 28th International Conference on Neural Information
Processing Systems - Volume 2 (Cambridge, MA, USA, 2015), NIPS’15, MIT Press,
p. 2377–2385. (cited on page 45)

162. Sweeney, L. K-anonymity: A model for protecting privacy. International Journal
of Uncertainty Fuzziness and Knowledge Based Systems 10, 5 (2002), 557–570. (cited
on pages 56 and 57)

163. Tamariz, L., Medina, H., Suarez, M., Seo, D., and Palacio, A. Linking census
data with electronic medical records for clinical research: A systematic review.
Journal of Economic and Social Measurement 43 (2018), 1–14. (cited on page 1)

164. Tao, Y. Entity matching with active monotone classification. In ACM PODS
(Houston, 2018), pp. 49–62. (cited on pages 98 and 119)

165. Tejada, S., Knoblock, C. A., and Minton, S. Learning object identification
rules for information integration. Inf. Syst. 26, 8 (Dec. 2001), 607–633. (cited on
page 43)

166. Teong, K.-S., Soon, L.-K., and Su, T. T. Schema-agnostic entity matching using
pre-trained language models. In Proceedings of the 29th ACM International Con-
ference on Information and Knowledge Management (CIKM) (New York, NY, USA,
2020), Association for Computing Machinery, p. 2241–2244. (cited on page 40)

167. Torrey, L., and Shavlik, J. Transfer learning. In Handbook of research on machine
learning applications and trends: algorithms, methods, and techniques. IGI global,
2010, pp. 242–264. (cited on page 43)

168. Tsai, M.-H., Ho, C.-H., and Lin, C.-J. Active learning strategies using svms. In
The 2010 International Joint Conference on Neural Networks (IJCNN) (2010), IEEE,
pp. 1–8. (cited on page 46)

169. Van Hout-Wolters, B., and Simons, Robert-Jan, V. S. Active learning:
Self-directed learning and independent work. In New Learning, R.-J. Simons,
J. Van der Linden, and T. Duffy, Eds. Springer, 2000, ch. 2, pp. 21–36. (cited on
pages 7 and 43)

References 205

170. Vatsalan, D., Christen, P., and Rahm, E. Incremental clustering techniques
for multi-party privacy-preserving record linkage. Data and Knowledge Engineer-
ing (2020). (cited on page 188)

171. Wang, J., Li, G., and Feng, J. Can we beat the prefix filtering? an adaptive
framework for similarity join and search. In Proceedings of the 2012 ACM SIG-
MOD international conference on management of data (2012), pp. 85–96. (cited on
page 52)

172. Wang, K., Zhang, D., Li, Y., Zhang, R., and Lin, L. Cost-effective active
learning for deep image classification. IEEE TCSVT 27 (2017), 2591–2600. (cited
on page 118)

173. Wang, L.-E., and Li, X. A graph-based multifold model for anonymizing data
with attributes of multiple types. Computers and Security 72, C (2018), 122–135.
(cited on pages 7, 55, 57, and 58)

174. Wang, L.-E., and Li, X. A graph-based multifold model for anonymizing data
with attributes of multiple types. CaS 72 (2018), 122–135. (cited on page 152)

175. Wang, Q., Vatsalan, D., and Christen, P. Efficient interactive training se-
lection for large-scale entity resolution. In PAKDD (Ho Chi Minh City, 2015),
pp. 562–573. (cited on pages 45 and 46)

176. Wijaya, D. T., and Bressan, S. Ricochet: A family of unconstrained algorithms
for graph clustering. In Database Systems for Advanced Applications (DASFAA)
(2009), vol. 5463 of Lecture Notes in Computer Science, Springer, pp. 153–167.
(cited on page 34)

177. Winkler, W. String comparator metrics and enhanced decision rules in the
Fellegi-Sunter model of record linkage. In Proceedings of the Section on Survey
Research Methods (1990), American Statistical Association, pp. 354–359. (cited
on pages 13 and 19)

178. Witten, I. H., Moffat, A., and Bell, T. C. Managing Gigabytes, 2 ed. Morgan
Kaufmann, 1999. (cited on page 22)

179. Wrigley, E., and Schofield, R. Nominal record linkage by computer and the
logic of family reconstitution. Identifying people in the past (1973), 64–101. (cited
on pages 14 and 25)

180. Xiang, R., Neville, J., and Rogati, M. Modeling relationship strength in online
social networks. In WWW (Raleigh, NC, 2010), ACM, pp. 981–990. (cited on
page 154)

181. Xiao, C., Wang, W., Lin, X., Yu, J. X., and Wang, G. Efficient similarity joins
for near-duplicate detection. ACM Transactions on Database Systems 36, 3 (2011),
1–41. (cited on page 52)

206 References

182. Yancey, W. E. Evaluating string comparator performance for record linkage.
Tech. Rep. RR2005/05, US Bureau of the Census, 2005. (cited on page 19)

183. Ying, X., and Wu, X. Randomizing social networks: a spectrum preserving
approach. In In Proceedings of the SIAM International Conference on Data Mining
(SDM’08) (2008), p. 739–750. (cited on page 57)

184. Zhang, W., Wei, H., Sisman, B., Dong, X. L., Faloutsos, C., and Page, D.
Autoblock: A hands-off blocking framework for entity matching. In Proceedings
of the 13th International Conference on Web Search and Data Mining (New York,
NY, USA, 2020), WSDM ’20, Association for Computing Machinery, p. 744–752.
(cited on pages 18, 49, and 50)

185. Zheleva, E., and Getoor, L. Preserving the privacy of sensitive relationships
in graph data. In ACM SIGKDD Workshop on Privacy, Security, and Trust in KDD
(PinKDD) (2007), vol. 4890 of Lecture Notes in Computer Science, Springer, pp. 153–
171. (cited on page 56)

186. Zhou, B., and Pei, J. Preserving privacy in social networks against neighbor-
hood attacks. In In Proceedings of the 24th IEEE International Conference on Data
Engineering (ICDE’08) (2008), pp. 506–515. (cited on page 57)

187. Zhou, B., and Pei, J. The k-anonymity and l-diversity approaches for privacy
preservation in social networks against neighborhood attacks. Knowledge and
Information Systems 28 (2010), 47–77. (cited on page 57)

188. Zhou, B., Pei, J., and Luk, W. A brief survey on anonymization techniques for
privacy preserving publishing of social network data. SIGKDD Explor. Newsl.
10, 2 (2008), 12–22. (cited on pages 7, 55, 57, and 152)

	Acknowledgments
	Abstract
	List of Contributions
	Contents
	List of Figures
	List of Tables
	Notations and Terminology
	Introduction
	Overview of Record Linkage
	Research Problems
	Aim and Objectives
	Contributions
	Research Limitations
	Research Methodology
	Thesis Outline

	Background
	A Brief History of Record Linkage
	Linkage of Complex Population Data
	The Main Steps of the Record Linkage Process
	Data Pre-processing
	Indexing/Blocking
	Record Pair Comparison and Pairwise Similarity Graph
	Match and Non-match Classification
	Evaluation

	Evaluation Measures
	Linkage Quality Measures
	Linkage Complexity and Scalability Measures

	Population Data Sets
	Birth Data Sets
	The North Carolina Voter Registration Data Set (NCVR)
	The Bibliographic Data Sets

	Generating Pairwise Similarity Graphs from Data Sets
	Summary

	Related Work
	Unsupervised Classification for Record Linkage
	Supervised Classification for Record Linkage
	Semi-supervised Classification for Record Linkage
	Efficiency Enhancement in Record Linkage
	Evaluation Measures for Record Linkage
	Graph Anonymisation Techniques
	Summary

	Graph-based Clustering for Record Linkage Using Data Characteristics
	Introduction
	Modelling Constraints Implied by Data Characteristics
	Graph-based Clustering Using Data Characteristics
	Greedy Clustering
	Star Clustering
	Robust Graph Clustering
	Generating Base Clusters
	Iterative Cluster Merging

	Experimental Evaluation
	Linkage Quality Evaluation
	Run-time Evaluation

	Summary

	Record Linkage Using Transition Probabilities on Data Characteristics
	Introduction
	Modelling Population Goodness
	Markov Chain-based Population Goodness
	Overall Transition Probability-based Population Goodness

	Record Linkage Clustering with Population Goodness
	Markov Chain-based Cluster Goodness (MC)
	All Pairs-based Overall Cluster Goodness (AP)
	Record-based Overall Cluster Goodness (RB)

	Experimental Evaluation
	Linkage Quality Evaluation
	Run-time Evaluation

	Summary

	Active Learning-based Graph Filtering for Record Linkage
	Introduction
	Active Learning-based Record Pair Filtering
	Problem Definition
	Binning-based Filtering
	Calculating Optimal Bin Similarity Thresholds
	Bin Scoring Functions

	Experimental Evaluation
	Filtered Similarity Graph Quality
	Linkage Quality and Efficiency Improvement

	Summary

	Active Learning-based Record Linkage With Filtering
	Introduction
	Active Learning with Filtering
	Overview
	Initial Classification Based on the Expected Number of Matches
	Iterative Classification Refinement
	Algorithmic Outline

	Experimental Evaluation
	Linkage Quality With Different Parameter Settings
	Linkage Quality Comparison With State-of-the-art Techniques
	Linkage Quality and Efficiency Comparison With Supervised Classification Techniques

	Summary

	An Evaluation Technique for Group Record Linkage
	Introduction
	Proposed Evaluation Method
	Record-based Cluster Evaluation
	Example Cluster Evaluation
	Area Under the Curve

	Experimental Evaluation
	Summary

	Graph Data Anonymisation for Record Linkage
	Introduction
	Mapping-based Graph Data Anonymisation
	Method Overview
	Cluster-based Attribute Value Mapping and Anonymisation
	Generating Anonymised Date Values

	Web Tool Demonstration
	Evaluation
	Summary

	Overall Experimental Evaluation
	Introduction
	Graph-based Clustering Using Data Characteristics
	Record Linkage Using Transition Probabilities
	Active Learning-based Graph Filtering
	Active Learning-based Record Linkage With Filtering
	An Evaluation Technique for Group Record Linkage
	Graph Data Anonymisation
	Summary

	Conclusion and Future Work
	Summary of the Research Problems
	Summary of Contributions
	Research Findings
	Future Work
	Conclusion

	References

