Effective Record Linkage Techniques for Complex Population Data

Abstract

Real-world data sets are generally of limited value when analysed on their own, whereas the true potential of data can be exploited only when two or more data sets are linked to analyse patterns across records. A classic example is the need for merging medical records with travel data for effective surveillance and management of pandemics such as COVID-19 by tracing points of contacts of infected individuals. Therefore, Record Linkage (RL), which is the process of identifying records that refer to the same entity, is an area of data science that is of paramount importance in the quest for making informed decisions based on the plethora of information available in the modern world. Two of the primary concerns of RL are obtaining linkage results of high quality, and maximising efficiency. Furthermore, the lack of ground-truth data in the form of known matches and non-matches, and the privacy concerns involved in linking sensitive data have hindered the application of RL in real-world projects. In traditional RL, methods such as blocking and indexing are generally applied to improve efficiency by reducing the number of record pairs that need to be compared. Once the record pairs retained from blocking are compared, certain classification methods are employed to separate matches from non-matches. Thus, the general RL process comprises of blocking, comparison, classification, and finally evaluation to assess how well a linkage program has performed. In this thesis we initially provide a holistic understanding of the background of RL, and then conduct an extensive literature review of the state-of-the-art techniques applied in RL to identify current research gaps. Next, we present our initial contribution of incorporating data characteristics, such as temporal and geographic information with unsupervised clustering, which achieves significant improvements in precision (more than 16%), at the cost of minor reduction in recall (less than 2.5%) when they are applied on real-world data sets compared to using regular unsupervised clustering. We then present a novel active learning-based method to filter record pairs subsequent to the record pair comparison step to improve the efficiency of the RL process. Furthermore, we develop a novel active learning-based classification technique for RL which allows to obtain high quality linkage results with limited ground-truth data. Even though semi-supervised learning techniques such as active learning methods have already been proposed in the context of RL, this is a relatively novel paradigm which is worthy of further exploration. We experimentally show more than 35% improvement in clustering efficiency with the application of our proposed filtering approach; and linkage quality on par with or exceeding existing active learning-based classification methods, compared to our active learning-based classification technique. Existing RL evaluation measures such as precision and recall evaluate the classification outcome of record pairs, which can cause ambiguity when applied in the group RL context. We therefore propose a more robust RL evaluation measure which evaluates linkage quality based on how individual records have been assigned to clusters rather than considering record pairs. Next, we propose a novel graph anonymisation technique that extends the literature by introducing methods of anonymising data to be linked in a human interpretable manner, without compromising structure and interpretability of the data as with existing state-of-the-art anonymisation approaches. We experimentally show how the similarity distributions are maintained in anonymised and original sensitive data sets when our anonymisation technique is applied, which attests to its ability to maintain the structure of the original data. We finally conduct an empirical evaluation of our proposed techniques and show how they outperform existing RL methods

    Similar works