68 research outputs found

    Efficient strategies for solving the variable Poisson equation with large contrasts in the coefficients

    Get PDF
    Discrete versions of Poisson’s equation with large contrasts in the coefficients result in very ill-conditioned systems. Thus, its iterative solution represents a major challenge, for instance, in porous media and multiphase flow simulations, where considerable permeability and density ratios are usually found. The existing strategies trying to remedy this are highly dependent on whether the coefficient matrix remains constant at each time iteration or not. In this regard, incompressible multiphase flows with high-density ratios are particularly demanding as their resulting Poisson equation varies along with the density field, making the reconstruction of complex preconditioners impractical. This work presents a strategy for solving such versions of the variable Poisson equation. Roughly, we first make it constant through an adequate approximation. Then, we block-diagonalise it through an inexpensive change of basis that takes advantage of mesh reflection symmetries, which are common in multiphase flows. Finally, we solve the resulting set of fully decoupled subsystems with virtually any solver. The numerical experiments conducted on a multiphase flow simulation prove the benefits of such an approach, resulting in up to 6.6x faster convergences.Adel Alsalti-Baldellou, Xavier Àlvarez-Farré, F. Xavier Trias and Assensi Oliva have been ´ financially supported by two competitive R+D projects: RETOtwin (PDC2021-120970-I00), given by MCIN/AEI/10.13039/501100011033 and European Union Next GenerationEU/PRTR, and FusionCAT (001-P-001722), given by Generalitat de Catalunya RIS3CAT-FEDER. Adel ` Alsalti-Baldellou has also been supported by the predoctoral grants DIN2018-010061 and 2019- DI-90, given by MCIN/AEI/10.13039/501100011033 and the Catalan Agency for Management of University and Research Grants (AGAUR), respectively. Andrey Gorobets has been supported by the RSF project 19-11-00299.Peer ReviewedPostprint (published version

    On residual smoothing in ILUM-type preconditioning

    Get PDF
    Incomplete block factorisations are used to construct flexible preconditioners for iterative linear solvers. In practice these approaches have shown to be very effective and robust. Especially they are more suitable for parallel computer architectures when comparing to classic ILU preconditioning. In this paper we introduce residual smoothing into the forward/backward substitution in order to compensate the element dropping in the Schur complement

    Vectorial solution to double curl equation with generalized coulomb gauge for magnetostatic problems

    Get PDF
    published_or_final_versio

    Explicit preconditioned domain decomposition schemes for solving nonlinear boundary value problems

    Get PDF
    AbstractA new class of inner-outer iterative procedures in conjunction with Picard-Newton methods based on explicit preconditioning iterative methods for solving nonlinear systems is presented. Explicit preconditioned iterative schemes, based on the explicit computation of a class of domain decomposition generalized approximate inverse matrix techniques are presented for the efficient solution of nonlinear boundary value problems on multiprocessor systems. Applications of the new composite scheme on characteristic nonlinear boundary value problems are discussed and numerical results are given

    Application of the Jacobi Davidson method for spectral low-rank preconditioning in computational electromagnetics problems

    Full text link
    [EN] We consider the numerical solution of linear systems arising from computational electromagnetics applications. For large scale problems the solution is usually obtained iteratively with a Krylov subspace method. It is well known that for ill conditioned problems the convergence of these methods can be very slow or even it may be impossible to obtain a satisfactory solution. To improve the convergence a preconditioner can be used, but in some cases additional strategies are needed. In this work we study the application of spectral lowrank updates (SLRU) to a previously computed sparse approximate inverse preconditioner.The updates are based on the computation of a small subset of the eigenpairs closest to the origin. Thus, the performance of the SLRU technique depends on the method available to compute the eigenpairs of interest. The SLRU method was first used using the IRA s method implemented in ARPACK. In this work we investigate the use of a Jacobi Davidson method, in particular its JDQR variant. The results of the numerical experiments show that the application of the JDQR method to obtain the spectral low-rank updates can be quite competitive compared with the IRA s method.Mas Marí, J.; Cerdán Soriano, JM.; Malla Martínez, N.; Marín Mateos-Aparicio, J. (2015). Application of the Jacobi Davidson method for spectral low-rank preconditioning in computational electromagnetics problems. Journal of the Spanish Society of Applied Mathematics. 67:39-50. doi:10.1007/s40324-014-0025-6S395067Bergamaschi, L., Pini, G., Sartoretto, F.: Computational experience with sequential, and parallel, preconditioned Jacobi–Davidson for large sparse symmetric matrices. J. Comput. Phys. 188(1), 318–331 (2003)Carpentieri, B.: Sparse preconditioners for dense linear systems from electromagnetics applications. PhD thesis, Institut National Polytechnique de Toulouse, CERFACS (2002)Carpentieri, B., Duff, I.S., Giraud, L.: Sparse pattern selection strategies for robust Frobenius-norm minimization preconditioners in electromagnetism. Numer. Linear Algebr. Appl. 7(7–8), 667–685 (2000)Carpentieri, B., Duff, I.S., Giraud, L.: A class of spectral two-level preconditioners. SIAM J. Sci. Comput. 25(2), 749–765 (2003)Carpentieri, B., Duff, I.S., Giraud, L., Magolu monga Made, M.: Sparse symmetric preconditioners for dense linear systems in electromagnetism. Numer. Linear Algebr. Appl. 11(8–9), 753–771 (2004)Carpentieri, B., Duff, I.S., Giraud, L., Sylvand, G.: Combining fast multipole techniques and an approximate inverse preconditioner for large electromagnetism calculations. SIAM J. Sci. Comput. 27(3), 774–792 (2005)Darve, E.: The fast multipole method I: error analysis and asymptotic complexity. SIAM J. Numer. Anal. 38(1), 98–128 (2000)Fokkema, D.R., Sleijpen, G.L., Van der Vorst, H.A.: Jacobi–Davidson style QR and QZ algorithms for the reduction of matrix pencils. SIAM J. Sci. Comput. 20(1), 94–125 (1998)Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(3), 325–348 (1987)Grote, M., Huckle, T.: Parallel preconditioning with sparse approximate inverses. SIAM J. Sci. Comput. 18(3), 838–853 (1997)Harrington, R.: Origin and development of the method of moments for field computation. IEEE Antenna Propag. Mag. (1990)Kunz, K.S., Luebbers, R.J.: The finite difference time domain method for electromagnetics. SIAM J. Sci. Comput. 18(3), 838–853 (1997)Maxwell, J.C.: A dynamical theory of the electromagnetic field. Roy. S. Trans. CLV, (1864). Reprinted in Tricker, R. A. R. The Contributions of Faraday and Maxwell to Electrial Science, Pergamon Press (1966)Marín, J., Malla M.: Some experiments preconditioning via spectral low rank updates for electromagnetism applications. In: Proceedings of the international conference on preconditioning techniques for large sparse matrix problems in scientific and industrial applications (Preconditioning 2007), Toulouse (2007)Meijerink, J.A., van der Vorst, H.A.: An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix. Math. Comput. 31, 148–162 (1977)Sorensen, D.C., Lehoucq, R.B., Yang, C.: ARPACK users’ guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM, Philadelphia (1998)Rao, S.M., Wilton, D.R., Glisson, A.W.: Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antenna Propag. 30, 409–418 (1982)Saad, Y.: Iterative methods for sparse linear systems. PWS Publishing Company, Boston (1996)Silvester, P.P., Ferrari, R.L.: Finite elements for electrical engineers. Cambridge University Press, Cambridge (1990)Sleijpen, S.L., van der Vorst, H.A.: A Jacobi–Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17, 401–425 (1996)van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 12(6), 631–644 (1992
    corecore