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Abstract—A new class of inner-outer iterative procedures in conjunction with Picard-Newton
methods based on explicit preconditioning iterative methods for solving nonlinear systems is pre-
sented. Explicit preconditioned iterative schemes, based on the explicit computation of a class of
domain decomposition generalized approximate inverse matrix techniques are presented for the ef-
ficient solution of nonlinear boundary value problems on multiprocessor systems. Applications of
the new composite scheme on characteristic nonlinear boundary value problems are discussed and
numerical results are given. © 2003 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Many engineering and scientific problems are described by sparse systems of algebraic equations,
which arise when solving partial differential equations (PDEs). This category of problems repre-
sents a large class of commonly occurring problems in mathematical physics and engineering, i.e.,
heat conduction, and chemical reaction, laminar flow on non-Newtonian fluids, reactor physics,
moving boundary problems (melting and freezing), percolation problems, diffusion theory, and
plasma physics problems, etc. Hence, sparse matrix computations, which have inherent paral-
lelism, are therefore of central importance in scientific and engineering computing and the need
for high performance computing has had some effect on the design of modern computer systems.

An important achievement over the last decades is the appearance and use of preconditioning
methods for the numerical solution of sparse systems. The well-known preconditioning meth-
ods based on incomplete factorization or successive over-relaxation (SOR) or approximate in-
verses by minimizing the Frobenious norm of the error or the residual for fixed sparsity pattern,
cf. {1-4], are very difficult to implement them on parallel systems, cf. [2-9]. In the case of polyno-
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mial preconditioners, although they have inherent parallelism, they do not improve considerably
the rate of convergence.

In recent years, research efforts have been directed on the production of numerical software, for
solving sparse systems of algebraic equations on parallel machines, i.e., vector or array processors
and systolic arrays. Recently, explicit approximate inverse preconditioning methods have been
extensively used for solving efficiently sparse systems, resulting from the finite difference of finite
element discretization of PDEs in two and three space variables, on multiprocessor systems,
cf. [10~15]. The effectiveness of the explicit preconditioned schemes is related to the fact that
the approximate inverse exhibits a similar “fuzzy” structure and are close approximates to the
coeflicients matrix.

Domain decomposition techniques have also been used for solving boundary value problems
on regular or irregular domains. A domain is decomposed into smaller regular domains and the
resulting system of algebraic equations is of so-called arrow-type systems, which occur in practice,
cf. [4-6,11,16-19], and interesting discussions have been given in [4,6,11,19-25].

The purpose of this work is the derivation of a new class of composite iterative schemes based on
inner-outer iterative procedures in conjunction with the known Picard-Newton methods, leading
to improved composite iterative schemes for solving efficiently nonlinear boundary value prob-
lems. The Picard-Newton method can be coupled with the explicit preconditioned schemata.
The effectiveness of the preconditioned methods relies on the construction and use of efficient
preconditioner factors in the sense that the preconditioners are close approximates to the inverse
of the coeflicient matrix.

The derivation of suitable parallel methods was the main objective for which several forms of an
approximate inverse of a given matrix, based on approximate LU-type factorization procedures
have been proposed, cf. [10,11,14,15,26]. The main motive for the derivation of the approximate
inverse arrow-type matrix techniques lies in the fact that they can be used in conjunction with
explicit preconditioned iterative schemes and are suitable for solving linear systems on parallel
and vector processors.

The cost effectiveness of explicit preconditioned iterative schemes over parallel direct solution
methods is now commonly accepted. It is known that approximate factorization procedures and
inverse matrix algorithms are in general complicated. However, as the demand for solving linear
or nonlinear initial/boundary value problems grows, the need to use efficient sparse equations
solvers becomes one of great importance, cf. [12,15].

In Section 2, we introduce domain decomposition approximate inverse matrix techniques based
on approximate LU-type factorization procedures without inverting the related decomposition
factors. In Section 3, composite iterative schemes in conjunction with the known Picard-Newton
methods for solving nonlinear problems are presented. In Section 4, explicit preconditioned con-
jugate gradient-type methods based on approximate inverse matrix techniques are given. Finally,
the performance and applicability of the new proposed explicit preconditioned domain decompo-
sition schemes is discussed by solving a characteristic two-dimensional nonlinear boundary value
problem and numerical results are presented.

2. DOMAIN DECOMPOSITION -
APPROXIMATE INVERSE MATRIX TECHNIQUES

In this section, we present algorithmic procedures for computing the elements of the approxi-
mate inverse, based on approximate LU-type factorization procedures, cf. [10,11,14,15,26].
Let us consider the linear system, i.e.,

Au = s, (2.1)

where A is a sparse arrow-type (n X n) matrix of the following form:
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According to the structure of the coefficient matrix A, “fill-in” terms are required during the
decomposition process.
Let us now assume the approximate factorization of the coefficient matrix A such that, viz.,

A= LU, (2.3)

(2.4)
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retaining exactly the same number of nonzero entries, by applying the so-called “position-
principle” in the factorization process, where L and U, cf. (2.4),(2.5), are sparse strictly lower and
upper (with main diagonal unity elements) triangular matrices of the same profile as the coefficient
matrix A, cf. (2.2). Then, the elements of the L and U decomposition factors can be computed
by the domain decomposition approximate LU-type factorization procedure (henceforth called
the DODALUFA algorithm).
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The memory requirements of the DODALUFA algorithm is &~ O(2l; + 2l3 + 1)n words and
the computational work required by the factorization process is = O(3!; + 3l + 2)n multiplica-
tive operations. The DODALUFA algorithm can be implemented on multiprocessor systems by
following certain parallel decomposition techniques, cf. {6,7,9].
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Let M% = (u;;), i € [1,n], j € [max(1,i ~ 8l + 1), min(n,i+ 8l — 1)}, an [n x (28] — 1)] matrix,
be the approximate inverse of the coeflicient matrix A, i.e.,

M ~ (LU)™L. (2.6)

The elements of the approximate inverse can be determined by retaining a certain number of
elements of the inverse, i.e., only 0/ elements in the lower part and 8/ — 1 elements in the upper
part of the inverse (by applying the so-called “position-principle”), next to the main diagonal,
the remaining elements not being computed at all. Then, the elements of the approximate inverse
can be computed by solving recursively the following systems:

ML =U"1' and UM®=L"1, sle(l,...,n], (2.7)
without inverting the decomposition factors L and U, cf. [10,11,14,15,26].

It should be noted that the computation of the elements p; ; of the approximate inverse, using
a “fish-bone” computational procedure, can be successively determined as follows. From the
equations of (2.7) for i =n,...,1 and j = max(1,i — 8l + 1),..., min(n, % + &/ — 1), respectively,
we can obtain the elements of the approximate inverse, cf. [8,9,14].

Then, the elements of the approximate inverse can be computed by the so-obtained domain de-
composition generalized approximate inverse matrix technique (henceforth called the DODGAIM
algorithm).

In order to solve efficiently linear systems, the DODGAIM algorithm has to be redesigned, by
using a moving window shifted from bottom to top, such that only [n x (28] — 1)]-vectors are
retained in storage, cf. [13,27]. This optimized form of the domain decomposition generalized ap-
proximate inverse matrix (henceforth called the ODODGAIM algorithm) is particularly effective
for solving “narrow-banded” sparse systems of very large order, i.e., 8l €« n/2.

The memory requirements of the ODODGAIM algorithm are = [n x (26/ — 1)] words and the
computational work involved is = O[(l1 + I3 + 1)4l|n multiplicative operations.

It should be noted that according to the proposed computational strategy, this class of approx-
imate inverses can be considered that includes various families of approximate inverses having in
mind the desired requirements of accuracy, storage, and computational work as can be seen by
the following diagrammatic relationship, i.e.,

class 1 class 1T class II1,
Al=M — M —~ MY — M
where the entries of M5 have been retained after the computation of the exact inverse, while
the entries of M® have been computed and retained during the computational procedure of
the approximate inverse. The diagonal inverse, M;, was computed based on the inversion of
the diagonal entries only of the I decomposition factor, i.e., 6 = 1, resulting in a fast inverse
algorithm.

It should be mentioned that if v; ; = 0 and u; ; = 0, then the DODALUFA and ODODGAIM
algorithms are reduced to BLUFA and OAIBM algorithms, respectively, cf. [10], for solving
banded systems. It should be also noted that, if [; = 0 and I3 = 1, then the DODALUFA and
ODODGAIM algorithms are reduced to ALUFA and OAIAM algorithms, respectively, cf. [11].

3. COMPOSITE ITERATIVE SCHEMES
FOR NONLINEAR PROBLEMS

Let us consider a class of nonlinear boundary value problems defined by the nonlinear elliptic
PDE in two space-variables, i.e.,

(2.8)

Lu=f(u), (z,9)€R, (3.1)
subject to the boundary conditions
o
cu+figr=r,  (2,y)€OR, (3.2)

where L is a linear partial differential operator.
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We may linearize the problem by the Picard method, i.e.,
Lu+D) = 1 [u®)] : (3.3)
or the Newton method, i.e.,
Luk+D) _ gt [uu:)] uk+D) = § [um] O [uw)] _ (3.4)

Assuming that a network of mesh spacing h;, hy in the X,Y directions, respectively, is super-
imposed over the region R and, using central finite difference scheme, then the above iterative
schemes lead to sparse systems which can be written equivalently as

Agul+D) = (u(k)> . k>0, (3.5)

where Ay is of form (2.2), with Ay = A for the Picard iteration. A system of form (3.5) can
be explicitly solved by means of composite “inner-outer” iterative schemes, i.e., Picard-Newton
and exact inversion procedures resulting in one-level iteration or Picard-Newton and explicit
preconditioned iterative schemata based on explicit approximate inverse procedures yielding the
usual two-level iteration scheme.

Let us consider the nonlinear iterative scheme

Ay (u(k“) - u(k)) =-G (u(k)) , k>0, (3.6)

where the matrix Ay can be split as Ay = By — C. Provided that the matrix By is nonsingular,
we have, cf. [28],

A7 = (1~ B'C) T By~ 1+ Ho B 4o+ H ) B, a7

where Hy = B, 1Ck, k > 0, I is the identity matrix and only my first terms have been retained
in the expansion of (I — By *Cy)~!. Therefore, an explicit iterative scheme is derived, i.e..

W) —u®) = (T4 He+ HE +- + B BG (u®), 0 k>0, (38)

which represents the composite iteration in which at the k*! stage starting from u*) m; steps of
the linear inner iterations are computed in order to approximate a solution of the outer iteration.
Choosing By, 1 — (M%), depending upon k and retaining only the first term in the expansion
of (3.8), we obtain the first-order Newton-ODODGAIM iterative scheme, viz.,

kD ) = i (u(k)) 7 k>o0. (3.9)

The Newton-DODGEIM scheme can be easily derived from (3.6) assuming that M = A]' =
(LU)71, cf. (2.8), and is given by

25D _ 0 = _pre (u<’°>) , k> 0. (3.10)

It can be easily seen that the proposed composite “inner-outer” iterative scheme in the case of the
exact inversion reduces to an equivalent one-level iteration. While for the case of approximate
inversion, the “inner-outer” iterative scheme reduces to the usual two-level iteration and the
explicit preconditioned generalized conjugate gradient-type iterative schemes can be used.
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4. EXPLICIT PRECONDITIONED ITERATIVE METHODS

In this section, we present a class of explicit preconditioned iterative schemes based on the
ODODGAIM techniques of Section 2 for solving the nonlinear systems (3.5).

The explicit preconditioned generalized conjugate gradient square (EPGCGS) algorithm can
be expressed by the following compact scheme.

Let ug be an arbitrary initial approximation to the solution vector u. Then,

set up = 0 and eg = 0, compute 7o = M% (s — Aug), (4.1)
set o9 = rp and py = (09, 7o) - (4.2)
Then, for i = 0,1,..., (until convergence) compute the vectors u;4+1,74+1,0i+1 and the scalar

quantities a;, B;+1 as follows:

Di

form q; = Ao, calculate oy = —————F— 4.3
q‘l. 1 ! (1 (a_o, M&lqz)’ ( )
compute e;1 = 7; + Ge; — a¢M5lqi, (4.4)
d; = 1; + Bie; + €41, and vy = uy + ayd;, (4.5)

form ¢; = Ad;, compute r1, = r; — a; M%q;, (4.6)
set piy1 = (00,Ti+1), evaluate B4 = 2;;1, (4.7)

1
compute 0;41 = Ti+1 + 20i+1€i+1 + ﬁ,-2+1a1-. (4.8)

The computational complexity of the EPGCGS method, assuming that M% can be compactly
stored in n x (28! — 1) diagonal vectors is = O(44l + 41; + 4l; + 11)n mults +8n adds|v operations,
where v denotes the number of iterations required for convergence to a predetermined tolerance
level.

In the following, we present a modified form of the van der Vorst BICGSTAB method, cf. [29],
using the explicit preconditioner M®. This modified method, henceforth called the explicit pre-
conditioned biconjugate conjugate gradient-STAB (EPBI-CGSTAB) method, can be expressed
by the following compact scheme.

Let ug be an arbitrary initial approximation to the solution vector u. Then,

set ug = 0, compute r, = s — Auyg, (4.9)
set rg =19, po = a =wp = 1, and vy = pp = 0. (4.10)
Then, for 4 = 0,1,..., (until convergence) compute the vectors u;,r; and the scalar quantities
a, B,w; as follows:
calculate p; = (rg,7i—1), and B = p—i/p—i_l, (4.11)
a/wi—l
compute p; = 7i—1 + B (Pi—1 — Wi—1Vi—1) , (4.12)
form y; = M%p;, and v; = Ay;, a = ,p" , (4.13)
(7'01 Ui)
compute x; = ;-1 — av;, form z; = M8z, and t; = Az, (4.14)
(M, MOiz,)
set w; = m, (415)
compute u; = u;_1 + ay; + w;2; and r; = T; — wit;. (4.16)

The computational complexity of the EPBI-CGSTAB method, assuming that M® can be
compactly stored in n x (26l — 1) diagonal vectors is =~ [(66 + 41 + 4l + 12)n mults +6n adds]v
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operations, where v denotes the number of iterations required for convergence to a predeter-
mined tolerance level. The effectiveness of the explicit preconditioned iterative methods using
the ODODGAIM algorithm is related to the fact that the approximate inverse of the original
sparse coefficient matrix A exhibits a similar “fuzzy” structure as the coefficient matrix A.

The convergence analysis of similar explicit approximate inverse preconditioning has been pre-
sented in [8,27].

Let us now consider that the M; class of approximate inverse, i.e., 8l = 1, is used as a precon-
ditioner for the explicit preconditioned generalized conjugate gradient-type method. Assuming
a PRAM linear array model with n processors is used, then the computation of the elements of
this class of inverse can be done in O(1), i.e., constant time. Additionally, in the implementation
of the EPGCG-type iterative scheme, the inner product can be performed in O(logn), i.e., in the
case of a linear array with n processors, using the prefix computation model.

5. NUMERICAL RESULTS

In this section, we examine the applicability and effectiveness of the new proposed composite
explicit preconditioned domain decomposition approximate inverse preconditioning schemes by
solving the following characteristic problems in two dimensions.

MoODEL PROBLEM 1. Let us consider a 2D nonlinear elliptic PDE

v 0%, )
@4_8_1/2—6 ) (-T,y)EQ, (51)
subject to boundary conditions
u(z,y) =0, (z,y) €99, (5.1a)

where Q is the unit square and 9 denotes the boundary of Q.

Equation (5.1) arises in magnetohydrodynamics and is of physical interest in diffusion-reaction,
vortex problems and electric charge consideration, cf. {1].

The linearized Picard and quasi-linearized Newton iterations are outer iterative schemes of the
form

Lputkth = gu® and  LyuttD) — eu® (k) = (1 - u(k)) e, (5.2)
respectively, with L) denoting the finite difference operator.

Table 1. The performance of the composite “inner-outer” iterative scheme using the
EPGCGS and EPBICG-STAB method for Model Problem 1.

Picard Method Newton Method
Method n m [ &l Outer Inner Outer Inner
Iterative Iterative Iterative Iterative
1 2 9 2 10
961 32 3 2 9 2 8
EPGCGS 6 2 3 2 5
1 2 10 2 10
3969 64 3 2 8 2 8
6 2 5 2 5
1 3 10 3 9
961 32 3 2 12 2 8
EPBICG- 6 2 8 2 7
STAB 1 3 8 3 8
3969 64 3 2 8 2 8
6 2 5 2 5
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The domain € U 02 was decomposed into a number of subdomains and was covered by an
nonoverlapping regular triangular network. The five-point finite difference discretization scheme
with a row-wise ordering was used such that the length !; of the band was kept to low values,
i.e., {1 = 3. The resulting sparse system is of form (3.6).

The initial guess used was u(® = 0. The termination criterion for the inner iteration of the
EPGCGS and EPBI-CGSTAB method was |||l < 1075, where r; is the recursive residual. The
criterion for the termination of the outer iteration was max; |(u§k+1) - u;k)) / (u§k+1))| < 1073,
je[l,n]. '

Numerical results for the model problem (5.1) are presented in Table 1 for the EPGCGS and
the EPBI-CGSTAB methods for several values of order n,m and the “retention” parameter 8! of
the approximate inverse.

It should be mentioned that the convergence behavior of the EPGCGS and EPBI-CGSTAB
methods in conjunction with the DODALUFA and ODODGAIM algorithms, is much better when
the domain is subdivided into many subdomains.

MoDEeL PROBLEM 2. Let us also consider the 2D nonlinear elliptic PDE
Py %

7 tap -’ @yen (5:3)

subject to boundary conditions
u(z,0) = u(0,y) = 0.0, U (Zmaxs ¥) = U (Z, Ymax) = 5.0. (5.3a)

The linearized Picard and quasi-linearized Newton iterations are outer-iterative schemes, respec-
tively, of the form

2
Lyut+D) = ) (1 _ lu(k)‘ ) , (z,y) € Q, (5.4)

and
Lpu+D) 4 “u(k)r + 2u(® ‘u(k)l - 1] uktD) = 940 ’u(k)r ) (z,y) € (5.5)

The initial guess used was u(®) = 0.1, and the termination criteria of the inner and outer itera-
tive schemes are the same with Model Problem 1. Numerical results for the model problem (5.3)
are presented in Table 2 for the EPGCGS and the EPBI-CGSTAB methods for several values of
order n,m and the “retention” parameter 4l of the approximate inverse.

Table 2. The performance of the composite “inner-outer” iterative scheme using the
EPGCGS and EPBI-CGSTAB method for Model Problem 2.

Picard Method Newton Method
Method n m | 8l Outer Inner Outer Inner
Iterative Iterative Iterative Iterative
1 3 9 2 2
961 32 3 3 8 2 3
EPGCGS 6 3 8 2 2
1 4 6 2 2
3969 64 3 3 8 2 2
6 3 5 2 2
1 3 10 2 2
961 32 3 3 9 2 2
EPBICG- 6 3 8 2 2
STAB 1 3 7 2 2
3969 64 3 3 6 2 2
6 3 5 2 2
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It should be mentioned that the iterative GMRES scheme, cf. [30,31], although it has good
stability, requires storage of all the basis vectors of the Krylov space and its performance is
depending on the restart vectors used, thus making this method problem dependent, cf. [32.

Finally, we state that the explicit preconditioned domain decomposition scheme, using the
DODALUFA and ODODGAIM algorithms, can be efficiently used for solving highly nonlinear
initial/boundary value problems.
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