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A b s t r a c t - - A  new class of inner-outer iterative procedures in conjunction with Picard-Newton 
methods based on explicit preconditioning iterative methods for solving nonlinear systems is pre- 
sented. Explicit preconditioned iterative schemes, based on the explicit computation of a class of 
domain decomposition generalized approximate inverse matrix techniques are presented for the ef- 
ficient solution of nonlinear boundary value problems on multiprocessor systems. Applications of 
the new composite scheme on characteristic nonlinear boundary value problems are discussed and 
numerical results are given. © 2003 Elsevier Science Ltd. All rights reserved. 
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1 .  I N T R O D U C T I O N  

Many engineering and scientific problems are described by sparse systems of algebraic equations,  

which arise when solving par t ia l  differential equations (PDEs).  This  category of problems repre- 

sents a large class of commonly occurring problems in mathemat ica l  physics and engineering, i.e., 
heat  conduction,  and chemical reaction, laminar  flow on non-Newtonian fluids, reactor  physics, 

moving b o u n d a r y  problems (melt ing and freezing), percolat ion problems,  diffusion theory, and 

p lasma physics problems,  etc. Hence, sparse matr ix  computat ions ,  which have inherent  paral-  

lelism, are therefore of central  impor tance  in scientific and engineering comput ing  and the need 

for high performance comput ing  has had some effect on the  design of modern  computer  systems. 

An impor t an t  achievement over the  last  decades is the  appearance  and use of precondit ioning 

methods  for the  numerical  solut ion of sparse systems. The  well-known precondi t ioning meth- 

ods based on incomplete  factorizat ion or successive over-relaxation (SOR) or approximate  in- 

verses by minimizing the Frobenious norm of the  error or the  residual for fixed spars i ty  pat tern ,  

cf. [1-4], are very difficult to implement  them on parallel  systems, cf. [2-9]. In the  case of polyno- 
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mial preconditioners, although they have inherent parallelism, they do not improve considerably 
the rate of convergence. 

In recent years, research efforts have been directed on the production of numerical software, for 
solving sparse systems of algebraic equations on parallel machines, i.e., vector or array processors 
and systolic arrays. Recently, explicit approximate inverse preconditioning methods have been 
extensively used for solving efficiently sparse systems, resulting from the finite difference of finite 
element discretization of PDEs in two and three space variables, on multiprocessor systems, 
cf. [10-15]. The effectiveness of the explicit preconditioned schemes is related to the fact that 
the approximate inverse exhibits a similar "fuzzy" structure and are close approximates to the 
coefficients matrix. 

Domain decomposition techniques have also been used for solving boundary value problems 
on regular or irregular domains. A domain is decomposed into smaller regular domains and the 
resulting system of algebraic equations is of so-cailed arrow-type systems, which occur in practice, 
cf. [4-6,11,16-19], and interesting discussions have been given in [4,6,11,19-25]. 

The purpose of this work is the derivation of a new class of composite iterative schemes based on 
inner-outer iterative procedures in conjunction with the known Picard-Newton methods, leading 
to improved composite iterative schemes for solving efficiently nonlinear boundary value prob- 
lems. The Picard-Newton method can be coupled with the explicit preconditioned schemata. 
The effectiveness of the preconditioned methods relies on the construction and use of efficient 
preconditioner factors in the sense that the preconditioners are close approximates to the inverse 
of the coefficient matrix. 

The derivation of suitable parallel methods was the main objective for which several forms of an 
approximate inverse of a given matrix, based on approximate LU-type factorization procedures 
have been proposed, cf. [10,11,14,15,26]. The main motive for the derivation of the approximate 
inverse arrow-type matrix techniques lies in the fact that they can be used in conjunction with 
explicit preconditioned iterative schemes and are suitable for solving linear systems on parallel 
and vector processors. 

The cost effectiveness of explicit preconditioned iterative schemes over parallel direct solution 
methods is now commonly accepted. It is known that approximate factorization procedures and 
inverse matrix algorithms are in general complicated. However, as the demand for solving linear 
or nonlinear initial/boundary value problems grows, the need to use efficient sparse equations 
solvers becomes one of great importance, cf. [12,15]. 

In Section 2, we introduce domain decomposition approximate inverse matrix techniques based 
on approximate LU-type factorization procedures without inverting the related decomposition 
factors. In Section 3, composite iterative schemes in conjunction with the known Picard-Newton 
methods for solving nonlinear problems are presented. In Section 4, explicit preconditioned con- 
jugate gradient-type methods based on approximate inverse matrix techniques are given. Finally, 
the performance and applicability of the new proposed explicit preconditioned domain decompo- 
sition schemes is discussed by solving a characteristic two-dimensional nonlinear boundary value 
problem and numerical results are presented. 

2. D O M A I N  D E C O M P O S I T I O N  

A P P R O X I M A T E  I N V E R S E  M A T R I X  T E C H N I Q U E S  

In this section, we present algorithmic procedures for computing the elements of the approxi- 
mate inverse, based on approximate LU-type factorization procedures, cf. [10,11,14,15,26]. 

Let us consider the linear system, i.e., 

A u  = s ,  (2.1) 

where A is a sparse arrow-type (n x n) matrix of the following form: 



E x p l i c i t  P r e c o n d i t i o n e d  D o m a i n  D e c o m p o s i t i o n  S c h e m e s  2 6 5  

A= 

b l  e l , l _ '  ' ' Cl,ll . . ." U l , l  • • • Ul,12 

a l , l  (12.2) 

According to the structure of the coefficient matrix A, "fill-in" terms are required during: the 
decomposition process. 

Let us now assume the approximate factorization of the coefficient matrix A such that, viz., 

A ,.~ LU, (2.3) 

L= 

hi tl 

t l ,12 " "" t n - l l - l , t 2  h n - l l , l l  • " " h n - l . 1  g n  

(2.4) 

retaining exactly the same number of nonzero entries, by applying the so-called "position- 
principle" in the factorization process, where L and U, cf. (2.4),(2.5), are sparse strictly lower and 
upper (with main diagonal unity elements) triangular matrices of the same profile as the coefficient 
matrix A, cf. (2.2). Then, the elements of the L and U decomposition factors can be computed 
by the domain decomposition approximate LU-type factorization procedure (henceforth called 
the DODALUFA algorithm). 

1 el,1 "'" el,h fl,1 "'" f1,12 

U = f~ (2.5) 

~ e n -  1,1 

1 

The memory requirements of the DODALUFA algorithm is ~ 0(2 l l  + 212 + 1)n words and 
the computational work required by the factorization process is ~ 0(311 + 312 + 2)n multiplica- 
tive operations. The DODALUFA algorithm can be implemented on multiprocessor systems by 
following certain parallel decomposition techniques, cf. [6,7,9]. 
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Let M ~l - (#i j ) ,  i c [1, n], j E [max(l, i - 5 1  + 1), min(n, i +  5 1 -  1)], an [n × (25 / -  1)] matrix, 
be the approximate inverse of the coefficient matrix A, i.e., 

M ~l ~ (LU)  -1.  (2.6) 

The elements of the approximate inverse can be determined by retaining a certain number of 
elements of the inverse, i.e., only 5l elements in the lower part and 5l - 1 elements in the upper 
part of the inverse (by applying the so-called "position-principle'), next to the main diagonal, 
the remaining elements not being computed at all. Then, the elements of the approximate inverse 
can be computed by solving recursively the following systems: 

M ~ l L  = U -1 and U M  ~ = L -1,  5l E [1 , . . . ,n] ,  (2.7) 

without inverting the decomposition factors L and U, cf. [10,11,14,15,26]. 
It should be noted that the computation of the elements #~,j of the approximate inverse, using 

a "fish-bone" computational procedure, can be successively determined as follows. From the 
equations of (2.7) for i = n , . . . ,  1 and j = max(l,  i - 51 + 1) , . . .  ,min(n, i  + 5l - 1), respectively, 
we can obtain the elements of the approximate inverse, cf. [8,9,14]. 

Then, the elements of the approximate inverse can be computed by the so-obtained domain de- 
composition generalized approximate inverse matrix technique (henceforth called the DODGAIM 
algorithm). 

In order to solve efficiently linear systems, the DODGAIM algorithm has to be redesigned, by 
using a moving window shifted from bottom to top, such that only [n × (25l - 1)I-vectors are 
retained in storage, cf. [13,27]. This optimized form of the domain decomposition generalized ap- 
proximate inverse matrix (henceforth called the ODODGAIM algorithm) is particularly effective 
for solving "narrow-banded" sparse systems of very large order, i.e., 51 << n /2 .  

The memory requirements of the ODODGAIM algorithm are ~ [n × (2 5 / -  1)] words and the 
computational work involved is ~ 0[( l l  + 12 + 1)S/]n multiplicative operations. 

It should be noted that according to the proposed computational strategy, this class of approx- 
imate inverses can be considered that includes various families of approximate inverses having in 
mind the desired requirements of accuracy, storage, and computational work as can be seen by 
the following diagrammatic relationship, i.e., 

class I class II class III, 
(2.8) 

A -1 = M ~ M~ l *-- M ~l *-  M~, 

where the entries of M~ l have been retained after the computation of the exact inverse, while 
the entries of M ~ have been computed and retained during the computational procedure of 
the approximate inverse. The diagonal inverse, iV//, was computed based on the inversion of 
the diagonal entries only of the L decomposition factor, i.e., 5l = 1, resulting in a fast inverse 
algorithm. 

It should be mentioned that if vi,j = 0 and u~,j = 0, then the DODALUFA and ODODGAIM 
algorithms are reduced to BLUFA and OAIBM algorithms, respectively, cf. [10], for solving 
banded systems. It should be also noted that, if 11 = 0 and 12 = 1, then the DODALUFA and 
ODODGAIM algorithms are reduced to ALUFA and OAIAM algorithms, respectively, cf. [11]. 

3. C O M P O S I T E  I T E R A T I V E  S C H E M E S  
F O R  N O N L I N E A R  P R O B L E M S  

Let us consider a class of nonlinear boundary value problems defined by the nonlinear elliptic 
PDE in two space-variables, i.e., 

L u  = f ( u ) ,  

subject to the boundary conditions 
Ou 

+ = 

where L is a linear partial differential operator. 

(z,y) e R, (3.1) 

(x, y) e OR, (3.2) 
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We may linearize the problem by the Picard method, i.e., 

Lu(IC+l) = f [u (k)] 

or the Newton method, i.e., 
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(3.3) 

Lu(k+l) -- f l  [u(k)] u(k+l) = f [u (k)] -- U(k) y [U(k)] . (3.4) 

Assuming that  a network of mesh spacing hx, hy in the X , Y  directions, respectively, is super- 
imposed over the region R and, using central finite difference scheme, then the above iterative 
schemes lead to sparse systems which can be written equivalently as 

(3.5) 

where Ak is of form (2.2), with Ak = A for the Picard iteration. A system of form (3.5) can 
be explicitly solved by means of composite "inner-outer" iterative schemes, i.e., Picard-Newton 
and exact inversion procedures resulting in one-level iteration or Picard-Newton and explicit 
preconditioned iterative schemata based on explicit approximate inverse procedures yielding the 
usual two-level iteration scheme. 

Let us consider the nonlinear iterative scheme 

where the matrix Ak can be split as Ak = Bk -- Ck. Provided that  the matrix Bk is nonsingular, 
we have, cf. [28], 

m k '  = ( I -  Y k ' C k )  - 1 B ~  1 ~ [I + m  + H 2 + " "  + gr~ " - ' ]  B ; ' ,  (3.7) 

where Hk = B[1Ck,  k > O, I is the identity matrix and only mk first terms have been retained 
in the expansion of (I  - B~ICk)  -1. Therefore, an explicit iterative scheme is derived, i.e.. 

u(k+l) -- u(k) = -- ( f  d- n k  d- n~-[-  . . .  -4- n ~ k - 1 ]  B k l G  (u(k ) )  , ]¢ > O, (3.8) 

which represents the composite iteration in which at the k th stage starting from u (k), mk steps of 
the linear inner iterations are computed in order to approximate a solution of the outer iteration. 
Choosing B~ -1 = (M~t)k depending upon k and retaining only the first term in the expansion 
of (3.8), we obtain the first-order Newton-ODODGAIM iterative scheme, viz., 

u (k+l) - u (k) = - M ~ t G  (u(k)) , k > 0. (3.9) 

The Newton-DODGEIM scheme can be easily derived from (3.6) assuming that  M - Ai? 1 = 
(LU) -1, cf. (2..8), and is given by 

u (k+l) - u (k) = - M G  (u (k ) ) ,  k > O. (3.10) 

It can be easily seen that  the proposed composite "inner-outer" iterative scheme in the case of the 
exact inversion reduces to an equivalent one-level iteration. While for the case of approximate 
inversion, the "inner-outer" iterative scheme reduces to the usual two-level iteration and the 
explicit preconditioned generalized conjugate gradient-type iterative schemes can be used. 
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4 .  E X P L I C I T  P R E C O N D I T I O N E D  I T E R A T I V E  M E T H O D S  

In this section, we present a class of explicit preconditioned iterative schemes based on the 
O D O D G A I M  techniques of Section 2 for solving the nonlinear systems (3.5). 

The explicit preconditioned generalized conjugate gradient square (EPGCGS) algorithm can 
be expressed by the following compact  scheme. 

Let u0 be an arbi t rary initial approximation to the solution vector u. Then, 

set uo = 0 and eo = 0, compute ro = M ~ ( s  - Auo), 

set ao = ro and Po = (ao, to) .  

(4.1) 

(4.2) 

Then, for i = 0, 1 , . . . ,  (until convergence) compute the vectors U i + l , r i + l ,  ffi+l and the scalar 
quantities ai ,  ~3~+z as follows: 

Pi 
form q~ = A a i ,  calculate a~ = (ao,  M~tq~)  ' 

compute e i+ l  = r~ + / 3 i e i  - a~M~tq~ ,  

d~ = ri +/~iei + e~+l, and ui+z = u~ + a~d~, 

form qi = A d s ,  compute ri+l = r i  - a ~ M ~ t  q~, 

set Pi+l = (~r0, ri+z), evaluate ~i+l = Pi+l ,  
P~ 

2 compute  ai+z = ri+l + 2f~+lei+z + f~+zai. 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

The computat ional  complexity of the E P G C G S  method, assuming tha t  M ~l can be compactly 
stored in n x ( 2 5 / -  1) diagonal vectors is ~ 0 ( 4 5 1  + 411 + 4/2 + 11)n mults +8n  adds]v operations, 
where v denotes the number of iterations required for convergence to a predetermined tolerance 
level. 

In the following, we present a modified form of the van der Vorst BICGSTAB method, cf. [29], 
using the explicit preconditioner M ~t. This modified method, henceforth called the explicit pre- 
conditioned biconjugate conjugate gradient-STAB (EPBI-CGSTAB) method, can be expressed 
by the following compact  scheme. 

Let u0 be an  arbi t rary initial approximation to the solution vector u. Then, 

set u0 = 0, compute r8 = s - A u o ,  
t set r 0 = r0, P0 = a = w0 = 1, and vo = Po = 0. 

(4.9) 

(4.10) 

Then, for i = 0, 1 , . . . ,  (until convergence) compute the vectors u i , r ~  and the scalar quantities 
a,/~, w~ as follows: 

P i / P i - 1  
calculate Pi = (r~, r i -1 ) ,  and j3 = ~ / W i - l '  

compute Pi = r i -1  + ]~ (Pi-z - w i - l v i -1 ) ,  
Pi form y~ = M 6 l p i ,  and v~ = Aye ,  ~ - , , 

(ro, v,) 
compute x~ = r i-1 - c~vi, form z~ = M ~ t x ,  and t~ = Az~,  

( M ~ t t i ,  M $ t z O  
set wi  = (M61t~ ' M6~t~)  , 

compute ui = ui-1 -~- ~ Y i  Jr" w i z l  and r i  = x i  - w i t i .  

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

The computat ional  complexity of the EPBI-CGSTAB method,  assuming tha t  M ~ can be 
compactly stored in n x ( 2 5 / -  1) diagonal vectors is ~ [(65l + 4lz + 4/2 + 12)n mults +6n  adds]v 
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operations, where u denotes the number of iterations required for convergence to a predeter- 
mined tolerance level. The effectiveness of the explicit preconditioned iterative methods using 
the ODODGAIM algorithm is related to the fact that the approximate inverse of the original 
sparse  coefficient  m a t r i x  A exhib i t s  a s imi lar  "fuzzy" s t ruc tu re  as t he  coefficient  m a t r i x  A. 

T h e  convergence  analysis  of  s imi lar  expl ic i t  a p p r o x i m a t e  inverse p recond i t i on ing  has been  pre- 

sen ted  in [8,27]. 

Le t  us now cons ider  t h a t  t he  Ms class of  a p p r o x i m a t e  inverse,  i.e., ~l = 1, is used as a precon-  

d i t ioner  for t h e  expl ic i t  p recond i t ioned  genera l ized  con juga te  g r ad i en t - t ype  me thod .  Assuming  

a P R A M  linear  a r ray  mode l  w i th  n processors  is used, t hen  the  c o m p u t a t i o n  of t he  e lements  of 

this  class of inverse can be  done in O(1) ,  i.e., c o n s t a n t t i m e .  Addi t ional ly ,  in t h e  i m p l e m e n t a t i o n  

of t he  E P G C G - t y p e  i t e ra t ive  scheme,  t he  inner  p roduc t  can be pe r fo rmed  in O( log  n),  i.e., in the  

case of  a l inear  a r r a y  w i t h  n processors,  using the  prefix c o m p u t a t i o n  model .  

5. N U M E R I C A L  R E S U L T S  

In this section, we examine the applicability and effectiveness of the new proposed composite 
explicit preconditioned domain decomposition approximate inverse preconditioning schemes by 
solving the following characteristic problems in two dimensions. 

MODEL PROBLEM 1. Let us consider a 2D nonlinear elliptic PDE 

02u 02u 
Ox ~ + ~y2 = eu' (x,y) • f~, (5.1) 

sub jec t  to  b o u n d a r y  condi t ions  

u(x,y) =0,  (x,y) • ou, (~1~) 

where f / i s  the unit square and 0~ denotes the boundary of g/. 
Equation (5.1) arises in magnetohydrodynamics and is of physical interest in diffusion-reaction, 

vortex problems and electric charge consideration, cf. [1]. 
The linearized Picard and quasi-linearized Newton iterations are outer iterative schemes of the 

form 
LhU(k+l) e u(k, and LhU(k+l) eU(k~u(k+l) (] u(k)) u(~ . . . .  e , (5.2) 

respectively, with Lh denoting the finite difference operator. 

Table 1. The performance of the composite "inner-outer" iterative scheme using the 
EPGCGS and EPBICG-STAB method for Model Problem 1. 

EPGCGS 

EPBICG- 

STAB 

961 32 

3969 64 

961 32 

3969 64 

Picard Method Newton Method 

~l Outer Inner Outer Inner 
Iterative Iterative Iterative Iterative 

2 9 2 10 

2 9 2 8 

2 5 2 5 

2 10 2 10 

3 2 8 2 8 

6 2 5 2 5 

1 3 10 3 9 

3 2 12 2 8 

6 2 8 2 7 

1 3 8 3 8 

3 2 8 2 8 

6 2 5 2 5 

1 

3 

6 

1 

Method n m 
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The  domain  ~ L3 c0~ was decomposed into a number  of subdomains  and was covered by an 

nonoverlapping regular  t r iangular  network. The  five-point finite difference discret izat ion scheme 

with a row-wise ordering was used such t ha t  the  length 11 of the  band was kept  to low values, 

i.e., ll  = 3. The  result ing sparse system is of form (3.6). 

The  init ial  guess used was u (°) = 0. The  te rmina t ion  cri ter ion for the  inner i te ra t ion  of the  

E P G C G S  and E P B I - C G S T A B  method  was I[ri [[~ < 10 -5 ,  where r i  is the  recursive residual. The  

cri terion for the  t e rmina t ion  of the  outer  i te ra t ion  was max j  [(u~ k+l) (k)~,, (k+l)~, - u j  )l(Uj )1 < 10-5, 

j e [1, n]. 

Numerical  results  for the  model  problem (5.1) are presented in Table 1 for the  E P G C G S  and 

the E P B I - C G S T A B  methods  for several values of order  n, m and the  "retention" pa ramete r  51 of 

the  approx imate  inverse. 

I t  should be ment ioned t ha t  the  convergence behavior  of the  E P G C G S  and E P B I - C G S T A B  

methods  in conjunct ion with the  D O D A L U F A  and O D O D G A I M  algori thms,  is much be t te r  when 

the domain  is subd iv ided  into many  subdomains.  

MODEL PROBLEM 2. Let  us also consider the  2D nonlinear elliptic PDE 

02u 02u = u (1 - lul 2) (x, y) • ~ ,  (5.3) 
Ox 2 + ~ 

subject  to bounda ry  condit ions 

U (X, 0) ---- U (0, y) = 0.0, U (Xmax , y) ~-- U (X, Ymax) ---~ 5.0. (5.3a) 

The  l inearized P icard  and quasi-l inearized Newton i terat ions are outer - i te ra t ive  schemes, respec- 

tively, of the  form 

Lhu(k+l)=u(k)(1-- u(k) 2), (x,y) E~, (5.4) 

and 
Lhu(k+l) [- [ u(k) 2 ] u(k) 2 '  + 2U (k) U (k) -- 1 U (k+l) ~-- 2U (k) (x ,y )  E ~ .  (5.5) 

The  ini t ial  guess used was u (°) = 0.1, and the te rmina t ion  cr i ter ia  of the  inner and outer  itera- 

t ive schemes are the  same with  Model  Problem 1. Numerical  results for the  model  problem (5.3) 

are presented in Table 2 for the  E P G C G S  and the E P B I - C G S T A B  methods  for several values of 

order  n, m and the  "retention" pa ramete r  ~l of the  approximate  inverse. 

Table 2. The performance of the composite "inner-outer" iterative scheme using the 
EPGCGS and EPBI-CGSTAB method for Model Problem 2. 

Method 

EPGCGS 

EPBICG- 
STAB 

f t  m 

961 32 

3969 64 

961 32 

3969 64 

Picard Method Newton Method 

Outer Inner Outer Inner 
Iterative Iterative Iterative Iterative 

3 9 2 2 
3 8 2 3 
3 8 2 2 

4 6 2 2 
3 8 2 2 
3 5 2 2 

3 10 2 2 
3 9 2 2 
3 8 2 2 
3 7 2 2 
3 6 2 2 
3 5 2 2 
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It should be mentioned that the iterative GMRES scheme, cf. [30,31], although it has good 
stability, requires storage of all the basis vectors of the Krylov space and its performance is 
depending on the restart vectors used, thus making this method problem dependent, cf. [321 . 

Finally, we state that the explicit preconditioned domain decomposition scheme, using the 
DODALUFA and ODODGAIM algorithms, can be efficiently used for solving highly nonlinear 
initial/boundary value problems. 
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