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On residual smoothing in ILUM-type
preconditioning

Lutz Grosz∗
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Abstract

Incomplete block factorisations are used to construct flexible pre-
conditioners for iterative linear solvers. In practice these approaches
have shown to be very effective and robust. Especially they are more
suitable for parallel computer architectures when comparing to classic
ilu preconditioning. In this paper we introduce residual smoothing
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into the forward/backward substitution in order to compensate the
element dropping in the Schur complement.
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1 Introduction

We consider Krylov subspace methods [13] in order to solve the linear system

Ax = b , (1)

where A = (ai,j)i,j=1,n is a real, non-singular, sparse coefficient matrix. One
tries to improve the convergence rate and the robustness by introducing a
preconditioner matrix M−1 in such a way that the new iteration matrix
M−1A is close to the identity matrix I. The construction of M−1 as well as
the evaluation of matrix-vector products with M−1 must not be too costly.
The computer architecture used is an important factor in the efficiency of a
preconditioner. For instance the classical ilu preconditioner is not suitable
for parallel architectures. Block versions of ilu, like ilum [9], bilum [12]
and amli [1], have a much better data flow for parallel architectures.

As an alternative to ilu, some authors propose the idea of constructing
the matrix M−1 explicitly by minimising a norm of the defect I −M−1A for
all matrices M−1 with a given sparsity pattern, see [2, 3, 6]. If the Frobenius
norm is used, the problem can be subdivided nicely into independent sub-
problems which can be treated in parallel. Unfortunately, the quality of
M−1, as a preconditioner for A, depends on the selected sparsity pattern.
Adapting the pattern can be introduced but at the costs of a less parallel
method.

In [4], incomplete block factorisation and the sparse approximate inverse
technique are combined. A sub-matrix of the matrix A is selected in such
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a way that its approximate inverse is easily calculated. From this an ap-
proximate block factorisation of the matrix A is constructed by calculating
the Schur complement S of the sub-matrix. The recursive application of this
block factorisation approach provides an approximation of the inverse of the
Schur complement, which is needed in the matrix-vector product with M−1.

One problem of this approach is assembling the Schur complement, as
it can be very expensive regarding computational costs and the resulting
matrix is not as sparse as the original matrix. In order to limit the costs,
small elements are dropped and/or, a certain number of non-zero elements
is allowed in the sparsity pattern [8]. Unfortunately, the quality of the pre-
conditioner M−1 can deteriorate dramatically, even if very small elements
of S are dropped only. arms [11] tries to compensate this approximation
error by applying an iterative solver when S−1 is evaluated. The incomplete
factorisation of S plays the role of a preconditioner. This actually improves
the convergence rate for the outer iteration. In some cases, it can make the
iteration more robust, but mostly it increases the overall computing time.

In this paper we present a modification of this approach which needs one
evaluation of the incomplete block factorisation in each level only. The idea
is to execute a few iterative steps of gmres on the Schur complement matrix
before and after evaluating the approximate block factorisation. This proce-
dure is similar to pre- and post-smoothing for multi-grid methods [5]. In fact,
the block forward and the block backward substitution can be interpreted
as restriction and prolongation, respectively. Examples show that pre- and
post-smoothing reduce the number of outer iterative steps but do not reduce



2 Block Factorisation C657

the overall computing time.

2 Block Factorisation

Let A = (ai,j)i,j=1,n ∈ Rn×n be a real, non-singular and sparse coefficient ma-
trix. An incomplete (synonymously approximate) block factorisation of the
matrix A is constructed in the following way: The set of fine level unknowns
V := {1, . . . , n} is subdivided into two subsets F and C (F ∩ C = ∅ and
F ∪ C = V ), where F denotes the set of nF unknowns that are eliminated
from the matrix. The nC unknowns in C are called the coarse level unknowns
(n = nF + nC).

The matrix A is rearranged into the form

A =

[
AFF AFC

ACF ACC

]
. (2)

The columns and rows of the sub-matrix AFF ∈ RnF×nF belong to the un-
knowns F and the columns and rows of ACC ∈ RnC×nC to the unknowns in
C. In ilum [9] F is selected such that AFF becomes a diagonal matrix.

In this paper we consider an alternative [4]. The matrix AFF is con-
structed to be strictly diagonal dominant, i.e.∑

i6=j∈F

|ai,j | ≤ λ |ai,i| (3)



2 Block Factorisation C658

for all i ∈ F , where 0 ≤ λ ≤ 1 is a given threshold (typically λ = 0.3). An
algorithm for the selection of F meeting condition (3) can be obtained by
modifying the classical greedy algorithm [4], which is used to find maximal
independent sets in a graph.

As AFF is constructed to be strictly diagonal dominant, a sparse approxi-
mate inverse YFF of AFF can be computed easily, e.g. by using a Newton-type
iteration [7, 4]. The (approximate) Schur complement S is defined by

S := ACC − ACFYFFAFC . (4)

The Schur complement S is used to calculate an approximate block factori-
sation of the matrix A:

A ≈M :=

[
Y −1

FF AFC

ACF ACC

]
=

[
I 0

ACFYFF I

] [
Y −1

FF AFC

0 S

]
. (5)

The evaluation of M−1 requires the matrix-vector products with YFF , AFC

and ACF as well as the (approximate) evaluation of S−1.

If an iterative solver is applied to evaluate S−1, the matrix S is not needed
to be available explicitly but can be recovered in each matrix-vector product
from identity (4). If the order nC of the matrix S is large, an iterative
solver will converge very slowly. Then it is more efficient to recursively apply
incomplete block factorisation to S until the number of unknowns becomes
reasonably small. This introduces a multi-level method.

For recursive factorisation the Schur complements have to be assembled
explicitly. In order to limit the computational effort and the memory usage,
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the sparsity of S is improved by dropping small entries [8]. Thus an ap-
proximation Ŝ of the Schur complement is used to construct an incomplete
factorisation N of S.

3 Smoothing

It is an obvious idea to use a preconditioned iterative solver when evaluating
S−1, where the preconditioner is constructed through the approximate block
factorisation N of Ŝ. Thus the iteration will be continued on a finer level,
if a certain accuracy is achieved on the coarser level. This implements a
W-cycle multi-level method [11]. In some cases W-cycles seem to be more
robust, but in general they are expensive compared to V-cycles, especially
on parallel computers. As a compromise, the idea of smoothing is introduced
from multi-grid methods [5]:

If for given qC ∈ RnC the vector pC = S−1qC is evaluated (i.e. SpC = qC
has to be solved), νpre steps of an iterative solver are performed. This pre-
smoothing step provides a first approximation ppre

C of pC . The incomplete
factorisation N of S is applied to the new residual

qpre
C := qC − Sppre

C .

This provides the new approximation

pc
C := ppre

C +N−1qpre
C
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of the sought vector S−1qC . The upper index c indicates an approximation
of pC corrected by a coarse level evaluation.

The approximation pc
C is improved through νpost post-smoothing steps by

solving the linear system with coefficient matrix S and right hand side

qpost
C := qC − Spc

C .

gmres(ν) [10] is used as smoothing scheme, where ν = νpre is the number of
pre-smoothing and ν = νpost is the number of post-smoothing steps.

In the following for all qC ∈ RnC and for all ν = 0, 1, . . ., the vector
GMRES(qc, ν) denotes the result of gmres(ν) returned after the ν-th iterative
step:

GMRES(qc, ν) := arg min
pc∈Kν(qc)

‖qC − SpC‖2 , (6)

where ‖.‖2 denotes the Euclidean norm in RnC and

Kν(qc) := span {Sµqc}µ=0,...,ν−1

the ν dimensional Krylov space. We set GMRES(qc, ν) := 0 for ν < 1.

Typically the residuals in gmres are reduced quickly in the first iterative
steps only. In order to catch the fast convergence at the beginning, the
iteration procedure is stopped if the residual cannot be reduced by a given
factor α (0 < α < 1), i.e. the iteration is stopped after the ν-th step if the
condition ∥∥∥qC − Sp(ν)

C

∥∥∥
2
> α

∥∥∥qC − Sp(ν−1)
C

∥∥∥
2

(7)



3 Smoothing C661

Table 1: Evaluation of p := M−1q = IBF(0, q) by the forward-backward
substitution scheme with l levels.

1: IBF(k, q)
2: if (k = l − 1)
3: solve Sp = q
4: else

5: (qF , qC)← q
6: qpre

C ← qC −ACFYFF qF
7: ppre

C ← GMRES(qpre
C , νpre)

8: pc
C ← ppre

C + IBF(k + 1, qC − Sppre
C )

9: pC ← pc
C + GMRES(qC − Spc

C , νpost)
10: pF ← YFF (qF − AFCpC)
11: p← (pF , pC)
12: endif

13: return p

holds, where p
(µ)
C := GMRES(qc, µ) for all µ = 0, 1, 2, . . .. As this criterion

avoids unnecessary iterative steps, it is more efficient regarding the comput-
ing time in comparison to a fixed number of pre- and post-smoothing steps.
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4 Forward/backward Substitution

Table 1 shows the recursive procedure evaluating p := M−1q = IBF(0, q) for
a given vector q ∈ Rn. The operation (qF , qC) ← q in step 5 selects the
components qF and qC of the vector q which belong to the set of eliminated
unknowns F and the coarse level unknowns C, respectively. The operation
p ← (pF , pC) in Step 11 is the inverse operation. On the coarsest level the
linear system is solved iteratively by Step 3. The optimal number of levels
has to be found by some test. It depends on the matrix A but also on the
used computer architecture.

Note that for k = l − 2 Steps 7 and 9 can be dropped, as a solution
provided by the coarsest level can not be improved by pre- or post-smoothing.
Consequently a two-level method (l = 2) does not need any smoothing.

Obviously algorithm 1 is analogous to a multi-grid procedure, if Steps 3
and 4 are interpreted as restriction and Steps 10 and 11 are interpreted as
prolongation.

5 Examples

The matrices used in the following examples are generated by discretisation
of boundary value problems. The right hand sides of the linear systems are
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generated by random samples. Before the calculation is started, the matrix
is normalised by a diagonal matrix in the following way: the entries in the
main diagonal of the matrix A are non-negative and l1-norm of each row is
equal to one.

The linear systems are solved by gmres with truncation after five resid-
uals and restarted after 20 iterative steps. The tolerance is 10−4. On the
coarsest levels, the linear systems are solved with an accuracy of 10−3 by
using gmres with truncation after 50 residuals. Jacobi preconditioning is
used.

In the following tables the columns Outer and Inner give the number
of outer iterative steps and the average number of iterative steps on the
coarsest level. The column Smooth gives the average number of matrix vector
products in a single smoothing call. The columns CPU and Start-up give
the computing time in seconds and the fraction of computing time spent on
the factorisation. Both values were measured on a 66MHz IBM Wide Node
computer.

5.1 Convection Driven Diffusion

The test case is the 3-dimensional equation for convection driven diffusion
on the domain [−1, 1]3:

−∇∇u+ b∇u = f on Ω ,
u = φ on ∂Ω .

(8)
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Table 2: Example 5.1: timings for a fixed number of smoothing steps (n =
61828).

νpre = ν, νpost = 0 νpre = 0, νpost = ν νpre = νpost = ν
ν Outer Inner CPU Outer Inner CPU Outer Inner CPU
- 90 4 109.6 90 4 109.6 90 4 109.6
1 55 4 127.1 60 4 143.1 47 4 164.5
2 47 4 145.8 47 4 151.1 37 4 189.4
3 42 4 166.4 41 4 170.5 36 4 246.8
4 34 4 170.1 33 4 171.5 34 4 301.2
5 40 4 243.9 39 4 239.8 32 4 350.0

10 32 4 392.4 32 4 393.5 26 4 601.0
15 26 5 510.5 26 4 511.8 26 5 982.3

Table 3: Example 5.1: timings for an optimised number of pre- and post-
smoothing steps (n = 61828).

α Outer Inner Smooth Start-up CPU
0.95 26 4 10.1 0.01 908.5
0.50 47 4 2.0 0.04 268.4
0.25 47 4 1.1 0.04 214.7
0.10 47 4 1.0 0.05 216.2
0.05 47 4 1.0 0.05 216.6

- 90 4 0.0 0.10 109.6
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The vector-valued coefficient function b which represents a velocity field b is
defined by

b = (
∂ψ

∂x2
− ∂ψ

∂x3
,
∂ψ

∂x3
− ∂ψ

∂x1
,
∂ψ

∂x1
− ∂ψ

∂x2
) (9)

with stream function

ψ = Ry(x
2
1 − 1)(x2

2 − 1)(x2
3 − 1)

√
x2

1 + x2
2 + x2

3 . (10)

The equation is discretised by the finite difference method of order 2 using a
rectangular 52× 29× 41 grid. An up-wind scheme is used for the convective
term b∇u. We set Ry = 105 so that the convection term becomes dominant.
This produces a highly non-symmetric matrix. The problem is difficult to
be solved by an iterative solver, but can be preconditioned rather easily by
incomplete factorisation methods.

Six levels are used. In the Schur complements the 6th largest entries
per row and the main diagonal entry are considered only. The approximate
inverse YFF is constructed by taking the inverse of the main diagonal part of
YFF . The timings for a fixed number of pre- and post-smoothing steps are
shown in Table 2. As expected, the number of outer iterations is reduced
in all three cases, namely only post-smoothing, only pre-smoothing or the
combination of pre- and post-smoothing. Unfortunately the matrix-vector
products needed for the gmres smoothing are rather expensive and therefore
the overall computing time is larger than without any smoothing. Table 3
shows the timings for different values of α in the stopping criterion (7).
The value α ≤ 0.5, which leads to one pre- and one post-smoothing step in
average, gives the best timings.
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Table 4: Example 5.2: timings for a fixed number of smoothing steps (n =
34201).

νpre = ν, νpost = 0 νpre = 0, νpost = ν νpre = νpost = ν
ν Outer Inner CPU Outer Inner CPU Outer Inner CPU
- 57 12 124.5 57 12 124.5 57 12 124.5
1 51 12 190.0 30 12 151.1 29 12 175.7
2 48 12 225.4 40 12 240.3 37 12 274.3
3 31 12 198.2 34 12 212.9 35 12 333.3
4 46 11 310.6 29 12 222.2 33 11 390.0
5 46 11 367.1 35 12 293.5 43 11 585.9

10 46 12 687.4 31 12 487.1 37 12 1034.8
15 34 12 894.1 32 12 786.0 31 12 1445.5

Table 5: Example 5.2: timings for an optimised number of post-smoothing
steps; no pre–smoothing (n = 34201).

α Outer Inner Smooth Start-up CPU
0.95 49 12 8.1 0.14 427.6
0.50 30 12 1.0 0.38 152.7
0.25 30 12 1.0 0.38 153.0
0.10 30 12 1.0 0.38 152.0
0.05 30 12 1.0 0.38 152.8

- 57 12 0.0 0.46 124.5
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5.2 L-Shaped Domain

The second test problem is the following variational problem: find u : Ω→R
with u|Γ = b and ∫

Ω
k∇u · ∇v + (r∇u− f) v dx = 0

for all test functions v : Ω → R with v|Γ = 0. The domain Ω is the
2-dimensional L-shaped set [0, 2]2 \ [0, 1]2 and Γ is the boundary portion
{(x1, x2) | x1 = 0 or x2 = 0} ∩ ∂Ω. We set rT = 1

100
(1, 1). The coefficient

function k is defined with jumps from 1 to 105. This makes the equation
difficult to solve for iterative solvers. The variational problem is discretised
by the finite element method using 11250 quadrilateral elements of order
two. The drop tolerance in the Schur complement is 10−3. The approximate
inverse YFF is calculated with an accuracy 10−3 using Newton’s method.

Table 4 shows the timings for fixed numbers of pre- and post-smoothing
steps. The first row shows the timings without smoothing. It is sufficient
to perform only a few post-smoothing steps in order to get the smallest
number of outer iterative steps. This does not reduce the overall calculation
time compared to a calculation without smoothing. Pre-smoothing is not
as effective as post-smoothing. Table 5 presents the timings, when applying
stopping criterion (7) in the post-smoothing procedure (no pre-smoothing).
The last row shows the timing without smoothing. Obviously the stopping
criterion has no effect on the timings if α ≤ 0.5. Only one post-smoothing
step is sufficient to minimize the number of outer iterative steps.
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6 Conclusion

The test examples indicate that pre- and post-smoothing by gmres reduce
the number of outer iterations significantly. Post-smoothing is preferred
where one gmres step is sufficient. In this situation the smoothing per-
forms a simple length scaling of the vector pc

C . The scaling is an attempt
to compensate for the approximations made in the incomplete factorization
of the Schur complement. A similar technique is used to smooth oscillations
of the residuals in cg iterations [13]. The tests do not indicate that pre-
or post-smoothing improves the robustness of the preconditioned iteration
scheme.

Although the number of outer iterations is significantly reduced, length
scaling does not improve the total computing time. The reason for this is
the fact, that additional matrix-vector products are needed. Nevertheless,
length scaling is still an interesting approach on vector and parallel com-
puters. On these architectures the data movements in the restriction and
prolongation operations are very expensive compared to floating point op-
erations. Thus additional matrix-vector products which help to reduce the
number of forward/backward substitutions can reduce the overall computing
time.
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