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In this paper, a solution to the double curl equation with generalized Coulomb gauge is proposed based on the vectorial
representation of the magnetic vector potential. Traditional Coulomb gauge is applied to remove the null space of the curl
operator and hence the uniqueness of the solution is guaranteed. However, as the divergence operator cannot act on edge elements
(curl-conforming) directly, the magnetic vector potential is represented by nodal elements, which is too restrictive, since both the
tangential continuity and the normal continuity are required. Inspired by the mapping of Whitney forms by mathematical operators
and Hodge (star) operators, the divergence of the magnetic vector potential, as a whole, can be approximated by Whitney elements.
Hence, the magnetic vector potential can be expanded by the edge elements, where its vectorial nature is retained and only the
tangential continuity is required. Finally, the original equation can be rewritten in a generalized form and solved in a more natural
and accurate way using finite-element method.

Index Terms— Finite-element method (FEM), generalized Coulomb gauge, magnetostatic, Whitney forms.

I. INTRODUCTION

AS A STATIC limit of Maxwell’s equations, magnetostat-
ics has many applications in Hall-effect devices, toroidal

coils, magnetic resonance imaging, and so on [1]–[3]. For
some simple structures with given current flow, such as air
core inductors and transformers, the magnetic field induced
by the current density can be analytically computed by the
Biot–Savart law. However, numerical methods are inevitably
used to model complex structures, especially inhomogeneous
and anisotropic ones. Over the past decades, several formu-
lations based on scalar and vector potentials, or field and
flux [4]–[8] have been proposed to solve the magnetostatic
problems, where the unknowns of the system of equations
might be different. Among these formulations, the double
curl equation pertinent to the magnetic vector potential A is
commonly adopted in both commercial and free softwares,
e.g., ANSYS Maxwell [9] and finite-element method (FEM)
magnetics [10].

It is well known that the curl operator has null space
(gradient of any scalar field), which makes the solution
of A nonunique. For many applications, the magnetic flux
B is the primary quantity of interest. After recovering B by
the relation B = ∇ × A, the null space is removed and
thus B can be obtained correctly. However, A and the scalar
potential � are of specific importance in the realm of quantum
mechanics. For example, the Aharonov–Bohm effect [11] can
be interpreted by A; in addition, the electromagnetic effect
can be incorporated into the Schrodinger equation in the form
of A and � [12].

To obtain a unique solution of A, the tree-cotree
gauge condition [13] or the Coulomb gauge condition,
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∇ · A = 0 [14], [15], should be implemented. In addition,
the unguaged double curl matrix system becomes consistent
when the current excitation is expressed by the curl of a
source field, which makes the curl–curl equation is implicitly
gauged by an iterative solver [16]. Nonetheless, the
tree-cotree technique is not an optimal choice, because the
resultant matrix is no longer highly sparse and the best tree
graph, which leads to a fast convergence, is difficult to find.
In addition, due to the existence of the divergence operator in
the Coulomb gauge, nodal elements, instead of edge elements,
are employed and thus A is decomposed into three components
(Ax , Ay, and Az) [17], [18], which violated the vectorial
nature of A and may bring about spurious modes.

In this paper, a vectorial solution to the double
curl equation with a generalized Coulomb gauge is proposed
to remedy the aforementioned drawbacks. In contrast to the
traditional Coulomb gauged method, both the uniqueness
and the vectorial nature of A are reserved in this paper. The
generalized Coulomb gauge, which is the reduced form of the
generalized Lorenz gauge [19] at static limit, is introduced to
remove the null space of the curl operator and guarantees the
uniqueness of A. To retain the vectorial property of A, it is
expanded by the edge elements, and appropriate expansion
of the gauge term is formulated based on the space mapping
between the Whitney forms by mathematical operators
(gradient, divergence, and curl operators) [20], [21], and the
Hodge operators [22], [23]. The resultant matrix system has
the same degrees of freedom (DoFs) with that of the original
double curl equation. Furthermore, it is well conditioned,
and thus can be solved by both direct and iterative
solvers.

The remainder of this paper is organized as follows. The
double curl equation with generalized Coulomb gauge is
investigated and its finite-element discretization is derived
in Section II. In Section III, the accuracy and effectiveness
of the proposed method will be demonstrated by examining
the matrix condition and comparing the results with that of the
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Fig. 1. General 3-D structure excited by an impressed current source J.

original double curl equation. Finally, the conclusion is drawn
in Section IV.

II. FORMULATION

A. Governing Equation

Consider a general 3-D boundary value problem, as shown
in Fig. 1. Assume that the structure is inhomogeneously
composed of three bodies, �0, �1, and �2, among which
�0 is bounded by �D (solid line) and �N (dashed-dotted line);
�1 and �2 are bounded by �1 and �2, respectively.
In addition, the structure is excited by an impressed current
source J. Thus, A satisfies the following double curl equation
with generalized Coulomb gauge:

∇ × 1

μ
∇ × A − ε∇ 1

αε2μ
∇ · εA = J (1)

which is the static case of the A-equation in [19],
with ε, μ, and α being the permittivity, permeability, and
gauge factor, respectively. Meanwhile, the generalized
Lorenz gauge

∇ · εA = iωαμε2� (2)

is degenerated into the generalized Coulomb gauge

∇ · εA = 0. (3)

It is worthwhile to point out that the generalized
Coulomb gauge is not added to the double curl term intention-
ally, but embedded in (1) naturally, which is proved as follows.
As J is solenoidal for magnetostatic cases, taking the
divergence of both sides of (1) yields

∇ · ε∇ 1

με2 ∇ · εA = 0 (4)

which means A should be in the null space of resultant matrix
system. It is well known that the matrix representation of the
Laplace operator, ∇ · ε∇, is positive definite. Hence, the null
space of the operator ∇ · ε∇(1/με2)∇ · ε should also be the
null space of the operator ∇ · ε, which is indicated by (3).
Since ε may be inhomogeneous, (3) can be understood in a
variational sense: testing (3) by a scalar potential ϕ that is
zero on the boundary, then integrating by part over the whole
domain and employing the divergence theorem yield∫

�

εA · ∇ϕd� = 0 (5)

which claims that A is orthogonal to every irrotational field.
In other words, A is solenoidal in a weak sense. When ε is
homogeneous, the generalized Coulomb gauge reduces to

∇ · A = 0 (6)

which is the common Coulomb gauge and states A is
solenoidal in a rigorous sense. Furthermore, (1) can be
rewritten as

∇ × 1

μ
∇ × A − ∇ 1

αμ
∇ · A = J (7)

which is the traditional Coulomb gauged double curl equation.
If the gauges are discarded, (1) and (7) will eventually be
reduced into the so-called double curl equation

∇ × 1

μ
∇ × A = J. (8)

Based on the above analysis, one can see that the common
Coulomb gauge is a special (ε is homogeneous) case of the
generalized Coulomb gauge, and both gauges are embedded
in (1) naturally. For simplicity but without loss of generality,
the following homogeneous boundary conditions are
assumed [18], [21]:

n̂ × A(r) = 0, r ∈ �D (9)

n̂ ×
(

1

μ
∇ × A(r)

)
= 0, r ∈ �N (10)

where r denotes the observation position. Therefore, A is
uniquely defined by (1), (3), (9), and (10). In addition,
as indicated by (3), A should possess a rotation-like field
profile.

B. Finite-Element Discretization

It is well known that edge elements, ⇀
ω(r), which belong to

the Whitney-1 form, are suitable basis functions to represent A

A =
Ne∑

n=1

an
⇀
ωn(r) (11)

where Ne is the number of the edges in the discretized mesh,
and an is the corresponding unknown. However, as

∇ · ⇀
ω(r) = 0 (12)

the second term of (1) will vanish if edge elements are chosen,
which makes (1) degenerate to ungauged double curl equation
and thus vectorial expansion of A seems unavailable
for (1) and (7). However, (12) does not mean that edge
elements are solenoidal, since a constant gradient can
be expanded in terms of edge elements [21]. This is the
reason why a nonunique solution exists in (8) even though
curl-conforming edge elements are used. To achieve the
vectorial representation of A in (11), the trick is the divergence
operation on edge elements can be bypassed by expanding the
divergence term, as a whole, in the form of Whitney elements,
since edge elements are actually not solenoidal.

According to differential forms theory [24], [25], the
Hodge operator is a unique linear map on a semi-Riemmanian
manifold from p-form to (n − p)-form, where n is the
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dimension of the manifold (n = 3 for our discussion).
By eyeballing both sides of (1), we find that the terms on the
left-hand side (LHS) should lie in Whitney-2 form (flux space),
which is consistent with its right-hand side. In other words,
the ∇×μ−1∇× operator, which can be considered as a mixed
(mathematical and Hodge) operator, projects a Whitney-1
form quantity into Whitney-2 form. Similarly, Whitney form
transformation of the second term on the LHS can be
understood in this way: the Whitney-1 form quantity is
first projected into Whitney-0 form, by a mixed operator
((1/με2)∇ · ε), and then projected into Whitney-2 form,
by another mixed operator (ε∇). From this viewpoint,
the Whitney forms can be mapped back and forth by the
mathematical and Hodge operators.

Based on the above analysis, it is reasonable to arrive at

1

με2 ∇ · εA =
Nn∑

n=1

dnλn(r) (13)

where λn(r) is the nodal element, which belongs to Whitney-0
form, Nn is the number of the nodes in the discretized
mesh, and dn is the corresponding unknown. To remove the
additional DoF brought about by (13), testing both sides
of (13) with λm(r) yields

Ne∑
n=1

〈
λm ,

1

με2 ∇ · ε
⇀
ωn

〉
an =

Nn∑
n=1

〈λm , λn〉dn . (14)

Thus, the unknown vector {d} can be written in the form of
the unknown vector {a}, i.e.

{d} = [GN N ]−1[GN E ]{a} (15)

where [GN N ] and [GN E ] are Nn × Nn matrix and
Nn × Ne matrices, respectively. They are defined as

[GN N ]mn =
∫

�
λm · λnd� (16)

[GN E ]mn =
∫

�

1

με
λm

⇀
ωn · n̂d� −

∫
�

1

με
∇λm · ⇀

ωnd�. (17)

Finally, testing both sides of (1) with ⇀
ωm(r) and

applying (9), (10), (11), and (15) result in

{[K1] − [K2][GN N ]−1[GN E ]}{a} = {b} (18)

where [K1] is an Ne × Ne matrix, [K2] is an Ne × Nn matrix,
and {b} is an Ne × 1 vector, and they are defined as

[K1]mn =
∫

�
[μ−1(∇ × ⇀

ωm) · (∇ × ⇀
ωn)]d� (19)

[K2]mn =
∫

�

⇀
ωm · ∇λnd� (20)

{b}m =
∫

�

⇀
ωm · Jd�. (21)

From the above derivation, a clear clue of how to discretize
(1) using FEM is demonstrated. However, it is not that obvious
in (7), which might be the reason why nodal discretization is
employed. Noting that (6) is actually the homogeneous case
of (3) and (7) can be rewritten as

∇ × 1

μ
∇ × A − ε0∇ 1

αε2
0μ

∇ · ε0A = J (22)

Fig. 2. Iron cylinder with μr = 1000 is immersed in the field of a cylindrical
coil. (a) 3-D view. (b) Sectional view (unit: centimeter).

where the clue emerges obviously. It is worthy of mentioning
that (1) and (22) are static and static-homogeneous cases
of (2). Hence, the physically meaningful nature of the
generalized Lorenz gauge is inherited and at the same
time, magnetostatic potential equations and dynamic potential
equations are unified under the same framework based on the
generalized Lorenz gauge and generalized Coulomb gauge.
It can be observed that the solutions of (1) and (22)
satisfy (8) automatically, as A is gauged to be solenoidal in a
weak/rigorous sense. Basically, the solution of (1) is different
from (22), since different gauges are applied and different
irrotational components of A, which are brought about by
numerical errors, exist in the solutions. However, these
components will be removed completely when B is solved by
B = ∇ × A. Finally, the same solution of B will be achieved
by (1), (8), and (22).

Since the second term on the LHS of (1) and (22) involves
matrix inverse and multiplication, it may cost additional
computation time and memory. Because of sparse approximate
inverse (SAI) [26] technique, [GN N ]−1 can be approximated
by the SAI of [GN N ], instead of the exact inverse,
without much loss of accuracy. This approximation has been
investigated in [24] and [28]. The point is that A, which,
required by (3), is weakly solenoidal, will not be affected
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Fig. 3. (a) Bz along x-axis (α = 1 and β = 0.6). (b) Bz along
z-axis (α = 1 and β = 0.6).

TABLE I

STATISTICS OF RESULTANT MATRICES WITH

DIFFERENT FORMULATION

by the simplification. In the numerical implementation, the
quality and cost of computing [GN N ]−1 is controlled by
β (β ∈ [0, 1]). In general, lower values of β lead to more
computation, more fill-in, but better approximation of the
real inverse. If one keeps reducing β, SAI will eventually
compute the exact inverse.

III. NUMERICAL VERIFICATION

Here, an example of cylinder iron in the field of a cylindrical
coil [28], as shown in Fig. 2, is presented to verify the
proposed solution for magnetostatic problems. As the structure
is axial symmetrical, we can discretize the portion lying in the
first quadrant instead of the whole domain.

As the null space of the curl operator is removed, direct
solvers can be applied to (1) and (22). In addition, iterative

Fig. 4. Vector plots of A in xy plane, obtained by (a) (8), (c) (1), and
(e) (22). Vector plots of A and B, where (a) and (b) obtained by (8); (c) and
(d) obtained by (1); (e) and (f) obtained by (22), respectively.

solvers are good candidates for solving the matrix system,
as the condition number of the matrix is well controlled. Fig. 3
presents Bz values, obtained by the proposed method using
both direct and iterative solvers, along the axes. The result
obtained by solving (8) is added for reference. It is obvious
that these results are in overlap agreement with each other,
which demonstrates the accuracy of the proposed method
and supports the observation in Section II. In addition, the
corresponding condition numbers and generalized minimal
residual (GMRES) [29] iterative steps used to achieve 10−6

accuracy of the solution are listed in Table I. Although the
singular system (8) converges faster due to the compatibility
of the matrix system [16], its solution is not unique. Obviously,
the inhomogeneity of ε worsens the matrix condition and thus
more iterative steps are needed for (1). Hence, (22) is preferred
for magnetostatic applications.

In addition, A vector and B vector on the xy plane and
xz plane, respectively, are shown in Fig. 4. Apparently,
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Fig. 5. (a) Ay and (b) Bz obtained by solving (22) with different β values.

TABLE II

STATISTICS OF RESULTANT MATRIX OF (22) WITH DIFFERENT β

B profiles obtained by (1), (8), and (22) are almost the same,
which make sense as the null space of A is eliminated by the
curl operation, B = ∇×A. However, the nonuniqueness exists
in (8), which makes iterative solvers converge to different
solutions with different initial guesses, while this is not the
case for (1) and (22). In addition, the gauge effect plays an
important role for A. As shown in Fig. 4, A profiles obtained
by (1) and (22) are smooth and flow in a rotational sense,
as required by (3) and (6), while that obtained by (8) looks
messy.

Furthermore, as [GN N ]−1 is controlled by β, the matrix
condition should be influenced by β. Table II summarizes the
variation of sparsity and condition number of the resultant
matrix, [K1] − [K2][GN N ]−1[GN E ], as well as GMRES [29]
iterative steps used to achieve 10−6 accuracy of the solution.
It is worth noting that the sparsity of [GN N ]−1, obtained

by SAI, is <7.7660 × 10−4, which means [GN N ]−1 can be
approximated by a near-diagonal matrix without perceptible
loss of accuracy, as presented in Fig. 5. Hence, the sparse
merit of the final matrix obtained by FEM is greatly
retained. In addition, if iterative solvers are used, the inverse
of [GN N ] is not necessary, because the solution can be found
based on the inner and outer iterative procedures.

IV. CONCLUSION

The double curl equation with generalized Coulomb gauge
for magnetostatic problems has been solved by expanding A
with tangentially continuous vector elements. The null space
of the curl operator is removed by the generalized Coulomb
gauge, which regulates A to be solenoidal in a weak sense,
and thus the uniqueness of A is guaranteed. The mapping
between Whitney forms by mixed operators is investigated,
which inspires an appropriate approximation of the gauge
term. Approximating [GN N ]−1 by the SAI of [GN N ], the
resultant matrix retains the sparse property of FEM, and is well
conditioned at the same time. Hence, both direct and iterative
solvers can be applied. The numerical results are in perfect
agreement with the reference and good consistency with the
physics.
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