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Abstract. Discrete versions of Poisson’s equation with large contrasts in the coefficients
result in very ill-conditioned systems. Thus, its iterative solution represents a major challenge,
for instance, in porous media and multiphase flow simulations, where considerable permeability
and density ratios are usually found. The existing strategies trying to remedy this are highly
dependent on whether the coefficient matrix remains constant at each time iteration or not. In
this regard, incompressible multiphase flows with high-density ratios are particularly demanding
as their resulting Poisson equation varies along with the density field, making the reconstruction
of complex preconditioners impractical. This work presents a strategy for solving such versions
of the variable Poisson equation. Roughly, we first make it constant through an adequate
approximation. Then, we block-diagonalise it through an inexpensive change of basis that takes
advantage of mesh reflection symmetries, which are common in multiphase flows. Finally, we
solve the resulting set of fully decoupled subsystems with virtually any solver. The numerical
experiments conducted on a multiphase flow simulation prove the benefits of such an approach,
resulting in up to 6.6x faster convergences.

1 INTRODUCTION

The principal bottleneck in the numerical simulation of many physical phenomena is the
solution of Poisson’s problem. For instance, linear elasticity, computational fluid dynamics
(CFD), electro-magnetics, and groundwater flow simulations require the solution of large and
sparse discrete versions of Poisson’s equation. In its general form, it reads:

∇ · (α∇u) = f in Ω, (1)
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where Ω ⊆ R3 is an open and bounded domain on whose boundary, ∂Ω, adequate boundary
conditions are imposed.

As a result of their excessive memory and computational requirements, direct solvers [1]
are generally unaffordable, and iterative alternatives such as Krylov subspace methods [2] are
employed. However, their convergence rates highly depend on the spectrum of the linear systems’
coefficient matrices. Then, ill-conditioned versions of the discrete Laplace operator, ∆, or, more
generally, of ∇ · α∇, result in unacceptably slow convergences and require the use of robust
preconditioners [3].

This work targets the solution of eq. (1) for large contrasts in the coefficients, α, which trans-
late into very ill-conditioned systems. This is usually the case for porous media and multiphase
flow simulations, where extreme permeability and density ratios are usually found. The existing
strategies trying to remedy this are highly dependent on whether the coefficient matrix remains
constant at each time iteration [4, 5] or not [6, 7]. In this regard, incompressible multiphase flows
with high-density ratios are particularly challenging since their resulting Poisson equation varies
along with the density field, making the reconstruction of complex preconditioners impractical.

This work presents a strategy for solving such versions of the variable Poisson equation.
Roughly, we transform it into its constant counterpart through the approximation proposed
by Dodd and Ferrante [7]. Then, we take advantage of mesh reflection symmetries, common
in multiphase flows [8, 9, 10], to block-diagonalise it through an inexpensive change of basis.
Finally, we solve concurrently the resulting set of fully decoupled subsystems with virtually any
solver at a significantly lower computational cost.

The remaining sections are organised as follows. Section 2 introduces the governing equations
for incompressible multiphase flow simulations. Additionally, it describes the approach for block-
diagonalising the variable Poisson equation. Section 3 presents the test case and discusses the
results obtained in the numerical experiments. Finally, section 4 gives some concluding remarks.

2 MATHEMATICAL FRAMEWORK

2.1 Governing equations

For simplicity, let us assume an incompressible two-phase flow of constant viscosity, µ, and
densities ρ1 and ρ2. Such a flow is governed by the following version of the Navier-Stokes
equations:

∂v

∂t
+ (v · ∇)v =

1

ρ
(µ∆v −∇p+ σκδΓn̂) (2)

∇ · v = 0

where v, p and ρ stand for the velocity, pressure and density fields, and σ, κ, δΓ and n̂ for
the surface tension coefficient, interface curvature, Dirac delta and unit vector normal to the
interface, respectively.

Then, a classical fractional step method is employed to solve the pressure-velocity coupling
of eq. (2). It requires, at each time iteration, solving the following version of eq. (1):

∇ ·
(
1

ρ
∇p

)
=

1

∆t
∇ · vp (3)
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for a given time-step, ∆t.
A symmetry-preserving discretisation [11, 12, 13] of the system leads to the following discrete

Navier-Stokes equations:

Ω
dvh

dt
= −C(vh)vh + NDvh − R−1ΩGph + σKGθh, (4)

where C and D stand for the discrete convective and diffusive operators, K and θh for the discrete
curvature [11] and level-set marker, and Ω = diag(Vh), N = diag(µ/ρh) and R = diag(ρh) are
diagonal matrices accounting for the discrete mesh volume, kinematic viscosity, and density.

Then, the discrete gradient, G, and divergence, M, operators are related by:

G = −Ω−1Mt, (5)

and, consequently, the discrete Laplace operator, L := MG, satisfies:

L = −MΩ−1Mt. (6)

Likewise, the discrete version of eq. (3) reads:

L̂ph =
1

∆t
Mvp

h, (7)

where we defined the variable Laplace operator as L̂ := MR−1G.

2.2 High density ratio Poisson’s equation

As was already discussed, the main challenges in solving eq. (7) in the presence of large
density ratios, ρ2/ρ1, are the severe ill-conditioning of the coefficient matrix, L̂, and the fact
that it varies along with the density field, R.

Despite existing strategies to avoid reconstructing the preconditioners through inexpensive
approximate updates [6], this work aims to study how to make the variable Poisson equation take
advantage of spatial symmetries similarly to [14, 15]. To do so, we will rely on the approximation
proposed by Dodd and Ferrante in [7]. Namely, letting ρ0 := min{ρ1, ρ2} and p̂ := 2pn − pn−1,
we will assume:

1

ρn+1
∇pn+1 ≃ 1

ρ0
∇pn+1 +

(
1

ρn+1
− 1

ρ0

)
∇p̂. (8)

Then, combining eqs. (3) and (8):

∇2p =
ρ0
∆t

∇ · vp +∇ ·

[(
1− ρ0

ρ

)
∇p̂

]
, (9)

or, in its discrete form:

Lph =
ρ0
∆t

Mvp
h +M

(
I− ρ0R

−1
)
Gp̂h. (10)

Applying the approximation of eq. (8) to replace eq. (7) with eq. (10) has two significant
advantages. On the one hand, the coefficient matrix, L, is now constant. On the other, density
contrasts no longer affect its conditioning.
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Nevertheless, it is worth remarking that such an approach adds an artificial dissipation to
the system. To see this, let us consider an inviscid two-phase flow free of surface tension, i.e.,
with µ = 0 and σ = 0. Then, the time derivative of the total kinetic energy, EK , reads:

dEK

dt
=

〈
Rvh,

dvh

dt

〉
Ω

, (11)

which, by virtue of eq. (4), equals:

dEK

dt
= −

dEK/dt|
C(vh)︷ ︸︸ ︷〈

Rvh,C(vh)vh

〉
Ω
−

dEK/dt|∇p︷ ︸︸ ︷〈
Rvh,R

−1Gph

〉
Ω
. (12)

Then, if we solve the more challenging eq. (7), i.e., the variable Poisson equation, we have:

dEK

dt

∣∣∣∣
∇p

=
〈
Rvh,R

−1Gph

〉
Ω
= ⟨vh,Gph⟩Ω

eq. (5)
=

〈
vh,−Ω−1Mtph

〉
Ω
= ⟨−Mvh, ph⟩ = 0, (13)

given that Mvh = 0h.
Conversely, if we use the approximation of eq. (8) to solve the easier eq. (10), i.e., the constant

Poisson equation, we have:

dEK

dt

∣∣∣∣
∇p

eq. (8)
=

〈
Rvh,

1

ρ0
Gph + R−1Gp̂h −

1

ρ0
Gp̂h

〉
Ω

= (14)

=

〈
1

ρ0
Rvh,G (ph − p̂h)

〉
Ω

+ ⟨vh,Gp̂⟩Ω
eq. (5)
=

〈
1

ρ0
Rvh,G (ph − p̂h)

〉
Ω

− ⟨Mvh, ph⟩ .

Remarkably enough, it is no longer guaranteed that Mvh = 0h. Additionally, the more
inaccurate the interpolated pressure, p̂h, is, the more unphysical the kinetic energy becomes.
Similarly, the larger the density ratio, ρ1/ρ2, the higher the impact of this artificial perturbation.

2.3 Benefiting from mesh symmetries

For clarity, let us consider a (structured or unstructured) mesh with a single reflection sym-
metry, i.e., a mesh analogous to fig. 1. Additionally, let us impose the same grid points’ ordering
on each side. As a result, the entire mesh is halved into two subdomains, and all the scalar fields
satisfy:

x =

(
x1

x2

)
∈ Rn, (15)

where n stands for the mesh size and x1,x2 ∈ Rn/2 for x’s restriction to each of the subdomains.
Furthermore, spatially symmetric points are in the same position within the subvectors, and the
discrete Laplace operator satisfies:

L =

(
Linn Lout
Lout Linn

)
∈ Rn×n, (16)
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Figure 1: The single-symmetry case.

where Linn, Lout ∈ Rn/2×n/2 correspond to the inner- and outer-subdomain couplings, respec-
tively.

Then, we can define the following change-of-basis:

S :=
1√
2

(
In/2 In/2
In/2 −In/2

)
∈ Rn×n, (17)

which satisfies S−1 = S, and block-diagonalises L:

SLS−1 =

(
Linn + Lout 0

0 Linn − Lout

)
, (18)

transforming eq. (10) into two decoupled and half-sized subsystems.
More generally, on meshes with s symmetries we can apply the steps above recursively and

decompose L into 2s decoupled subsystems, Ls1 , . . . , Ls2s , of size n/2s:

Ls =


Ls1 0

. . .

0 Ls2s

 ,

thus replacing eq. (10) with:

Ls (Sph) = S

(
ρ0
∆t

Mvph +M
(
I− ρ0R

−1
)
Gp̂h

)
. (19)

Algorithm 1 summarises the resulting strategy.

Algorithm 1 Poisson solver exploiting s reflection symmetries

Require: L ∈ Rn×n and b ∈ Range(L) ⊆ Rn×n

1: procedure Solve(b, Ls)
2: Transform forward the right-hand side: b′ = Sb
3: Decoupled solution of the 2s subsystems: Ls1x

′
1 = b′

1, . . . , Ls2sx
′
2s = b′

2s

4: Transform backward the solution: x = S−1x′

5: end procedure
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3 NUMERICAL EXPERIMENTS

The test case considered is a two-phase flow relying on the symmetry-preserving staggered
discretisation of [11]. It consists of an initially static ellipse, fig. 2a, moved by the surface tension
action to the evolved state on which we have conducted all the numerical experiments, fig. 2b.
Table 1 summarises the idealised parameters considered. Remarkably enough, exploiting sym-
metries naturally applies to arbitrary unstructured meshes. However, for the sake of simplicity,
in the present work we have only considered Cartesian uniform grids, thus having: Ω = ∆x∆yIn.

(a) Initial configuration (b) Evolved configuration

Figure 2: Two-phase flow test case.

Parameter Units Internal fluid External fluid

Density ρ Kg/m3 ρ1 = 1.0 ρ2 = ratio−1

Dynamic viscosity µ Ns/m2 10−4

Surface tension coefficient σ N/m ρ2/1000

Initial ellipse axes (a, b) m (1.0, 0.5)

Table 1: Idealised parameters defining the two-phase flow test case.

Figure 3 illustrates the impact of the density ratio on L̂’s conditioning. As expected, large
density ratios result in extremely ill-conditioned (variable) systems.
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Figure 3: Normalised spectrum of L̂ for various density ratios on a 962 mesh.

6
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Label Case

Lap Equation (7)
DF Equation (10)

DF + 1sym Equation (19), s = 1
DF + 2sym Equation (19), s = 2

Table 2: Labels used in the convergence plots.

In order to illustrate the effect of exploiting mesh symmetries, we have solved eqs. (7), (10)
and (19) using different density ratios. Table 2 summarises the labels used in the convergence
plots to identify each of the equations solved. The solvers considered are differently precondi-
tioned Conjugate Gradient methods (PCG). Additionally, we have utilised the last time itera-
tion’s pressure field as the initial guess for the solvers in order to accelerate their convergence.
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(c) ρ1/ρ2 = 103
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Figure 4: Jacobi preconditioned CG convergence for various density ratios on a 2562 mesh.

The preconditioners considered are Jacobi, Incomplete Cholesky (IC) [16] and the sparse
approximate inverse (SPAI) of Grote and Huckle [17]. Despite Jacobi’s relatively low impact on
the system’s conditioning, its simplicity makes it the only one suitable (at least, “as it is”) for
the variable case, i.e., for eq. (7). Indeed, not only reconstructing more complex preconditioners
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Figure 5: IC and SPAI preconditioned CG convergence for various density ratios on a 2562 mesh.

at each time iteration is computationally unaffordable, but also, in most real simulations, the
variable coefficient matrix, L̂ = MR−1G, is only available in its factored form.

Two points can be inferred from fig. 4. On the one hand, if the preconditioners’ reconstruction
were not an issue (and, therefore, having a constant coefficient matrix was not a substantial
benefit), it would not be worth replacing eq. (7) with eq. (10) at the cost of the artificial
dissipation added by eq. (8). On the other hand, it becomes clear that even with such a
simple preconditioner and regardless of the density ratio, exploiting symmetries and solving the
alternative eq. (19) greatly accelerates the solvers’ convergence.

Regarding fig. 5, the advantages of using eq. (8) to make the variable Poisson equation
constant are evident. Indeed, using more complex preconditioners such as IC or SPAI leads to
substantially faster convergences. On top of that, exploiting symmetries further improves the
solvers’ performance. For instance, exploiting two symmetries and using an IC preconditioned
PCG to solve eq. (19) results in up to 2.0x faster convergences than solving eq. (10) with the
same solver and up to 6.6x compared to solving eq. (7) with a Jacobi preconditioned PCG.
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4 CONCLUSIONS

In this work, we have presented a strategy to accelerate the solution of the variable coefficients
Poisson equation. We have focused on the multiphase flow case, which usually presents mesh
symmetries and whose large density contrasts lead to extremely ill-conditioned (and variable)
linear systems. Hence, we have recalled the approximation due to Dodd and Ferrante [7] to
make constant the coefficient matrix. It allowed us to extend to the variable case a strategy for
exploiting mesh symmetries in the solution of Poisson’s equation [14, 15].

On the one hand, the overhead of our strategy is minimal given the negligible cost of the two
transforms involved. On the other, the numerical experiments presented confirm that benefiting
from mesh symmetries to solve the equivalent eq. (19) accelerates the convergence of the iterative
methods up to 2.0x and 6.6x with respect to solving the alternative eqs. (7) and (10), respectively.

Future lines of work include evaluating the current strategy on an actual simulation code
following an algebra-based approach [18]. Hence, we plan to implement it within our in-house
code [19, 20], and expect not only to attain great accelerations on the Poisson solvers but
also to benefit from other computational advantages. Namely, the regular block structure of
virtually all the operators allows replacing all the sparse matrix-vector products with the higher
arithmetic intensity sparse matrix-dense matrix product. As a result, we will accelerate all
matrix multiplications and reduce the simulation’s memory footprint.
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