94 research outputs found

    Models, Algorithms, and Architectures for Scalable Packet Classification

    Get PDF
    The growth and diversification of the Internet imposes increasing demands on the performance and functionality of network infrastructure. Routers, the devices responsible for the switch-ing and directing of traffic in the Internet, are being called upon to not only handle increased volumes of traffic at higher speeds, but also impose tighter security policies and provide support for a richer set of network services. This dissertation addresses the searching tasks performed by Internet routers in order to forward packets and apply network services to packets belonging to defined traffic flows. As these searching tasks must be performed for each packet traversing the router, the speed and scalability of the solutions to the route lookup and packet classification problems largely determine the realizable performance of the router, and hence the Internet as a whole. Despite the energetic attention of the academic and corporate research communities, there remains a need for search engines that scale to support faster communication links, larger route tables and filter sets and increasingly complex filters. The major contributions of this work include the design and analysis of a scalable hardware implementation of a Longest Prefix Matching (LPM) search engine for route lookup, a survey and taxonomy of packet classification techniques, a thorough analysis of packet classification filter sets, the design and analysis of a suite of performance evaluation tools for packet classification algorithms and devices, and a new packet classification algorithm that scales to support high-speed links and large filter sets classifying on additional packet fields

    Building Blocks for Mapping Services

    Get PDF
    Mapping services are ubiquitous on the Internet. These services enjoy a considerable user base. But it is often overlooked that providing a service on a global scale with virtually millions of users has been the playground of an oligopoly of a select few service providers are able to do so. Unfortunately, the literature on these solutions is more than scarce. This thesis adds a number of building blocks to the literature that explain how to design and implement a number of features

    Representing and manipulating spatial data in interoperable systems and its industrial applications

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, System Design and Management Program, 2006.Includes bibliographical references (p. 123-126).Introduction: The amount of information available nowadays is staggering and increases exponentially. Making sense of this data has become increasingly difficult because of the two factors: · The sheer volume of data · The lack of interoperability between disparate data sources and models While one can do little about the former factor, the latter one can be mitigated by advancing solutions that make data easy to work with and ensure the interoperability among data sources and models in intelligent networks. One way to achieve interoperability is to force every entity involved in the data exchange to adopt the same standard. However, organizations have heavily invested in proprietary data standards and are unlikely to replace their existing standards with a new one. Therefore, another solution is to create a standard, through which organizations can translate their data sources and share them with their customers or general community. The MIT Data Center is spearheading an initiative to create M - a language that is capable to provide the much needed interoperability between divergent data sources and models with an ultimate goal of creating a new intelligent information infrastructure (Brock, Schuster and Kutz 2006).by Marat Zborovskiy.S.M

    Scalable Query Processing on Spatial Networks

    Get PDF
    Spatial networks (e.g., road networks) are general graphs with spatial information (e.g., latitude/longitude) information associated with the vertices and/or the edges of the graph. Techniques are presented for query processing on spatial networks that are based on the observed coherence between the spatial positions of the vertices and the shortest paths between them. This facilitates aggregation of the vertices into coherent regions that share vertices on the shortest paths between them. Using this observation, a framework, termed SILC, is introduced that precomputes and compactly encodes the N^2 shortest path and network distances between every pair of vertices on a spatial network containing N vertices. The compactness of the shortest paths from source vertex V is achieved by partitioning the destination vertices into subsets based on the identity of the first edge to them from V. The spatial coherence of these subsets is captured by using a quadtree representation whose dimension-reducing property enables the storage requirements of each subset to be reduced to be proportional to the perimeter of the spatially coherent regions, instead of to the number of vertices in the spatial network. In particular, experiments on a number of large road networks as well as a theoretical analysis have shown that the total storage for the shortest paths has been reduced from O(N^3) to O(N^1.5). In addition to SILC, another framework, termed PCP, is proposed that also takes advantage of the spatial coherence of the source vertices and makes use of the Well Separated Pair decomposition to further reduce the storage, under suitably defined conditions, to O(N). Using these frameworks, scalable algorithms are presented to implement a wide variety of operations such as nearest neighbor finding and distance joins on large datasets of locations residing on a spatial network. These frameworks essentially decouple the process of computing shortest paths from that of spatial query processing as well as also decouple the domain of the participating objects from the domain of the vertices of the spatial network. This means that as long as the spatial network is unchanged, the algorithm and underlying representation of the shortest paths in the spatial network can be used with different sets of objects

    Technology 2002: The Third National Technology Transfer Conference and Exposition, volume 2

    Get PDF
    Proceedings from symposia of the Technology 2002 Conference and Exposition, December 1-3, 1992, Baltimore, MD. Volume 2 features 60 papers presented during 30 concurrent sessions

    Computational information design

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2004.Page 175 blank.Includes bibliographical references (p. 171-174).The ability to collect, store, and manage data is increasing quickly, but our ability to understand it remains constant. In an attempt to gain better understanding of data, fields such as information visualization, data mining and graphic design are employed, each solving an isolated part of the specific problem, but failing in a broader sense: there are too many unsolved problems in the visualization of complex data. As a solution, this dissertation proposes that the individual fields be brought together as part of a singular process titled Computational Information Design. This dissertation first examines the individual pedagogies of design, information, and computation with a focus on how they support one another as parts of a combined methodology for the exploration, analysis, and representation of complex data. Next, in order to make the process accessible to a wider audience, a tool is introduced to simplify the computational process for beginners, and can be used as a sketch- ing platform by more advanced users. Finally, a series of examples show how the methodology and tool can be used to address a range of data problems, in particular, the human genome.Benjamin Jotham Fry.Ph.D

    Technology 2002: the Third National Technology Transfer Conference and Exposition, Volume 1

    Get PDF
    The proceedings from the conference are presented. The topics covered include the following: computer technology, advanced manufacturing, materials science, biotechnology, and electronics

    NASA Tech Briefs, March 1993

    Get PDF
    Topics include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    Pertanika Journal of Science & Technology

    Get PDF
    corecore