33,397 research outputs found

    Survey on Combinatorial Register Allocation and Instruction Scheduling

    Full text link
    Register allocation (mapping variables to processor registers or memory) and instruction scheduling (reordering instructions to increase instruction-level parallelism) are essential tasks for generating efficient assembly code in a compiler. In the last three decades, combinatorial optimization has emerged as an alternative to traditional, heuristic algorithms for these two tasks. Combinatorial optimization approaches can deliver optimal solutions according to a model, can precisely capture trade-offs between conflicting decisions, and are more flexible at the expense of increased compilation time. This paper provides an exhaustive literature review and a classification of combinatorial optimization approaches to register allocation and instruction scheduling, with a focus on the techniques that are most applied in this context: integer programming, constraint programming, partitioned Boolean quadratic programming, and enumeration. Researchers in compilers and combinatorial optimization can benefit from identifying developments, trends, and challenges in the area; compiler practitioners may discern opportunities and grasp the potential benefit of applying combinatorial optimization

    Requirements and Tools for Variability Management

    Get PDF
    Explicit and software-supported Business Process Management has become the core infrastructure of any medium and large organization that has a need to be efficient and effective. The number of processes of a single organization can be very high, furthermore, they might be very similar, be in need of momentary change, or evolve frequently. If the ad-hoc adaptation and customization of processes is currently the dominant way, it clearly is not the best. In fact, providing tools for supporting the explicit management of variation in processes (due to customization or evolution needs) has a profound impact on the overall life-cycle of processes in organizations. Additionally, with the increasing adoption of Service-Oriented Architectures, the infrastructure to support automatic reconfiguration and adaptation of business process is solid. In this paper, after defining variability in business process management, we consider the requirements for explicit variation handling for (service based) business process systems. eGovernment serves as an illustrative example of reuse. In this case study, all local municipalities need to implement the same general legal process while adapting it to the local business practices and IT infrastructure needs. Finally, an evaluation of existing tools for explicit variability management is provided with respect to the requirements identified.

    Anytime Computation of Cautious Consequences in Answer Set Programming

    Full text link
    Query answering in Answer Set Programming (ASP) is usually solved by computing (a subset of) the cautious consequences of a logic program. This task is computationally very hard, and there are programs for which computing cautious consequences is not viable in reasonable time. However, current ASP solvers produce the (whole) set of cautious consequences only at the end of their computation. This paper reports on strategies for computing cautious consequences, also introducing anytime algorithms able to produce sound answers during the computation.Comment: To appear in Theory and Practice of Logic Programmin
    corecore