1,469 research outputs found

    Parallel generalized Delaunay mesh refinement

    Get PDF
    The modeling of physical phenomena in computational fracture mechanics, computational fluid dynamics and other fields is based on solving systems of partial differential equations (PDEs). When PDEs are defined over geometrically complex domains, they often do not admit closed form solutions. In such cases, they are solved approximately using discretizations of domains into simple elements like triangles and quadrilaterals in two dimensions (2D), and tetrahedra and hexahedra in three dimensions (3D). These discretizations are called finite element meshes. Many applications, for example, real-time computer assisted surgery, or crack propagation from fracture mechanics, impose time and/or mesh size constraints that cannot be met on a single sequential machine. as a result, the development of parallel mesh generation algorithms is required.;In this dissertation, we describe a complete solution for both sequential and parallel construction of guaranteed quality Delaunay meshes for 2D and 3D geometries. First, we generalize the existing 2D and 3D Delaunay refinement algorithms along with theoretical proofs of mesh quality in terms of element shape and mesh gradation. Existing algorithms are constrained by just one or two specific positions for the insertion of a Steiner point inside a circumscribed disk of a poorly shaped element. We derive an entire 2D or 3D region for the selection of a Steiner point (i.e., infinitely many choices) inside the circumscribed disk. Second, we develop a novel theory which extends both the 2D and the 3D Generalized Delaunay Refinement methods for the concurrent and mathematically guaranteed independent insertion of Steiner points. Previous parallel algorithms are either reactive relying on implementation heuristics to resolve dependencies in parallel mesh generation computations or require the solution of a very difficult geometric optimization problem (the domain decomposition problem) which is still open for general 3D geometries. Our theory solves both of these drawbacks. Third, using our generalization of both the sequential and the parallel algorithms we implemented prototypes of practical and efficient parallel generalized guaranteed quality Delaunay refinement codes for both 2D and 3D geometries using existing state-of-the-art sequential codes for traditional Delaunay refinement methods. On a heterogeneous cluster of more than 100 processors our implementation can generate a uniform mesh with about a billion elements in less than 5 minutes. Even on a workstation with a few cores, we achieve a significant performance improvement over the corresponding state-of-the-art sequential 3D code, for graded meshes

    VoroCrust: Voronoi Meshing Without Clipping

    Full text link
    Polyhedral meshes are increasingly becoming an attractive option with particular advantages over traditional meshes for certain applications. What has been missing is a robust polyhedral meshing algorithm that can handle broad classes of domains exhibiting arbitrarily curved boundaries and sharp features. In addition, the power of primal-dual mesh pairs, exemplified by Voronoi-Delaunay meshes, has been recognized as an important ingredient in numerous formulations. The VoroCrust algorithm is the first provably-correct algorithm for conforming polyhedral Voronoi meshing for non-convex and non-manifold domains with guarantees on the quality of both surface and volume elements. A robust refinement process estimates a suitable sizing field that enables the careful placement of Voronoi seeds across the surface circumventing the need for clipping and avoiding its many drawbacks. The algorithm has the flexibility of filling the interior by either structured or random samples, while preserving all sharp features in the output mesh. We demonstrate the capabilities of the algorithm on a variety of models and compare against state-of-the-art polyhedral meshing methods based on clipped Voronoi cells establishing the clear advantage of VoroCrust output.Comment: 18 pages (including appendix), 18 figures. Version without compressed images available on https://www.dropbox.com/s/qc6sot1gaujundy/VoroCrust.pdf. Supplemental materials available on https://www.dropbox.com/s/6p72h1e2ivw6kj3/VoroCrust_supplemental_materials.pd

    Dense point sets have sparse Delaunay triangulations

    Full text link
    The spread of a finite set of points is the ratio between the longest and shortest pairwise distances. We prove that the Delaunay triangulation of any set of n points in R^3 with spread D has complexity O(D^3). This bound is tight in the worst case for all D = O(sqrt{n}). In particular, the Delaunay triangulation of any dense point set has linear complexity. We also generalize this upper bound to regular triangulations of k-ply systems of balls, unions of several dense point sets, and uniform samples of smooth surfaces. On the other hand, for any n and D=O(n), we construct a regular triangulation of complexity Omega(nD) whose n vertices have spread D.Comment: 31 pages, 11 figures. Full version of SODA 2002 paper. Also available at http://www.cs.uiuc.edu/~jeffe/pubs/screw.htm

    Unstructured Grid Generation Techniques and Software

    Get PDF
    The Workshop on Unstructured Grid Generation Techniques and Software was conducted for NASA to assess its unstructured grid activities, improve the coordination among NASA centers, and promote technology transfer to industry. The proceedings represent contributions from Ames, Langley, and Lewis Research Centers, and the Johnson and Marshall Space Flight Centers. This report is a compilation of the presentations made at the workshop

    Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations

    Get PDF
    One of the major achievements in engineering science has been the development of computer algorithms for solving nonlinear differential equations such as the Navier-Stokes equations. In the past, limited computer resources have motivated the development of efficient numerical schemes in computational fluid dynamics (CFD) utilizing structured meshes. The use of structured meshes greatly simplifies the implementation of CFD algorithms on conventional computers. Unstructured grids on the other hand offer an alternative to modeling complex geometries. Unstructured meshes have irregular connectivity and usually contain combinations of triangles, quadrilaterals, tetrahedra, and hexahedra. The generation and use of unstructured grids poses new challenges in CFD. The purpose of this note is to present recent developments in the unstructured grid generation and flow solution technology
    corecore