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ABSTRACT

The modeling of physical phenomena in computational fracture mechanics, compu­
tational fluid dynamics and other fields is based on solving systems of partial differential 
equations (PDEs). When PDEs are defined over geometrically complex domains, they 
often do not admit closed form solutions. In such cases, they are solved approximately 
using discretizations of domains into simple elements like triangles and quadrilaterals in 
two dimensions (2D), and tetrahedra and hexahedra in three dimensions (3D). These 
discretizations are called finite element meshes. Many applications, for example, real­
time computer assisted surgery, or crack propagation from fracture mechanics, impose 
time and/or mesh size constraints tha t cannot be met on a single sequential machine. 
As a result, the development of parallel mesh generation algorithms is required.

In this dissertation, we describe a complete solution for both sequential and parallel 
construction of guaranteed quality Delaunay meshes for 2D and 3D geometries. First, 
we generalize the existing 2D and 3D Delaunay refinement algorithms along with theo­
retical proofs of mesh quality in terms of element shape and mesh gradation. Existing 
algorithms are constrained by just one or two specific positions for the insertion of a 
Steiner point inside a circumscribed disk of a poorly shaped element. We derive an 
entire 2D or 3D region for the selection of a Steiner point (i.e., infinitely many choices) 
inside the circumscribed disk. Second, we develop a novel theory which extends both 
the 2D and the 3D Generalized Delaunay Refinement methods for the concurrent and 
mathematically guaranteed independent insertion of Steiner points. Previous parallel al­
gorithms are either reactive relying on implementation heuristics to resolve dependencies 
in parallel mesh generation computations or require the solution of a very difficult ge­
ometric optimization problem (the domain decomposition problem) which is still open 
for general 3D geometries. Our theory solves both of these drawbacks. Third, using 
our generalization of both the sequential and the parallel algorithms we implemented 
prototypes of practical and efficient parallel generalized guaranteed quality Delaunay 
refinement codes for both 2D and 3D geometries using existing state-of-the-art sequen­
tial codes for traditional Delaunay refinement methods. On a heterogeneous cluster of 
more than 100 processors our implementation can generate a uniform mesh with about 
a billion elements in less than 5 minutes. Even on a workstation with a few cores, we 
achieve a significant performance improvement over the corresponding state-of-the-art 
sequential 3D code, for graded meshes.
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Chapter 1

Introduction

1.1 M otivation and Prior Work

Delaunay refinement is a popular technique for generating triangular and tetrahedral 

meshes for use in the finite element method and interpolation in various numeric com­

puting areas. Among the reasons of its popularity is the amenability of the method to 

rigorous mathematical analysis, which allows to derive guarantees on the quality of the 

elements in terms of circumradius-to-shortest edge ratio, the gradation of the mesh, and 

the termination of the algorithm.

The field of sequential guaranteed quality Delaunay refinement has been extensively 

studied, see [24,32,35,39,62,70,77] and the references therein. However, new ideas and 

improvements keep being introduced. One of the basic questions is where to insert ad­

ditional (so-called Steiner) points into an existing mesh in order to improve the quality 

of the elements. Frey’s [37], R uppert’s [70], and early Chew’s [24] algorithms use cir- 

cumcenters of poor quality triangles. Later, Chew [25] suggested to use randomized 

insertion of near-circumcenter points for three-dimensional Delaunay refinement, with

2
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the goal of avoiding slivers.

Li and Teng [56,57] extended the work in [25] by defining a picking sphere with 

a radius which is a constant multiple of the circumradius of the element. They use 

two different rules for eliminating the elements with large radius-edge ratio and for 

eliminating the slivers. In particular, in [56] the rules are defined as follows: “Add the 

circumcenter cT of any (/-simplex with a large p (r)” and “For a sliver-simplex r ,  add a 

good point p e  V{t )" , where p(r) is the radius-edge ratio, 'P (r) is the picking region of 

simplex r ,  and the good point is found by a constant number of random probes. The 

authors in [56] prove tha t their algorithm terminates and produces a well graded mesh 

with good radius-edge ratio and without slivers. In this dissertation, we define Type II 

selection disks similarly to the picking region in [56]. We extend the proofs in [56] to 

show tha t any point (not only the circumcenter) from the selection disk (picking region) 

can be used to eliminate the elements with large radius-edge ratios. We do not address 

the problem of sliver elimination, however, our work can be used in conjunction with 

the sliver removal procedure from [56] such tha t the Delaunay refinement algorithm can 

choose any points from the selection disks (picking regions) throughout both the stage 

of the construction of a good radius-edge ratio mesh ( “almost good mesh” [56]) and the 

stage of sliver removal.

Recently, Ungor [86, 87] proposed to insert specially chosen points which he calls 

off-centers-, this method allows to produce smaller meshes in practice and it was imple­

mented in the popular sequential mesh generation software T rian g le  [73]. We expect 

that other optimization techniques can be used to select positions for new points. In­

deed, in Subsections 2.2.2 and 2.3.2 we give examples of point placement strategies

3
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which in some cases allow to achieve even smaller meshes than the off-center method, 

albeit at significant computation cost. Since one would not like to redesign the parallel 

algorithm and software to accommodate each of the point placement techniques, here 

we generalize the sequential Delaunay refinement approaches and develop a framework 

which allows to use custom point selection strategies. In particular, we derive two types 

of selection disks for the position of a new point with respect to a poor quality triangle 

or tetrahedron. We prove tha t any point placement technique with the only restriction 

that it chooses Steiner points inside selection disks of Type I will terminate and, fur­

thermore, if it chooses Steiner points inside selection disks of Type II, will produce a 

well-graded mesh. While the use of Chew’s [25] picking-sphere is restricted to produce 

only meshes with constant density, the use of our Type II selection disk allows to obtain 

graded meshes which are also size-optimal in two dimensions.

One of the im portant applications of the flexibility offered by the use of selection disks 

is in conforming the mesh to the boundary between different materials. The advantages 

are especially pronounced in medical imaging, when the boundaries between different 

tissues are blurred, see Figure 1.1 (left). In this case, after the image is segmented, 

instead of a clear separation, we have a boundary zone of some none-negligible width, 

see Figure 1.1 (right). Then the goal of the mesh generation step is to avoid creating 

edges that would intersect the boundary, which can be achieved by inserting Steiner 

points inside the boundary zone.

Many applications, like real-time computer assisted surgery and crack propagation 

from fracture mechanics, impose time and/or mesh size constraints tha t cannot be met 

on a single sequential machine. As a result, the development of parallel mesh gener-

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 1.1: The use of the selection disk for the construction of boundary conformal meshes. 
(Left) An MRI scan showing a cross-section of a body. (Right) A zoom-in of the selected 
area containing an artery: the inside is white, the outside has different shades of gray and 
the black zone is an approximate boundary between these regions. The standard Delaunay 
refinement algorithm would insert the circumcenter c. However, in order to construct a mesh 
which conforms to the boundary, another point (p) would be a better choice.

ation algorithms is required. There are four im portant requirements that are usually 

imposed on parallel mesh generation algorithms: stability, scalability, efficient domain 

decomposition and code re-use. Stability refers to the fact that distributed meshes retain 

the same quality of the elements and partition properties as the sequentially generated 

and partitioned meshes [27]. Scalability is understood as the ability of the algorithm 

and software to achieve speedup proportional to the number of processors [54]. The effi­

ciency of domain decomposition can be measured in terms of its computation costs and 

the appropriateness of the resulting subdomains for the selected mesh generation algo­

rithm. Finally, code reuse allows to leverage the ever evolving basic sequential meshing 

libraries which are now m ature and highly optimized.

The parallel mesh generation procedures can be classified based on the degree of 

coupling among the subproblems, see [28] for a survey on parallel mesh generation. This 

coupling determines the intensity of the communication and the degree of dependency 

(or synchronization). This dissertation completes a series of four different parallel mesh

5
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generation classes of methods tha t were developed in our group and in collaboration:

1. tightly coupled published in [27,66],

2. partially coupled presented here and also published in [16-21],

3. weakly coupled published in [22,26], and

4. decoupled in [12,43,44,58-60].

Nave, Chrisochoides, and Chew [66] presented the first practical provably-good par­

allel mesh refinement algorithm for polyhedral domains, which is tightly coupled. They 

addressed the stability, to some success the scalability, but not the code re-use require­

ment. The algorithm in [66] guarantees stability by simultaneously partitioning and 

refining the interface surfaces and interiors of the subdomains at the cost of high com­

munication and code re-structuring of the Delaunay refinement kernel: refinement due 

to a point insertion can propagate across processor boundaries. Chrisochoides and Nave 

in [27] restructured the sequential Bowyer-Watson kernel [8,90] using the speculative 

execution model [45] in order to tolerate high communication latencies. The specula­

tive execution model allows setbacks to occur if the changes caused by the concurrent 

insertion of two or more points are incompatible. Although more than 80% of the over­

head due to remote data gather operations is masked, experimental data in [27] suggest 

O  (log P ) speedup, P  being the number of processors. In this dissertation, we pro­

vide sufficient conditions, which guarantee the independence of simultaneously inserted 

points, and as a result, allow to eliminate setbacks and to avoid intensive communica­

tion. Moreover, our results are not based on expensive coloring techniques which require

to construct and maintain a conflict graph (cavity graph): when a new point is inserted,

6
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all elements tha t have this point within their circumscribed disk are eliminated which 

creates a cavity. In the cavity graph, each cavity is represented by a vertex and two 

conflicting cavities are represented by an edge.

The elimination of setbacks renders the restructuring of the sequential codes unnec­

essary, which increases the possibilities to reuse the existing sequential mesh generation 

and refinement libraries. Code reuse is very important; it took three years to develop a 

parallel guaranteed quality Delaunay mesh generation code for the algorithm presented 

in [66] which is based on Delaunay algorithms developed five to six years before. This 

means tha t the parallel mesher at the time it is delivered is based on nine to ten year 

old technology. Moreover, improvements in terms of quality, speed, and functionality 

are open ended and permanent.

In order to eliminate communication and synchronization and maximize code reuse, 

Linardakis and Chrisochoides [58,59] presented a Parallel Domain Decoupling Delaunay 

(.P D 3) method for two-dimensional domains. The P D 3 is based on the idea of decou­

pling the individual submeshes so tha t they can be meshed independently with zero 

communication and synchronization. In the past similar parallelizations of Delaunay 

triangulation algorithms and implementations of Delaunay based mesh generators were 

presented in [6, 7,38]. However, in [58, 59] the authors solve some of the drawbacks and 

improve upon the previously published methods. After the decomposition of the domain, 

the P D 3 constructs a special zone around the interfaces of the submeshes. The authors 

prove tha t Delaunay meshers will not insert any new points within a zone around the 

subdomain interfaces, i.e., the sequential Delaunay meshing of the individual submeshes 

can term inate without inserting any new points on the interfaces and thus eliminate com-

7
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munication and modifications of the sequential codes. This way, the problem of parallel 

meshing is reduced to a proper domain decomposition and a discretization of interfaces. 

The domain decomposition problem for parallel mesh generation is formulated as fol­

lows [28,59,60]. Given a domain Q, C Mn, construct the separators Sij C l "  ' ,  such 

that the domain is decomposed into subdomains Q f

N

fi =  [ J  fii} dtti n  dQj = S ^ , i , j  = j,
1 = 1

where di\,L is the boundary of subdomain i, while the separators do not create very small 

angles and other features tha t will force the degradation of mesh quality. Of course, one 

has to show tha t the domain is not over-refined because of a predefined discretization 

of the interfaces. Experimental data from [58,59] show very small over-refinement. The 

construction of the Medial Axis in [58, 59] is based on approximating it from an initial 

constrained Delaunay triangulation of the domain; an alternative way is to derive its 

exact continuous representation from the boundary representation only [13]. However, 

the construction of the Medial Axis for three-dimensional geometries is a much more 

challenging and still open problem [30, 72].

An idea of updating partition boundaries when the inserted points happen to be 

close to them was initially presented by Chew, Chrisochoides, and Sukup [26] as a Par­

allel Constrained Delaunay Meshing (PCDM) algorithm. In PCDM, the edges on the 

boundaries of submeshes are fixed (constrained), and if a new point encroaches upon 

a constrained edge, another point is inserted in the middle of this edge instead. As a 

result, a split message is sent to the neighboring processor, notifying tha t it also has

to insert the midpoint of the shared edge. This approach requires the construction of

8
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separators tha t will not compromise the quality of the final mesh, and allows only for 

limited code reuse, since one has to handle split messages and partial cavity expansions 

within the Bowyer-Watson kernel. In [22] we presented algorithm improvements for the 

PCDM, e.g., the elimination of global synchronization, message aggregation, the use of 

the termination detection algorithm described by Dijkstra [33], and an efficient repre­

sentation of split points, as well as a new implementation that utilizes a number of newly 

available software, such as the Medial Axis Domain Decomposition (MADD) library [60], 

the Metis graph partitioning library [50], the T rian g le  Delaunay triangulator and mesh 

generator [73], and the Robust Predicates [74]. Moreover, we evaluated the algorithm 

and its most recent implementation on a large cluster of workstations with more than 

100 nodes. As a result, more than one billion triangles can be constructed in less than 

three minutes. However, the PCDM algorithm relies on the domain decompositions 

produced by the MADD software, and its extension to three dimensions is subject to 

the availability of a three-dimensional domain decomposer.

In addition to parallel mesh generation methods, there is a class of parallel triangu­

lation methods. While the mesh generation problem deals with the selection of points 

which are not given in the input to achieve required mesh quality, the problem of trian­

gulation is to construct a mesh for a pre-defined point set. A streaming approach to the 

triangulation problem was implemented by Isenburg, Liu, Shewchuk, and Snoeyink [42]. 

They achieve large performance gains by using a spatial finalization technique and man­

age to compute a billion triangle mesh from 500 million points of LIDAR data  on a 

laptop in 48 minutes. A divide-and-conquer projection-based parallel Delaunay trian­

gulation algorithm was developed by Blelloch, Hardwick, Miller, and Talmor [6, 7], The

9
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work by Kadow and Walkington [46-48] extended the work of Blelloch et al. for parallel 

mesh generation and further eliminated the sequential step for constructing an initial 

mesh, however, all potential conflicts among concurrently inserted points are resolved 

sequentially through global synchronization which in [47] is implemented by running a 

dedicated processor.

De Cougny, Shephard, and Ozturan [31] use an underlying octree to aid in parallel 

three-dimensional mesh generation. After the generation of the octree and template 

meshing of the interior octants, their algorithm connects a given surface triangulation to 

the interior octants using face removal. The face removal procedure eliminates problems 

due to the small distance between the interior quadrants and boundary faces, by defining 

“an entity too close to the boundary triangulation” and “using the distance of about 

one-half the octant edge length as the minimum” [31]. We explore a somewhat similar 

question in the context of Delaunay refinement and derive precise distances tha t are 

necessary between the interiors and the boundaries of concurrently refined subdomains.

Lohner and Cebral [61] developed a parallel advancing front scheme. They use an 

octree to delimit the zones where elements can be introduced concurrently and set the 

edge length of the smallest octree box to be of the order of 20 to 50 times the specified 

element size. They implement a “shift and regrid” technique with the shift distance 

determined by min(0.5smjn, 2.0dmjn), where smin is the minimum box size in which 

elements are to be generated, and dmin is the minimum element size in the active front. 

These distances are likely to work well in the case of advancing front meshing, when 

there is a clear distinction between triangulated and empty areas, however, Delaunay 

refinement, in addition to maintaining a mesh which at all times covers the entire domain,

10
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also requires tha t all triangle circumcenters be empty of mesh points.

Edelsbrunner and Guoy [36] studied the possibility of parallel insertion of indepen­

dent points. They define the prestar of point x  as the difference between the closure of 

the set of tetrahedra whose circumspheres enclose x  and the closure of the set of remain­

ing tetrahedra. Further, they define points x  and y as independent if the closures of their 

prestars are disjoint. In Section 3.1 we prove a similar condition of point independence. 

The difference between the independence condition in [36] and our initial criterion is that 

our formulation is less restrictive: under certain conditions it allows the prestars (we 

use the word cavity) to share a point. However, computing the prestars (cavities) and 

their intersections for all candidate points is very expensive. T hat is why we do not use 

coloring methods tha t are based on the cavity graphs and we prove sufficient conditions, 

which allow to use only the regions that the points belong to, to check whether they are 

independent. The minimum separation distance argument in [36] is used to derive the 

upper bound on the number of inserted vertices and prove termination, but does not 

ensure point independence. In addition, we propose a simple data (block) decomposition 

scheme for scheduling parallel point insertion for both distributed and shared memory 

implementations. In [36], a shared memory algorithm based on finding the maximal 

independent set of points is used.

Finally, Spielman, Teng, and Ungor [81] presented the first theoretical analysis of 

the complexity of parallel Delaunay refinement algorithms. However, the assumption is 

tha t the global mesh is completely retriangulated each time a set of independent points 

is inserted [83]. In [82] the authors extended their analysis.

11
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1.2 Contributions of This Dissertation

1. Generalization of the existing two-dimensional (2D) and three-dimensional (3D) 

Delaunay refinement algorithms along with theoretical proofs of mesh quality in 

terms of element shape and mesh gradation. Existing algorithms are constrained 

by just one or two specific positions for the insertion of a Steiner point inside a 

circumscribed disk of a poorly shaped element. We derive an entire 2D or 3D 

region for the selection of a Steiner point (i.e., infinitely many choices) inside the 

circumscribed disk.

2. The development of a novel theory which extends both the 2D and the 3D General­

ized Delaunay Refinement methods (see 1) for the concurrent and mathematically 

guaranteed independent insertion of Steiner points. Previous parallel algorithms 

are either reactive relying on implementation heuristics to resolve dependencies in 

parallel mesh generation computations or require the solution of a very difficult 

geometric optimization problem (the domain decomposition problem) which is still 

open for general 3D geometries. Our theory solves both of these drawbacks.

3. Using our generalization of both the sequential and the parallel algorithms (see 1 

and 2) we implemented prototypes of practical and efficient paraliel generalized 

guaranteed quality Delaunay refinement codes for both 2D and 3D geometries us­

ing existing state-of-the-art sequential codes for traditional Delaunay refinement 

methods. On a heterogeneous cluster of more than 100 processors our implemen­

tation can generate a uniform mesh with about a billion elements in less than 5 

minutes. Even on a workstation with a few cores, we achieve a significant perfor-
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mance improvement over the corresponding state-of-the-art sequential 3D code, 

for graded meshes.
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Chapter 2

Generalized Delaunay Refinem ent 

U sing Selection Disks

2.1 Delaunay Refinement Background

Throughout this dissertation we will assume tha t the input domain SI is described by 

a Planar Straight Line Graph (PSLG) in two dimensions, or a Planar Linear Complex 

(PLC) in three dimensions [70,75-77]. A PSLG (PLC) X  consists of a set of vertices, 

a set of straight line segments, and (in three dimensions) a set of planar facets. Each 

element of X  is considered constrained and must be preserved during the construction 

of the mesh, although it can be subdivided into smaller elements. The vertices of the X  

must be a subset of the final set of vertices in the mesh.

Let the mesh M x  for the given PSLG (PLC) X  consist of a set V  = {pt} of vertices 

and a set T  — {£,} of elements which connect vertices from V.  The elements are 

either triangles in two dimensions or tetrahedra in three dimensions. We will denote the
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



triangle with vertices pu, pv, and pw as A  (puPvPw) and the tetrahedron with vertices 

Pk, Pu Pm, and pn as r  (PkPiPmPn)• We will use the symbol e (piPj) to represent the edge 

of the mesh which connects points p, and pj,  and the symbol C (piPj) to represent the 

straight line segment connecting points which are not necessarily part of the mesh.

There are two commonly used parameters tha t control the quality of mesh elements: 

an upper bound p on the circumradius-to-shortest edge ratio, which in two dimensions 

is equivalent to a lower bound I  on a minimal angle [63, 75]:

P = (2-1) 2 s in d

and an upper bound on the element area (or volume) A. We will denote the 

circumradius-to-shortest edge ratio of element t  as p(t)  and the area (or volume) of 

t as A  (t). The former upper bound is usually fixed and given by a constant value, 

while the latter can vary and be controlled by some user-defined grading function A  (•), 

which can be defined either over the set of mesh elements or over D, depending on the 

implementation. As a special case, the grading function can also be constant.

Let us call the open disk corresponding to a triangle’s circumscribed circle or to a 

tetrahedron’s circumscribed sphere its circumdisk. We will use symbols O  (f) and r  (t) 

to represent the circumdisk and the circumradius of t, respectively. A mesh is said to 

satisfy the Delaunay property if the circumdisk of every element does not contain any 

of the mesh vertices [32].

Traditional Delaunay mesh generation algorithms start with the construction of the

initial mesh, which conforms to A, and then refine this mesh until the element quality

constraints are met. In this dissertation, we focus on parallelizing the Delaunay refine-
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ment stage, which is the most memory- and computation-expensive stage for parallel 

Delaunay mesh generation [17]. The general idea of Delaunay refinement is to insert 

additional (Steiner) points inside the circumdisks of poor quality elements, which causes 

these elements to be destroyed, until they are gradually eliminated and replaced by 

better quality elements.

We will extensively use the notion of cavity [39] which is the set of elements in 

the mesh whose circumdisks include a given point p. We will denote Cm  (p ) to be the 

cavity of p with respect to mesh M. and BCm  (P) to be the set of boundary edges in two 

dimensions (or triangles in three dimensions) of the cavity, i.e., the edges or the triangles 

which belong to only one element in Cm  ('[>)• When M. is clear from the context, we 

will omit the subscript. For our analysis, we will use the Bowyer-Watson (B-W) point 

insertion algorithm [8,90], which can be written shortly as follows:

vn+1 *-vnu M ,
T n + 1 T n y CMn  (p )  ( j  { ( K )  | ^  €  g C Mn  (p )} )  I • )

where £ is an edge in two dimensions or a triangle in three dimensions, while M.n+1 = 

(yn+i, T n+l) and A4n = (Vn, T n) represent the mesh before and after the insertion of 

p, respectively. The set of newly created elements forms a ball [39] of point p, denoted 

B (p), which is the set of elements in the mesh tha t are incident upon p.

In order not to create skinny elements close to the constrained segments and faces, 

sequential Delaunay algorithms observe special encroachment rules [70,75-77]. In par­

ticular, if a Steiner point p is considered for insertion but it lies within the open equatorial 

disk of a constrained subfacet / ,  p is not inserted but the circumcenter of /  is inserted

instead. Similarly, if p  is inside the open diametral circle of a constrained subsegment s,
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Figure 2.1: Encroachment in three dimensions, 

then the midpoint of s is inserted instead. Consider the example in Figure 2.1. The new 

point pi is inside the three-dimensional equatorial disk of a constrained face A (P kP iP m )• 

In this case, pi is rejected and the algorithm attem pts to insert the circumcenter p[ of 

A ('PkPiPm) ■ If P i does not encroach upon any constrained segments, it is inserted into 

the mesh. If, however, it encroaches upon a constrained segment, which is e (jpkPi) in 

our example, p[ is also rejected and the midpoint p'( of the constrained edge is inserted.

D efinition 2.1 (Local feature size [70 ,76 ,77]) The local feature size function 

lfs (p) for a given point p is equal to the radius of the smallest disk centered at p that 

intersects two non-incident elements of the PSLG (PLC).

lfs (p) satisfies the Lipschitz condition:

Lem m a 2.1 (Lem m a 1 in [70], Lem m a 2 in [77], Lem m a 2 in [76]) Given any 

PSLG (PLC) and any two points pi and pj, the following inequality holds:

lfs ( p ^  < lfs ( p j )  + \ \ P i ~ P j \ \ .  (2.3)
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Here and below we use the standard Euclidean norm || • ||.

Traditionally, Steiner points are selected at the circumcenters of poor quality ele­

ments [24,37,70,76,77]. However, Chew [25] chooses Steiner points randomly inside 

a picking sphere to avoid slivers. The meshes in [25] have constant density; therefore, 

Chew proves the termination, but not the good grading. Ruppert [70] and Shewchuk [77] 

proved tha t if p > \/2  in two dimensions and p > 2 in three dimensions, then Delaunay 

refinement with circumcenters terminates. If, furthermore, the inequalities are strict, 

then good grading can also be proven both in two and in three dimensions. In two 

dimensions, in addition to good grading, one can also prove size-optimality which refers 

to the fact tha t the number of triangles in the resulting mesh will be within a constant 

multiple of the smallest possible number of triangles satisfying the input constraints.

Recently, Ungor [86] introduced a new type of Steiner points called off-centers. The 

idea is based on the observation tha t sometimes the elements created as a result of 

inserting circumcenters of skinny triangles are also skinny and require further refinement. 

This technique combines the advantages of advancing front methods, which can produce 

very well-shaped elements in practice, and Delaunay methods, which offer theoretical 

guarantees. Ungor showed tha t the use of off-centers allows to significantly decrease the 

size of the final mesh in practice. While eliminating additional point insertions, this 

strategy creates triangles with the longest possible edges, such tha t one can prove the 

termination of the algorithm and still produce a graded mesh.

However, circumcenters and off-centers are not the only possible positions for the 

insertion of Steiner points, either sequentially or in parallel, such tha t one can keep 

the theoretical guarantees. Below we define two types of selection disks: Type I and
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Type II. The selection disk of Type II is always inside the selection disk of Type I. Both 

types of selection disks are defined such tha t a Delaunay refinement algorithm can pick 

any point inside a selection disk of a skinny triangle for the elimination of this triangle. 

First, in Sections 2.2.1 and 2.3.1 we prove tha t the algorithms which use selection disks of 

Type I term inate (and therefore the algorithms which use selection disks of Type II also 

terminate). Then, in Sections 2.2.3 and 2.3.3, we prove that in addition to termination, 

Delaunay refinement with Type II selection disks also produces theoretically well-graded 

meshes which are size-optimal in two dimensions.

The traditional proofs of term ination and size optimality of Delaunay refinement 

algorithms [70,77] explore the relationships between the insertion radius of a point and 

tha t of its parent. Stated shortly, the insertion radius of point p is the length of the 

shortest edge connected to p immediately after p  is inserted into the mesh, and the parent 

is the vertex which is “responsible” for the insertion of p  [77]. The proofs in [70,77] rely 

on the assumption that the insertion radius of a Steiner point is equal to the circumradius 

of the poor quality element. This assumption holds when the Steiner point is chosen 

at the circumcenter of the element, since by Delaunay property the circumdisk of the 

element is empty, and, hence, there is no vertex closer to the circumcenter than its 

vertices. However, the above assumption does not hold if we pick an arbitrary point 

inside the selection disk of the element. For example, in Figure 2.2(right) the Steiner 

point pi within the selection disk can be closer to the mesh vertex pn than to any of the 

vertices pk, pi, Pm which define the skinny triangle. Therefore, we need to extend the 

existing theory in the new context, i.e., Steiner points can be inserted anywhere within 

the selection disks of poor quality elements. The following definitions of insertion radius
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and parent of a Steiner point play a central role in the analysis in [70, 76, 77] and we will 

adopt them for our analysis, too.

D efinition  2.2 (Insertion radius [76,77]) The insertion radius R  (p) o f point p is 

the length o f the shortest edge which would be connected to p if  p is inserted into the 

mesh, immediately after it is inserted. I f  p is an input vertex, then R  (p) is the Euclidean 

distance between p and the nearest input vertex visible from p.

Rem ark 2.1 I f  p is a midpoint of an encroached subsegment or subfacet, then R (p ) is

the distance between p and the nearest encroaching mesh vertex; if  the encroaching mesh 

vertex was rejected for insertion, then R  (p ) is the radius of the diametral circle o f the

subsegment or o f the equatorial sphere o f the subfacet [76, 77].

Rem ark 2.2 As shown in [76, 77], i f  p is an input vertex, then R (p) > lfs (p). Indeed, 

from the definition of lfs (p), the second feature (in addition to p) which intersects the 

disk centered at p is either a constrained segment, a constrained facet, or the nearest 

input vertex visible from p.

The following definition of a parent vertex generalizes the corresponding definition 

in [76,77]. In our analysis, even though the child is not necessarily the circumcenter, 

the parent is still defined to be the same vertex.

D efinition  2.3 (Parent o f a Steiner point) The parent p of point p is the vertex 

which is defined as follows:

•  I f  p is an input vertex, it has no parent.
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• I f  p is a midpoint o f an encroached subsegment or subfacet, then p is the encroach­

ing point (possibly rejected for insertion).

• I f  p  is inserted inside the circumdisk of a poor quality element (triangle or tetra­

hedron), p is the most recently inserted vertex of the shortest edge of this element.

2.2 Two-Dimensional Generalized Delaunay Refinement

In this section we introduce two types of selection disks which can be used for the 

insertion of Steiner points in two dimensions. First, we prove the termination of a 

Delaunay refinement algorithm with the Type I selection disks. Then we give an example 

of an optimization based strategy for the insertion of Steiner points from the Type I 

selection disks which, for small angle bounds, allows to decrease the size of the final mesh 

in practice. Finally, we introduce the Type II selection disk (which is always inside the 

Type I selection disk of the same skinny tetrahedron) and prove the good grading and 

the size optimality.

2 .2 .1  P r o o f  o f  T erm in a tio n  w ith  S e le c t io n  D isk s o f  T y p e  I

D efinition 2.4 (Selection  disk o f T ype I in 2D ) I f  t  is a poor quality triangle with 

circumcenter c, shortest edge length I, circumradius r, and circumradius-to-shortest edge 

ratio p =  r /I > p > y/2, then the Type I selection disk for the insertion of a Steiner 

point that would eliminate t  is the open disk with center c and radius r — % / 2 1.

For example, in Figure 2.2(right), e(pipm) is the shortest edge of a skinny triangle 

A (Pk PiP m ) and c is its circumcenter. The selection disk of Type I is the shaded disk
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Figure 2.2: (Left) Delaunay refinement with the off-centers. [86] (Right) The Type I selection 
disk (shaded) for the insertion of a Steiner point.

with center c and radius r (A (Pk PiPm )) — \/2 | |Pi ~  Pm\\-

Further we will prove tha t any point inside the Type I selection disk of a triangle can 

be chosen for the elimination of the triangle, and tha t the generalized Delaunay refine­

ment algorithm which chooses Steiner points inside Type I selection disks terminates.

R em ark  2.3 The radius o f Chew’s picking sphere is fixed and is equal to one half of 

the length of the shortest possible edge in the final mesh [25]. We generalize the idea 

of the picking sphere to the Type I  selection disk, such that the radius of the selection 

disk varies among the triangles and depends on the length of the shortest edge of each 

particular triangle.

R em ark  2.4 Ungor’s off-center always lies inside the selection disk o f Type I. Consider 

Figure 2.2(left). Suppose A  (PkPiPm)  is skinny: p (A  (PkPiPm) )  >  P- I f  we insert its 

circumcenter c, the new triangle A  (cpipm) may also be skinny. In this case, instead 

of inserting c, Ungor suggests to insert the off-center o chosen on the perpendicular
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bisector of the shortest edge e (pipm) such a way that the new triangle A (opipm) will

have circumradius-to-shortest edge ratio equal to exactly p, i.e.,

P (A (opipm)) =  P■ (2.4)

I f  a is the circumcenter of A (opipm), and b is the midpoint of edge e(pipm), then 

from  (2.4) and the Pythagorean theorem for  A (abpi) we have:

11“ -&II2  =  P2\\PI -P m \\2 ~  ^\\PI -P m \\2 =  (P2  -  ^)||Pi -P m ||2,

or

\\a -b \\ = ^ ^ \ \ p i - P m \ V  (2-5)

Noting that

||a -  o|| =  r (A (opipm)) =  p\\pt -  pm||, (2.6)

we have:

||c -  o|| <  r  (A (PkPiPm)) -  ||“ ~fe|| -  ||“ -  “ ||

=  r  (A (PkPiPm)) -  ^ 4 2  ~ Wpi -  Pm\\ ~  p\\pi -  PmW (from (2.5) and (2.6))

=  r (A (PkPiPm)) -  IIPi ~  PmII

< r  (A {PkPiPm)) -  ( i r  +  I\pi -  Pm\\ (since p > V2)
<  r (A (PkPiPm)) ~  V 2 ||Pi -  Pm||,

which implies that the off-center o is inside the Type I  selection disk of triangle 

A  (PkPiPm)-

R em ark  2.5 As p (A (PkPiPm)) approaches \/2, the Type I  selection disk shrinks to the 

circumcenter c of the triangle. If, furthermore, p (A (PkPiPm)) <  \/2, the selection disk 

vanishes, which coincides with the fact that the triangle A  (PkPiPm) cannot be considered 

skinny.
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L em m a 2.2 I f  pi is a vertex of the mesh produced by a Delaunay refinement algorithm 

which chooses points within Type I  selection disks of triangles with circumradius-to-

shortest edge ratios greater than p > \Zft, then the following inequality holds:

R  (Pi)  > C R  ( p i ) , (2.7)

where C is defined as follows:

(i) C  = V2 if  pi is a Steiner point chosen within the Type I  selection disk of a skinny 

triangle;

Otherwise, let pi be the midpoint of subsegment s. Then

(ii) C — ^  if pi is a Steiner point which encroaches upon s, chosen within the selection 

disk of a skinny triangle;

(Hi) C = 2 els a tfPi andPi on incident subsegments separated by an angle of a (with 

P i  encroaching upon s), where 45° < a  < 90°;

(iv) C  =  sin a  i f  Pi and pi lie on incident segments separated by an angle of a  < 45°.

I f  P i  is an input vertex, then

R  (Pi) >  lfs (Pi) .  (2.8)

Proof: We need to present new proofs only for cases (i) and (ii), since the proofs for 

all other cases are independent of the choice of the point within the selection disk and 

are given in [77].

Case (i) By the definition of a parent vertex, pi is the most recently inserted endpoint

of the shortest edge of the triangle; without loss of generality let pi =  pi and e (pipm)
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be the shortest edge of the skinny triangle A (P kP iP m)> see Figure 2.2(right). If e (pipm) 

was the shortest edge among the edges incident upon pi at the time pi was inserted into 

the mesh, then \\pi — pm \\ ~  R (p i) by the definition of the insertion radius; otherwise, 

IIPi ~  Pm,11 > R  (pi)- In either case,

\ \ p i - P m \ \ > R ( p i ) -  (2-9)

Now we can derive the relation between the insertion radius of point pi  and the 

insertion radius of its parent pi — pp.

R (jh) > V2\\pi — p m \\ (from Delaunay property and Definition 2.4)
> V 2 R ( p i )  (from (2.9)).

Hence, R ( p i )  > \ / 2 R  (pi) ; choose C  =  y/2.

Case (ii) Let pi  be inside the selection disk of a skinny triangle A (PkPiPm), such 

that pi  encroaches upon e (pup v), see Figure 2.4(left). Since the edge e (puPv) is part of 

the mesh, there must exist some vertex p w such that p u, p v , and p w form a triangle. 

Because p w is outside of the diametral circle of e (pv pv )-. the circumdisk O  (A ipuPvPw)) 

has to include point pj. Therefore, if pi were inserted into the mesh, A (puPvPw) would 

be part of the cavity C (pi) and the edges connecting pi with p u and p v would be created. 

Therefore,

R  (pi) < min(||pj — pu ||, ||pj ~  p-«||) (from the definition of insertion radius)
< ^ 2 ,\\Pn-Pv\\ (because p% encroaches upon e (puPv))
=  \ / 2 R ( p i )  (from the definition of insertion radius);

choose C = ■

Figure 2.3 shows the relationship between the insertion radii of mesh vertices and

the insertion radii of their parents. We can see tha t if Inequality (2.7) is satisfied then
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Figure 2.3: Flow diagram from [77] illustrating the relationship between the insertion radius 
of a vertex and its parent in two dimensions. If no cycle has a product smaller then one, the 
algorithm will terminate. Input vertices are not shown since they do not participate in cycles. 
In [77] the constant C = p > V2. In our case, with the use of Type I selection disks C = %/2, 
and with the use of Type II selection disks C =  5p>  \/2.

no new edge will be created whose length is smaller than times the length of some 

existing edge and the algorithm will eventually term inate because it will run out of space 

to insert new vertices.

T h e o re m  2.1 (T h eo re m  4 in  [77]) Let lfsmjn be the shortest distance between two 

non-incident entities (vertices or segments) of the input PSLG. Suppose that any two 

incident segments are separated by an angle o f at least 60°, and a triangle is considered 

to be skinny if its circumradius-to-shortest edge ratio is larger than p, where p >  \ / 2 . 

Ruppert’s algorithm will terminate with no triangulation edge shorter than lfsmin.

The proof of this theorem in [77] is based on the result of Lemma 3 in [77], which 

establishes the inequality (2.7) in the context of circumcenter point insertion. Otherwise, 

the proof is independent of the specific position of inserted points. Since we proved (2.7)
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in the context of inserting arbitrary points within Type I selection disks, this theorem 

also holds in this new context.
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Figure 2.4: (Left) pi is a Steiner point within a selection disk of a poor quality triangle which 
encroaches upon a constrained segment e (puPv)- (Right) An example of an optimization-based 
method for the selection of a Steiner point within a selection disk of a poor quality triangle.

2 .2 .2  A n  E x a m p le  o f  a  P o in t S e le c tio n  S tr a te g y

Let us consider Figure 2.4(right). We can see tha t the off-center o of the skinny triangle 

A (PkPiPm) is n° t the only location for a Steiner point pi that will lead to the creation of 

the new triangle incident to the edge e (pipm) with circumradius-to-shortest edge ratio 

equal to exactly p. The arc shown in bold in the figure is the intersection of the circle 

passing through pi, pm, and o with the selection disk of A  (PkPiPm)■ Let us denote this 

arc as T. The thin arcs show parts of the circumcircles of other triangles in the mesh. 

We can observe tha t the cavity C (pi) will vary depending on the location of pi, according 

to the set of triangle circumdisks that include p\. Let us also represent the penalty for 

deleting triangle t as P(t):

p n \  =  $ -!>  if (P (*) >  P) v  ( A  (*) >  -4)>
\  1 , otherwise.
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Then our objective is to minimize the profit function associated with the insertion of 

point pi as the sum of the penalties for deleting all triangles in the cavity C(pi):

m m F(j)j). F(pi) = V  -P(t)

In other words, we try  to minimize the number of deleted good quality triangles and at 

the same time to maximize the number of deleted poor quality triangles. The results 

of our experiments with the cylinder flow (Figure 2.5(left)) and the pipe cross-section 

(Figure 2.5(right)) models using T rian g le  version 1.6 [73] are summarized in Tables 2.1 

and 2.2. We do not list the running times since our experimental implementation is 

built on top of T rian g le , but we do not take advantage of its efficient routines for 

our intermediate calculations as do the circumcenter and the off-center point insertion 

methods. From Table 2 . 1  we can see that our optimization-based method tends to 

produce up to 20% fewer triangles than the circumcenter method and up to 5% fewer 

triangles than the off-center method for small values of the minimal angle bound and no 

area bound, and the improvement diminishes as the angle bound increases. Parts of the 

pipe mesh for the three point insertion methods are also shown in Figure 2.6. Table 2.2 

lists the results of the similar experiments, with an additional area bound constraint. 

We observe that the introduction of an area bound effectively voids the difference among 

the presented point insertion strategies.
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Figure 2.5: (Left) An upper part of a model of cylinder flow. (Right) Pipe cross-section 
model.

Table 2.1: Mesh quality comparison for three point insertion strategies, no area bound is used. 
6 is the minimal angle bound, n is the number of triangles in the resulting mesh, % is the 
percentage ratio in the number of triangles over the optimization-based method, min A and 
max A are the minimal and the maximal angles in the entire mesh, A™?n and A ^ x are the 
averages of the minimum and the maximum angle for all triangles._____________________

Point position
e = io°

OOII OOCOII

flow pipe flow pipe flow pipe
n
%

, minA Circumcenter .max A
Aave " min Aave max

2173
120.3

1 0 . 0

151.5
28.1
92.5

3033
106.7

1 0 . 0

150.4
26.7
92.5

3153
107.5 

2 0 . 0

128.5 
35.9 
8 8 . 1

4651
106.6

2 0 . 0

137.7
35.9
8 8 . 0

8758
138.5
30.0

119.3
45.8
76.6

10655
124.1
30.0

119.4
45.6
76.8

n
%

Off-center mm Amax A
Aave 
^min Aave max

1906
105.5

1 0 . 1

157.0
24.4
96.2

2941
103.5

1 0 . 0

149.9
25.4
94.9

2942
100.3 

2 0 . 2

133.3 
34.4 
87.8

4411
1 0 1 . 1

2 0 . 0

133.7
34.7
87.1

6175
97.7
30.0

118.2
43.6
77.3

8585
1 0 0 . 0

30.0
119.0
43.7
77.7

n
%

Our example of an opti- min A 
mization-based method max A

Aave 
min Aave -*1max

1805
1 0 0 . 0

1 0 . 0

157.3
23.2
98.3

2841
1 0 0 . 0

1 0 . 0

152.5
24.8
96.7

2932
1 0 0 . 0

2 0 . 0

138.3
34.3
87.9

4359
1 0 0 . 0

2 0 . 0

137.1
34.6
87.6

6319
1 0 0 . 0

30.0 
119.0
44.0
77.1

8581
1 0 0 . 0

30.0
119.5
43.6
77.8
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Figure 2.6: The pipe mesh (lower half is shown) with the minimal angle bound equal to 
10°. (Top) Steiner points are inserted at the circumcenters of skinny triangles: 3033 trian­
gles. (Center) Steiner points are inserted at the off-centers: 2941 triangles. (Bottom) Our 
optimization-based method: 2841 triangles.
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Table 2.2: The comparison of the number of triangles generated with the use of circumcenter, 
off-center, and an optimization-based point insertion strategies, with an area bound. For the 
cylinder flow model, the area bound is set to A  = 0 .0 1 , and for the pipe cross-section model 
A  =  1 .0 .__________________________________________________________ _______________________________________________________

Point position 9 = 1 0 ° 6 =  2 0 ° II CO o o

flow pipe flow pipe flow pipe
Circumcenter 219914 290063 220509 289511 228957 294272
Off-center 219517 290057 220479 289331 226894 295644
Our example of an opti­
mization-based method 219470 289505 220281 289396 226585 294694
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2 .2 .3  P r o o f  o f  G o o d  G rad in g  an d  S ize  O p tim a lity  w ith  S e le c tio n  D isk s  

o f  T y p e  II

m

Figure 2.7: Selection of a Steiner point by a (5-graded Delaunay refinement algorithm. When 
5 = y/2/p the shaded disk corresponds to the Type II selection disk.

D efinition 2.5 (Selection  disk o f T ype II in 2D ) I f  t is a poor quality triangle 

with circumcenter c, shortest edge length I, circumradius r , and circumradius-to-shortest 

edge ratio p =  r /I  > p > y/2, then the Type II selection disk for the insertion of a Steiner 

point that would eliminate t is the open disk with center c and radius r( 1  — ^ ) .

For example, in Figure 2.7, e (pipm) is the shortest edge of a skinny triangle 

A (PkPiPm) and c is its circumcenter. The Type II selection disk for this triangle is 

the shaded disk with center c and radius r  (A (PkPiPm)) (1 ~  ^ f)-

Rem ark 2.6 Note from Definitions 2-4 and 2.5 that the radius of the Type I I  selection 

disk is always smaller than the radius of the Type I  selection disk of the same skinny 

triangle because r(  1  — =  r  — | \ / 2 1 and p > p.
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Rem ark 2.7 A s p approaches \/2  the radius o f the Type II selection disk approaches 

zero, which means that the selection disk shrinks to the circum center point.

As can be seen further below, the price which we pay for the gain in the flexibility 

in choosing points is the increase of the constants which bound the size of the mesh. To 

classify the Delaunay refinement algorithms with respect to the theoretical bounds on 

mesh grading we need the following definition.

D efinition 2.6 (^-graded D elaunay refinem ent algorithm  in 2D ) I f  fo r  every 

triangle t  with circum center c, circumradius r , shortest edge length I, and circumradius- 

to-shortest edge length ratio p =  r / l  > p >  y/2 a Delaunay refinem ent algorithm selects 

a S teiner poin t pi within the Type II  selection disk such that ||p-t — c|| < r ( l  — S), where

—  < S < 1 ,
P

we say that this Delaunay refinem ent algorithm is graded.

The analysis below assumes tha t all angles in the input PSLG are greater than 45° 

or 60°. In practice such geometries are rare; however, a modification of the algorithm 

with a concentric circular shell splitting [70, 77] allows to guarantee the termination of 

the algorithm even though the small angles adjacent to the segments of the input PSLG 

cannot be improved.

Lem m a 2.3 I f  pi is a vertex of the mesh produced by a 5-graded Delaunay refinem ent 

algorithm then the following inequality holds:

R  (Pi) >  C  ■ R  (pi) , (2.10)

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where we distinguish among the following cases:

(i) C = 8p if  pi is a Steiner point chosen within the Type I I  selection disk of a skinny 

triangle;

Otherwise, let pi be the midpoint of subsegment s. Then

(ii) C  = if  pi is a Steiner point which encroaches upon s, chosen within the Type

II  selection disk o f a skinny triangle;

(in) C  =  2  ; " a i f  pi and pi lie on incident subsegments separated by an angle of a (with

Pi encroaching upon s), where 45° < a < 90°;

(iv) C = sin a  i f  pi and pi lie on incident segments separated by an angle of a  < 45°.

I f  Pi is an input vertex, then

R  (Pi) >  lfs i p f ) .

P roo f: We need to present a new proof only for case (i) since the proof for case (ii) 

is the same as in Lemma 2.2, and the proofs for all other cases are independent of the 

choice of the point within the selection disk and are given in [77],

Case (i) As in the proof of Case (i) of Lemma 2.2, assuming tha t e(pipm) is the 

shortest edge of the skinny triangle A (pkP iPm)  and pi = pi, we derive relation (2.9). 

Then

R  (pf) >  Sr (from Delaunay property and Definition 2.6)
=  Sp\\pt -  Pm\\ (since p =  ,|pi4 m|| )
>  5p\\Pl ~  Pm|| (since p > p )
> 6pR(pi)  (from (2.9)).

Hence, R  (pf) > SpR (pf); choose C = 5p. ■
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The quantity D (p) is defined as the ratio of lfs (p) over R  (p) [77]:

* ( , )  =  ! $ .  {, n ,

It reflects the density of vertices near p  at the time p  is inserted, weighted by the local 

feature size.

Lem m a 2.4 I f  p  is a vertex of the m esh produced by a S-graded Delaunay refinement 

algorithm and C is the constant specified by Lem m a 2.3, then the following inequality 

holds:

+  (2 .12)

P ro o f: If p  is inside a Type II selection disk of a skinny triangle with circumradius r, 

then

lb — Pll < 2r  — 8r (from the definition of p  and Def. 2.6)
=  (2 — 5)r

= ¥ * ■
< - j ^ R ( p ) (from Delaunay property and Def. 2.6).

If p  is an input vertex or lies on an encroached segment, then

||p — i’ll — R  (P) (by definitions of p  and R  (p ) )
<  ^ - R ( p )  (since from Def. 2.6, S < 1).

In all cases,

Then

lb  -  p \\ < ^ j ~ R  (p ) ■ (2-13)

lfs (p) < lfs (p) +  ||p — p\\ (from Lemma 2.1)
< lfs (p) +  (p) (from (2.13))
=  D (p) R  (p) +  2=£R (p) (from (2.11))
< D (p) +  ^ y ~R (p ) (from Lemma 2.3).

The result follows from the division of both sides by R  (p).

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



L em m a 2.5 (E x ten sio n  o f L em m a 7 in  [77] an d  L em m a 2 in  [70]) Suppose 

that p > V2 and the smallest angle in the input PSLG is strictly greater than 60°. 

There exist fixed constants Ct  and Cs such that, for any vertex p inserted (or considered 

for insertion and rejected) by a S-graded Delaunay refinement algorithm, D  (p ) <  Ct , 

and for any vertex p inserted at the midpoint of an encroached subsegment, D  (p) < Cs- 

Hence, the insertion radius of a vertex has a lower bound proportional to its local feature

size.

P ro o f: The proof is by induction and is similar to the proof of Lemma 7 in [77]. The 

base case covers the input vertices, and the inductive step covers the other two types of 

vertices: free vertices and subsegment midpoints.

Base case: The lemma is true if p  is an input vertex, because in this case, by 

Remark 2.2,

lfs (p)

Inductive hypothesis: Assume tha t the lemma is true for p, i.e.,

D(p)  < max{CT ,Cs}-

Inductive step: There are two cases:

(i) If p is in the Type II selection disk of a skinny triangle, then

D (p) < (from Lemma 2.4)
=  (from Lemma 2.3)
< p p  +  max{^jT's} (by the inductive hypothesis).

It follows tha t one can prove tha t D (p) < Ct  if C t  is chosen so that

2 - 6  +  m a * {C r ,C s}  ^  (
d op
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(ii) If p is the midpoint of a subsegment s such tha t p encroaches upon s, then we have 

3 sub-cases:

(ii-a) If p is an input vertex, then the disk centered at p and touching p has radius

less than the radius of the diametral disk of s and therefore lfs (p) < R(p).

Thus, D (p) < 1 and the lemma holds.

(ii-b) If p  is a rejected point from the Type II selection disk of a skinny triangle or

lies on a segment not incident to s, then

D (p) < p p  +  p p  (from Lemma 2.4)
—  2=A 8 . +  V2D  (p) (from Lemma 2.3)
< +  \ / 2 Ct  (by the inductive hypothesis).

(ii-c) If p lies on a segment incident to s, then

D (p) < ^ p  +  (from Lemma 2.4)
=  p p  +  2 cos aD  (p) (from Lemma 2.3)
< p p  +  2C's cos a  (by the inductive hypothesis).

It follows tha t one can prove tha t D (p) < Cs if Cs is chosen so tha t both of the 

following relations (2.15) and (2.16) are satisfied:

-  +  V2Ct < Cs , (2.15)

and

2 - 5
+  2Cs cos a < Cs- (2-16)

If 5p > y/2, relations (2.14) and (2.15) can be simultaneously satisfied by choosing

P - j t o  +  i)  ( 2 - W  +  V2)
5 p - V 2  5 p - V 2
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If the smallest input angle a min > 60°, relations (2.14) and (2.16) can be simultaneously 

satisfied by choosing

Theorem  2.2 (T heorem  8 in [77], T heorem  1 in [70]) For any vertex p of the

The proof in [77] relies only on Lemmata 2.1 and 2.5 here and, therefore, holds for the 

arbitrary points chosen within selection disks of skinny triangles.

Theorem 2.2 is used in the proof of the following theorem.

Theorem  2.3 (T heorem  10 in [77], T heorem  14 in [65], Theorem  3 in [70])

a PSLG), whereas lfs (p) remains the local feature size at p with respect to the input 

PSLG. Suppose a mesh M. with smallest angle 6 has the property that there is some 

constant k\ > 1, such that for every point p, k\ltsM  (P) > lfs (p). Then the cardinality 

of M. is less than times the cardinality of any other mesh of the input PSLG with 

smallest angle 6, where k 2  = O  (k \ /0 ).

Smaller values of 5 offer more flexibility to a d-graded Delaunay refinement algorithm 

in choosing Steiner points. However, from Lemma 2.5 it follows tha t as 5p approach 

x/2, Ct  and Cs approach infinity, which leads to the worsening of the good grading 

guarantees. Therefore, along with satisfying application-specific requirements, the point 

insertion schemes should try  to place Steiner points as close to circumcenters as possible.

and Cs =
2 - 5

<1(1 2coscnmiri)

■

output mesh, the distance to its nearest neighbor is at least •

Let lfs_,vf (p) be the local feature size at p with respect to a mesh M. (treating M. as
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2.3 Three-Dim ensional Generalized Delaunay Refinement

In this section we introduce two types of selection disks which can be used for the 

insertion of Steiner points. First, we prove the termination of a Delaunay refinement 

algorithm with the Type I selection disks. Then we give an example of an optimization 

based strategy for the insertion of Steiner points from the Type I selection disks. Finally, 

we introduce the Type II selection disk (which is always inside the Type I selection disk 

of the same skinny tetrahedron) and prove the good grading. As in [76], the proofs 

require tha t all incident segments and faces in the input geometry are separated by 

angles of at least 90°.

2.3 .1  P r o o f  o f  T erm in a tio n  w ith  S e le c t io n  D isk s o f  T y p e  I

D efinition 2.7 (Selection  disk o f T ype I in 3D ) I f r  is a poor quality tetrahedron  

with circum center c, shortest edge length I, circum radius r, and circum radius-to-shortest 

edge ratio p =  r j l  >  p >  2, then the selection disk of Type I fo r  the insertion of a 

Steiner poin t that would elim inate r  is the open disk with center c and radius r  — 21.

Following [76], the analysis below requires tha t the Delaunay refinement algorithm 

prioritize the splitting of encroached faces. In particular, when a Steiner point p  en­

croaches upon several constrained faces, the encroached face which contains the projec­

tion of p  is split. The projection of a point p  onto a plane is the point in the plane which 

is closest to p. This requirement allows to achieve better bounds on the circumradius- 

to-shortest edge ratios in the final mesh.

Lem m a 2.6 (P rojection  Lem m a [76]) Let f  be a subfacet of the Delaunay trian-

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



gulated facet F . Suppose that f  is encroached upon by some vertex p, but p does not 

encroach upon any subsegment of F . Then projF (p) lies in the facet F , andp encroaches 

upon a subfacet of F  that contains proj^ (p).

Now we can prove the following lemma which establishes the relationship between 

the insertion radius of a point and its parent.

L em m a 2.7 I f  pi is a vertex of the mesh produced by a Delaunay refinement algorithm 

which chooses points within Type I  selection disks of tetrahedra with circumradius-to- 

shortest edge ratios greater than p >  2, then the following inequality holds:

R  (Pi)  > C ■ R  ( p i ) , (2.17)

where we distinguish among the following cases:

(i) C  =  2 if pi is a Steiner point chosen within the Type I  selection disk of a skinny 

tetrahedron;

(ii) C  — if pi is a circumcenter of an encroached constrained face;

(Hi) C = if  pi is a midpoint of an encroached constrained segment.

I f  Pi is an input vertex, then

R  (Pi) > Ifs (pi) ■

P roo f: We need to prove only cases (i) and (ii) since the proofs of all other cases are 

independent of the choice of the point within the selection disk and are given in [76].
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Figure 2.8: An illustration of the relationship between the insertion radii of Steiner points, in 
the case of encroachment in three dimensions.

Case (i) W ithout the loss of generality, let e (pipm) be the shortest edge of the skinny 

tetrahedron r  (pkPlPmPn) and pl = pi- Then

R(Pi)  > 2||p/ — Prn\ (from Delaunay property and Definition 2.7)
> 2R(pi)  (from Definition 2.2 of insertion radius)
=  2 R  (pi);

choose C  =  2 .

Case (ii) Consider Figure 2.8. Let p i  be inside the selection disk (the smaller shaded 

circle) of some skinny tetrahedron (not shown), such that p i  encroaches upon the con­

strained face A (pkP iPm) ,  and p-L is the circumcenter of A ( pkP iPm) -  According to the 

projection requirement, let A  (PkPiPm) include proj^ (pi), where F  is the facet of the 

input PLC containing A ( pkP iPm) -  W ithout the loss of generality, suppose prn is the 

point closest to projp (/);) among the vertices of A (pkPiPm)- Because piojp (fi,) lies 

inside the triangle A (Pk P i P m)■> it cannot be father away from pm than the circumcenter
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of A (Pk PiP m), i-e.,

I lp ro ji?  ( p i )  -  Pm\\  < r (A (PkPiPm)) • (2.18)

Furthermore, because pi is inside the equatorial disk of A (Pk PiPm )

projF (p i ) — Pi|| < r  (A (P kPiPm))  ■ (2.19)

From (2.18) and (2.19), as well as the fact tha t the triangle with vertices p i ,  proj^ ( p i ) ,  

and pm has a right angle at projF (fp), we have:

Since the face A (PkPiPm)  is part of the mesh, there must exist some vertex pn such 

that pfc, pi, pm, and pn form a tetrahedron. pn is outside of the equatorial disk of 

A (PkPiPm) because all encroachment occurrences are eliminated before the insertion of 

Steiner points inside circumdisks of poor quality tetrahedra. Therefore, the circumdisk 

O  (r  (PkP iPmPn) )  has to include point fp. Hence, if p% were inserted into the mesh, 

r  (PkPiPmPn) would be part of the cavity C (pi) and the edges connecting pi with Pk,  Pi ,  

and pm would be created. Using (2.20), we have:

the insertion radii of their parents. We can see that if Inequality 2.17 is satisfied then no

||Pi -  P m  II < y / 2 r  (A (Pk PiP m )) • (2 .20)

R  (Pi)  <  II Pi -  Pm  II < V 2 r  (A (PkP iPm) )  = \/2  R  (Pi) ;

choose C

Figure 2.9 shows the relationship between the insertion radii of mesh vertices and

new edge will be created whose length is smaller than half of the length of some existing
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Free
Vertices

Subfacet
Circumcenters

Subsegment
Midpoints

Figure 2.9: Flow diagram from [76] illustrating the relationship between the insertion radius 
of a vertex and that of its parent in three dimensions. If no cycle has a product smaller then 
one, the algorithm will terminate. Input vertices are not shown since they do not participate in 
cycles. In [76] the constant C = p > 2. In our case, with the use of Type I selection disks <7 =  2, 
and with the use of Type II selection disks C — Sp > 2.

edge and the algorithm will eventually term inate because it will run out of places to 

insert new vertices.

2 .3 .2  A n  E x a m p le  o f  a  P o in t  S e le c t io n  S tr a te g y

In two dimensions, by selecting the new Steiner point, we can construct only one new 

triangle which will be incident upon the shortest edge of the existing skinny triangle and 

which will have the required circumradius-to-shortest edge ratio. The three-dimensional 

case, however, is complicated by the fact tha t several new tetrahedra may be inci­

dent upon the shortest edge of the existing skinny tetrahedron. The example in Fig­

ure 2.10 shows a skinny tetrahedron r  (PkPiPmPn) with two new tetrahedra r  (piPkPiPn) 

and t  {jPiPkPiPrn) that are incident upon the shortest edge e ( p k P i ) .  By having to deal 

with multiple incident tetrahedra we face a multy-constrained optimization problem
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Figure 2.10: A tetrahedron with high circumradius-to-shortest edge ratio.

which to the best of our knowledge has not been analyzed with respect to the existence 

of the optimal solution and the construction of this solution.

A heuristic approach was suggested by Ungor [87] who proposed two types of off- 

center points in three dimensions. Based on the experimental data, he observes the 

following: “Use of both types of off-centers or the use of T ype II off-centers alone 

outperforms the use of T ype I off-centers alone, which in turn outperforms the use of 

circumcenters.” If a is the midpoint of the shortest edge e (pkPi) of the tetrahedron and 

c is its circumcenter, than the Type II off-center b is computed in [87] on the segment 

C (ac) such tha t

| C (ab) | =  a 3  (p  +  a/p 2  -  1/4) ,

where a 3  is the perturbation factor. From experimental evidence in [87] the author

suggests tha t a good choice for 0 : 3  is 0 .6 .

The insertion of T ype II off-centers was implemented by Hang Si in Tetgen version

1.4.0 along with the circumcenter insertion method. We also added the implementation
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Table 2.3: The number of tetrahedra produced with the use of different point selection methods 
for three models in three dimensions. The first method (CC) always inserts circumcenters of 
skinny tetrahedra, the second method (OC) always inserts off-centers, and the third method 
(OPT) is optimization based. The minimal values in each cell are hilighted.

Model Point
position

P
2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

Points
in

cube

CC
OC
OPT

1126
7 7 7

1723

560
298

1619

527
190
174

482
184
174

457
236
1 74

429
1 5 7
174

432
180
174

417
181
174

417
169
174

415
172
174

Rocket
CC
OC
OPT

1017
1060

9 3 7

629
729
610

566
540
628

567

673
678

562

679
598

542
660
542

542

660
542

542
660
542

542

660
5 42

542

660
542

Bat
CC
OC
OPT

2 4 5 5 2
24985
24628

1 6561
21019
17599

1 5 4 2 7
20781
15970

15226
20820
15533

1 5 0 8 3
19764
15267

1 4923
19247
15053

14921

21058
15074

1 4923
17816
15084

1 4894

18301
14939

14950
21941
1 4941

of an optimization-based point insertion method which with every insertion of a Steiner 

point within a Type I selection disk of a skinny tetrahedron minimizes the signed differ­

ence between the number of deleted good quality tetrahedra and the number of deleted 

poor quality tetrahedra. As opposed to the two-dimensional case, we did not restrict the 

position of the Steiner point to a specific arc, but instead sampled 1000 points uniformly 

in spherical coordinates of the Type 1 selection disk and chose the best one. For our 

experiments, we used the following three geometries. The “Points in cube” model is 

the unit cube with two additional points close to its center at 1 0 ~ 4  distance from each 

other. The “Rocket” model is the example PLC supplied with the Tetgen distribution. 

The “B at” model is described further in the dissertation and is shown in Figure 3.33. 

Table 2.3 summarizes the results of our experiments. From our point of view, these 

results do not provide a basis for conclusions, and further research is required.
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2.3.3 Proof of G ood Grading w ith  Selection Disks of Type II

D efin ition  2.8 (S elec tion  d isk  o f T y p e  I I  in  3D ) I f r  is a poor quality tetrahedron 

with circumcenter c, shortest edge length I, circumradius r , and circumradius-to-shortest 

edge ratio p = r j l  > p >  2, then the Type II selection disk fo r  the insertion of a Steiner 

point that would eliminate r  is the open disk with center c and radius r ( l  — |) .

R em ark  2.8 Note from definitions 2.7 and 2.8 that the radius of the Type I I  selection 

disk is always smaller than the radius of the Type I  selection disk of the same skinny 

tetrahedron because r( 1  — | )  =  r  — | 2 1 and p >  p.

D efin ition  2.9 (<5-graded D elau n ay  re fin em en t a lg o rith m  in  3D ) I f  for every 

tetrahedron r  with circumcenter c, circumradius r, shortest edge length I, and 

circumradius-to-shortest edge length ratio p = r / l  > p >  2 a Delaunay refine­

ment algorithm selects a Steiner point pi within the Type I I  selection disk such that 

||Pi — c|| < r ( l  — 8), where

\ < 8  <  1,
P

we say that this Delaunay refinement algorithm is ^-graded.

L em m a 2.8 I f  pi is a vertex of the mesh produced by a 8-graded Delaunay refinement 

algorithm then the following inequality holds:

R ( p i ) > C - R ( p i ) ,  (2.21)

where we distinguish among the following cases:

(i) C  — 8p i f  pi is a Steiner point chosen within the Type I I  selection disk o f a skinny 

tetrahedron;

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(ii) C  =  if  pi is a circumcenter of an encroached constrained face;

(Hi) C  =  i f  pi is a midpoint of an encroached constrained segment.

I f  P i  is an input vertex, then

R  (Pi) > lfs (pi) ■

P ro o f: We need to present a new proof only for case (i) since the proof for case (ii) 

is the same as in Lemma 2.7, and the proofs for all other cases are independent of the

choice of the point within the selection disk and are given in [76].

Case (i) W ithout the loss of generality, let e (pipm) be the shortest edge of the skinny 

tetrahedron r  (PkPiPmPn) and pi = pi- Then

R(Pi) > Sr ( r  (PkPiPmPn)) (from Delaunay property and Def. 2.9)
=  $P{T (PkPiPmPn)) \\Pl -  Pm||
> 6p\\pi — pm11 (since the tetrahedron is skinny)
>  SpR (pi) ;

choose C = Sp. ■

Similar to the two-dimensional case, the density of vertices near p a t the time p is 

inserted into the mesh, is defined in [76] as

P.M)

L em m a 2.9 (E x ten sio n  o f L em m a 2.4 to  3D) I f  p is a vertex of the mesh pro­

duced by a 5-graded Delaunay refinement algorithm and C is the constant specified by 

Lemma 2.8, then the following inequality holds:

D ( p ) < L f i L  + £ M .  (2.23)
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Proof: If p is inside a Type II selection disk of a skinny tetrahedron with circumradius 

r, then

||p — p || <  2r — 8r (from the definition of p and Def. 2.9)
=  ( 2  — 5)r

=  ¥ * ■< V  R(p)  (from Delaunay property and Def. 2.9).

If p is an input vertex or lies on an encroached face or segment, then

||p — p|| < R  (p) (by definitions of p  and R  (p) )
< 2 ^ i? (p )  (since from Def. 2.9, S < 1).

In all cases,

Then

||p -  p|| <  (p ) • (2-24)

lfs (p) < lfs (p) +  ||p — p|| (from Lemma 2.1)
< lfs (p) +  ^jp-R (p) (from (2.24))
=  D ( p ) R ( p )  +  ^ R ( p )  (from (2.22))
<  D  (p) - R  (p) (from Lemma 2.8).

The result follows from the division of both sides by R(p).  ■

Lem m a 2.10 (E xtension o f T heorem  5 in [76]) Suppose that p >  2 and the input 

P L C  satisfies the projection condition. Then there exist fixed constants Ct  > 1; C p  > 1; 

and C s  >  1 such that, fo r  any vertex p  inserted or rejected by a 6-graded Delaunay 

refinem ent algorithm, the following relations hold:

(i) D  (p ) <  Ct  i f  P is chosen from  the selection disk of a skinny tetrahedron;

(ii) D  (p) <  C f  if  p  is the circum center o f an encroached constrained face;

(Hi) D ( p )  < C s if p  is the m idpoint of an encroached constrained segment.
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Therefore, the insertion  radius of every vertex has a lower bound proportional to its  local 

feature size.

Proof: The proof is by induction and is similar to the proof of Lemma 7 in [76]. The 

base case covers the input vertices, and the inductive step covers the other three types 

of vertices: free vertices, the circumcenters of constrained faces, and the midpoints of 

constrained subsegments.

Base case: The lemma is true if p  is an input vertex, because in this case, by 

Lemma 2.8,

lfs (p)

Inductive hypothesis: Assume tha t the lemma is true for p, i.e.,

D  (p) <  max { C T , C F, C s }•

Inductive step: There are three cases:

(i) If p  is in the Type II selection disk of a skinny tetrahedron, then

D  (p) < +  p p  (from Lemma 2.9)
=  (from Lemma 2.8)
< +  max{cT&F,Cs} (by the inductive hypothesis).

It follows tha t one can prove tha t D  (p) < C t  if Ct  is chosen so that

2 - 6  +  max { C r C F, C s } £  ^
8 8p

(ii) If p  is inserted or considered for insertion at the circumcenter of a constrained face 

then we have two sub-cases:
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(ii-a) If p  is an input vertex or lies on a non-incident facet or segment, then

lfs (p) < R  (p)

and

D ( p ) <  1,

thus the lemma holds.

(ii-b) If p  is a rejected encroaching point inside a Type II selection disk of a skinny 

tetrahedron then

D (p) <  +  ̂ r -  (from Lemma 2.9)
=  +  y/2D (p) (from Lemma 2.8)
< “p  +  V?CT (by the inductive hypothesis).

Therefore, one can prove tha t D (p) < Cp- if Cp is chosen so that

+  \/2 CT < CF. (2.26)
0

(Hi) If p  is the midpoint of a subsegment s, then we have two sub-cases:

(in-a) If p is an input vertex or lies on a segment or facet not incident to s, then

lfs (p) <  R  (p)

and

D  (p) <  1 ,

thus the lemma holds.
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(iii-b) If p is a rejected point from the Type II selection disk of a skinny tetrahedron

or a rejected encroaching circumcenter of a constrained face then

D (j>) < p p  +  p p  (from Lemma 2.9)
=  p p  +  \ f lD  (p) (from Lemma 2.8)
< p p  +  \ / 2 m ax{Ct, Cf } (by the inductive hypothesis).

Then one can prove tha t D  (p ) < Cs  if Cs  is chosen so that

-  + ^ m t a t { C T ,C F} < C s . (2.27)

By Definition 2.9, <5 > | .  If 5 > | ,  inequalities (2.25), (2.26), and (2.27) can be 

simultaneously satisfied by choosing

„  „ C 1 + 1 + V2 „  „ ( 1  +  V2)C1 + V2 „  (3+V5)C,
CT = C»■ Ci — 2 Cf =  C°  2------- ’ C s ~ Co Ci —2 ’

where

Co = ------- and C\ =  Sp.

As 6 approaches 1, the constants approach infinity.

Theorem  2.4 (T heorem  6 in [76]) For any vertex p of the output mesh, the distance 

to its nearest neighbor is at least 5 ^ 1  •

The proof of this theorem does not depend on the specific position of the Steiner point 

inside the selection disk. Hence, the theorem holds in the context of three-dimensional 

generalized Delaunay refinement.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3

Parallel Generalized Delaunay  

Refinement

In Section 3.1 we introduce the definition of Delaunay-independent points and prove a 

Delaunay-independence criterion, i.e., a necessary and sufficient condition. These defini­

tion and criterion are applicable to both two-dimensional and three-dimensional parallel 

Delaunay refinement; they lay the foundation for the development of the sufficient con­

ditions presented in the following sections, both two-dimensional (for the uniform and 

the graded algorithm) and three-dimensional (for the graded algorithm). Then in Sec­

tion 3.2 we present our two-dimensional parallel uniform Delaunay refinement algorithm. 

The sufficient condition in Section 3.2 employs a global circumradius upper bound which 

helps us construct a uniform lattice for the separation of the regions of concurrent re­

finement. In Sections 3.3 and 3.4 we describe our parallel graded algorithms, for two 

dimensions and three dimensions, respectively. Both of the graded algorithms use local 

sufficient conditions of Delaunay-independence which allow us to use a quadtree or an
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Figure 3.1: Challenges in parallel Delaunay refinement. (Left) If A (pzp&P7 ) G C (pg) fl C (pg), 
then concurrent insertion of ps and pg results in a non-conformal mesh. Solid lines represent the 
edges of the initial triangulation, and dashed lines represent edges created by the insertion of pg 
and pg. (Right) If the edge e (paP6) is shared by C (ps ) = {A (P1P2P7 ), A (P2 P3 P7 ), A (P3 P6 P7 )} 
and C(pio) = { A ( p 3p5pe), & {PzPiPb)},  then the new triangle ^{pzPwPa)  can have point p8 
inside its circumdisk, thus, violating the Delaunay property.

octree instead of a uniform lattice.

3.1 Delaunay-independence Criterion

We expect our parallel Delaunay refinement algorithm to insert multiple Steiner points 

concurrently so that at every iteration the mesh will be both conformal (i.e., simplicial) 

and Delaunay. Figure 3.1 illustrates how one of these conditions can be violated.

D efin ition  3.1 (D elau n ay -in d ep en d en ce) Points pi and pj are Delaunay- 

independent with respect to mesh A4n = (Vn, T n) if their concurrent insertion 

yields the conformal Delaunay mesh M n+ l — ( V n U {pt, p j} ,  T n+l). Otherwise, p i and 

Pj are Delaunay-conflicting.

For practical purposes it is not enough to have the definition of Delaunay-independent 

points; we need a means to verify whether two points are Delaunay-independent with­

out actually inserting them into the mesh. Below we prove a necessary and sufficient
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condition (criterion).

T h e o re m  3.1 (D e lau n ay -in d ep en d en ce  c rite r io n ) Points Pi andpj are Delaunay-

independent with respect to mesh A4n iff both (3.1) and (3.2) hold:

n (Pi) H CA/[n (Pj) —■ 0? (3.1)

V£ € dCMn (Pi) n  dCM" (Pj) : Pi i O { P j O - (3.2)

P ro o f: First, A l"+1 =  (V71 U {p«,Pj}, T n+1) is conformal iff (3.1) holds. Indeed, if (3.1) 

holds, then considering (2.2), the concurrent retriangulation of Cm u (Pi) and (pj)

will not yield overlapping triangles, and the mesh will be conformal. Conversely, if (3.1) 

does not hold, the newly created elements will intersect as shown in Figure 3.1 (left), and 

J\4.n+1 will not be conformal.

Now, we will show that M.n+1 is Delaunay iff (3.2) holds. The Delaunay Lemma [39] 

states tha t iff the empty circumdisk criterion holds for every pair of adjacent elements, 

then the triangulation is globally Delaunay. Disregarding the symmetric cases, there are 

three types of pairs of adjacent elements t r and t s , where t r € Bj^n+i (pi), tha t will be 

affected:

(i) tg € Bj^n+l (pi),

(ii) tg e  T n+1 \  BM n+1 ( P i )  \  BM n+1 (Pj),  and

(iii) t s e BM n+1 (pj).

The sequential Delaunay refinement algorithm guarantees tha t t r and t s will be locally 

Delaunay in the first two cases. In addition, condition (3.2) ensures tha t they will
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be locally Delaunay in the third case. Therefore, the mesh will be globally Delaunay. 

Conversely, if (3.2) does not hold, the elements (p*£) and (pjf,) will not be locally 

Delaunay, and the mesh will not be globally Delaunay. ■

Corollary 3.1 (Sufficient condition of Delaunay-independence) From Theo­

rem 3.1 it  follows that if  (3.1) holds and

dCMn (Pi) C dCMn (Pj) = 0, (3.3)

then pi and p j are Delaunay-independent.

In two dimensions, if p i  encroaches upon a constrained edge, let p \ be the midpoint 

of this edge. In three dimensions, if p i encroaches upon a constrained face, let p\ the 

circumcenter of this face, and if p i or p\ encroach upon a constrained segment, let p'( be 

the midpoint of this segment (similarly for p j) .

Definition 3.2 (Strong Delaunay-independence) P oin ts pi and p j are strongly 

Delaunay-independent with respect to mesh A4n iff any pair of points in {p.^pli .p"i '\ x 

{ P j t P j i P j }  are Delaunay-independent with respect to M n.

The conditions for strong Delaunay-independence have to be proven separately for 

two and three dimensions and will appear later in the dissertation in the corresponding 

chapters.
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Figure 3.2: Intersecting and adjacent cavities of Steiner points. (Left) If A {pzpepj) 6  C (p$) H 
C (pq), then |]pg —Poll < 2 r (A (P3 P6 P7 )) < 2 f. (Right) If edge e (psPe) is shared by the boundaries 
of C (pa) = {A (P1P2P7 ), a  (P2P3P7 ), A (P3P6P7 )} and C (pw) =  (A  {p3p3pa), A (p3pip5)}, then 
lips P1 0 1| < 2r (A (p3p6pr)) +  2r (A (p3p5pe)) < 4f.

3.2 Two-Dimensional Parallel Uniform Delaunay Refine­

ment

3.2.1 Sufficient Condition of D elaunay-independence

Theorem 3.1 and Corollary 3.1 are useful in proving other results, but not very efficient 

in practice, since they require to construct cavities for all candidate points. Previous 

works [27, 66,68] employ similar criteria for testing whether a selected subset of Steiner 

points can be inserted concurrently, and whenever conflicts are found, some of the points 

are discarded. However, the complexity of this point selection strategy remains to be 

analyzed and the experience from [27,66] suggests tha t the sequential meshing codes 

cannot be reused due to the necessity to handle setbacks. Below we derive a more 

practical sufficient condition, which is based on the distance between the points and 

the circumradii of the triangles. By ensuring tha t the candidate points are Delaunay- 

independent, we can avoid setbacks and leverage the existing codes.

T heorem  3.2 (Sufficient C ondition o f D elaunay-independence) Let f  be the
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upper bound on triangle circumradius in the mesh and Pi ,Pj  € fb If

l b . - P j | |> 4 f ,  (3.4)

then Pi and p j are Delaunay-independent.

P roof: We will prove this theorem by contradiction. Suppose (3.4) holds while p.L and 

Pj are Delaunay-conflicting. Then from Corollary 3.1, at least one of the following two 

cases must take place:

(i) Suppose (3.1) does not hold. Then let A  (PkPiPm) G C (Pi) fl C (pj) (see Fig­

ure 3.2(left)). By the definition of cavity,

Pi& O  (A (PkPiPm)) and pj e  O  ( A  (PkPiPm)),

hence

|\pi -  Pj\\ < 2r (A (PkPiPm)) < 2 r<  4f, 

which contradicts the assumption tha t (3.4) holds.

(ii) Suppose (3.3) does not hold. Then let e (pkPi) € dC (pi) fl dC (p j ) such tha t 

A (PkPiPm) G C (pi) and A  (PkPiPn) <E C (p j) (see Figure 3.2(right)). Obviously,

I\Pk -  Till <  2r  (A (PkPiPm)) and \\pk -  pj\\ < 2r  (A (pkpipn)) ■

From the triangle inequality it follows that

\\pi -  pj || < 2r (A (pkPiPm)) +  2r  (A (pkPiPn)) < 4f,

which again contradicts the assumption th a t (3.4) holds.
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Rem ark 3.1 The bound 4r  can be som ewhat decreased by further analysis based on the 

way  O  (A (PkP iPm) )  and O  (A ( pkP lPn) )  overlap in case (ii). However, the practical 

value of the additional analysis is limited.

Theorem 3.2 can be used for an efficient constant-time verification whether two points 

are independent, and, hence, can be inserted concurrently.

3.2.2 Circumradius U pper Bound Loop Invariant

For Theorem 3.2 to be applicable throughout the run of the algorithm, we need to prove 

the following invariant:

Loop Invariant 3.1 (C ircum radius U pper B ound) The condition t h a t f  is the up­

per bound on triangle circumradius in the entire m esh holds both before and after the 

insertion of a point.

Next, we show tha t the execution of the B-W point insertion procedure, either se­

quentially or in parallel, does not violate Loop Invariant 3.1.

Let the reflection o f disk O  (A (PkPiPm) )  about the edge e (pkPi)  be the disk 

Q>'e(pkPl) (A ( pkP iPm ) )  tha t has the same radius, whose circle passes through points pk  

and pi, and whose center lies on the other side of edge e (pkPi) from point pm, see 

Figure 3.3.

Lem m a 3.1 For any poin t p{ inside the region O  (A (PkPiPm)) \  O e(pkPl) (PkPiPm)), 

see Figure 3.3, the following inequality holds: r  (A (PkPiPi)) < r (  A (PkPiPm))•
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Figure 3.3: The circumradius of a new triangle cannot be larger than the circumradii of the 
existing triangles. The solid circle corresponds to Q (A (PkPiPm)) with center in point o, and 
the dashed circle corresponds to Oe(PfcPl) (A (PkPiPm,)) with center in point o'. Point o" is the 
center of the variable-radius disk O  (A (PiPkPl)), whose circle passes through pk and pi- We 
prove that for any point pi inside the shaded region, r (A (PkPiPi)) < r (A (PkPiPm))■

Proof: Let o" be the center of the disk O  (A (PkPiPi)), where pi is any point inside the 

shaded region O  (A (PkPiPm)) \  O 'e{pkPl) (A  (PkPiPm))• o" has to lie on the straight line 

through o and o'. Let v be the point of intersection of this straight line with the edge 

e (pkPi) (i.e., the midpoint of e (pkPi)), and u be the point of intersection of the straight 

line with the circle of O  (A (PkPiPi)) inside the shaded region. Let x  =  ||u — n||. We will 

express the radius of O  (A (PkPiPi)) as a function of x: r (A (PkPiPi)) =  f(%)-

Let us consider the triangle A (p^vo") with the right angle at the vertex v. If we 

denote \\pk — pi\\ =  a, and ||u — o|| =  ||u — o'|| =  b, then by observing tha t \\pk — v|| =  a / 2 , 

||u — o"|| =  x — f(x ) ,  and ||o" ~Pk\\ = f { x )i we have:

f ( x )  is convex everywhere on 0  <  x  < oo since its second derivative is positive:

or x
or f ( x )  =  -— H —, where 0  <  x  < oo. 

8 # 2

f "  (x) =  > 0  for 0  < x < oo.
J v ’ Ax3
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I

Figure 3.4: The possible relations among the circumradii of the triangles during Delaunay re- 
finement. (Left) A (PkPiPm) e C (p»), A ipkPnPi) £  c  (p»)> and r (A (PkPiPm)) > r  (A (pkpnPi))• 
(Right) A (PkPiPm) e C (Pi), A (pkPnPi) £ C (pi), and r (A (pkPiPm)) < r (A (pkPnPi))-

In addition,

f{x)\o"=o' = f ( r  (A (PkPiPm) - b ) )  = r (A (pkPiPm)), 
f ( x ) \0"=0 = f ( r  (A (PkPiPm) + b)) = r (A (pkPiPm)) ■

Using Jensen’s inequality, see [91], for 0 < A < 1 and

r  (A (PkPiPm)) -  b < x  < r (  A (PkPiPm)) +  b,

we can derive the following:

/(x )  < A /(r (A (p fcp;pm))-& )  +  ( l - A ) / ( r ( A ( p fcM>m)) +  b) 
=  Ar (A (jpkPiPm)) +  (1 -  A)r (A (PkPiPm))
= r (A  (pkPiPm)) ■

L em m a 3.2 Let A (PkPiPm) & C (pi) and A {pkPnPl) £ C (Pi). Then 

r (A (PkPiPi)) < max{r (A (pkPiPm)), r (A (pfePnP/))}- 

Proof: There are two cases:

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(i) If r(A(pkP ipm)) > r (A ( p k P n P i ) ) , see Figure 3.4(left), then pi has to lie inside 

the region O  (A (P k P iP m )) \  O  (A (P kP n P i))> which in this case is a subset of the 

region O  (A (P k P iP m ))  \  0 ' e (PkPl) ( A  (P kP iP m ) ) ,  and, according to Lemma 3.1,

r  (A (PkPiPi)) < r  (A (PkPiPm)) ■

(ii) If r  (A (PkP iPm) )  < r  (A ( pkPnPl ) ) ,  see Figure 3.4(right), then p i  has to lie in 

the region O  (A (PkPiPm) )  \  O  (A ('PkPnPl)),  which in this case is a subset of 

0 'e ( p kPl) ( A  (PkPnPl ) )  \  O  (A (PkPnPl)), and, by Lemma 3.1,

r  (A (p kpipi)) < r  (A (PkPnPl)) •

■

Theorem 3.3 Loop Invariant 3.1 holds.

Proof: The B-W point insertion scheme creates only triangles of the form

A (PiPkPi ) €  T n+1,

where there exists A (PkPiPm) G T n such tha t A (PkPiPm) € C (pi). There are two cases:

(i) There exists A  (PkPnPl) € M  such tha t A (PkPnP l) £ C (p i ), in other words, e (pkPi )  

is not a boundary segment. In this case, by Lemma 3.2,

r  (A (PkPiPi)) <  max{r (A (pkPipm)), r (A (pkpnPi))}■
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(ii) e(pkPi) is a boundary segment. Then pi must be outside of the diametral circle 

of e (PkPi), otherwise pi would not have been inserted. Consequently, p% lies in the 

region O  (A (Pk Pl P m )) \  0 'e ( p kPl) (A (Pk Pl P m )), and by Lemma 3.1,

r (A (PiPkPi)) < r (A (p kp i p m ))  •

3.2.3 A djusting the D egree of Concurrency

We have shown how with a simple and inexpensive test one can check whether two 

Steiner points can be inserted independently. Now it remains to provide a way of 

finding enough independent Steiner points, so tha t all processors can be kept busy 

inserting them. This task can be accomplished by decreasing all triangle circumradii 

below some value f  with the purpose of increasing the number of pairwise independent 

Steiner points. Fortunately, this can be easily done by applying the sequential Delaunay 

refinement procedure as a preprocessing step. In this step, we use the initial parameter 

p and select parameter A  as

where f  is computed based on the number of available processors and the size of the 

domain.

Such preprocessing allows us to decrease the maximal circumradius of the triangles 

in a mesh automatically as a result of decreasing the maximal circumradius-to-shortest 

edge ratio and the maximal area. In the rest of this subsection, we prove equation (3.5).
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We start by proving an auxiliary lemma, which relates the length of any side of a 

triangle to the sum of the cotangents of adjacent angles and the triangle’s area.

L em m a 3.3 I f  a, b, c and A, B , C  are the lengths of the sides and the measures of the 

angles of a triangle respectively, then

a 2  =  2 (cot B  +  cot C)A,  (3-6)

where A  is the area of the triangle.

P roof: The cyclical application of the law of cosines

b2 + c2 - a ?  t ^
co>A = — Wc—  (3'7)

coupled with the formula computing the area of the triangle

,4 = ^ 6 c s in A  (3.8)

allows us to obtain the following formula:

G? +  ~\~ (?
cot A  +  cot B  + cot C — ------—------- . (3.9)

Rearranging (3.8) and substituting into (3.7) yields

A2  -L  c 2  —  Qi2
c o t,4 =  +CAA . (3.10)

Finally, by coupling (3.9) and (3.10), we obtain (3.6). ■

Now, we show how the smallest angle of a triangle bounds the sum of the cotangents 

of the other angles.
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L em m a 3.4 I f  A  < B  < C are the measures of the angles of a triangle, then

1
cot B  +  cot C <

sin A

P roo f: Since A, B, C  are positive and sum up to it, we can denote

f ( B )  = cot B  +  cot C  =  cot B  +  cot(7r — A  — B)  — cot B  — cot(^4 +  B ),

where

0 < A  < B  < — -—  < C < 7T — 2A,  and A < —. (3-H)
Z O

f { B)  is continuous on [A, and has no points of local maxima which sat­

isfy (3.11), thus, it can reach its maxima only in the ends of the interval [ A 2̂ ] -  

Direct substitution yields

1  1 1m  =  t t — 7 7 I7 T  <  o - . - „  i -  —

and

2 sin A  cos A  2sin^4 - I  sin A

f ,  i
sin A  sin A  sin A

Hence,

f ( B ) < ^ — , V H e 
sm A

a  7T — A
A —S—

Finally, assuming the bounds p and A  on the triangle area and circumradius-to- 

shortest edge ratio respectively hold over all triangles in a mesh, we find the upper 

bound f  on the circumradius of triangles.
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T h e o re m  3.4 Let a triangle with circumradius r and side lengths a < b < c have 

circumradius-to-shortest edge ratio p bounded by p: p =  r /a  < p, and area bounded by 

A: A  < A . Then

r < 2(p)3/2VA.

P ro o f: From p = r/a ,  or r  =  pa, using Lemma 3.3 it follows that

=  pa =  p \/2 (co tB  +  cot C )A

and the use of Lemma 3.4 leads to

sin A  V sin A

By substituting sinA from (2.1) into (3.12), we have:

r  <  2 p3/2AA < 2 (p)3/2VA,

r ^  p \ l = P\  J r r -  (3-12)

T h e o re m  3.5 I f  the constants p and A are upper bounds on triangle area and 

circumradius-to-shortest edge ratio respectively, then the constant 2(p)3/ 2VA is an upper 

bound on triangle circumradius, i.e.,

r = 2 (pf /2VA.

3.2.4 Coarse Grain Partitioning

One possible way to divide the meshing problem of the entire domain up into smaller

independent subproblems is to partition the domain into subdomains in such a way tha t
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P a r a m e t e r i z e d D e l a u n a y R e f i n e m e n t ( A ,  M , A, p, crQ, / ( ) )
Input: A1 is a PSLG which defines Q,

M. is some Delaunay mesh over Q.
A  and p are desired upper bounds
cr() is a boolean predicate which takes point coordinates as input
/() is a deterministic function which returns a specific position

within triangle’s selection disk 
O utput: a conforming Delaunay mesh M  such that

Vf G M  : a(f(t)) =► (p(f)_< p) A (A  (t) < A)
1 Q <— {t 6  A4 | (p(t) > p) V (.4 (f) > *4)}
2  for each t £ Q
3 Pi<- f{t)
4 if crfa)
5 Find S, a set of segments encroached upon by p
6  if S + 0
7  S p l i t S e g m e n t s (S')
8  else
9 M M \ c  (Pi) U {A (PiPmPn) I e(pmpn) G 0C (p*)}

1 0  endif
11 Update Q
1 2  endif
13 endfor

Figure 3.5: A sequential Delaunay refinement algorithm with the restriction on the region for 
the insertion of Steiner points.

the Steiner points of triangles in each subdomain can be inserted concurrently with the 

Steiner points of triangles in any other subdomain.

If we consider a selected spatial region as a subdomain, which is refined sequentially 

by one processor, then the layer of the triangles whose Steiner points are within 2r from 

any Steiner in the region, forms the buffer zone of the entire region. The partitioning and 

decoupling of subdomains can be achieved by creating a special buffer zone around every 

subdomain, so tha t the insertion of a point in one subdomain can modify the triangles 

only inside this subdomain and its buffer zone, but the changes will not propagate to 

other subdomains and their buffer zones. After refining the subdomains, the buffer zones 

can be refined in a similar way.

We have chosen a simple and efficient way to partition the domain, which consists in
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P a r a l l e l D e l a u n a y M e s h i n g ( A ,  A, p, P, p , / ( ) )
Input: X is a PSLG which defines Q

A  and p are desired upper bounds
P  is the total number of processors (we assume y/P  is an integer) 
p  is the index of the current processor, 0 < p < P  — 1 
/ ( )  is a deterministic function which returns a specific position 

within triangle’s selection disk 
Output: a distributed conforming Delaunay mesh respecting A  and p

1 Calculate row(p) and column(p) of the current processor
/ /  0  <  row(p),column(p) < yfP  — 1

2 Let I be the longest dimension of the bounding box of fi
3 r <— l/{Ay/P)
4 if p = 0
5 Construct M i ,  a constrained Delaunay mesh of 0,
6 A \  <— fi2/ (4p3)
7 M i  < -  PARAM ETERIZEDDELAUNAYREFINEM ENT(A, M i ,  A \,  p, true, / ( ) )

8 Assign triangles in Mi to cells {dij | 0 < i, j  < AifP  — 1}
of side length 4r based on the coordinates of their Steiner points

9 for each i = 0, . . . ,  P  — 1
10 Send cells {dm)Tl \ 4row(i) — 1 < m < 4(row(i) + 1),

4column(i) — 1 < n <  4(column(i) + 1)} to processor i
11 endfor
12 endif
13 Receive cells {d̂  \ 1 < i , j  < 4} of local mesh M

II Phase (0) is over
14 Send cells {d^j \ 1 < j  < 3} to processor in (row(p) + 1, column(p))
15 Send cells {d,A \ 1 < i < 3} to processor in (row(p), column(p) + 1)
16 Send cell d^4 to processor in (row(p) +  1, column(p) + 1)
17 Receive cells {do,j | 1 < j  < 3} from processor in (row(p) — 1, column(p))
18 Receive cells {d^o | 1 < i < 3} from processor in (row(p), column(p) — 1)
19 Receive cell d0p from processor in (row(p) — 1, column{p) — 1)

/ /  Phase (1) is over
20 Let (xo,yo) be the upper left coordinate of local cell do,o
21 cr(q) <- (q €  [x0 +  2r,y0 +  2f] x  [x0 +  14f,y0 +  14r])
22 M  <— P a r a m e t e r i z e d D e l a u n a y R e f i n e m e n t ( A ,  M ,  A, p, a(),  /())

/ /  Phase (2) is over
/ /  Phases (3)-(10) are performed by analogy (Figure 3.9)

23 return M

Figure 3.6: The uniform parallel Delaunay meshing algorithm. In order to simplify the pre­
sentation of the algorithm, we do not concern with the index out-of-range problems (e.g., d_ 1), 
which we handle in the implementation.
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dividing its bounding box up into squares. One of the main advantages of this approach 

is the efficiency of assigning triangles to subdomains based on the coordinates of the 

corresponding Steiner points. A small adjustment (see Figure 3.5) to the standard se­

quential Delaunay refinement algorithm allows the insertion of only those Steiner points 

that satisfy some user defined condition (i.e., being inside a given rectangle). The draw­

back is tha t the amount of work assigned to different processors can vary significantly. 

However, a runtime system, see e.g. [4], can solve the dynamic load balancing problem 

and thus we do not have to address it here.

The selection of subdomain box sizes is closely related to the scheduling of refinement 

phases. First, Theorem 3.2 requires tha t the regions simultaneously refined by different 

processors be at least 4f  away. Second, the refinement of a region can create poor 

quality triangles near the boundary in a neighboring region, which has been refined 

during a previous iteration. To avoid performing multiple refinement iterations of the 

same region, some overlapping among the regions needs to be introduced. The degree 

of overlapping depends on the partitioning of the domain H. We partition ft into a two- 

dimensional lattice of squares, arrange the processors into logical rows and columns, and 

assign to each processor a fraction (N / P ) of the lattice which it is responsible to mesh, 

where N  is the number of cells and P  is the number of processors. We ensure global 

mesh consistency, by forcing each processor to hold and exchange (4f)-wide layers of 

triangles near the boundaries of their assigned subdomains. Each processor in position 

(i , j )  communicates only with its neighbors in positions (s, t), such tha t |i — .sj < 1  and

\ j ~ t \  <  !■

The entire parallel algorithm is summarized in Figure 3.6. The scheduling of re-
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finement and communication phases is also schematically presented in Figure 3.9. A 

sequence of meshes created by four processors for the pipe cross-section model (Fig­

ure 3.7) is shown in Figure 3.8.
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3 .2 .5  Im p lem en ta tio n  an d  E v a lu a tio n

For the experimental evaluation of our method, we triangulated (i) 1000 random points 

uniformly distributed in a unit square and (ii) the pipe cross-section model (Figure 3.7). 

We used T rian g le  [73] as a sequential mesher on each processor. T rian g le  facilitates 

the use of a user-defined function for deciding which triangles should be considered “big” 

and queued for refinement. However, apparently, it does not provide a mechanism for 

the user to decide at run-time which triangles are “bad” in terms of the circumradius- 

to-shortest edge ratio or the minimal angle. This fact caused us to insert a test for the 

location of the given Steiner point inside T rian g le  code and recompile it. We believe 

tha t in the future releases of sequential mesh generation codes the facility for defining 

user-supplied functions, which test the suitability of both types of triangles, can be easily 

provided.

Another technical detail tha t we ran into while running our tests, is the substan­

tial difference in time required by T rian g le  to refine an existing triangulation and to 

construct a fine triangulation from scratch. Contrary to our expectations, building a 

fine triangulation anew turned out to be much faster. For example, in the case of the 

contour of the letter “A” which is supplied with T riang le , it is about six times faster 

in retriangulating a given set of points than in reconstructing the mesh data structure 

from a list of triangles. T hat is why, when moving a part of the mesh from one processor 

to another, we decided to migrate only the set of points and boundary edges and retri- 

angulate them as necessary. Since the Delaunay triangulation of a given set of points 

is unique provided tha t there are no four cocircular points, this process will not de­

stroy the boundary conformity. In the presence of cocircular points near the boundary,
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Figure 3.7: A cross-section and a cartoon pipe of a regenerative cooled pipe geometry which 
came from the testing of a rocket engine at NASA Marshall. NASA had to slightly bend one of 
the regenerative cooled ’’pipes” that contained combustion gases in order to fit a rocket engine 
onto a test stand. In testing, this curved pipe failed due to an unanticipated increase of heating. 
Since this was a one-off design, NASA could not afford to do extensive testing. The failure 
caused them to scrap that particular project since it destroyed the engine under test. This is an 
example of why simulation is useful in reducing cost.

the enforcement of boundary segments causes the required edge flips. The additional 

advantage of this optimization is the decrease of the network traffic.

We have conducted our experiments on the SciClone cluster computing system at 

the College of William and Mary using its two tightly-coupled subclusters: “whirlwind” 

— 64 single-cpu Sun Fire V120 servers (650 MHz, 1 GB RAM) and “twister” — 32 dual- 

cpu Sun Fire 280R servers (900 MHz, 2 GB RAM). The scaled and the fixed workload 

evaluation for a mesh of a unit square is shown in Tables 3.1 and 3.2, and for the pipe 

model — in Table 3.3. We can see tha t in the pipe case the algorithm performs slightly 

worse, which happens because of the load imbalance due to the empty space inside pipe 

holes. Table 3.4 shows a comparison of the distributed memory and the shared memory 

implementations on the “hurricane” subcluster.
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Table 3.1: Uniform parallel Delaunay refinement of a mesh of a unit square, time measurements 
for the scaled and the fixed workload. The area bound is inversely proportional to the number 
of processors (P). For all tests, p = 1.41.

p

Scaled workload Fixed workload, 
23.8M elements, 

i  =  5 x  n r 8 , 
total time, sec.

Total
Time,

sec.

Number of 
Elements, 
Millions

Area 
Bound A  

x l 0 ~ 8

4 293.7 23.8 5.00 293.7
9 294.7 58.8 2 . 2 2 122.3

16 295.4 109.3 1.25 67.2
25 296.8 175.4 0.80 43.3
36 293.4 255.0 0.56 30.2
49 294.5 352.6 0.41 23.3
64 300.1 470.7 0.31 19.4
81 296.2 587.8 0.25 17.0

1 0 0 300.3 738.9 0 . 2 0 15.6
1 2 1 293.7 873.5 0.17 15.1

Finally, we did not have to write any mesh generation code, since for both the 

preprocessing and the refinement it was sufficient to call T rian g le  as a library.
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Table 3.2: A breakdown of the execution time for a single processor in the case of the unit 
square, seconds. The Communication and Synchronization column shows the time to send the 
data to the neighboring processors and to receive the data from them, which includes waiting 
for their completion of the current refinement task._____________________________________

p
Prerefinement 
with T rian g le

Total Refinement 
Time with T rian g le

Communication and 
Synchronization

Filling in and 
Merging Cells

4 0.24 218.7 32.7 39.9
9 0.44 2 2 0 . 0 35.4 40.3

16 0.71 218.8 37.1 40.0
25 1.05 219.1 39.1 40.8
36 1.43 218.6 36.1 40.0
49 1 . 8 8 217.7 37.5 40.7
64 2.49 2 2 1 . 0 40.7 41.5
81 3.04 216.6 46.2 41.1

1 0 0 3.69 218.4 46.5 41.5
1 2 1 4.42 210.3 53.6 40.9

Table 3.3: Uniform parallel Delaunay refinement of a mesh of the pipe model, time measure­
ments for the scaled and the fixed workload, p— 1.41.______________________

P

Scaled workload Fixed workload, 
14.6M elements, 
A  = 2 x HR2, 
total time, sec.

Total
Time,

sec.

Number of 
Elements, 
Millions

Area 
Bound M, 

x l 0 ~ 2

4 179.1 14.6 2 . 0 0 179.1
9 204.8 32.8 0 . 8 8 105.6

16 225.7 58.3 0.50 80.5
25 239.8 91.1 0.32 54.2
36 255.3 131.2 0 . 2 2 40.1
49 253.7 178.6 0.16 30.2
64 273.6 233.3 0.13 21.9
81 258.6 295.3 0 . 1 0 17.1

1 0 0 232.2 364.6 0.08 15.0
1 2 1 212.7 441.1 0.06 14.8

Table 3.4: Uniform parallel Delaunay refinement of a mesh of the pipe model, time measure­
ments for the distributed (MPI) and the shared (OpenMP) memory implementations.

Number of 
processors

Time, sec. 
MPI

Time, sec. 
OpenMP

Number of Elements, 
Millions

4 220.3 214.1 14.6

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(0)

A Cfe A  K
F H  ■

■ w  i r a
■ I L F

N xP  V
(T)-(8) (9)—( 1 0 )

Figure 3.8: Snapshots of a mesh distributed among four processors. Each picture corresponds 
to the specified phases schematically shown in Figure 3.9. Dark areas are the parts of the mesh 
that have already been refined. Grey areas are those that have not been refined. Each processor 
starts with an initial coarse mesh and ends up with a refined mesh covering the same area.
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Figure 3.9: A schedule of the uniform parallel Delaunay refinement and communication on 
distributed memory. Each phase (0)-(10) depicts the actions performed by a single processor. 
The smallest cells have side length 2f, they are the atomic units of refinement. Since the 
refinement may leave fractions of big triangles, whose Steiner points are outside the small cell, 
the refined cells sometimes are not shaded completely. The bigger cells, which consist of 4 small 
cells, are the atomic units of data migration. The thick lines outline the subdomain assigned to 
the given processor. A processor also holds parts of its neighbors’ meshes. Arrows represent the 
direction of data migration.
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3.3 Two-Dimensional Parallel Graded Delaunay Refine­

ment

In this section we extend the uniform parallel Delaunay refinement algorithm for the 

case when the triangle area bound A  is not fixed, but rather changes according to a 

user-supplied function A  (x, y) : Cl —> M. In particular, in Section 3.3.1 we derive a 

local sufficient condition of Delaunay independence which does not depend on a global 

circumradius upper bound. Then in Section 3.3.2 we extend the idea of using a uniform 

lattice presented in the previous chapter to using a quadtree which reflects the density 

of the mesh. Based on the proof tha t the points inserted in specifically chosen separated 

regions of the quadtree are Delaunay-independent, in Section 3.3.3 we design a parallel 

algorithm which refines the mesh in multiple regions simultaneously and thus does not 

require to solve the domain decomposition problem. We describe our implementation 

of the algorithm and the evaluation of the algorithm’s performance. We show tha t it 

offers performance improvement over the best available sequential software, even on 

workstations with just a few hardware cores.

3.3.1 Sufficient C ondition of Delaunay-Independence

L em m a 3.5 (Sufficient c o n d itio n  o f D elau n ay -in d ep en d en ce) Points pi and pj 

are Delaunay-independent i f  there exists a subsegment s of segment C(piPj) such that 

all triangle circumdisks which intersect s have diameter less than or equal to the length 

of s, i.e.,

3s C C (piPj) : V t e T  : s D O  (<) A  0 = >  2r (<) <  |s|, (3.13)
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n

Figure 3.10: An edge shared by the boundaries of cavities of two Steiner points, one
point is inside the circumdisk created by the second point, first case. A {pipnpm) G C(pi), 
A (PkPmPn) G c  (Pj), C (;Pi) n C (Pj) =  0, e (pmpn) G dC (p») n dC [pf), pi e O  (A (PjPmPn)), and 
r (A (PkPmPn)) > r (A {pipnpm))-

where |s| is the length of s.

P roo f: First, condition (3.13) implies tha t C (pi) fl C (p j) = 0. Indeed, if there had 

been a triangle circumdisk which included both and pj, then the diameter of this 

circumdisk would be greater than the length of £  (piPj) which would contradict (3.13). 

Now, for the boundaries of the cavities there are two possibilities:

(i) If dC (pi)PidC (p j) =  0, then, by Corollary 3.1, pt and pj are Delaunay-independent.

(ii) Otherwise, let dC (pt) fl dC (p j ) ^  0 and e (pmpn) be an arbitrary edge in dC (pi) D 

dC (p j ). We are going to prove tha t pi £ Q  (A (PjPmPn)) and, thus, pt and pj axe 

Delaunay-independent by Theorem 3.1. The proof is by contradiction. Suppose 

condition (3.13) holds and pi € O  (A (PjPmPn))- There are two cases:
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Figure 3.11: An edge shared by the boundaries of cavities of two Steiner points, one point 
is inside the circumdisk created by the second point, second case. A ( p i p n p m )  € C (p,;), 
A ( P k P m P n )  6  c (P j ), C (P i ) n C (P j ) = 0, e (pmpn) €  dC ( Pi )  n dC (pj),  P i  €  O  (A ( P j P m P n ) ) ,  

and r (A ( p kp m P n ) )  < r ( A  ( p i p n p m ))-

(ii-a) If r (A ( p kP mPn ) )  >  r ( A ( p iP nP m )) ,  see Figure 3.10, then from Lemma 3.2 it 

follows that

r  (A (P j P m P n )) <  r  (A (PkPmP n )) • (3.14)

In addition, the assumption tha t p* € O  (A (P jPm Pn) )  implies that

| £  (P iP j )  | <  2r (A  (P jPm Pn) )  ■ (3.15)

From (3.14) and (3.15) we conclude tha t the following relation holds:

|£  (PiPj)l <  2r (A  ( pkPm Pn) )  ■ (3-16)

Due to (3.16) and the assumption tha t (3.13) holds as well as the fact tha t

|s| <  \C(piPj)\, we conclude tha t s cannot intersect O  (A ( pkPmPn) ) -  I f  Pr
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is the point of intersection of C (piPj) with the boundary of O  (A (pkPmPn))-,

then s is restricted to be a subsegment of C (pipr ) and

\s \< \C {p iPr)\. (3.17)

From the assumptions tha t p* 6 O  (A (P j P m P n )) and p i  <£ O  ( A  (P kP m P n )), 

it follows tha t pi has to lie in the crescent-shaped area which is shaded in the 

figure and the following two relations hold:

S n  O  (A (piPnPm)) ±  0  (3.18)

and

|£  {PiPr)| <  2r  (A (piPnPm)) • (3-19)

Relations (3.17), (3.18), and (3.19) together imply tha t the condition (3.13) 

does not hold and we have come to a contradiction.

(ii-b) If r (A (pkPmPn)) <  r (A (piPnPm)), see Figure 3.11, then from Lemma 3.2 it 

follows that

r (A (PjPmPn)) <  r (A (PlPnPm))

and considering that

|s| <  IC ( P i P j ) I < 2r (A (PjPmPn)) < 2r  (A (pipnpm))

we conclude tha t s cannot intersect O  (A (PiPnPm))• This limits s to lie within 

the subsegment C (pjpr ), where pr is the point of intersection of C (piPj) with
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the boundary of Q  ( A  (piPnPm))]  therefore,

|s| < \ £ ( p j P r ) \ .  (3.20)

The subsegment C (pjpr ) lies completely inside the crescent-shaped region 

shaded in the figure which in turn  is completely inside O  (A (PkPmPn) ) ,  hence 

the following two relations hold:

s O O ( A  (P k P m P n )) ±  0 (3-21)

and

|C ( p j P r ) | < 2r (A (P k Pm P n )) • (3.22)

Relations (3.20), (3.21), and (3.22) together imply tha t the condition (3.13) 

does not hold and we have come to a contradiction.

■

3.3.2 Q uadtree Construction

Callahan and Kosaraju [9,10] developed a binary tree data structure for constructing

well-separated pair decompositions of points, which was motivated by an application in

n-body simulations [40]. They say that point sets A  and B  are well-separated if the

rectangles which enclose A  and B  can each be contained in d-balls of radius r whose

minimum distance is at least sr, where s is the separation. This data structure is based

on a fair split tree of a point set which associates a leaf with each of the points. The

construction of the quadtree which we describe below also uses a notion of separated
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regions. However, in the mesh generation context, the separation is based on the size and 

the shape of the triangles in the underlying mesh. Another distinction is the introduction

with tree updates by increasing the number of triangles per leaf. Finally, unlike in n- 

body simulations, in mesh refinement we have the creation of new points throughout 

the execution.

D efinition 3.3 (a-neighborhood) Let the ^-neighborhood Ma { L i )  (« G {Left, 

Right, Top, Bottom,}) of quadtree leaf Li he the set of all quadtree leaves that share 

a side with Li and are located in the a direction of L,;.

For example, in Figure 3.12, L k G J\fTop {Li) and L t e  ffRight {Li).

D efinition 3.4 (O rthogonal directions) Let the orthogonal directions ORT {a) of

direction a be

where £ {L) is the length of the side of L, he called a buffer zone of leaf Leaf with respect 

to mesh M .

of the adjustable granularity parameter which allows to reduce the overheads associated

{Left, Right} if a  G {Top, Bottom},
{Top, Bottom} if a  G {Left, Right}.

D efinition 3.5 (Buffer zone) Let the set of leaves

BUF {Leaf) = [
LeMa(Leaf) /3eO RT(a)

under the condition that the following relation holds

ML G BUF {Leaf), Mt G T  : Q  (*) Fl L  #  0 = >  r { t ) < ^ £ ( L ) (3.23)
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1,

Figure 3.12: An example of the buffer zone BUF (Li) of a quadtree leaf Li.

• N\  m

Figure 3.13: Splitting constrained segments and strong Delaunay-independence.

Relation (3.23) is the criterion for the dynamic construction of the quadtree. Starting 

with the root node which covers the entire domain, each node of the quadtree is split 

into four smaller nodes as soon as all triangles, whose circumdisks intersect this node, 

have circumradii smaller than one eighth of its side length.

D efinition  3.6 (D elaunay-separated regions) Let two regions R{ C R 2  and R j  C

R 2  be called Delaunay-separated with respect to mesh A4 iff any two arbitrary points 

P i  G R i and p j  G R j  are strongly Delaunay-independent.

Lem m a 3.6 (Sufficient condition  o f D elaunay-separateness) I f  Li and Lj are

quadtree leaves, i ^  j ,  and L j  £ BUF (Li ) ,  then Li  and Lj  are Delaunay-separated.
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L, P'

Case (ii-b)

Figure 3.14: All possible positions of Steiner points pi and pj, up to symmetry, relative to 
BUF (Li).

P ro o f: First, for an arbitrary pair of points pi  G L t and Pj G L j  ^ BUF (Lj), we 

will prove tha t pi and pj are Delaunay-independent. Then we will extend the proof to 

show tha t any pair of points from {f>i,p't} x {pj,Pj} are Delaunay-independent, which 

will imply tha t pi  and p j  are strongly Delaunay-independent; hence, Li  and L j  are 

Delaunay-separated.

By enumerating all possible configurations of leaves in BUF (Li) and grouping similar 

cases, without loss of generality all arrangements can be accounted for using the following 

argument.

Suppose £  (piPj) intersects the part of the top boundary of Lj tha t is shared with 

Lp,  where Lp  G Mtop {Li)  C  BUF (Li ) ,  see Figure 3.14. (The intersection with the other 

boundaries is symmetric up to rotation.) For each of the following sub-cases we show 

that there exists a subsegment s of segment £  (PiPj) which satisfies the condition of 

Lemma 3.5, and therefore Pi and Pj are Delaunay-independent:

(i) If £  (PiPj) intersects the boundary of Lp which is parallel to the upper boundary 

of Li (which can only be the top boundary of Lk), see Figure 3.14(left), then we 

choose s as the intersection of C(piPj) with Lp and note tha t |s| >  £ (Lp) by
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an obvious projection argument. By construction, see Definition 3.5, all triangle 

circumdisks which intersect Lk have diameter less than I  (Lk). hence, they also 

have diameter less than |s|.

(ii) Otherwise, let C (PiPj) intersect the boundary of Lk which is orthogonal to the 

upper boundary of Lj. Suppose this is the left boundary (the intersection with 

the right boundary is symmetric). Let L m € N'left (Lk) C BUF (Li) be the leaf 

adjacent to this boundary at the point of intersection, such tha t I  (Lrn) < I  (Lk) 

(otherwise, by symmetry, we switch the roles of Lm and Lk). There are two sub­

cases with respect to the second point of intersection of £  (piPj) with the boundary 

of L k:

(ii-a) If C (PiPj) intersects the boundary of Lm which is parallel to the upper bound­

ary of Li (which can only be the top boundary of Lm), see Figure 3.14 (center), 

then we select s at the intersection of £  (PiPj) with Lk U Lrn. In this case, 

M >  £(Lk) by the assumption tha t £(Lm) < £ (Lk) and by the conformity 

of the quadtree. By construction, see Definition 3.5, all triangle circum­

disks which intersect s have diameter less than nrax{£ (Lk) , £ (Lm)} =  I (Lk), 

hence, they also have diameter less than |s|.

(ii-b) If C(piPj) intersects the boundary of Lm which is orthogonal to the upper 

boundary of Li (it has to be the left boundary, because the first point of 

intersection is with the right boundary of Lm), see Figure 3.14(right), then we 

select s at the intersection of £  (PiPj) with Lm. In this case, |s| >  I (Lm) and 

by construction, see Definition 3.5, all triangle circumdisks which intersect s
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have diameter less than I  (Lm), hence, they also have diameter less than |s|.

Now, suppose pi and pj encroach upon constrained edges e(pipm) and e(p rps), re­

spectively, see Figure 3.13. Then the midpoints p\ and p' of e (pipm) and e (prps) will be 

inserted instead. If p[ and p'- lie in the same quadtree leaves as pi and pj respectively, 

then they can be proven Delaunay-independent using the argument above.

Let us analyze the worst case, i.e., p'i,Pj £ f t  6  BUF (Lj). Since the diametral 

disk of an edge has the smallest radius among all disks whose circle passes through the 

endpoints of the edge, then

r (e (pipm)) < r (A {pipmpn)) < ^  {Lk)

and

r (e {PrPs)) < r {  A  (prpsPt)) < ^  (L k) •

Therefore, ||p[ — p '|| >  \ l  (Lk). We can construct imaginary buffer squares and 

Lk2 between p\ and p' inside leaf Lk with f, (L ^J =  £ (L ^) =  \ l  (Lk). Since by con­

struction all triangle circumdisks which intersect Lk have radii less than \ l  (Lk), then 

all triangle circumdisks which intersect L^, or Lk2 will have radii less than \ l  ( L ^ ) or 

(Lfc2). Then, by an argument similar to the one above and since there is no further 

encroachment, we show tha t for p\ and pt the condition of Lemma 3.5 is satisfied, and 

hence these two points are Delaunay-independent. ■

3.3.3 Im plem entation and Evaluation

If a part of the mesh associated with leaf Leaf of the quadtree is scheduled for refinement

by a thread, no other thread can refine the parts of the mesh associated with the buffer
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P a r a l l e l G e n e r a l i z e d D e l a u n a y R e f i n e m e n t ^ -T , P, g, A(), p, /()) 
Input: X  is a PSLG which defines

P  is the maximum number of compute threads 
g is the granularity
A  () is the triangle area grading function
p is the upper bound on triangle circumradius-to-shortest edge ratio 
/()  is a deterministic function which returns a specific position 

within triangle’s selection disk 
O utput: a conforming Delaunay mesh M. respecting A  () and p
1 Let Quadtree be a quadtree, initially consisting of the root node

which encloses the entire model
2 Construct M.. a constrained Delaunay triangulation of X
3 Let RefinementQ = {Leaf £ Quadtree \ Poor Triangles (Leaf) A 0}
4 Let p — 0 be the number of spawned threads
5 while RefinementQ ^  0 or p > 0
6  if RefinementQ = 0 or p = P
7 Wait for a thread to finish refining Leaf
8 p  <— p  — 1
9 RefinementQ <— RefinementQU

{L £ BUF2  (Leaf) \ \PoorTriangles(L)\ > 0}
1 0  else
11 Let Leaf be the leaf on the top of RefinementQ
12 RefinementQ <— RefinementQ \  BUF2  (Leaf)
13 p  <— p  +  1
14 spawn G e n e r a l i z e d D e l a u n a y R e f i n e m e n t ^ ,  g, A(), p, /() , M , Leaf)
15 endif
16 end while
17 return M

Figure 3.15: The Parallel Generalized Delaunay Refinement algorithm executed by the master 
thread.

zone BUF (Leaf) of this leaf. To simplify the presentation, here we rewrite the definition 

of the buffer zone in the way it is used by the algorithm. For this purpose, we introduce 

a superscript to the BUF (•) symbol:

BUF 1 (Leaf) = BUF (Leaf) ,

BUF* (Leaf) =  BUF * - 1  (Leaf) U |J  BUF ( L ) , i >  2.
LeBVFi~ 1(Leaf)

The algorithm is designed for the execution by one master thread which manages
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G e n e r a l i z e d D e l a u n a y R e f i n e m e n t ( A ,  g, A(), p, /(), M , Leaf)
Input: See the PGDR algorithm in Figure 3.15 
Output: Locally refined Delaunay mesh M.

Locally refined quadtree node Leaf
1 frain * minPoorTriangle3i(Leaf)^$ ^
2 t m a x  * i m i n  9
3 for j  =  i m in , . . . , irnax
4 while P o o rT r ia n g leS j(L ea f )  A 0
5 Let t € PoorTriangleSj(Leaf)
6 V <- /(*)
7 Insert p into A4
8 for L € {Lea/} U BUF (Leaf)
9 Update Poor Triangles (L) and Counter(L)

10 endfor
11 endwhile
12 endfor
13 Split Leaf recursively while (3.23) holds
14 return M , Leaf

Figure 3.16: The Parallel Generalized Delaunay Refinement algorithm executed by each of the 
refinement threads.

the work pool and multiple refinement threads which refine the mesh and the quadtree. 

Figure 3.15 presents a high level description of the Parallel Generalized Delaunay Refine­

ment (PGDR) algorithm performed by the master thread. Line 14 shows the invocation 

of a refinement thread from the master thread. Figure 3.16 presents the part of the 

algorithm executed by each of the refinement threads.

When a quadtree leaf Leaf is scheduled for refinement, we remove not just 

BUF 1 (Leaf) but BUF2  (Leaf) from the refinement queue. Although this is not re­

quired by our theory, there are two implementation considerations for doing so, and 

both are related to the goal of reducing fine-grain synchronization . 1 First, each leaf has 

an associated data structure which stores the poor quality triangles whose circumdisks 

intersect this leaf, so tha t we can maintain the relation (3.23). Therefore, we would 

have to introduce synchronization in line 9 of the algorithm in Figure 3.16 to maintain

1 As we have show n previously  [3], th e  overheads o f p o rtab le  th re a d  packages (e.g., P th read s) on 
m odern  SM T s a re  n o t sm all enough to  to le ra te  fine-grain paralle lism  in D elaunay  m esh refinem ent.
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this data structure. Second, for efficiency considerations, we followed the design of the 

triangle data structure tha t is used in T rian g le  [73]. In particular, each triangle con­

tains pointers to neighboring triangles for easy mesh traversal. However, if two cavities 

share an edge and are updated by the concurrent threads, which in theory can be done 

legitimately in certain cases, these triangle-neighbor pointers will be invalidated. For 

these reasons, we chose to completely separate the sets of leaves affected by the mesh 

refinement performed by multiple threads.

Each of the worker threads performs the refinement of the mesh and the refinement of 

the quadtree. The poor quality triangles whose split-points selected by a deterministic 

function / ( )  are inside the square of Leaf are stored in the data structure denoted 

here as PoorTriangles(Leaf). Leaf needs to be scheduled for refinement if this data 

structure is not empty. In addition, each Leaf has a counter for the triangles with 

various ratios of the side length of Leaf to their circumradius. If we denote <f>(t, Leaf) = 

1 ° § 2  ^ r(tlp  > then Counteri(Leaf) =  \{t €  M. | ( O  (t )  f l  Leaf ^  0) A {(fit, Leaf )  =  * ) } | .  

When Counteri{Leaf) =  0 , Mi = 1,2,3, it implies tha t (3.23) would hold for each of 

the children of Leaf, and Leaf can be split. Lemma 3.2 guarantees tha t when a point 

is inserted into a Delaunay mesh using the B-W algorithm, the circumradii of the new 

triangles are not going to be larger than the circumradii of the triangles in the cavity 

of the point or those tha t are adjacent to the cavity. In addition, the following lemma 

proves tha t the circumdisks of the new triangles are not going to extend beyond the 

circumdisks of the triangles in the cavity and the circumdisks of the triangles adjacent 

to the cavity. Therefore, newly created triangles will not violate (3.23).
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n

Figure 3.17: The circumdisk of a new triangle is a subset of the union of the circumdisks of 
the existing triangles.

L em m a 3 .7  Let A  (PkPmPn) € C (pj) and A  (pipnpm) £ C (pj). Then

O  (A  (P jP m Pn ) )  C ( O  (A (Pk Pm Pn )) U O ( A  ( p iP n P m ))  )•

P roo f: Consider Figure 3.17. Let p4  be the midpoint of edge e(pmpn), and let the

following points lie at the intersections of the perpendicular bisector of e (pmpn) with

the boundaries of the corresponding circumdisks: p\ and p$ with O  (A (piPnPm)), P‘2

and p e  with Q  (A (P jP m Pn ) ) ,  and p^ and p 7 with O  (A (Pk Pm P n ))• Due to the premise

that pj E O  (A (pkPmPn)) and pj ^ O  (A (piPnPm)), Pe is restricted to lie between

P5  and P7  by construction, and P2  is restricted to lie between pi and ps by Delaunay

property. Therefore, the arc Pn Pe P jP m  is restricted to lie within the shaded region

which is O  (A (P k P m P n ) ) \ Q >  (A (piPnPm,))  and the arc p m P 2Pn  is restricted to lie within
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the shaded region which is O  (A (P iP n P m )) \  O  (A (PkPmP n ))• Hence, O  (A {VjVmVn))  

cannot extend beyond O  (A (Pk Pm P n )) U O  (A (PiP nP m))• ■

Each leaf of the quadtree has associated with it a bucketing structure which holds 

poor quality triangles:

P o o r  T rian g les  ̂ L e a f )  =  { t  G  M .  | ( f ( t ) E L e a f )  A  L e a f )  =  * ) A

( ( . 4 ( i )  >  A ( t ) )  V ( p ( t )  >  p ) ) } .

At each mesh refinement step, all triangles in P o o r T r ia n g le s j ( L e a f )  are refined, for 

all j  = imini ■ ■ • i^min g r a n u la r i t y , where imin  =  minp  oor Triangles ̂ Leaf)^0 A nnd 

g ra n u la r i ty  > 1  is a parameter tha t controls how much computation is done during 

a single mesh refinement call. After a mesh refinement call returns, the feasibility of 

splitting L e a f  is evaluated, and it is recursively subdivided if necessary.

The P o o r T r ia n g le s  structure allows our parallel algorithm to give priority to triangles 

with large circumradii. As discussed in [70,77], R uppert’s sequential Delaunay refine­

ment algorithm has quadratic worst-case running time, even though in most practical 

cases the time is linear with respect to the output size. Recently, Miller [62] proposed 

a Delaunay refinement algorithm which runs in optimal O (n  log n  +  m) time, where n 

is the size of the input, and m  is the size of the output. He achieved this improve­

ment by introducing a priority queue, where the skinny triangles are ordered by their 

diameter (equivalently, circumradius), and the triangles with the largest diameter are 

refined first. Although our algorithm does not introduce total ordering as Miller’s se­

quential algorithm, it allows to eliminate quadratic running time for pathological input 

geometries.

We developed two implementations of the PGDR algorithm. The first one is written
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Figure 3.18: The meshes of the pipe cross-section model generated with PGDR and with 
Triangle, A (x, y) =  0A\/(x — 200)  ̂+  (y — 200)2 +  l. (Left) Our parallel refinement algorithm, 
4166 triangles. (Right) Triangle [73], 4126 triangles.

in Python using Python threads module, and the second one is in C + +  using Pthreads. 

The Python code is interpreted and, thus, is much slower than the compiled code written 

in languages like C /C + + , however, it offers high level data types and expressions which 

allow to significantly decrease the development cycle. We ran this code on a Linux box 

with two single-core Pentium-4 processors. Figures 3.18 and 3.19 compare the meshes 

produced by our Python implementation and T rian g le  library [73] for a pipe cross- 

section and a key. Figure 3.20 also shows the initial geometry and the quadtree produced 

by our algorithm for the cylinder flow problem [34]. For all of the quadtree nodes, mesh 

refinement and node subdivision routines were applied concurrently while preserving 

the required buffer zones, until the quality constraints were met. The specified grading 

functions are used as follows. If (Xi, iji) is the centroid of triangle +, then the area of 

has to be less than A (x i ,y i ) .  In all experiments we used the same minimal angle bound 

of 20°. These tests indicate tha t while maintaining the required quality of the elements, 

the number of triangles produced by our method is close, and sometimes is even smaller,
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Figure 3.19: The meshes of Jonathan Shewchuk’s key model generated with PGDR and with 
Triangle, A(x,y) — 0.02|y — 46 +0.1. (Left) Our parallel refinement algorithm, 5411 triangles. 
(Right) Triangle [73], 5723 triangles.

than produced by T rian g le .

The experiments with the code written in C + +  were conducted on an IBM Power5 

node with two dual-core processors running at 1.6 GHz and 8  GBytes of total physical 

memory. We compared our implementation with the fastest to our knowledge sequen­

tial Delaunay mesh generator T rian g le  version 1.6 [73]. This is the latest release of 

T riang le , which uses the off-center point insertion algorithm [8 6 ]. In order to make 

the results comparable, our PGDR implementation also uses the off-center point inser­

tion [8 6 ]. T rian g le  provides a convenient facility for the generation of meshes respecting 

user-defined area bounds. The user can write his own t r iu n s u i ta b le O  function and 

link it against T rian g le . This function is called to examine each new triangle and to 

decide whether or not it should be considered big and enqueued for refinement. We 

encoded our grading function into the t r iu n s u i ta b le O  function, compiled it into an 

object file, and linked against both T rian g le  and our own PGDR implementation. We 

ran each of the tests 1 0  times and used average or median timing measurements as
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Figure 3.20: The cylinder flow model and its mesh generated with PGDR. A (x, y) = 1.2-10 3 
if ((:r > 0) A (|y| < 5)) V ((x <  0) A (\/x2 +  y2) < 5); A(x,y) =  10—2, otherwise. Our parallel 
refinement algorithm produced 1044756 triangles, and Triangle produced 1051324 triangles. 
(Left) The input model. (Right) The final quadtree. The complete triangulation is not drawn.

indicated.

Figure 3.21(left) presents the total running times for several granularity values, as 

the number of compute threads increases from 1  to 4. One additional thread was used 

to manage the refinement queue. The mesh was constructed for the pipe cross-section 

model shown in Figure 2.5(left), using the grading function

A  (x, y) = 1 0 _4(y /(x — 2 0 0 ) 2  + (y — 2 0 0 ) 2  +  1 ).

The total number of triangles produced both by T rian g le  and by PGDR was approxi­

mately 17 million.

We can see tha t the best running time was achieved using 4 compute threads with

the granularity value equal to 2, and it amounted to 56% of T ria n g le ’s sequential

running time. It is also interesting to see the intersection of lines corresponding to

granularities 2 and 3, when the number of compute threads was increased from 3 to

4. This intersection reflects the tradeoff between granularity and concurrency: in order
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- e -  granularity = 1 
- x -  granularity = 2 
-A -  granularity = 3 
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Quadtree refinement 
Refinement queue updates 

I  M dle time
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Thread number

Figure 3.21: (Left) The total running time of the PGDR code, for different granularity values, 
as the number of compute threads is increased form 1 to 4, compared to Triangle. Each point 
on the graph is the average of 10 measurements. (Right) The breakdown of the total PGDR 
execution time for each of the threads, when the number of compute threads is 4 and granularity 
is 2. Thread number 0 performs only the management of the refinement queue, and threads 1-4 
perform mesh and quadtree refinement. The data correspond to the test with the median total 
running time.

to increase the concurrency we have to decrease the granularity, which introduces more 

overheads.

Figure 3.21 (right) shows the breakdown of the total execution time for each of the 

threads. The fact tha t the management thread is idle for 93% of the total time suggests 

the possibility of high scalability of the code on larger machines, since it can handle 

many more refinement threads (cores) than the current widely available machines have.

Standard system memory allocators exhibited high latency and poor scalability in 

our experiments, which lead us to  develop a custom memory management class. At
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initialization, our memory pool class takes the size of the underlying object (triangle, 

vertex, quadtree node, or quadtree junction point) as a parameter and at runtime it 

allocates blocks of memory which can fit a large number of objects. When the objects 

are deleted, they are not deallocated but are kept for later reuse instead. Each thread 

manages a separate set of memory pools, which allows us to avoid synchronization. Our 

quantitative study of the performance of the standard, the custom, and a novel generic 

multiprocessor allocator appears elsewhere [14].

3.4 Three-Dimensional Parallel Graded Delaunay Refine­

ment

3.4.1 Sufficient Condition of Delaunay-Independence

Similar to the two-dimensional case, let the reflection of disk Q ( r  (PmPkPlPn)) about the 

face A (pkPiPn) be the disk 0'&(PkPlVn) (T (PmPkPlPn)) that has the same radius, whose 

sphere passes through the circle of Q  (A (PkPiPn))5 and whose center lies on the other 

side of A  ( p k P i P n )  from point pm.

The following lemma extends Lemma 3.1 to three dimensions.

L em m a 3.8 For any point pi inside the region

O  (T ( PmO)  \  O f  (T (Pm0) > 

where £ — A (PkPiPn); the following inequality holds:

r (r  (P i O ) <  r  ( r  (pm0 )  ■
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•  in

o< r(v ,a>

Figure 3.22: A three dimensional disk and its reflection cut by a plane.

P roo f: We reduce the three-dimensional case to the two-dimensional case by the follow­

ing construction (see Figure 3.22). Draw an arbitrary diameter C(pkpi) of disk O  (£)• 

Then let $  be the plane which passes through C (pkPi) and is perpendicular to the plane 

containing £.

Let O  (PkPlPi) be the intersection of <E> with O  (T (PiO) such tha t pi 6  (h is obtained 

by moving pt along the surface of the sphere of O  (r  (PiO) bi the plane perpendicular 

to $ .

Let O  (PkPlPm) be the intersection of $  with O  (r  (PmO) sucb tha t prn G <h is 

obtained by moving pm along the surface of the sphere of O ( T (Pi0) in tbe plane
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perpendicular to 4>.

Also, let o” be the center of the disk O  (r  ('Prn(j)- Note tha t o” € $  because C (pkPi) 

is a diameter of O  (£)•

By construction, since O  (PiPkPl) is a two-dimensional equatorial disk of the three- 

dimensional disk O  (r  (PiO)i we have:

r (r  (Pi0) =  r  (A (pipkpi)) , (3.24)

and, since O  (PmPkPl) is a two-dimensional equatorial disk of the three-dimensional disk 

O  (T (Pm£))> we have:

r (r (PmO) = r (A (PmPkPl)) • (3.25)

Now we can see tha t the arrangement on the plane 4> is similar to the two-dimensional 

arrangement in Figure 3.3 with each point p in two dimensions corresponding to point 

p  in the plane 4>. According to the two-dimensional result of Lemma 3.1,

r  (A (pipkpi)) < r (A  (PmPkPl)) ■ (3.26)

Combining relation (3.26) with relations (3.24) and (3.25), we conclude the proof. ■  

The following lemma extends Lemma 3.2 to three dimensions:

L em m a 3.9 Let r  (pm£) G C (pi) and r  (pr£) ^ C (pi), where £ -  A  (PkPiPn) G dC (pi). 

Then

r ( r  (piO) < max{r ( r  (pm£ )) , r ( r  (pr£))}-

P ro o f: The conditions r  (pm0  G C (pi) and r  (prQ C (pi) imply tha t pi lies inside the

region \tr =  O  (r  (PmO) \  O  (r  (PrO)- There are two cases:
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Q 'r  { T  i l 'n l C l )

Figure 3.23: A face £ at the boundary of the cavity of a Steiner point Pi, first case.

(i) If r ( r  (pmO) > r (r  (PrO)i see Figure 3.23, then

'F C (O  ( t  (PmO) \ O f  (r  (PmO)) >

and, according to Lemma 3.8, r  ( r  (pi£)) <  r  (T (Pm£))-

(ii) If r ( r  (pm0 )  <  r  (r  (PrO)i see Figure 3.24, then

'F C (O f (t (PrO) \  O  (t (PrO)) 

and, by Lemma 3.8, r (r (pi£)) < r (r (prQ)-
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Figure 3.24: A face £ at the boundary of the cavity of a Steiner point pi, second case.

L em m a 3.10 (Sufficient co n d itio n  o f D e lau n ay -in d ep en d en ce  in  3D ) Points 

P i  and p j  are Delaunay-independent if  there exists a subsegment s of segment C ( p i P j )  

such that all tetrahedron circumdisks which intersect s have diameter less than or equal 

to the length of s, i.e.,

3 s Q C ( p i P j )  : V r e T  : Sn O ( r ) ^ 0  =► 2r ( t)  < \s\, (3.27)

where |s| is the length of s.

P roo f: First, condition (3.27) implies tha t C (pf) fl C (p j) =  0. Indeed, if there had

been a tetrahedron circumdisk which included both pt and p j , then the diameter of this

circumdisk would be greater than the length of C (piPj) which would contradict (3.27).
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Figure 3.25: A face shared by the boundaries of cavities of two Steiner points, one point is 
inside the circumdisk created by the second point, first case.

Now, there are two possibilities:

(i) If dC (pi)DdC (p j) =  0, then, by Corollary 3.1, pt and pj are Delaunay-independent.

(ii) Otherwise, let dC (pt) fl dC (pj) ^  0 and £ =  A (PkPiPn) be an arbitrary face in 

dC(pi) fl 9C(pj), such tha t r  (pr£) £ C (p,;) and t  (pm£) G C {p}). We are going 

to prove tha t Pi ^  O  (T i'PjO) and, thus, pi and pj are Delaunay-independent by 

Theorem 3.1. The proof is by contradiction. Suppose condition (3.27) holds and 

Pi € O  (r  (PjO)- There axe two cases:

(ii-a) If r ( r  (pm£)) > r (T (PrO)> see Figure 3.25, then from Lemma 3.9 it follows

1 0 1
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Figure 3.26: A face shared by the boundaries of cavities of two Steiner points, one point is 
inside the circumdisk created by the second point, second case.

tha t

r (r (PjO) < r (T (PmO) • (3-28)

In addition, the assumption tha t pi € O  (r  (PjO ) implies that

|£  (PiPj) I <  2r (r  (PjO) ■ (3-29)

From (3.28) and (3.29) we conclude tha t the following relation holds:

|£  {PiPj)I <  2r (T (PmO) ■ (3-30)

Due to (3.30) and the assumption tha t (3.27) holds as well as the fact tha t
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|s| < |£  (piPj)|, we conclude tha t s cannot intersect O  (r  (PmO)- ^  Pt is the 

point of intersection of £  (piPj) with the boundary of Q  ( t  (pm0 );  then s is 

restricted to be the subsegment of £  (piPt) and

\ s \< \£ (p ip t)\. (3.31)

Prom the assumptions tha t Pi & Q  ( t  (pj£,)) and pi Q  ( t  (pm£))> it follows 

tha t pi has to lie in the region O (T (PjO) \ O (r (PmO) and the following 

two relations hold:

s n O ( T ( P r O ) ^ 0  (3-32)

and

|£  (PiPt) | <  2 r ( r  (Prt)). (3.33)

Relations (3.31), (3.32), and (3.33) together imply tha t the condition (3.27) 

does not hold and we have come to a contradiction.

(ii-b) If r  ( r  (pm£,)) < r (r  (pr£)), see Figure 3.26, then from Lemma 3.9 it follows 

tha t r ( r  (PjO) < r (T (PrO) and considering that

M < |C (PiPj)\ < 2r (r (pjO) < 2r (r (pr£))

we conclude tha t s cannot intersect O  (T (Pr£))- This limits s to lie within 

the subsegment £  (pjpt), where pt is the point of intersection of £  (piPj) with 

the boundary of O  (r  (PrQ) ; therefore,

\ s \< \£ ( p jPt)\. (3.34)
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The subsegment C (pjPt) lies completely inside the region

O (r (pjO) \ 0 (t (PrO)

which in turn  is completely inside Q  ( r  (pm<0 )> hence the following two rela­

tions hold:

s n O ( r ( P m O ) ^  (3-35)

and

|£  (PjPt) | <  2r ( r  (pmO) • (3-36)

Relations (3.34), (3.35), and (3.36) together imply tha t the condition (3.27) 

does not hold and we have come to a contradiction.

3 .4 .2  O ctree  C o n stru c tio n

Let Ax = {Left, Right}, Ay =  {Top, Bottom}, and Az =  {Back, Front} be the possible 

directions of face-adjacent leaves of an octree.

D efinition  3.7 (a-neighborhood) Let the o-neighborhood Afa (L) of an octree leaf 

L (a e  Ax U Ay U Az) be the set of octree leaves that share a face with L  and are located 

in the a  direction of L.

D efinition 3.8 (Buffer zone) Let the set of leaves

BUF (L) = l ) a&Axf f a (L)U
U f K A ' i W )  I L' € Afa (L)}U
U 7 eAJA77  (L") | L" € {Afg {V) \ L ' e M a (L)}}
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Figure 3.27: The buffer zone of an octree leaf L. The leaf L is the solid white box in the center. 
The transparent boxes around it is BUF (L ).

under the condition

VL' € BUF (L ) , Vr e  T  : O  0 )  n  L' + 0 =► r (r) < ^  (L') , (3.37)

be called a buffer zone of leaf L with respect to mesh M ,  where i (L ')  is the length of 

the edge of cube L ' .

L em m a 3.11 (Sufficient co n d itio n  o f le a f D e lau n a y -sep a ra ten e ss  in  3D ) I f  Li

and L j  are octree leaves, i ^  j ,  and L j  £ BUF (Li ) ,  then Li  and Lj  are Delaunay- 

separated.
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Figure 3.28: A line segment C(piPj) which intersects buffer leaves Ln, Lm, Lk £ BUF (Li). 
The point p., lies inside the leaf Li, and the point pj is outside any of the leaves from BUF (Li).

P roo f: We will start by proving that, for an arbitrary pair of points pi € Lj and 

Pj  G Lj  ^ BUF (Lj), pi  and p j  are Delaunay-independent. Then we will extend the proof 

to show that any pair of points from {p i , p ' i , Pi }  x { p j , p ' , p'.-} are Delaunay-independent, 

which will imply that p i and p3 are strongly Delaunay-independent; hence, Lj and L j  

are Delaunay-separated.

Let the coordinates of the points be p i = (xl, yi ,  z.j) and p j  = ( x j , y j , Z j ) .  W ithout 

the loss of generality suppose x t > Xj,  y % > y j ,  Zi < z:r Then C( p i P j )  can enter the 

leaves it intersects by passing only through their bottom, back, and right faces, and it 

can exit the leaves by passing only through their top, front, and left faces.

Let C (PiPj) intersect the common surface of the top face of Lj with the bottom face 

of Ln, see Figure 3.28 (the case of intersection of C ( p i p j )  with the left and the front
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Figure 3.29: Leaf Delaunay-separateness.

faces of L n is symmetric up to rotation). Below we consider the case when £  (piPj) exits 

through the top face of L n, the case when it exits through the front face of Ln (the 

case when it exits through the left face is symmetric up to rotation), and all possible 

sub-cases. We show tha t in each case condition (3.27) is satisfied which means that pi 

and pj are Delaunay-independent by Lemma 3.10.

(i) If £  (PiPj) exits through the top face of L n, then the subsegment s — £  (piPj) D L n 

has length greater than I (Ln) by a simple projection argument. By the con­

struction of the buffer zone, see Definition 3.8, all tetrahedron circumdisks which 

intersect L n have diameter less than I  (Ln). Therefore, condition (3.27) is satisfied.

(ii) Otherwise, let C(piPj) exit through the front face of Ln . Let L m € BUF (Lj) be
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the leaf which is adjacent to L n at the point of intersection with £  ( j p i P j ) .  Assume 

tha t £ (L rn) <  £ (L n) (otherwise, change the order of L m and L n).

(ii-a) If £  (PiPj) intersects the top face of L m , then either

max L m = max L n
Z  Z

or

m a x lm < m a x ln , 

by the requirement of octree conformity. If

max I m < m a x ln ,

apply this argument to the leaf directly above L m . Otherwise, let

m a x i m  =  m a x l n .

Then the subsegment s  =  £  (PiPj) 0  (L n U L m ) has length greater than I  ( L n) 

and all tetrahedron circumdisks which intersect s have diameter less than 

max{! (Lm) , £ ( L n) }  =  I  (L n), hence condition (3.27) is satisfied.

(ii-b) If £  (PiPj) intersects the front face of L m , then the subsegment s  =  £  (piPj) Pi 

L m has length greater than £ ( L m ), all tetrahedron circumdisks which inter­

sect s  have diameter less than I(A m), and condition (3.27) is satisfied.

(ii-c) If £  (PiPj) intersects the left face of L m , then let Lfe € BUF (Lj) be the

leaf adjacent to L m at the point of intersection with £  (pipj). Assume tha t
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£ (Lk)  < £ ( L m ) (otherwise, change the order of Lk  and L m ). There are three 

sub-cases:

(ii-c-1) If C ( p i P j )  intersects the left face of Lf, then the subsegment s — 

£  (piPj) f l  Lk  has length greater than £ (Lk),  all tetrahedron circumdisks 

which intersect s have diameter less than £ (L k) ,  and condition (3.27) is 

satisfied.

(ii-c-2) If £  (pipj) intersects the top face of Lk then either

maxLfc =  m axLmz z

or

m a x L k  <  max L m ,
z z

by the requirement of octree conformity. If

maxLfc <  m axLm,z z

apply this argument to the leaf directly above Lk- Otherwise, let

max L k  = max L m.
z z

Then the subsegment s =  £  ( p i P j )  f l  (Ln U Lrn U Lk) has length greater 

than I  (L n), all tetrahedron circumdisks which intersect s have diameter 

less than max{£ (Ln) , £ (Lm) , £ (Lk)} =  £(Ln), and condition (3.27) is 

satisfied.
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(ii-c-3) If C (piPj) intersects the front face of Lfc then either

min Lk — min L m
y v

or

min Lfc > m inLTO, 
y y

by the requirement of octree conformity. If

min Lfc >  m inLm, 
y v

apply this argument to the leaf directly in front of Lfc. Otherwise, let

minLfc =  m inLTO. 
y y

The subsegment s = C (PiPj) f l  (Lm U Lk) has length greater than £ (Lm), 

all tetrahedron circumdisks which intersect s have diameter less than 

max{£ (L m ) , £ ( L k ) }  = £ (Lm), and condition (3.27) is satisfied.

Now suppose pi £ Lj, pj £ L j  ^ BUF (Lj), and Lfc £ BUF (Lj), see Figure 3.29. We

will consider the worst case, i.e., the case when two points, one from {pi,p'i,Pi} and the

other from {pj,p'j,P j}, can be as close as possible, which happens when p[. p", p'j, and p"

are inside Lfc. Suppose pi encroaches upon a constrained face A  (PkPiPm), be-) Pi is inside

the open equatorial disk O  (A (PkPiPm,))- Then the Delaunay refinement algorithm will

reject pi and attem pt to insert the circumcenter p\ of A  (PkPiPm)• Furthermore, suppose

p\ encroaches upon a constrained segment e (pnPk), he., p\ is inside the open diametral

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



disk O  (e (P n P k))• Similarly, let p3 encroach upon a constrained face A (pqprps) and p'j 

encroach upon a constrained segment e (prp t)■

We have:

\\Pi -  p'i\\ < r { A (P k P iP m )) (since p t G O  (A (P kP iP m )))  /o oco
< ^£ (L k )  (follows from (3.37) since p( G Lfc).

Furthermore,

llPi -  K'll <  r  (e (PnPfc)) (since p\ € O  (e (PnPfc))) ,o oqn
< (Lfc) (follows from (3.37) since p" G Lfc).

From (3.38), (3.39), and the triangle inequality it follows that \\pi — p"|| < (Lfc). By 

analogy, ||pj — p"11 < (Lfc). Finally, since p % and p j  are separated by Lfc, we conclude 

that ||p" — p"|| >  \ l  (Lfc). By constructing imaginary buffer cubes {LfcrJ  (p =  1 , . . . ,  9) 

inside Lfc, as shown in Figure 3.29, we can still satisfy condition (3.37) for each of Lkv, 

which guarantees tha t p" and p" are Delaunay-independent by Lemma 3.10. ■

3.4.3 Tetrahedron Quality M easures

In two dimensions, the most commonly used measures of element quality are minimal

angle, aspect ratio, and circumradius-to-shortest edge ratio. The aspect ratio is usually

defined as the ratio of the radius of the smallest circumscribed sphere to the radius of

the largest inscribed sphere [5]. In two dimensions, these metrics are equivalent, i.e.,

an improvement of one of the criteria implies an improvement of the others. In three

dimensions, however, the situation is more complicated since such correspondence does

not hold. The problem is illustrated by the existence of so-called sliver elements, see

Figure 3.30. A sliver is formed by positioning the three vertices of a tetrahedron’s base
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Figure 3.30: A sliver tetrahedron.

along the equatorial circle of a sphere and moving the apex vertex arbitrarily close to 

the plane of the base. Obviously, such a tetrahedron can have very good circumradius- 

to-shortest edge ratio since all the edges can have lengths comparable to the radius of 

the sphere. However, the aspect ratio can be made arbitrarily high due to the fact tha t 

the radius of the inscribed sphere approaches zero as the apex approaches the plane of 

the base.

Delaunay refinement algorithm in both two and three dimensions improves the 

circumradius-to-shortest edge ratio. Unfortunately, in three dimensions slivers can sur­

vive. Recently, an algorithm was developed for the construction of sliverless meshes 

by weighted Delaunay refinement [11]. However, it can offer only a very small angle 

guarantee made possible by the weight pumping method. Below we will focus only on 

the standard (unweighted) Delaunay refinement algorithm. Although slivers can im­

pose a problem for some numerical methods, it has been shown in [63,64] tha t bounded 

circumradius-to-shortest edge ratio of mesh elements is sufficient to obtain optimal con­

vergence rates for the solution of Poisson equation using the control volume method
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(CVM).

The following theorems relate the error estimates for the CVM with the quality 

measures of mesh elements. Let Aij be the Voronoi face associated with the Delaunay 

edge eij. Then for the quantities defined on the edges of the Delaunay mesh, the inner 

product is defined in [64,67] as

(U, V )w  ~   ̂ '  \Aij I\&ij\UijV{j,
(i,j)

where ||L j|w  is a discrete version of the L-fiD) norm of the gradient.

T heorem  3.6 (N icolaides [67]) Let {ui} be the discrete solution given by the control

volume method, and define Uij = (itj — Uj)/hij and and by

jAi) =  u(Pi) -  «(pj) TJ{2 ) =  _ j _  [  _ d u  
ij fHj  ’ *  | .4;/1 . / , , ,  On

(u is the exact solution), then \\U — LfO)\\w  < Hf/W — U ^\\w -

Theorem  3.7 (M iller et al. [64]) Let p — max(tJj ri;j/\eij\ ^ ie radius-edge aspect

ratio o f a Delaunay triangulation of Q, then

IIu W  _  c/(2)|k  < ( 1  +  4p2)||£>2u ||ia(n)/l, (3.40)

where D 2u is the Hessian (matrix of second derivatives) of u, and h =  max(jj) \e-ij\-

The error estimation (3.40) implies tha t there are two mesh related parameters which

can be adjusted to improve the accuracy of the solution and are within the control of

a mesh generation algorithm: the upper bound p on the circumradius-to-shortest edge

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ratio, and the length of the longest edge h. Since the length of the longest edge is 

bounded by twice the circumradius of a tetrahedron, for the development of our three- 

dimensional parallel Delaunay refinement algorithm we chose to use the tetrahedron’s 

circumradius as the measure of element size. In contrast to the two-dimensional case, 

we do not use the volume of the elements.

3 .4 .4  Im p lem en ta tio n  an d  E v a lu a tio n

For the implementation of our parallel Delaunay refinement algorithm we were able to 

utilize the serial Delaunay refinement code realized in Tetgen [78-80]. We consider this 

as a major accomplishment towards the goal of separating the parallel and the sequential 

design issues in parallel mesh generation. Indeed, Tetgen consists of about 33 thousand 

lines of highly optimized C +-1- code which took its author (Hang Si) several years to 

write. In addition, the implementation is based on a large number of theoretical and 

algorithmic results which were published during the last several decades and keep being 

introduced. Therefore, it is imperative tha t the development of the sequential part of 

the software be separated from the parallel part.

Figure 3.31 presents a high level diagram of our software design. The blocks marked 

“Serial Delaunay Refinement” represent P  instances of sequential Delaunay refinement 

code which is Tetgen in our implementation, but could be another code as well, e.g., 

Pyramid [75], Tetmesh [84], or Gridgen [41]. The “Element Scheduling” boxes represent 

the management of poor quality element queues by the sequential code. In our imple­

mentation, we modified Tetgen to create a separate queue for each of the leaves of the 

octree, and since each leaf at a given time can be refined by only one thread, each thread
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Coarse Grain Scheduling

Point
S e le c t io n

Point
Selection00

Multithreaded Memory Allocator

Figure 3.31: T h e  d ia g ra m  o f  th e  d e s ig n  o f  o u r  p a ra l le l  D e la u n a y  re f in e m e n t so ftw are .

pops from and pushes into a separate poor element queue. The “Point Selection” box is 

the abstraction for choosing a particular point insertion strategy inside the circumdisk 

of a poor quality element. As we have shown in Section 2.3, sequential Delaunay refine­

ment algorithms have the flexibility to choose Steiner points from the regions inside the 

circumdisk of a poor quality tetrahedron which we call the selection disks.

The box marked “Coarse Grained Scheduling” represents the construction of the 

octree and the scheduling of leaves for the refinement. The leaves with larger volumes 

have higher refinement priorities than the leaves with smaller volumes, and the leaves 

of the same size are processed in the first-in-first-out order. This simple strategy is 

designed to achieve maximal concurrency as fast as possible without introducing large 

overheads. The development of more efficient scheduling algorithms may be the topic
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Figure 3.32: A wireframe model of a flying bat.

of future research.

For the multithreaded memory allocator, we have experimented with several ap­

proaches, see [14] for a detailed description and performance evaluation. The best re­

sults from the performance point of view have been achieved with the use of a custom 

designed memory allocator. The standard memory allocator backing new and d e le te  

on our experimental platforms imposed unacceptable overhead, which motivated the de­

velopment of a custom allocation scheme. At initialization, the memory pool class takes 

the size of the underlying object as a parameter and at runtime it allocates blocks of 

memory which can accommodate a certain number of objects. The memory pool class 

does not address such issues as aligning the objects to memory addresses and choos­

ing appropriate block sizes. The design of a more general and sophisticated memory 

manager was addressed in [71].

Figure 3.32 shows a wireframe model of a flying bat used in the simulation and visu­

alization of air flow around bat wings [69]. The modeling is performed by constructing a
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Figure 3.33: T h e  b a t  in s id e  a  box.

large box containing the bat, see Figure 3.33. A tetrahedral mesh is constructed in the 

interior of the box, such tha t the face ahead of the bat is considered the inflow, the face 

behind is the outflow, and the other faces are paired for the use of periodic boundary con­

ditions. The mesh is used as input to the spectral/hp element solver Nektar [89] which 

solves the incompressible Navier-Stokes equations in arbitrary Lagrangian-Eulerian for­

mulation.

The most interesting physical phenomena like high vorticity happen in the area 

directly adjacent to the bat and in the trail just behind it. That is why these areas require 

a more refined mesh to capture their details. We defined a second box of parameterizable
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Figure 3 .3 4 :  A  n o n u n ifo rm  m e sh  o f  th e  b a t  in s id e  a  b ox .

Table 3.5: T h e  to t a l  t im e  s p e n t  b y  th e  th re e -d im e n s io n a l P G D R  co d e  o n  re f in in g  th e  m esh es  
o f th e  u n i t  c u b e  a n d  th e  b a t  m o d e ls . F o r  th e  u n i t  c u b e , f  =  0 .015 a n d  th e  fin a l m esh  size is 1.89 
m illio n . F o r  th e  b a t  r  =  0 .25  if  ( —19.89 <  x  <  6 .50) A (—5.65  <  y  <  8 .05) A (—5.61 <  z  <  5 .61 ); 
a n d  r  =  0.5 o th e rw ise ; 5 .8  m illio n  te t r a h e d r a .____________________________

Model Number of compute threads 
1 2  3 4

Unit cube 
Bat

77.2
235.2

47.0
142.1

37.06
1 2 0 . 0

32.29
1 1 1 . 2

size inside the large box to specify the area of fine refinement, see Figure 3.34.

We ran our experiments on the SciClone Cluster at the College of William and Mary 

and used one of its “Vortex” nodes which is a quad-cpu Sun Fire V440 server with 1.28 

GHz clock and 8  GB of main memory. Table 3.5 summarizes the running times of our 

experiments.
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Chapter 4

Conclusions

4.1 Summary and Extensions

We analyzed the existing point insertion methods for guaranteed quality Delaunay re­

finement and unified them into a framework which allows to develop customized mesh 

optimization techniques. The goals of these techniques may include the following:

• minimizing the number of inserted points, see for example [86,87] and Subsec­

tions 2.2.2 and 2.3.2 here;

• eliminating slivers, see [25];

• splitting multiple poor quality triangles simultaneously, see Figure 4.1 (left).

• creating elongated edges in required directions, see Figure 4.1 (center);

• inserting more than one point simultaneously, e.g., to create elements with specific 

shapes, see Figure 4.1(right);
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Parallel Optimistic Delaunay Meshing [27,66] • • •
Parallel Generalized Delaunay Refinement [15-21,29] • • • • • •
Parallel Constrained Delaunay Meshing [22] • • •
Parallel Delaunay Refinement Mesh Generation [46-48] • •
Parallel Domain Delaunay Decoupling [58-60] • • • •

Table 4.1: A qualitative comparison of practical parallel Delaunay mesh generation methods.

• satisfying other application-specific requirements, for example, conformity to a 

boundary zone, see Figure 1.1.

The experiments with a new optimization-based two-dimensional point placement 

method show tha t it allows to improve the size of the mesh by up to 2 0 % and up 

to 5% over the circumcenter and the off-center methods, respectively.

An extension of the selection disks to anisotropic mesh generation requires additional 

analysis. Labelle and Shewchuk [55] presented an anisotropic guaranteed-quality mesh 

generation algorithm. W ith each point p  in 12 they associate a symmetric positive definite 

metric tensor which specifies how distances and angles are measured from the perspective 

of p. As a result, the Voronoi diagram of a point set becomes very complicated, and 

may even contain disconnected faces; therefore, it does not always dualize to a correct 

triangulation. The point insertion scheme developed in [55] takes into account the 

visibility of points with respect to Voronoi faces, which would also restrict the shape of 

a selection region.
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Figure 4.1: Examples of the approaches for choosing Steiner points within selection disks of 
skinny triangles.

We presented a theoretical framework for the development of parallel guaranteed 

quality Delaunay refinement codes for the construction of uniform and graded meshes, 

both in two and three dimensions. We eliminated such disadvantages of the previously 

proposed methods as the necessity to maintain a cavity (conflict) graph, the rollbacks, 

the requirement to solve a difficult domain decomposition problem, and the centralized 

sequential resolution of potential conflicts. The presented theory leverages the quality 

guarantees of the existing sequential Delaunay refinement algorithms. The algorithms 

are designed to work with custom point placement techniques which choose points from 

the selection disks. Currently they are limited to deterministic point selection; incorpo­

rating randomized point selection is left to the future research.

The parallelization of two-dimensional mesh generation algorithms is particularly 

im portant for some three-dimensional simulations which use multiple two-dimensional 

meshes in different coordinate systems. Some examples include direct numerical sim­

ulations of turbulence in cylinder flows with very high Reynolds numbers, see [34], 

and coastal ocean modeling for predicting storm surge and beach erosion in real-time, 

see [8 8 ]. For the modeling of turbulence, as shown by Karniadakis and Orszag [49],
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with the increase of the Reynolds number Re, the size of the mesh grows in the order 

of Re9/4, which motivates the use of parallel mesh generation algorithms. At the same 

time, the size of the mesh should be as small as possible given the required element 

quality constraints, which can be attained by using a nonuniform (graded) mesh.

In this dissertation we presented two types of Parallel Delaunay Refinement algo­

rithms: uniform and graded. The sufficient condition for the uniform algorithm is based 

on the distance between the points which is similar to the definition of well-separated 

point sets in [9,10]. However, the construction of the binary tree may be too expensive 

in practice, because all we really need is a uniform lattice. Our second type of algorithms 

(graded) does not involve a sufficient condition based on the distance between the points. 

There may be a non-trivial extension of our algorithms, so that they could be used in 

conjunction with the analysis in [9,10], which we might look into in the future.

The uniform algorithm which we presented in Section 3.2 has been implemented 

both for shared- and distributed-memory architectures. The experiments on both archi­

tectures (see Table 3.4) suggest tha t the message passing overheads are not significant. 

The experimental evaluation of the uniform algorithm on distributed memory shows 

excellent scalability which is close to linear with respect to the number of processors. 

Another factor contributing to good scalability is tha t static work decomposition works 

well in this case. In particular, this leads to two advantages. First, we can use the fact 

that the amount of computation per area unit inside the domain is approximately equal 

for each of the blocks (subdomains). As a result, the amount of work assigned to differ­

ent processors can be fairly well balanced. To process the domains of highly irregular 

shapes, one can use the approach based on overdecomposition and load balancing [4].
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Second, the bookkeeping related to the background data structure (uniform lattice) is 

not very expensive compared to a quadtree used for a graded parallel Delaunay refine­

ment algorithm. The uniform algorithm is therefore preferred for applications which do 

not require mesh gradation and at the same time need very large meshes which cannot 

fit into the memory of a single machine.

The graded algorithm which we presented in Section 3.3 for two dimensions and in 

Section 3.4 for three dimensions has been implemented for shared memory only. It is 

more suitable for applications which require the construction of the meshes with variable 

element size. The extension of this algorithm for distributed memory architectures is the 

subject of our future research. One of the questions which will need to be addressed is 

the development of the distributed quadtree (octree) data  structure. One of the possible 

approaches has been described in [85], where each processor manages a local instance of 

the global octree with the use of a locational code lookup table for remote data accesses. 

As discussed in Section 3.4.4, the design of our algorithm on the high level can be viewed 

as the interaction of several components. The top-level component in Figure 3.31 marked 

as “Coarse Grain Scheduling” is the abstraction for the management of the quadtree 

(octree) and it will encapsulate the extensions to our existing implementation.

4.2 Publications

The following is a list of publications related to this dissertation:

• In the area of Computational Geometry and specifically Mesh Generation: 

SIAM J. Sci. Comp. [21], IMR’07 [23], IM R’06 [19], IMR’05 [18], SIAM J.
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Comp. [15], CGW ’06 [20], CGW ’04 [16], USACM MeshTrends’07 [92], USACM 

MeshTrends’03 [13].

• In the area of Parallel and Distributed Computing: ACM ICS’05 [3], ACM 

ICS’04 [17], IEEE TPDS [4], JPDC [1,2], IEEE IPD PS’06 [52], IEEE 

IDA ACS’05 [51], IMACS’05 [53], ICOSAHOM’04 [29].

• In the area of the Development of Mathematical Software: ACM TOMS [22], 

MATCOM [44], ICNGG’07 [14], ICNGG’05 [43], ICNGG’02 [12].
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