57,643 research outputs found

    A parallel algorithm for global routing

    Get PDF
    A Parallel Hierarchical algorithm for Global Routing (PHIGURE) is presented. The router is based on the work of Burstein and Pelavin, but has many extensions for general global routing and parallel execution. Main features of the algorithm include structured hierarchical decomposition into separate independent tasks which are suitable for parallel execution and adaptive simplex solution for adding feedthroughs and adjusting channel heights for row-based layout. Alternative decomposition methods and the various levels of parallelism available in the algorithm are examined closely. The algorithm is described and results are presented for a shared-memory multiprocessor implementation

    The impact of propagation environment and traffic load on the performance of routing protocols in ad hoc networks

    Full text link
    Wireless networks are characterized by a dynamic topology triggered by the nodes mobility. Thus, the wireless multi-hops connection and the channel do not have a determinist behaviour such as: interference or multiple paths. Moreover, the nodes' invisibility makes the wireless channel difficult to detect. This wireless networks' behaviour should be scrutinized. In our study, we mainly focus on radio propagation models by observing the evolution of the routing layer's performances in terms of the characteristics of the physical layer. For this purpose, we first examine and then display the simulation findings of the impact of different radio propagation models on the performance of ad hoc networks. To fully understand how these various radio models influence the networks performance, we have compared the performances of several routing protocols (DSR, AODV, and DSDV) for each propagation model. To complete our study, a comparison of energy performance based routing protocols and propagation models are presented. In order to reach credible results, we focused on the notion of nodes' speed and the number of connections by using the well known network simulator NS-2.Comment: 13 pages, 5 figures, International Journal of Distributed and Parallel Systems (IJDPS) Vol.3, No.1, January 201

    Parallel Algorithms for Single-Layer Channel Routing

    Get PDF
    We provide efficient parallel algorithms for the minimum separation, offset range, and optimal offset problems for single-layer channel routing. We consider all the variations of these problems that are known to have linear- time sequential solutions rather than limiting attention to the river-routing context, where single-sided connections are disallowed. For the minimum separation problem, we obtain O(lgN) time on a CREW PRAM or O(lgN / lglgN) time on a (common) CRCW PRAM, both with optimal work (processor- time product) of O(N), where N is the number of terminals. For the offset range problem, we obtain the same time and processor bounds as long as only one side of the channel contains single-sided nets. For the optimal offset problem with single-sided nets on one side of the channel, we obtain time O(lgN lglgN) on a CREW PRAM or O(lgN / lglgN) time on a CRCW PRAM with O(N lglgN) work. Not only does this improve on previous results for river routing, but we can obtain an even better time of O((lglgN)^2) on the CRCW PRAM in the river routing context. In addition, wherever our results allow a channel boundary to contain single-sided nets, the results also apply when that boundary is ragged and N incorporates the number of bendpoints

    On the performance of routing algorithms in wormhole-switched multicomputer networks

    Get PDF
    This paper presents a comparative performance study of adaptive and deterministic routing algorithms in wormhole-switched hypercubes and investigates the performance vicissitudes of these routing schemes under a variety of network operating conditions. Despite the previously reported results, our results show that the adaptive routing does not consistently outperform the deterministic routing even for high dimensional networks. In fact, it appears that the superiority of adaptive routing is highly dependent to the broadcast traffic rate generated at each node and it begins to deteriorate by growing the broadcast rate of generated message

    A general analytical model of adaptive wormhole routing in k-ary n-cubes

    Get PDF
    Several analytical models of fully adaptive routing have recently been proposed for k-ary n-cubes and hypercube networks under the uniform traffic pattern. Although,hypercube is a special case of k-ary n-cubes topology, the modeling approach for hypercube is more accurate than karyn-cubes due to its simpler structure. This paper proposes a general analytical model to predict message latency in wormhole-routed k-ary n-cubes with fully adaptive routing that uses a similar modeling approach to hypercube. The analysis focuses Duato's fully adaptive routing algorithm [12], which is widely accepted as the most general algorithm for achieving adaptivity in wormhole-routed networks while allowing for an efficient router implementation. The proposed model is general enough that it can be used for hypercube and other fully adaptive routing algorithms

    Analytical performance modelling of adaptive wormhole routing in the star interconnection network

    Get PDF
    The star graph was introduced as an attractive alternative to the well-known hypercube and its properties have been well studied in the past. Most of these studies have focused on topological properties and algorithmic aspects of this network. Although several analytical models have been proposed in the literature for different interconnection networks, none of them have dealt with star graphs. This paper proposes the first analytical model to predict message latency in wormhole-switched star interconnection networks with fully adaptive routing. The analysis focuses on a fully adaptive routing algorithm which has shown to be the most effective for star graphs. The results obtained from simulation experiments confirm that the proposed model exhibits a good accuracy under different operating conditions

    Analytical modelling of hot-spot traffic in deterministically-routed k-ary n-cubes

    Get PDF
    Many research studies have proposed analytical models to evaluate the performance of k-ary n-cubes with deterministic wormhole routing. Such models however have so far been confined to uniform traffic distributions. There has been hardly any model proposed that deal with non-uniform traffic distributions that could arise due to, for instance, the presence of hot-spots in the network. This paper proposes the first analytical model to predict message latency in k-ary n-cubes with deterministic routing in the presence of hot-spots. The validity of the model is demonstrated by comparing analytical results with those obtained through extensive simulation experiments

    Software-based fault-tolerant routing algorithm in multidimensional networks

    Get PDF
    Massively parallel computing systems are being built with hundreds or thousands of components such as nodes, links, memories, and connectors. The failure of a component in such systems will not only reduce the computational power but also alter the network's topology. The software-based fault-tolerant routing algorithm is a popular routing to achieve fault-tolerance capability in networks. This algorithm is initially proposed only for two dimensional networks (Suh et al., 2000). Since, higher dimensional networks have been widely employed in many contemporary massively parallel systems; this paper proposes an approach to extend this routing scheme to these indispensable higher dimensional networks. Deadlock and livelock freedom and the performance of presented algorithm, have been investigated for networks with different dimensionality and various fault regions. Furthermore, performance results have been presented through simulation experiments

    Performance modeling of fault-tolerant circuit-switched communication networks

    Get PDF
    Circuit switching (CS) has been suggested as an efficient switching method for supporting simultaneous communications (such as data, voice, and images) across parallel systems due to its ability to preserve both communication performance and fault-tolerant demands in such systems. In this paper we present an efficient scheme to capture the mean message latency in 2D torus with CS in the presence of faulty components. We have also conducted extensive simulation experiments, the results of which are used to validate the analytical mode
    • …
    corecore