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Abstract  
Several analytical models of fully adaptive routing have 
recently been proposed for k-ary n-cubes and hypercube 
networks under the uniform traffic pattern. Although, 
hypercube is a special case of k-ary n-cubes topology, the 
modeling approach for hypercube is more accurate than k-
ary n-cubes due to its simpler structure. This paper 
proposes a general analytical model to predict message 
latency in wormhole-routed k-ary n-cubes with fully 
adaptive routing that uses a similar modeling approach to 
hypercube. The analysis focuses Duato’s fully adaptive 
routing algorithm [12], which is widely accepted as the 
most general algorithm for achieving adaptivity in 
wormhole-routed networks while allowing for an efficient 
router implementation. The proposed model is general 
enough that it can be used for hypercube and other fully 
adaptive routing algorithms. 

1. Introduction 
It is widely recognised that one of the critical components 
of a multicomputer is the interconnection network used to 
connect the processing elements together.  Most current 
multicomputers [6, 15, 22, 24, 25] employ k-ary n-cubes 
for low-latency and high-bandwidth inter-processor 
communication. The two most popular instances of k-ary 
n-cubes are the hypercube (where k=2) and the torus 
(where n=2). The former has been employed in 
multicomputers such as the N-Cube [22] and iPSC/2 [25] 
while the latter has been adopted in machines like the J-
machine [24], CRAY T3E [6] and CRAY T3D [15].  

Modern parallel routers significantly reduce average 
latency by using wormhole switching [7]. Wormhole is a 
switching strategy that divides each packet in elementary 
units called flits, each of a few bytes for transmission and 
flow control, and advances each flit as soon as it arrives at 
a node. The header flit (containing routing information) 
governs the route and the remaining data flits follow it in 

a pipelined fashion. If a channel transmits the header of a 
message, it must transmit all the remaining flits of the 
same message before transmitting flits of another 
message. Once the header is blocked, the data flits are 
blocked in-situ. Wormhole is attractive because it reduces 
the latency of message delivery compared to store and 
forward and requires only a few flit buffers per node. 
Network throughput of wormhole routed networks can be 
increased by organizing the flit buffers associated with 
each physical channel into several virtual channels [9]. 
These virtual channels are allocated independently to 
different packets and compete with each other for the 
physical bandwidth. This decoupling allows active 
messages to pass blocked messages using network 
bandwidth that would otherwise be wasted.  

Most interconnection networks including k-ary n-
cubes provide multiple physical paths for routing a 
message between two given nodes. This introduces the 
problem of choosing a route between many alternatives. 
Many  practical multicomputers [15, 24] have adopted 
deterministic routing where messages with the same 
source and destination addresses always take the same 
network path. This form of routing has been popular 
because it requires a simple deadlock-avoidance 
algorithm, resulting in a simple router implementation. 
However, messages cannot use alternative paths to avoid 
congested channels, and thus reduce their latency. Fully-
adaptive routing has often been suggested to overcome 
this limitation by enabling messages to explore all 
available paths. Several authors like Duato [12], Lin et al 
[20], and Su and Shin [29] have proposed fully-adaptive 
routing algorithms, which can achieve deadlock-freedom 
with a minimal requirement for virtual channels, allowing 
for an efficient router implementation. 

Analytical models of deterministic routing in 
common wormhole-routed networks including the k-ary 
n-cube have been widely reported in the literature [2, 4, 5, 
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11, 14, 17]. Several researchers have recently proposed 
analytical models of fully-adaptive routing under the 
uniform traffic pattern [4, 26, 28]. For instance, Boura et 
al [4] have proposed a model of fully-adaptive routing in 
the hypercube. The authors in [26, 28] have described 
recently models for the high-radix k-ary n-cubes.  

The most difficult part in developing any analytical 
model of adaptive routing is the computation of the 
probability of message blocking at a given router due to 
the number of combinations that have to be considered 
when enumerating the number of paths that a message 
may have used to reach its current position in the 
network. The problem is further exacerbated when the 
network dimensionality increases as the number of 
alternative paths increases. The model in [28] computes 
the exact expressions for the probability of message 
blocking at a given router by considering all the possible 
paths that enable a message to cross from its source to its 
current position in the network. However, the model is 
very time consuming due to recursive calculations of 
message blocking for each node in each iteration of 
message latency calculation. This paper proposes an 
alternative analytical model for computing the mean 
message latency in k-ary n-cubes with fully-adaptive 
routing. The derivation of the model is similar to the 
hypercube model presented in [4] and is general that can 
be used for k-ary n-cubes and hypercubes. 

As in previous similar studies [4, 26, 28], the present 
analysis uses Duato’s fully adaptive routing algorithm 
[12]. This form of routing is widely accepted as one of the 
most general fully-adaptive routing algorithm for 
wormhole-routed networks, leading to an efficient router 
implementation. The Cray T3E [6] and the reliable router 
[10] are two examples of recent practical systems that 
have adopted Duato’s routing algorithm. However, the 
modelling approach can be easily adopted by other fully-
adaptive routing algorithms [e.g. 3, 18, 21]. 

The rest of the paper is organised as follows. Section 
2 reviews some definitions and background that will be 
useful for the subsequent sections. Section 3 present the 
analytical model and finally, section 5 concludes this 
study.  

2. Preliminaries 
The unidirectional k-ary n-cube, where k is referred to as 
the radix and n as the dimension, has N=kn nodes, 
arranged in n dimensions, with k nodes per dimension. 
Each node can be identified by an n-digit radix k address 
(a1, a2 ,…, an).. The ith digit of the address vector, ai, 
represents the node position in the ith dimension. Node 
with address (a1, a2 ,…,an) is linke to node (b1,b2 ,…,bn) if 
and only if there exists i, )1( ni ≤≤ , such that ai =(bi 
+1) mod k and aj = bj for ; i  j. Thus, each 

node is connected to a neighbouring node in each 
dimension.  

nj ≤≤1 ≠

Each node consists of a processing element (PE) and 
switching element (SE) or route. The PE contains a 
processor and some local memory. The router has )1( +n  
input and )1( +n  output channels. A node is connected to 
its neighboring nodes through n inputs and n output 
channels in a unidirectional k-ary n-cube. The remaining 
channels are used by the PE to inject/eject messages 
to/from the network respectively. Messages generated by 
the PE are transferred to the router through the injection 
channel. Messages at the destination are transferred to the 
local PE through the ejection channel. Each physical 
channel is associated with some, say V, virtual channels. 
A virtual channel has its own flit queue, but shares the 
bandwidth of the physical channel with other virtual 
channels in a time-multiplexed fashion [7]. The router 
contains flit buffers for any incoming virtual channel. An 
(n+1)V-way crossbar switch direct message flits from any 
input virtual channel to any output virtual channel. Such a 
switch can simultaneously connect multiple input to 
multiple output virtual channels while there is no 
conflicts. 

Deadlock-free fully-adaptive routing algorithms that 
require only one extra virtual channel compared to 
deterministic routing have been discussed in [12, 13, 29] 
of which Duato’s fully-adaptive routing algorithm is most 
known and widely used in studies and practice as it 
provide the maximum adaptivity with the minimum 
number of virtual channels.  

Duato’s algorithm [12] divides the virtual channels 
into two classes: a and b. At each routing step, a message 
visits adaptively any available virtual channel from class 
a. If all the virtual channels belonging to class a are busy, 
it visits a virtual channel from class b using deterministic 
routing. The virtual channels of class b define a complete 
deadlock-free virtual sub-network, which acts like a 
“drain” for the virtual sub-networks built from virtual 
channels belonging to class a. In k-ary n-cubes, Duato’s 
algorithm requires at least three virtual channels per 
physical channel to ensure deadlock-freedom where the 
class a contains one virtual channel and class b owns two 
virtual channels. When there are more than three virtual 
channels, network performance is maximised when the 
extra virtual channels are added to class a [12, 13]. Thus, 
with V virtual channels per physical channel, the best 
performance is achieved when class a and b contain V-2 
and 2 virtual channels respectively. When the network is a 
hypercube (k=2), however, arrangement of virtual 
channels will be different. In this case Duato’s algorithm 
requires at least one virtual channel in class b and all the 
remainder virtual channels to be included in class a virtual 
channels. 
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3. Analysis 
The model uses assumptions that are widely used in the 
literature [1, 2, 4, 5, 8, 9, 11, 14, 17, 26, 28]. 
a)  Nodes generate traffic independently of each other, 

and which follows a Poisson process with a mean rate 
of λ messages per cycle.  

b)  The arrival process at a given channel is approximated 
by an independent Poisson process.   

c) Message destinations are uniformly distributed across 
network nodes. 

d) Message length is fixed and equal to M flits, each of 
which is transmitted in one cycle from one router to 
the next. 

e) The local queue at the injection channel in the source 
node has infinite capacity. Moreover, messages are 
transferred to the local PE as soon as they arrive at 
their destinations through the ejection channel. 

f) V virtual channels are used per physical channel. Class 
a contains  virtual channels, that are crossed 
adaptively. On the other hand, class b contains two 
virtual channels that are crossed deterministically. Let 
the virtual channels belonging to class a and b be 
called the adaptive and deterministic virtual channels 
respectively. When there is more than one adaptive 
virtual channel available a message chooses one at 
random. To simplify the model derivation no 
distinction is made between the deterministic and 
adaptive virtual channels when computing virtual 
channels occupancy probabilities [4, 26, 28].  

)2( −V

 

The model computes the mean message latency as 
follows. First, the mean network latency, S , that is the 
time to cross the network is determined. Then, the mean 
waiting time seen by a message in the source node, sW , 
is evaluated. Finally, to model the effects of virtual 
channels multiplexing, the mean message latency is 
scaled by a factor, V , representing the average degree of 
virtual channels multiplexing that takes place at a given 
physical channel. Therefore, the mean message latency 
can be written as 

VWSLatency s )( +=  (1)  
The average number of hops that a message makes across 
the network, d , is given by  

∑
=

=
max

1

d

i
iipd  (2) 

where   is the probability that a newly-generated 
message makes  hops to reach its destination and 

is the maximum distance that a message may 
traverse  to reach its destination (also called network 
diameter) and are given  by 

ip
i

maxd

)1(max −= knd  (3) 
To compute  let us refer to the following result from 
the combinatorial theory [23, 27, 30]. 

ip

Proposition 1: The number of ways to distribute r like 
objects into m different cells, such that no cell contains 
less than q objects and not more than  objects is 

the coefficient of  in the expansion of the 
polynomial 

Let us refer to the coefficient of  as . 

In [30], the expression of  is given by 

1-kq +
qmr−

mkmk 1−

)

x

mx)−−

Nq

xxxxF )1(1()1()( ++=−=
qmrx − ),(1 mr−

,(1 rkq −+

m

x .....2 ++

N kq
q
+

)m

( )1
1

0

1 )()1(),( −+−−
−

=

−+ ∑ −= mlkmqr
m

l

m
l

lkq
q mrN  

(4) 
If the hops made by a message are treated as like objects 
and the visited dimensions as different cells, the above 
proposition can be used to compute the number of nodes 
which are i hops away from a given node in the k-ary n-
cube as 

( 1
1    

0

1
0 )()1(),( −+−

−
=

− ∑ −== nlki
n

n

l

n
l

lk
i niNn  (5) 

Hence, recalling that a node can not send a message to 
itself,  can be written as ip

1−
=

N
np i

i      (6) 

with N being the number of nodes in the network 
( ). nkN =

 Fully-adaptive routing allows a message to use 
any available channel that brings it closer to its 
destination resulting in an evenly distributed traffic rate 
on all network channels. A router in the k-ary n-cube has 
n output channels and the PE generates, on average, λ  
messages in a cycle. Since each message travels, on 
average, d  hops to cross the network the rate of 
messages received by each channel, cλ , can be written as 
[2] 

n
d

c
λλ =   (7) 

The network latency for a message consists of two 
parts: one is the delay due to the actual message 
transmission time i.e. iM + , and the other is due to 
blocking in the network. The network latency of an i-hop 
message, , can therefore be written as  iS
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∑
=

++=
i

h
i,hi BiMS

1
 (8) = PPP  

1−i,h

i,h ad&ablock
ϕ

  (11) 

with  being the probability that all adaptive virtual 
channels of a physical channel are busy and  being 

the probability that all adaptive and deterministic virtual 
channels of a physical channel are busy. To compute 

three cases should be considered, and are as follows 
[26, 28]. 

aP

daP &

aP

where M  is the message length and  is the mean 

blocking time seen by an i-hop message at the -hop 
channel  in its journey. Averaging over all the 
possible nodes destined made by a regular message yields 
the mean network latency for regular messages as 

i,hB
thh

)ih ≤≤1(

∑
=

=
maxd

i
iiSpS

1
  (9) a)  V virtual channels are busy which means all adaptive 

virtual channels are busy as well. 

b)  (V-1) virtual channels are busy. The number of 
combinations where (V-1) out of V virtual channels 
are busy is ( )V

V
 

1−  of which only two combinations 
result in all adaptive virtual channels being busy. 

Calculation of the message blocking ( ) i,hB
A message is blocked at a given channel when all the 
adaptive virtual channels of the remaining dimensions to 
be visited and also the deterministic virtual channels of 
the lowest dimension still to be visited are busy. When 
blocking occurs a message has to wait for a deterministic 
virtual channel at the lowest dimension [12]. Note that 
under the uniform traffic pattern and due to the symmetry 
of the k-ary n-cube topology, adaptive routing results in 
an evenly distributed traffic rate on all network channels. 
Furthermore, a message sees the same mean waiting time 
and mean service time across all channels regardless of 
their positions in the network. However, the message sees 
a different probability of blocking at each channel as the 
number of alternative paths, that can be selected, changes 
from one channel to the next. The probability of blocking 
depends on the number of output links, and thus on the 
virtual channels that a message can use at its next hop.  

c)  (V-2) virtual channels are busy. The number of 
combinations whe e (V-2) out of V virtual channels 
are busy is 

r
( )V
V
 

2−  of which only one combination 
results in all adaptive virtual channels being busy. 

Similarly, to compute two cases should be 
considered, and these are the following. 

daP &

a) V virtual channels are busy, that is all adaptive, and 
deterministic virtual channels are busy. 

b) (V-1) virtual channels are busy. In this case, only two 
combinations out of 

 
( )V
V
 

1−  result in all adaptive and 
deterministic virtual channels being busy. 

Consider a message that has to cross i hops to reach 
its destination. Suppose that this i-hop message has 
reached the hth-hop channel ( along its path. 

Let  and  denote the probability of blocking of 

an i-hop message in its h -hop channel and the mean 
waiting time when blocking occurs, respectively. The 
mean blocking time, , is given by 

)1 ih <≤

i,hblockP w
th

i,hB

Let  vP )0( Vv ≤≤  represent the probability that  
virtual channels at a physical are busy. Taking into 
account the different cases mentioned above,  and 

 are given in terms of by [26, 28] 

v

aP

daP & vP








−

+







−

+= −−

21

2 21

V
V

P

V
V
P

PP VV
Va  (12) 

∑
=

=
i

h
blocki,h wPB

i,h
1

                                                  (10) 








−

+= −

1

2 1
&

V
V
PPP V

Vda  (13) 
The probability of blocking  is computed 

as follows. The number of alternate routes that an i-hop 
message can select when it reaches channel h, to advance 
towards its destination depends on the number of 
dimensions it has already passed. Let 

i,hblockP

i,hϕ  be the number 
of dimensions that an i-hop message still has to visit when 
crossing channel  h ( i,hϕ  are determined below). Hence, 

the probability can be calculated as 
i,hblockP

Calculation of the average number of channels that an 
i-hop message can select at channel  (h i,hϕ ) 
Let nsssS L21=  be the source node and 

nddd L21D =  denotes a destination. Let us define the 
set }{

lxx iI = , )n1( l ≤≤ , , where each 
element denotes the number of hops that the message 
makes along each dimension l when it traverses the 

)1( inx ≤≤
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network from the source node to the destination node, that 
is . The index x in represents 

each of the  nodes that are i-hop away from the source 

node, in which i . 

lxl dkis
l

=+ mod)(

in

∑
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=
n

l
xx i

1

},,,{ 21 niii L=

Im ,{ 1zZ =
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i
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−−
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Zh ZhN ==

l ≤≤1

≤

+

=

lj

k

{

n

For the following discussion let set 
denotes one of the , i-hop messages 

and let  and denote the number 
of non-zero and the set of non-zero elements in this set, 
respectively. The number of ways to distribute h 

 hops over m  dimensions such that the 
number of hops made in each dimension l 

I

1(

in
},,2 ImzL

I

)Iml ≤  
be at most the l-th element of the set I, that is , can be 
calculated the following result from combinatorial theory 
[23, 30]. 

l

Proposition 2: The number of ways to distribute r 
indistinguishable objects into m distinguishable cells, 
such that no cell contains less than  objects and not 
more than  1  objects is given by the 

coefficient of in the following product.  

lq
ml ≤

−++ kq llxf 1)...
 

(14) 

Let us refer to the coefficient of  as , 

. In [16], an 

expression for  is calculated that is given by  

rx
)m

)(, rm
KQ

,..,,( 21 kkkQ

 

==












 ∑∑−+ 11 l
m
l l

m
l l

m
kjqrm

N

)mQ  (15) 
),(' lI =

 
If the hops made by the i-hop message at channel h are 
treated as like objects and the visited dimensions, , as 
different cells, the number of ways to distribute h hops 
over dimensions, n , can be written as 

Im

},,, 21 Imi zzzn L  (16)  yP

In this way h hops are distributed over m dimensions 
such that the number of hops made at each dimension l be 
at most the l-th, , element of the set Z, that is 

. The probability that a message has entirely crossed 

one dimension on its h -hop is given by 

lz

th
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)1('
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hIm
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1 1
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where  and 1)1( −= Im
,1, 11 }1,,1,1{)(' )('21 −−−−−= +− ll zz

thh

lm I
zzzlZ L

. Similarly, the probability that a message has entirely 

crossed two dimensions on its  hop can be expressed 
as 

)(

)(

)(
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where )2(' = II mm and L,1{),(' 121 −= zllZ  

}1,,1,1,1,1, )2('1111 211 −−−−− +−+− Imlll zzzz LL  

More generally, the probability that a message has 
entirely crossed y dimensions can be written as 

)(
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1
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where mym II =)('  and    =),,,(' 21 ylllZ L

',,','{ )('21 ym Izzz L is the non-zero elements in the 
following set 

}',,'{,,21 ny IIll LL



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−
==

= otherwise  I
  or  lili

I
i

i 1
0

' 21

 

 (20) 
= li  or  yL

Considering all of the i-hop messages and using the above 
equation, the probability of passing y dimensions for an i-

hop on its  hop can be expressed as thh

∑
=

=
in

x

y
hh iPassi

1
()(

 
(21) 

The number of channels, and thus the number of 
virtual channels, that a message can select at a given hop 
depends on the number of dimensions still to be visited. 
When a message arrives at channel i  it has already made 
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)1( −i
1( y≤

 hops and has crossed, say, y dimensions, 
. At its next hop the message can use (n-y) 

channels at the remaining (n-y) dimensions still to be 
visited. Averaging all of the possible cases yields the 
number of channels, 

)n≤

ih,ϕ , that the message can select 

when crossing channel h, ( )1(),max ihdi1 ≤≤≤≤ , as 

∑
=

n

y
n

0
(=ih,ϕ i)(

w

ρ
=w

cλρ =

2CS =

Sσ

2)( MS −=

w
cλ

=

S

Ws =

Calculation of the average degree of virtual channels 
multiplexing (V ): 
The probability, , that v adaptive virtual channels are 
busy at a physical channel can be determined using a 
Markovian model. State 

vP

vπ )0( Vv ≤≤ corresponds to v 
virtual channels being busy. The transition rate out of 
state vπ  to state 1+vπ  is the traffic rate cλ (given by 
equation 7) while the rate out of state vπ to state 1−vπ is 

S
1  ( S  is given by equation 9). The transition rates out of 

state Vπ  are reduced by cλ  to account for the arrival of 
messages while a channel is in this state. The steady-state 
solutions of the Markovian model yeild the probability 

 (vP )V1 v ≤≤ as [9] 

− y
hPy)
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Calculation of the mean waiting time at a channel ( ), 
local queue (

w
sW ) 

To determine the mean waiting time, , to acquire a 
virtual channel a physical channel is treated as an M/G/1 
queue with a mean waiting time of [19] 
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where cλ  is the traffic rate on the channel given by 

equation 7, S  is its service time calculated in equation 9, 
and 2  is the variance of the service time distribution. 
Since the minimum service time at a channel is equal to 
the message length, M, following a suggestion proposed 
in [11], the variance of the service time distribution can 
be approximated as 2

Sσ . Hence, the mean 
waiting time becomes 

When multiple virtual channels are used per physical 
channel they share the bandwidth in a time-multiplexed 
manner. The average degree of multiplexing of virtual 
channels, that takes place at a given physical channel, can 
be estimated by [9].  
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The above equations reveal that there are several inter-
dependencies between the different variables of the 
model. For instance, Equations 8, 9 and 10 reveal that S  
is a function of w while equation 26 shows that w is a 
function of S . Given that closed-form solutions to such 
inter-dependencies are very difficult to determine the 
different variables of the model are computed using 
iterative techniques for solving equations.  

Similarly, modelling the local queue in the source node as 
an M/G/1 queue, with the mean arrival rate and service 

time  with an approximated variance ( 2
MS − )  yields 

the mean waiting time seen by a message at source node 
as [19] 
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In Fig. 1, we have compared the proposed model to the 
accurate model proposed in [28]and the model proposed in 
[26], which referred as general, complex and average in 
the figure respectively for two different network, namely 
the 8-ary 3-cube and 10-ary 5-cube with message lengths 
M=32 and 64 flits and V=3 and 5 virtual channels per 
physical channel. As can be seen in the figure, the 
proposed model in this paper is almost matching to the 
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other models. However, it is slightly overestimating the 
mean message latency which causes an earlier saturation 
compared to accurate model proposed in [28]. Although 
the model is slightly less accurate than the model in [28] 
under heavy traffic loads and near the saturation region, its 
generality and simple applicability to other routing 
algorithms makes it an attractive tool for studying 
performance metrics of k-ary n-cubes and hypercubes 
under different working conditions. Moreover, in Fig. 1, 
we have compared the proposed model to the hypercube 
model proposed in [4], which referred as bora, and general 
in the figure respectively for the 2-ary 3-cube with 
message lengths M=32 and 64 flits and V=3 virtual 
channels per physical channel. As can be seen in the 
figure, the proposed model in this paper exactly matches to 
the Bora model. However, it is worth mentioning that 
equations 12 and 13 in the hypercube is given by [4].     

5. Conclusion  
This paper has described an analytical model to compute 
the mean message latency in wormhole-routed k-ary n-
cubes and hypercube with Duato’s fully-adaptive routing 
algorithm. The proposed model achieves a good degree of 
accuracy under different operating conditions. 
Furthermore, it manages to achieve this good degree of 
accuracy wile maintaining generality, ease of applicability 
and efficient execution time, making it a practical 
evaluation tool that can be used to gain insight into the 
performance behavior of fully-adaptive routing in 
wormhole-routed k-ary n-cubes.  

Our next objective is to develop analytical models 
for other common network topologies for 
multicomputers, e.g., n-dimensional meshes, which are 
variations of k-ary n-cubes without wrap-around 
connections. Developing a model for meshes is more 
complicated than for k-ary n-cubes because traffic rates 
and service times have to be computed at each network 
channel as these differ from one channel to the next due 
to the inherent asymmetry of these topologies. 
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Fig. 1: Average message Latency predicted by the model against simulation results for an 8-ary 3-cube 
and 10-ary 3-cube and 3 dimensional hypercube with message length M=32, 64 virtual channel number 
V=3, V=5 and V=7 for 4 different models. 
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