34 research outputs found

    On the evaluation of information exchange strategies in dEDAs

    Get PDF
    One of the most promising areas in which probabilistic graphical models have shown an incipient activity is the field of heuristic optimization and, in particular, in the Estimation of Distribution Algorithms (EDAs). EDAs constitute a well-known family of Evolutionary Computation techniques, similar to Genetic Algorithms. Due to their inherent parallelism, different research lines have tried to improve EDAs from the point of view of execution time and/or accuracy. Among these proposals, we focus on the so-called island-based models. This approach defines several islands (EDA instances) running independently and exchanging information with a given frequency. The information sent by the islands can be a set of individuals or a probabilistic model. This paper presents a comparative study of both information exchanging techniques for a univariate EDA (UMDAg) over a wide set of parameters and problems –the standard benchmark developed for the IEEE Workshop on Evolutionary Algorithms and other Metaheuristics for Continuous Optimization Problems of the ISDA 2009 Conference

    Distributed Estimation of Distribution Algorithms for continuous optimization: how does the exchanged information influence their behavior?

    Get PDF
    One of the most promising areas in which probabilistic graphical models have shown an incipient activity is the field of heuristic optimization and, in particular, in Estimation of Distribution Algorithms. Due to their inherent parallelism, different research lines have been studied trying to improve Estimation of Distribution Algorithms from the point of view of execution time and/or accuracy. Among these proposals, we focus on the so-called distributed or island-based models. This approach defines several islands (algorithms instances) running independently and exchanging information with a given frequency. The information sent by the islands can be either a set of individuals or a probabilistic model. This paper presents a comparative study for a distributed univariate Estimation of Distribution Algorithm and a multivariate version, paying special attention to the comparison of two alternative methods for exchanging information, over a wide set of parameters and problems ? the standard benchmark developed for the IEEE Workshop on Evolutionary Algorithms and other Metaheuristics for Continuous Optimization Problems of the ISDA 2009 Conference. Several analyses from different points of view have been conducted to analyze both the influence of the parameters and the relationships between them including a characterization of the configurations according to their behavior on the proposed benchmark

    Migrating Individuals and Probabilistic Models on DEDAS: a Comparison on Continuous Functions

    Get PDF
    One of the most promising areas in which probabilistic graphical models have shown an incipient activity is the field of heuristic optimization and, in particular, in the Estimation of Distribution Algorithms (EDAs). EDAs constitute a well-known family of Evolutionary Computation techniques, similar to Genetic Algorithms. Due to their inherent parallelism, different research lines have been studied trying to improve EDAs from the point of view of execution time and/or accuracy. Among these proposals, we focus on the so-called island-based models. This approach defines several islands (EDA instances) running independently and exchanging information with a given frequency. The information sent by the islands can be a set of individuals or a probabilistic model. This paper presents a comparative study of both information exchanging techniques for a univariate EDA (U M DAg) over a wide set of parameters and problems –the standard benchmark developed for the IEEE Workshop on Evolutionary Algorithms and other Metaheuristics for Continuous Optimization Problems of the ISDA 2009 Conference. The study concludes that the configurations based on migrating individuals obtain better result

    DICE: A New Family of Bivariate Estimation of Distribution Algorithms based on Dichotomised Multivariate Gaussian Distributions

    Get PDF
    A new family of Estimation of Distribution Algorithms (EDAs) for discrete search spaces is presented. The proposed algorithms, which we label DICE (Discrete Correlated Estimation of distribution algorithms) are based, like previous bivariate EDAs such as MIMIC and BMDA, on bivariate marginal distribution models. However, bivariate models previously used in similar discrete EDAs were only able to exploit an O(d) subset of all the O(d2) bivariate variable dependencies between d variables. We introduce, and utilize in DICE, a model based on dichotomised multivariate Gaussian distributions. These models are able to capture and make use of all O(d2) bivariate variable interactions in binary and multary search spaces. This paper tests the performances of these new EDA models and algorithms on a suite of challenging combinatorial optimization problems, and compares their performances to previously used discrete-space bivariate EDA models. EDAs utilizing these new dichotomised Gaussian (DG) models exhibit significantly superior optimization performances, with the performance gap becoming more marked with increasing dimensionality

    An Action Plan for Adaptation in Bangladesh Agriculture under Climate Change

    No full text
    This report is the outcome of a study titled 'An Action Plan for Adaptation in Bangladesh Agriculture under Climate Change', carried out with support from the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). This report prepared by the Center for Environmental and Geographic Information Services (CEGIS) delineates an action plan to prioritize adaptation options after considering the inputs by experts and scrutiny by stakeholders. It aims to promote precision agriculture and commercialization of crop agriculture with strong institutional and financial footing to tackle climate change

    Climate change impacts, vulnerability and adaptation: Sustaining rice production in Bangladesh

    Get PDF
    The current study has indicated the most prioritized interventions to be taken against climate change in Bangladeshi rice growing areas prone to drought and salinity events. The suggested methodology managed to evaluate a wide range of agricultural interventions through a transparent and userfriendly approach. The input of stakeholders’ views has provided valuable feedback for the empowerment of the study findings. The presentation of the current policy framework and the ongoing activities in agriculture offers a broad framework on the challenges and constraints to be met upon application of the suggested interventions

    DEUM: a framework for an estimation of distribution algorithm based on Markov random fields.

    Get PDF
    Estimation of Distribution Algorithms (EDAs) belong to the class of population based optimisation algorithms. They are motivated by the idea of discovering and exploiting the interaction between variables in the solution. They estimate a probability distribution from population of solutions, and sample it to generate the next population. Many EDAs use probabilistic graphical modelling techniques for this purpose. In particular, directed graphical models (Bayesian networks) have been widely used in EDA. This thesis proposes an undirected graphical model (Markov Random Field (MRF)) approach to estimate and sample the distribution in EDAs. The interaction between variables in the solution is modelled as an undirected graph and the joint probability of a solution is factorised as a Gibbs distribution. The thesis describes a model of fitness function that approximates the energy in the Gibbs distribution, and shows how this model can be fitted to a population of solutions to estimate the parameters of the MRF. The estimated MRF is then sampled to generate the next population. This approach is applied to estimation of distribution in a general framework of an EDA, called Distribution Estimation using Markov Random Fields (DEUM). The thesis then proposes several variants of DEUM using different sampling techniques and tests their performance on a range of optimisation problems. The results show that, for most of the tested problems, the DEUM algorithms significantly outperform other EDAs, both in terms of number of fitness evaluations and the quality of the solutions found by them. There are two main explanations for the success of DEUM algorithms. Firstly, DEUM builds a model of fitness function to approximate the MRF. This contrasts with other EDAs, which build a model of selected solutions. This allows DEUM to use fitness in variation part of the evolution. Secondly, DEUM exploits the temperature coefficient in the Gibbs distribution to regulate the behaviour of the algorithm. In particular, with higher temperature, the distribution is closer to being uniform and with lower temperature it concentrates near some global optima. This gives DEUM an explicit control over the convergence of the algorithm, resulting in better optimisation

    Cooperative Models of Particle Swarm Optimizers

    Get PDF
    Particle Swarm Optimization (PSO) is one of the most effFective optimization tools, which emerged in the last decade. Although, the original aim was to simulate the behavior of a group of birds or a school of fish looking for food, it was quickly realized that it could be applied in optimization problems. Different directions have been taken to analyze the PSO behavior as well as improving its performance. One approach is the introduction of the concept of cooperation. This thesis focuses on studying this concept in PSO by investigating the different design decisions that influence the cooperative PSO models' performance and introducing new approaches for information exchange. Firstly, a comprehensive survey of all the cooperative PSO models proposed in the literature is compiled and a definition of what is meant by a cooperative PSO model is introduced. A taxonomy for classifying the different surveyed cooperative PSO models is given. This taxonomy classifies the cooperative models based on two different aspects: the approach the model uses for decomposing the problem search space and the method used for placing the particles into the different cooperating swarms. The taxonomy helps in gathering all the proposed models under one roof and understanding the similarities and differences between these models. Secondly, a number of parameters that control the performance of cooperative PSO models are identified. These parameters give answers to the four questions: Which information to share? When to share it? Whom to share it with? and What to do with it? A complete empirical study is conducted on one of the cooperative PSO models in order to understand how the performance changes under the influence of these parameters. Thirdly, a new heterogeneous cooperative PSO model is proposed, which is based on the exchange of probability models rather than the classical migration of particles. The model uses two swarms that combine the ideas of PSO and Estimation of Distribution Algorithms (EDAs) and is considered heterogeneous since the cooperating swarms use different approaches to sample the search space. The model is tested using different PSO models to ensure that the performance is robust against changing the underlying population topology. The experiments show that the model is able to produce better results than its components in many cases. The model also proves to be highly competitive when compared to a number of state-of-the-art cooperative PSO algorithms. Finally, two different versions of the PSO algorithm are applied in the FPGA placement problem. One version is applied entirely in the discrete domain, which is the first attempt to solve this problem in this domain using a discrete PSO (DPSO). Another version is implemented in the continuous domain. The PSO algorithms are applied to several well-known FPGA benchmark problems with increasing dimensionality. The results are compared to those obtained by the academic Versatile Place and Route (VPR) placement tool, which is based on Simulated Annealing (SA). The results show that these methods are competitive for small and medium-sized problems. For higher-sized problems, the methods provide very close results. The work also proposes the use of different cooperative PSO approaches using the two versions and their performances are compared to the single swarm performance

    A hybrid EDA for load balancing in multicast with network coding

    Get PDF
    Load balancing is one of the most important issues in the practical deployment of multicast with network coding. However, this issue has received little research attention. This paper studies how traffic load of network coding based multicast (NCM) is disseminated in a communications network, with load balancing considered as an important factor. To this end, a hybridized estimation of distribution algorithm (EDA) is proposed, where two novel schemes are integrated into the population based incremental learning (PBIL) framework to strike a balance between exploration and exploitation, thus enhance the efficiency of the stochastic search. The first scheme is a bi-probability-vector coevolution scheme, where two probability vectors (PVs) evolve independently with periodical individual migration. This scheme can diversify the population and improve the global exploration in the search. The second scheme is a local search heuristic. It is based on the problem-specific domain knowledge and improves the NCM transmission plan at the expense of additional computational time. The heuristic can be utilized either as a local search operator to enhance the local exploitation during the evolutionary process, or as a follow-up operator to improve the best-so-far solutions found after the evolution. Experimental results show the effectiveness of the proposed algorithms against a number of existing evolutionary algorithms

    Climate Services for Resilient Development in South Asia Mid-Term Report, January - June 2018

    Get PDF
    Aligned with the Global Framework for Climate Services, Climate Services for Resilient Development (CSRD) is a global partnership that works to link climate science, data streams, decision support tools, and training with decision-makers in developing countries. CSRD is led by the United States Government and is supported by the UK Government Department for International Development (DFID), UK Meteorological Office, ESRI, Google, the Inter-American Development Bank, the Asian Development Bank, and the American Red Cross. Led by the International Maize and Wheat Improvement Center (CIMMYT), the CSRD initiative in South Asia implements applied research and facilitates an expanding network of partners assure that actionable climate information and crop management advisories can be generated, refined, and delivered to smallholder farmers. This report details activities of the CSRD project in South Asia during the first six months of 2018
    corecore