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Abstract. A new family of Estimation of Distribution Algorithms (EDAs)
for discrete search spaces is presented. The proposed algorithms, which
we label DICE (D iscrete Correlated Estimation of distribution algo-
rithms) are based, like previous bivariate EDAs such as MIMIC and
BMDA, on bivariate marginal distribution models. However, bivariate
models previously used in similar discrete EDAs were only able to ex-
ploit an O(d) subset of all the O(d2) bivariate variable dependencies
between d variables. We introduce, and utilize in DICE, a model based
on dichotomised multivariate Gaussian distributions. These models are
able to capture and make use of all O(d2) bivariate variable interactions
in binary and multary search spaces. This paper tests the performances
of these new EDA models and algorithms on a suite of challenging combi-
natorial optimization problems, and compares their performances to pre-
viously used discrete-space bivariate EDA models. EDAs utilizing these
new dichotomised Gaussian (DG) models exhibit signi�cantly superior
optimization performances, with the performance gap becoming more
marked with increasing dimensionality.

Keywords: Dichotomised Gaussian models, EDAs, Combinatorial Optimiza-
tion

1 Introduction

Estimation of Distribution Algorithms (EDAs), often also called Probabilistic

Model Building Genetic Algorithms (PMBGAs), are an important optimization
paradigm within Evolutionary Computation. They are stochastic optimization
methods that guide the search for a global optimum by building and sampling
explicit probabilistic models. Traditional search operators like mutation and
crossover are instead replaced by a probabilistic model. The intent is that such
models identify and capture pertinent data dependencies and other structures
within �tter more promising candidate solutions. At each iteration, the model is
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used to generate a population of new candidate solutions. These are evaluated
and the �tter solutions selected. These, then, are used to update the probabilis-
tic model for the next iteration. Pseudocode for a canonical EDA is shown in
Algorithm 1.

Algorithm 1 Pseudocode for a canonical EDA

1: set t ←− 0 (uniformly randomly generate an initial population P0 composed of n
individuals)

2: while termination condition not met do
3: Select a collection P ∗

t of m candidate solutions from the current population Pt

4: create an updated probabilistic model Mt using P
∗
t

5: generate a new population by sampling from the probabilistic model Mt

6: set t←− t+ 1
7: end while

Many di�erent types of EDAs have been proposed for optimization in both
continuous and discrete problem domains. Some of the earliest EDAs used rela-
tively simple univariate models. Examples would include Population-Based In-

cremental Learning (PBIL) [3], the Compact Genetic Algorithm (cGA) [19] and
the Univariate Marginal Distribution Algorithm (UMDA) [33]. Obviously, such
simple models were going to be inadequate when used in the optimization of
more complex problem domains. There was a natural progression in the use of
models able to capture more complex problem dependencies and structures.

EDA utilizing models that could capture and exploit bivariate marginal dis-
tributions appeared fairly early on in the development of this �eld. For discrete
spaces, the principal examples would be Mutual Information Maximizing Input

Clustering (MIMIC) [10], Combining Optimizers with Mutual Information Trees

(COMIT) [4], and the Bivariate Marginal Distribution Algorithm (BMDA) [35].
COMIT was essentially an extension of MIMIC. Whereas, for d-dimensional
problems with d dependent variables, MIMIC greedily constructed a sequential
chain of O(d) individual bivariate marginal distributions, COMIT used a more
general O(d) dependency tree structure. An example of a bivariate EDA for
continuous spaces would be the Estimation of Multivariate Normal Algorithm

(EMNA) [29], which operates using an underlying multivariate Gaussian distri-
bution model.

However, successively more expressive models, capable of capturing ever more
complicated problem features, have been investigated. The Extended Compact

Genetic Algorithm (ECGA) [20] used a marginal product model where the search
space variables were partitioned into several variable groupings (using the min-
imum description length criterion) with the overall model being a product of
multivariate marginal distributions. The use of graphical models and Bayesian
networks has been the most popular approach. Some discrete search space ex-
amples would be the Bayesian Optimization Algorithm (BOA) [34] and the Esti-



mation of Bayesian Networks Algorithm (EBNA) [12], and, in continuous search
spaces, the Estimation of Gaussian Network Algorithm (EGNA) [28].

In this paper, we propose an EDA approach for discrete search spaces based
on dichotomised multivariate Gaussian distributions. These models can con-
struct and generate candidate solutions relatively e�ciently (with a cost com-
plexity of O(d3) ). They also have the attractive property of capturing and using
all of the possible O(d2) bivariate interactions between the d variables of a prob-
lem. As far as these authors are aware, all bivariate marginal distribution models
previously used in discrete space EDAs have been restricted to using just O(d)
of these bivariate interactions.

The structure of the paper is as follows. Section 2 looks at related past
work with bivariate EDAs. Section 3 begins with a short survey of the literature
related to the simulation of correlated multivariate Bernoulli variables. This �eld
is the source of the dichotomised Gaussian (DG) technique we apply here. The
remainder of section 3 describes this method in detail.

Section 4 details our suite of combinatorial optimization problem domains
and the con�guration of the EDA algorithms we test and compare on them.
Section 5 presents results and analysis for these experiments. Finally, in section
6, we give some conclusions and lay out some ideas for future work.

2 Bivariate EDAs

2.1 Minimum Spanning Tree Techniques

In continuous spaces, models capable of e�ciently capturing all bivariate marginal
distributions are readily available and easy to use, e.g. the family of multivariate
Gaussian distributions. EDAs like EMNA and the Covariance Matrix Adaptation

Evolution Strategy (CMA-ES)3 [18] , which utilize such models have, therefore,
long been widely available and used.

For discrete spaces, the only bivariate EDAs available up-to-now use re-
stricted bivariate interaction models. MIMIC, COMIT and BMDA are all based
on chains or trees of d−1 individual bivariate marginal distributions. COMIT, in
e�ect, builds a Chow-Liu tree [8]. This procedure scores all pairwise interaction
densities based on an estimate of their mutual information (MI). An e�cient
Minimum Spanning Tree (MST) algorithm is then applied to a matrix of these
scores to greedily construct an MST. The cost of this MST algorithm for arbi-
trary matrices is O(d2), which also gives the overall cost for the procedure. This
tree along with the d−1 pairwise bivariate distributions involved is then used to
generate new individuals. Chow-Liu trees can be viewed as a particularly sim-
ple and constrained form of Bayesian network (where a child can have at most
one parent). They also have certain optimality properties. Out of the all such
restricted trees or chains of O(d) connections, they are the unique model that

3 Strictly speaking, CMA-ES does not quite fall into the canonical EDA framework as
given in Algorithm 1. However, it shares almost all of the core features of a typical
EDA.



minimizes Kullback�Leibler divergence from the original probability distribu-
tion. However, even if this approach identi�es and makes use of the O(d) most
signi�cant pairwise interactions, it still is the case that the vast majority are
discarded. This increasingly impacts on model accuracy as problem dimension-
ality increases. The BMDA algorithm also uses essentially the same procedure.
The principal di�erence is that it uses Pearson's chi-squared estimator instead
of mutual information to score bivariate variable interactions.

In [41], an interesting variation on such tree-based algorithms is given. Their
algorithm, EDA based on Mixtures (EDAM), simply uses random trees (avoid-
ing this costly O(d2) step). A mixture of ten such random trees was used as
their EDA model in experiments. Despite randomly constructing the dependency
trees, they claim their algorithm, nonetheless, performed similarly to MIMIC on
tests.

2.2 Copula EDAs

An interesting relatively-recent development in EDAs is the use of copula tech-
niques (see [17] for a survey). Copulas are a statistical tool that allow a mul-
tivariate dependency to be decomposed into a univariate marginal distribution
function and a copula, which describes the dependence structure between the
variables. Both aspects can then be modelled separately. This can allow partic-
ular EDA models to be applied to a wider set of problem domains. For example,
copulas might allow a Gaussian distribution model to be used even when the
problem univariate marginal distribution itself is not Gaussian. One application
of copulas techniques to bivariate EDAs was the development of a more general
copula-based version of the MIMIC algorithm in [40].

A small number of authors have previously used multivariate Gaussian cop-
ulas models in EDAs. An example of this, which has some relevance to our work
is [24]. There are some similarities between the general approach of the algo-
rithm given in section III of that paper and our method here. Their algorithm is
potentially capable of learning and exploiting all the bivariate marginal depen-
dencies in the continuous problem domains examined in their paper. However, it
would be di�cult and very expensive to apply the rejection sampling procedure
they describe to discrete spaces. That would involve the computation of rect-
angular integrals of arbitrary multivariate Gaussians. As pointed out in Alan
Genz's book [14], beyond a very small number of dimensions, exact computa-
tion of these is di�cult and expensive. Therefore, this method, while useful in
continuous spaces, is not practical as a technique in discrete search spaces.

2.3 Computational Cost

A seeming advantage of the MST or chain techniques that have been used in
all discrete bivariate EDAs up to now, is their relatively low O(d2) cost (the
main cost bottleneck is in the construction of the MST) in building such a
model. However, this does not factor in the O(d2n) cost in estimating all O(d2)
bivariate interactions in a population of n candidate solutions. It is hard to see



how this O(d2n) cost can be computationally escaped, particularly for algorithms
that seek to use all such interactions. MIMIC, BMDA and previous algorithms
(except for EDAM) necessarily need to perform such operations (they still need
to measure and score all such interactions in order to �nd and use the O(d)
most signi�cant ones) . Therefore, there is certainly scope to increase the cost
complexity of the EDA model used to a similar order of O(d2n) and yet still
maintain the same overall time cost complexity of the EDA.

The cost complexity of our new dichotomised Gaussian (DG) bivariate EDA
model, which will be described in detail later, is O(d3). However, generally, to
have a reasonable chance of accurately estimating all O(d2) bivariate interaction
parameters, it is expected that the population size n should at minimum be at
least d. Therefore, the computational cost of the DG model normally is still of
the same order as this unavoidable O(d2n) bivariate EDA generational cost. This
extra computational scope was one of the primary motivations that spurred us
to seek more accurate discrete bivariate models.

2.4 Kernel Methods

A second motivation has been our interest in the use of kernel methods [39] in
the principled design of Evolutionary Algorithms (EA) and EA search operators
[26,27]. At the core of every kernel model is a kernel function that is chosen to
match the inherent statistical characteristics of the problem domain at hand.
The core strategy of kernel methods is the so-called kernel trick [1]. This allows
primarily linear algorithms, which principally operate using inner products, to
be extended to implicitly and cheaply operate in richer and higher-dimensional
kernel feature spaces V where the original problem is easier to linearly separate
and/or model. For example, a standard linear classi�er that could not e�ectively
separate data in the original space might successfully separate these in some
higher dimensional feature space via a kernel; this is the basis of Support Vector
Machine (SVM) techniques [9] in classi�cation and Gaussian Random Functions

(GRFs) [39] in machine learning (also known as Gaussian Processes).

Our longer range goal is the use of kernel methods and the kernel trick in EDA
design. The very earliest EDAs primarily used simple linear univariate models.
The kernel trick is a way of non-linearly extending linear algorithms that work
primarily via inner products. We feel a similar strategy might successfully be
used to construct a new family of non-linear EDAs, which are capable of being
easily tailored to the problem at hand via learnable kernel functions.

The family of polynomial kernel functions [16] and, in particular, the quadratic
kernel function [7], which is quite popular in natural language processing, rep-
resent probably the very simplest kernel function special case (only just beyond
basic linearity). It is possible to recast and reformulate existing continuous bi-
variate EDAs like CMA-ES and EMNA as kernelized versions of simpler linear
algorithms (using as a framework such quadratic kernels and their associated
feature spaces). We wished to do the same for the discrete bivariate EDA case,
which sparked our interest in these DG models. Having tools like the DG model



to deal with the basic quadratic kernel case seems essential if we are to hope to
later construct even more general and powerful kernel EDAs.

3 Dichotomised Multivariate Gaussian Distribution

Models

3.1 Simulation of Correlated Multivariate Bernoulli Variables

The literature concerning the generation of correlated binary vectors has a long
history. A multivariate Bernoulli variable is, in principle, fully speci�ed by 2d−1
parameters (in e�ect, the individual probabilities for every possible bitstring of
length d it can generate). There is usually little practical hope of accurately
learning so many parameters from data. A more realistic goal is to learn the
univariate marginal distributions of the variables and the O(d2) correlations
between those variables. Then, one constructs a multivariate Bernoulli variable
with those same univariate distribution and correlation characteristics.

Usually, the ideal choice would be use the maximum entropy distribution
for the situation where means and correlations for the set of d binary variables
are constrained to the desired target values. In this case, the maximum entropy
distribution is actually the Ising model. Unfortunately, it is not at all straight-
forward or cheap to �nd the particular Ising model that �ts a desired set of mean
and correlation constraints. It is also di�cult and expensive to sample binary
vectors from an Ising model even when one is found (one has to resort to expen-
sive methods like the �perfect sampling� Markov chain Monte Carlo simulation
method [36]). Therefore, many other methods have been proposed for simulating
such correlated binary vectors.

Examples would include [6] that proposed a method using look-up tables of
size O(d3), [30] that introduced two methods � one based on setting up a linear
programming problem and another based on Archimedean Copulas, [13] that
introduced an �iterative proportional �tting algorithm�, and [25] that represents
a more recent copula approach to this problem.

3.2 Dichotomised Gaussian Simulation of Correlated Binary and

Multary Vectors

The particular technique, the dichotomised Gaussian (DG) method, that we have
elected to use has been described and utilized in several past papers, the �rst
description possibly being in [11]. A more recent exposition of the method can
be found in [31,32]. Those authors also argue that this model is �near maximum-
entropy�. This method can also easily be extended to the more general case of
generating multary vectors with any given correlation structure and associated
set of univariate marginal distributions.

The Basic Method Suppose we are dealing with the general case of a d-
dimensional multary search space Ω =

∏d
i=1 Zai

where Zai
= {0, . . . , ai−1}, so



that each ai ≥ 2 speci�es the arity of the ith dependent variable (gene). The goal
of the DG method is to allow the random generation of multary search space vec-
tors ω ∈ Ω so that these conform to a set of desired univariate marginal density

functions
{
f̂i(c)

}
i
and according to a target set of variable (gene) correlations

rij given in a d× d gene correlation matrix (R)i,j = rij .
Usually, R is a sample correlation matrix estimated from a sample population

of selected search space points, and the f̂i(c) are empirical univariate marginal
densities estimated from normalized allele frequency counts in the population.

At the core of the DG method is a d-dimensional multivariate normal dis-
tribution N (0, Σ) where (Σ)i,j = ρij is its d × d correlation matrix (not to be
confused with R). The DG method also makes use of a set of threshold values
(with ai−1 threshold values needed for each dimension i):

T =
{
tbi , i ∈ {1, . . . , d} , b ∈ {0, . . . , (ai − 2)}

}
For each variable i, these ai−1 threshold values partition < into ai disjoint
intervals:

K0
i =

(
−∞, t0i

]
, K1

i =
(
t0i , t

1
i

]
, . . . ,Kk

i =
(
tk−1
i , tki

]
, . . . , Kai−1

i =
(
tai−2
i ,∞

)
To randomly generate a multary search space point ω ∈ Ω, we �rst generate

a continuous d-dimensional random vector x from the multivariate normal dis-
tribution. We, then, use these thresholds to convert (or dichotomise) this vector
into a multary search space point. At each position i, xi must belong to one of
the ai disjoint thresholded intervals: K0

i , K
1
i , . . . ,K

ai−1
i , so if xi ∈ Kc

i then, at
the ith position in the resulting multary vector ω, we set ωi = c.

Replicating the Marginal Univariate Densities We can set these thresh-

olds to exactly replicate the target univariate marginal densities
{
f̂i(c)

}
i
. Let

F̂i(c) =
∑c

d=0 f̂i(d) be the target univariate marginal cumulative distribution

function (CDF) for variable i. If we then calculate the thresholds in T according
to tbi = Φ−1(F̂i(b)) where Φ−1(x) is the standard inverse normal CDF func-
tion, then it can be easily veri�ed that the univariate marginal densities of the

resulting randomly generated multary vectors ω will indeed equal
{
f̂i(c)

}
i
.

Replicating Gene Correlations The next step in the DG method is to adjust
each multivariate normal correlation value ρij in Σ so that the resulting corre-
lation corr (ωi, ωj) between variables i and j in the simulated random multary
vector ω equals the desired target gene correlation value rij .

We can use the e�cient-to-evaluate standard bivariate normal CDF func-
tion Ψ2(x, y; ρ) to calculate bivariate marginal CDFs for the output vector ω
as: Fij (b, c) = Prob {ωi ≤ b ∩ ωj ≤ c} = Ψ2

(
tbi , t

c
j ; ρij

)
, i 6= j. For convenience,

if we also de�ne Fij(b, c) to be 0 whenever b < 0 or c < 0, then it is easy to
calculate the bivariate marginal densities fij(b, c) = Prob {ωi = b ∩ ωj = c} for
ω as:



fij(b, c) =Fij (b, c)− Fij (b−1, c)− Fij (b, c−1) + Fij (b−1, c−1)

From these density values, the correlations corr (ωi, ωj) between the variables of
the generated search space points can be directly and easily calculated.

For each pair of variables, we need to solve for the unique ρij that will
produce a corr(ωi, ωj) value that matches the desired gene correlation rij in
R. As pointed out in [31], these problems are monotonic and there is always a
single unique solution for ρij , guaranteed to lie within [−1, 1]. Straightforward
and e�cient one-dimensional bisection root-�nding algorithms can be used to
solve for each ρij . In our implementation, we used Brent's root-�nding bisection
method, which on average converged within only six iterations. Alternative and
more detailed descriptions of this approach can be found in [11] and [31].

Repairing the Correlation Matrix The resulting Σ matrix may not always
be positive semi-de�nite (in other words, may not be a valid correlation matrix).
If it is not, however, then e�cient algorithms exist to repair Σ by �nding and re-
placing it with the nearest valid correlation matrix. A paper by Nicholas Higham
[22] introduced the �rst algorithm for �nding, for any arbitrary correlation ma-
trix, its nearest valid correlation matrix. This method was based on Djikstra's
�alternating projections method� and had linear convergence. However, later
Newton-method based algorithms have been developed with fast quadratic con-
vergence [37]. We used a publicly available4 C-code version of this Newton-based
algorithm in our implementation.

Generating Multary Search Space Points To actually generate search
space points ω, standard Gaussian simulation algorithms are used to sample
continuous vectors from the multivariate normal distribution N (0, Σ) we con-
structed. The set of threshold values T is then used to dichotomise these random
normal vectors into multary vectors, which will have the exact target univariate
marginal densities and the desired (or at least very close to) gene correlation be-
haviour. This DG simulation process has an overall computational cost of O(d3).
Calculating each individual ρij and each individual threshold has a low �xed cost
unrelated to the dimensionality d. The most expensive step is correlation matrix
repair (due to the matrix operations involved) with cost O(d3). Pseudocode for
this process is given in Algorithm 2.

3.3 Knowledge Incorporation

In our experiments, we used standard correlation matrix repair methods that
found the correlation matrix that was nearest in terms of the Frobenius norm:

‖A‖F =
√∑m

i=1

∑n
j=1 |ai,j |

2
. However, versions of these correlation repair al-

gorithms are available that use various types of weighted Frobenius norms. For

4 Downloadable from: http://www.math.nus.edu.sg/~matsundf/



Algorithm 2 Pseudocode for the dichotomised Gaussian simulation of corre-
lated binary and multary vectors

1: Estimate the empirical univariate marginal densities {f̂i(c)}i and the sample cor-
relation matrix R from the selected population of search space points.

2: Calculate the set of threshold values T that will replicate the target univariate
marginal densities.

3: Individually calculate, using a fast root-�nding technique, the ρij values in Σ that
replicate the desired gene correlations.

4: If necessary, use a nearest correlation algorithm to repair the correlation matrix Σ.
5: Generate multary search space points by sampling random normal vectors from
N (0, Σ), and dichotomising these into allele values using the thresholds in T .

example, one such type of weighted Frobenius norm, dubbed the H-norm, is

described in [22]: ‖A‖H =
√∑m

i=1

∑n
j=1 wi,j |ai,j |2 where wi,j ≥ 0. An e�cient

Newton-based nearest correlation matrix algorithm that uses this H-norm is
presented in [38].

The use of such weights would allow us to naturally and easily incorporate
into the DG model acquired/prior knowledge about the relative strengths or
signi�cances of individual bivariate interactions. We could assign larger weights
to interactions we believe will have a greater impact on �tness. While not tested
here, we plan to investigate versions of DICE that can incorporate prior knowl-
edge of this type in the near future.

4 Experimental Setup

Our goal was to test and compare the performance this new dichotomised Gaus-
sian EDA model with other existing discrete bivariate EDA models. To ensure
an absolutely fair model comparison, we used the same basic EDA algorithm
with identical settings with each EDA model.

We chose a test suite of seven challenging combinatorial optimization problem
domains, deliberately selected so their dimensions could be easily varied.

4.1 EDA Algorithm Settings

All the EDAs used a population of 200 individuals. All algorithms were run for
100 generations. At each iteration, the probability model was used to generate
200 new individuals. The 100 �ttest of these were then selected and used in
updating the probability model. All the probabilistic EDA models were con-
structed, at each iteration t, using a set H∗

t of estimated univariate and/or bi-
variate marginal densities (estimated from current and previous selected popula-
tions). We used an exponentially-decaying weighted average to combine present
and past density histograms. A model decay parameter τ ∈ [0, 1] was used to
determine the factor at which the previous model was discounted at each it-
eration. Hence, the current model would be based on a weighted combination:



H∗
t = Ht+τHt−1+τ

2Ht−2+τ
3Ht−3+ . . . of present and past univariate and/or

bivariate marginal population histograms.
Extensive empirical testing determined that τ = 0.7 was the best general

setting for the EDAs we examined. An identical τ = 0.7 setting was used for
all runs. Batches of 100 runs were used to produce all the experimental results
given below.

We compared our DGmodel against against a simpleUnivariate EDA (UEDA)
model and the three principal discrete bivariate EDA models available in the
literature. These were the MST-based BMDA model (using the Pearson chi-
squared statistic), the MST-based MIMIC model (scoring interactions using
mutual information) and an inexpensive random tree (EDAM) model where a
mixture of ten randomly chosen dependency tree structures was used (the same
model used in [41]).

4.2 Problem Domain Set

Five well-known combinatorial optimization problem domains de�ned on bit-
string search spaces were used; these are described in more detail in Table 1.
Three NK-Landscape instances with K=2, 3 and 4 resulted in a total test suite
size of seven problem domains. We have also included results on the simple linear
�Counting Ones� problem for comparison, but these are not included in the test
suite averages. All of these problem domains generated new �tness functions for
every run by randomly sampling a new set of weights. We deliberately chose
such problem domains because they readily scale to higher dimensions, and we
wanted to test the performance of these models on search spaces of varying
dimensionalities.

Problem Domain References Fitness Function Formula/Details

Counting Ones
(OneMax)

f(x) =
∑d

i=1 wi(2xi − 1),
wi ∼ N (0, 1

d
).

QUBO (Quadratic
Unconstrained Binary

Optimization)

[5] f(x) =
∑d

i,j=1 wij(2xi − 1)(2xj − 1),

wij ∼ N (0, 1
d2
).

CUBO (Cubic
Unconstrained Binary

Optimization)

[15] f(x) =∑d
i,j,k=1 wijk(2xi−1)(2xj−1)(2xk−1),

wij ∼ N (0, 1
d3
)

NK-Landscapes [2] �Random neighbourhood� model
(without replacement); K = 2, 3, 4

K-Uniform MAX-SAT
(with 20n random

clauses)

[23] K = 3 (variables per clause)

Weighted MAX-CUT [21] f(x) =
∑d

i,j=1 wij(xi ⊕ xj),

wij ∼ U(−
√

3
d2
,
√

3
d2
).

Table 1: Problem Domain Set Details



5 Results and Analysis

Fig. 1 gives mean best run �tness performances for the EDA models averaged
over the test suite for problem dimensions d=25, 50, 75, 100, 150 and 200. Clearly,
DICE, utilizing the DG model, has overall the best performances. Its mean test
suite performance always is superior to its next nearest competitor. For d = 25,
the narrow 2.4% performance gap to second-place MIMIC is signi�cant using
a 95% con�dence interval in a two-tailed student-t test. The performance gap
seems to gradually increase as the dimensionality increases. The performance
gaps over its next competitor at higher dimensionalities are signi�cant at a 99%
level using the same signi�cance test.

The accuracy gap between the DG model and the other models is only likely
to become greater as dimensionality increases, as a greater and greater propor-
tion of the bivariate interactions in the other models go unexploited. This may
explain the seeming gradually increasing performance gap (the DG model is
barely ahead of the nearest runner-up at d = 25 with a 2.4% gap, is 4.5% ahead
at d = 50, is 7.0% ahead at d = 75, is 17.2% ahead at d = 100, and is 16.9%
ahead at d = 200).

Fig. 1: Test Suite Mean Best Run Fitnesses for the EDA models
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Figures 2 and 3 provide individual plots of relative EDA model performances
for all eight problem domains tested.

All EDA models seemed able to adequately cope with the simple OneMax
�Counting Ones� problems. Similar performances were demonstrated by all al-
gorithms.

Not a great deal separates the performances of the BMDA and MIMIC mod-
els (they essentially di�er only in how they score bivariate interactions). Unsur-
prisingly, they are generally superior to the simpler univariate (UEDA) model.



Fig. 2: Mean Best Run Fitnesses for the EDA models on the OneMax, QUBO, CUBO
and MAX-CUT problem domains
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Fig. 3: Mean Best Run Fitnesses for the EDA models on the MAX-SAT and NK-
Landscape (with K=2, 3 and 4) problem domains
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The simple random tree (EDAM) approach also performs disappointingly com-
pared to the other bivariate models. Seemingly, the extra e�ort that the BMDA
and MIMIC models expend in identifying the most signi�cant O(d) of the bi-
variate interactions does pay o� in better performance.

The DG model performs best on QUBO. QUBO's quadratic structure is sim-
ilar in nature to DG model's own underlying model, consisting solely of bivariate
interactions.

This purely quadratic structure, however, does not hold true for some of the
other problem domains. While the DG model's superior performance is not as
marked on these, nonetheless it still seems to be able to exploit the predominantly
higher order interactions present in problems such as the NK-Landscapes with
higher values of K. This promisingly seems to indicate that combinations of
lower order bivariate interactions may be usefully approximating and guiding
the search towards �tter higher order interactions. To investigate this behaviour
further, we tested the behaviour of all of the EDA models on a range of NK-
Landscape problems with d = 100 as K ranged from 5 up to 10. The results can
be seen in Fig. 4.

DICE maintains a very healthy performance margin over all the other models
as K increases. Intriguing, as the interaction order increases towards ten, the
relative performance di�erences between all models start to narrow. This may
be indicating that all of the models are becoming less capable of dealing with
interactions involving increasingly large numbers of variables (a point worthy of
future investigation).

Fig. 4: Mean Best Run Fitnesses for the EDA models on NK-Landscapes with varying
K values
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6 Conclusions

In this paper, we introduced a new (almost) fully bivariate model for discrete
EDAs, based on dichotomised Gaussian models. At lower dimensions, DICE was
competitive with otherwise identical EDAs that used other more established bi-
variate models (as found in MIMIC and BMDA). At intermediate dimensions,
superior performance began to be exhibited by our model. With increasing di-
mensionality, this performance gap became even more pronounced. In this initial
investigation, these models have exhibited much promise.

6.1 Future Work

A much more comprehensive investigation of this EDA modelling technique will
be necessary on a much wider variety of problem domains.

It is very likely that memetic algorithm approaches could be pro�tably com-
bined with DICE. Local search techniques are particularly useful for combina-
torial optimization problems. The earlier COMIT EDA successfully combined a
local hillclimber with its MST-based limited bivariate model.

We envisage that DG models could be usefully applied elsewhere in evolu-
tionary computation. For example, it should be possible to construct crossover
operators able to capture and respect arbitrary pairwise dependencies between
variables (DG models could be used to generate crossover masks). This would
provide increased opportunities to better tailor EA search operators to the char-
acteristics of the problem domain at hand.

We are also investigating combining the DG model with CMA-ES, which is
a popular and powerful EDA-like optimizer for continuous search spaces. Our
DG model should be able to allow CMA-ES to be e�ciently extended to discrete
search spaces.
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