21,472 research outputs found

    Minimizing the stabbing number of matchings, trees, and triangulations

    Full text link
    The (axis-parallel) stabbing number of a given set of line segments is the maximum number of segments that can be intersected by any one (axis-parallel) line. This paper deals with finding perfect matchings, spanning trees, or triangulations of minimum stabbing number for a given set of points. The complexity of these problems has been a long-standing open question; in fact, it is one of the original 30 outstanding open problems in computational geometry on the list by Demaine, Mitchell, and O'Rourke. The answer we provide is negative for a number of minimum stabbing problems by showing them NP-hard by means of a general proof technique. It implies non-trivial lower bounds on the approximability. On the positive side we propose a cut-based integer programming formulation for minimizing the stabbing number of matchings and spanning trees. We obtain lower bounds (in polynomial time) from the corresponding linear programming relaxations, and show that an optimal fractional solution always contains an edge of at least constant weight. This result constitutes a crucial step towards a constant-factor approximation via an iterated rounding scheme. In computational experiments we demonstrate that our approach allows for actually solving problems with up to several hundred points optimally or near-optimally.Comment: 25 pages, 12 figures, Latex. To appear in "Discrete and Computational Geometry". Previous version (extended abstract) appears in SODA 2004, pp. 430-43

    A correction on Shiloach's algorithm for minimum linear arrangement of trees

    Get PDF
    More than 30 years ago, Shiloach published an algorithm to solve the minimum linear arrangement problem for undirected trees. Here we fix a small error in the original version of the algorithm and discuss its effect on subsequent literature. We also improve some aspects of the notation.Comment: A new introductory paragraph has been added; error solutions and notation improvements are discussed with more dept

    Linear orderings of random geometric graphs (extended abstract)

    Get PDF
    In random geometric graphs, vertices are randomly distributed on [0,1]^2 and pairs of vertices are connected by edges whenever they are sufficiently close together. Layout problems seek a linear ordering of the vertices of a graph such that a certain measure is minimized. In this paper, we study several layout problems on random geometric graphs: Bandwidth, Minimum Linear Arrangement, Minimum Cut, Minimum Sum Cut, Vertex Separation and Bisection. We first prove that some of these problems remain \NP-complete even for geometric graphs. Afterwards, we compute lower bounds that hold with high probability on random geometric graphs. Finally, we characterize the probabilistic behavior of the lexicographic ordering for our layout problems on the class of random geometric graphs.Postprint (published version

    Minimum d-dimensional arrangement with fixed points

    Full text link
    In the Minimum dd-Dimensional Arrangement Problem (d-dimAP) we are given a graph with edge weights, and the goal is to find a 1-1 map of the vertices into Zd\mathbb{Z}^d (for some fixed dimension d1d\geq 1) minimizing the total weighted stretch of the edges. This problem arises in VLSI placement and chip design. Motivated by these applications, we consider a generalization of d-dimAP, where the positions of some of the vertices (pins) is fixed and specified as part of the input. We are asked to extend this partial map to a map of all the vertices, again minimizing the weighted stretch of edges. This generalization, which we refer to as d-dimAP+, arises naturally in these application domains (since it can capture blocked-off parts of the board, or the requirement of power-carrying pins to be in certain locations, etc.). Perhaps surprisingly, very little is known about this problem from an approximation viewpoint. For dimension d=2d=2, we obtain an O(k1/2logn)O(k^{1/2} \cdot \log n)-approximation algorithm, based on a strengthening of the spreading-metric LP for 2-dimAP. The integrality gap for this LP is shown to be Ω(k1/4)\Omega(k^{1/4}). We also show that it is NP-hard to approximate 2-dimAP+ within a factor better than \Omega(k^{1/4-\eps}). We also consider a (conceptually harder, but practically even more interesting) variant of 2-dimAP+, where the target space is the grid Zn×Zn\mathbb{Z}_{\sqrt{n}} \times \mathbb{Z}_{\sqrt{n}}, instead of the entire integer lattice Z2\mathbb{Z}^2. For this problem, we obtain a O(klog2n)O(k \cdot \log^2{n})-approximation using the same LP relaxation. We complement this upper bound by showing an integrality gap of Ω(k1/2)\Omega(k^{1/2}), and an \Omega(k^{1/2-\eps})-inapproximability result. Our results naturally extend to the case of arbitrary fixed target dimension d1d\geq 1

    Planar Octilinear Drawings with One Bend Per Edge

    Get PDF
    In octilinear drawings of planar graphs, every edge is drawn as an alternating sequence of horizontal, vertical and diagonal (4545^\circ) line-segments. In this paper, we study octilinear drawings of low edge complexity, i.e., with few bends per edge. A kk-planar graph is a planar graph in which each vertex has degree less or equal to kk. In particular, we prove that every 4-planar graph admits a planar octilinear drawing with at most one bend per edge on an integer grid of size O(n2)×O(n)O(n^2) \times O(n). For 5-planar graphs, we prove that one bend per edge still suffices in order to construct planar octilinear drawings, but in super-polynomial area. However, for 6-planar graphs we give a class of graphs whose planar octilinear drawings require at least two bends per edge

    Efficient Interconnection Schemes for VLSI and Parallel Computation

    Get PDF
    This thesis is primarily concerned with two problems of interconnecting components in VLSI technologies. In the first case, the goal is to construct efficient interconnection networks for general-purpose parallel computers. The second problem is a more specialized problem in the design of VLSI chips, namely multilayer channel routing. In addition, a final part of this thesis provides lower bounds on the area required for VLSI implementations of finite-state machines. This thesis shows that networks based on Leiserson\u27s fat-tree architecture are nearly as good as any network built in a comparable amount of physical space. It shows that these universal networks can efficiently simulate competing networks by means of an appropriate correspondence between network components and efficient algorithms for routing messages on the universal network. In particular, a universal network of area A can simulate competing networks with O(lg^3A) slowdown (in bit-times), using a very simple randomized routing algorithm and simple network components. Alternatively, a packet routing scheme of Leighton, Maggs, and Rao can be used in conjunction with more sophisticated switching components to achieve O(lg^2 A) slowdown. Several other important aspects of universality are also discussed. It is shown that universal networks can be constructed in area linear in the number of processors, so that there is no need to restrict the density of processors in competing networks. Also results are presented for comparisons between networks of different size or with processors of different sizes (as determined by the amount of attached memory). Of particular interest is the fact that a universal network built from sufficiently small processors can simulate (with the slowdown already quoted) any competing network of comparable size regardless of the size of processors in the competing network. In addition, many of the results given do not require the usual assumption of unit wire delay. Finally, though most of the discussion is in the two-dimensional world, the results are shown to apply in three dimensions by way of a simple demonstration of general results on graph layout in three dimensions. The second main problem considered in this thesis is channel routing when many layers of interconnect are available, a scenario that is becoming more and more meaningful as chip fabrication technologies advance. This thesis describes a system MulCh for multilayer channel routing which extends the Chameleon system developed at U. C. Berkeley. Like Chameleon, MulCh divides a multilayer problem into essentially independent subproblems of at most three layers, but unlike Chameleon, MulCh considers the possibility of using partitions comprised of a single layer instead of only partitions of two or three layers. Experimental results show that MulCh often performs better than Chameleon in terms of channel width, total net length, and number of vias. In addition to a description of MulCh as implemented, this thesis provides improved algorithms for subtasks performed by MulCh, thereby indicating potential improvements in the speed and performance of multilayer channel routing. In particular, a linear time algorithm is given for determining the minimum width required for a single-layer channel routing problem, and an algorithm is given for maintaining the density of a collection of nets in logarithmic time per net insertion. The last part of this thesis shows that straightforward techniques for implementing finite-state machines are optimal in the worst case. Specifically, for any s and k, there is a deterministic finite-state machine with s states and k symbols such that any layout algorithm requires (ks lg s) area to lay out its realization. For nondeterministic machines, there is an analogous lower bound of (ks^2) area
    corecore