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Abstract

In random geometric graphs� vertices are randomly distributed on ��� ��� and pairs
of vertices are connected by edges whenever they are su�ciently close together� Layout
problems seek a linear ordering of the vertices of a graph such that a certain measure
is minimized� In this paper� we study several layout problems on random geometric
graphs	 Bandwidth� Minimum Linear Arrangement� Minimum Cut� Minimum Sum Cut�
Vertex Separation and Bisection� We 
rst prove that some of these problems remain
NP�complete even for geometric graphs� Afterwards� we compute lower bounds that
hold with high probability on random geometric graphs� Finally� we characterize the
probabilistic behavior of the lexicographic ordering for our layout problems on the class
of random geometric graphs�
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� Introduction

Several well�known optimization problems on graphs can be formulated as Layout Problems�
Their goal is to �nd a linear ordering �layout� of the nodes of an input graph such that a
certain measure is minimized� Graph layout problems are an important class of problems
with many di�erent applications in Computer Science �	
� Biology ��

� Archaeology ��
 and
Linear Algebra ���
� Finding an optimal layout is NP�hard in general� and therefore it is
natural to develop and analyze e�cient methods that give good approximations in practice�
However� evaluating heuristics as simulated annealing� greedy algorithms or spectral methods
is a hard task ���� ��
�

A standard way of analyzing the e�ciency of an heuristic algorithm is to evaluate its
performance on random instances� Two classes of random instances have been widely used
in the literature to enable comparisons of algorithms for layout and partitioning problems�
random graphs and random geometric graphs� We denote the former class by Gn�p� where
n represents the number of nodes and p is the probability of the existence of each possible
edge� Random graphs Gn�p have received much attention and together with the probabilistic
method have become a powerful tool in combinatorics �see e�g� ��
�� The approximation
properties of sparse random graphs for di�erent layout problems are considered in ��� ��

and partitioning algorithms for random graphs are studied in �
� �
� On the other hand� we
denote the class of random geometric graphs as Gn�r�� where n is the number of vertices
and r is called the radius� The vertices of a random geometric graph correspond to n points
randomly distributed on the unit square� Each of its possible edges appears if and only
if the distance between their two end�points is at most r� Random geometric graphs are
considered a relevant abstraction to model graphs that occur in practice in real applications�
such as �nite element graphs� VLSI circuits� and communication graphs ���� ��
� Moreover�
since for many problems Gn�p random graphs do not serve to di�erentiate good from bad
heuristics ��� �� ��
� random geometric graphs o�er a good alternative� Even though many
empirical studies have used random models of geometric graphs ���� ��� ��
� its theoretical
study has mainly focussed on parameters as their clique number or chromatic number� or in
their connectivity properties ���
�

In this paper� we are concerned with bounds for several layout measures on random
geometric graphs� The layout problems that we consider are� Bandwidth� Minimum Linear
Arrangement� Minimum Cut� Minimum Sum Cut� and Vertex Separation� We also consider
the Bisection problem� which is a partitioning problem� but can be also treated as a layout
problem� All these problems� formally de�ned in Section �� are NP�complete� Moreover� we
prove that some of them remain NP�complete even for geometric instances� In Section ��
we compute lower bounds that hold with high probability on random geometric graphs�
Afterwards� we obtain tight bounds on the cost of the projection ordering that is obtained
by the projection of each node of a given random geometric graph into the x�axis� Section 	
analyzes this ordering� Our main result is the fact that the projection ordering is� with
high probability� a constant approximation algorithm for our layout problems on the class of
random geometric graphs considered here�

� De�nitions and complexity results

We always consider undirected graphs without self loops� A layout � on a graph G � �V�E�
is a one�to�one function � � V � �n
 � f�� � � � � ng with n � jV j� Given a graph G and a
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layout � on G� let us de�ne�

L�i� ��G� � fu � V �G� � ��u� � ig
R�i� ��G� � fu � V �G� � ��u� � ig
��i� ��G� � fuv � E�G� � u � L�i� ��G�� v � R�i� ��G�g
��i� ��G� � fu � L�i� ��G� � �v � R�i� ��G� � uv � E�G�g

��uv� ��G� � j��u�� ��v�j where uv � E�G��

The problems we consider and their associated measures are�

� Bandwidth �Bandwidth�� Given a graphG � �V�E�� �nd minbw�G� � min� bw���G�
where bw���G� � maxuv�E ��uv� ��G��

� Minimum Linear Arrangement �MinLA�� Given a graph G � �V�E�� �nd minla�G� �
min� la���G� where la���G� �

P
uv�E ��uv� ��G� �

Pn
i�� j��i� ��G�j�

� Minimum Cut Width �MinCut�� Given a graph G � �V�E�� �nd mincut�G� �
min� cut���G� where cut���G� � maxni�� j��i� ��G�j�

� Vertex Separation �VertSep�� Given a graphG � �V�E�� �nd minvs�G� � min� vs���G�
where vs���G� � maxni�� j��i� ��G�j�

� Minimum Sum Cut �MinSumCut�� Given a graph G � �V�E�� �nd minsc�G� �
min� sc���G� where sc���G� �

Pn
i�� j��i� ��G�j�

� Bisection �Bisection�� Given a graph G � �V�E�� �nd minbis�G� � min� bis���G�
where bis���G� � j��bn	�c� �� G�j�

It is well known that all the above problems are NP�complete for general graphs ��� ��� ��
�

We introduce now several classes of geometric graphs on the plane� These graphs depend
on which kind of norm is used to measure distances� Under the l� norm �the Euclidean norm��
the distance between two points �x�� y�� and �x�� y�� is ��x� � x��

� � �y� � y��
������ Under

the l� norm� their distance is maxfjx� � x�j� jy�� y�jg�
A graph is a unit disk graph if each vertex can be mapped to a closed� unit diameter disk

in the plane such that two vertices are adjacent �in the graph� if and only their corresponding
disks intersect �in the plane�� A graph is a grid graph if it is a node�induced �nite subgraph of
the in�nite grid� Observe that grid graphs are unit disk graphs both in l� and l�� it su�ces
to associate each node of the grid with a disk or a square �see Figure ���

We de�ne the class of random geometric graphs Gn�rn� as the graphs of n nodes that
can be obtained from the following experiment� Let the set Xn consist of n points sampled
uniformly and independently at random from the unit square ���� �
��� the nodes of the graph
correspond to those points� and the edges of the graph connect pairs of distinct points whose
distance is at most rn� Random geometric graphs induce a probability distribution on unit
disk graphs� Observe that� under this distribution� grid graphs have some positive probability�

All through this paper� we use the l� norm� Furthermore� in the following we restrict
our attention to the case

rn �

r
an
n

where an � bn log n with bn �	 and bn � O
�p

logn
�
�

It is important to remark that through this choice� the construction of sparse but connected
graphs is guaranteed� De�ne the connectivity distance 
n of a random geometric graph by
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n � inffr j G � Gn�r� is connectedg� It is known ��
 that as n � 	�
�p

n	logn
�

n

converges to �
� almost surely�

Complexity results� For the rest of this section� we will consider the decisional coun�
terparts of the optimization problems previously de�ned� Let us show now that some of
the layout problems we consider are still hard to solve e�ciently� even when restricted to
geometric instances�

Theorem �� Bandwidth� MinCut and VertSep remain NP�complete even when re�
stricted to grid graphs �and therefore� even when restricted to unit disk graphs��

We could not obtain similar results for MinSumCut� MinLA and Bisection� How�
ever� for the Bisection problem� we are able to give a weak result�

Theorem �� If Bisection is NP�complete even when restricted to planar graphs with
maximum vertex degree 	� then Bisection is NP�complete even when restricted to unit
disk graphs�

The proof of these results is given in the Appendix� Remark that Papadimitriou and
Sideri ���
 conjecture the hypothesis of Theorem �� which is an important open problem�

� Lower bounds

In this section we �nd asymptotic lower bounds for the optimum cost of our various layout
problems� As said� we take rn �

p
an	n where an � bn logn with bn � 	 as n � 	 and

bn � O �plogn
�
� We consider a collection Xn of n points independently uniformly distributed

in the unit square ��� �
�� Consider b�	rnc� little boxes of size �
�rn 
 �

�rn placed packed in
��� �
� starting at ��� ��� Notice that� by construction� any two points of Xn in neighboring
boxes �including diagonal neighbors� will be connected by an edge in the geometric graph
induced by Xn�

De�nition �� Given � � ��� ���� let us say that a con�guration of n points in the unit square
is ��nice if every box has at least �

���� ��an points and at most �
��� � ��an points�

Using Cherno��s bounds and Boole�s inequality� it is possible to show that� given any
� � ��� ���� Pr �Xn is ��nice
 � � as n tends to in�nity�

Proposition �� Let � � ��� ���� Then for all large enough n� for any ��nice geometric graph
G with n nodes� and any layout � of G� and any integer i � �d��ne� � � � � b��nc�� we have

j��i� ��G�j � �
����� ���n���a

���
n �

Proof� Consider n points in an ��nice con�guration� and take an arbitrary ordering � of the
n points� Let � � i	n and assume � � ��� � ��	� Call the �rst i points in the ordering �red�
and the others �green�� Let Rn be the set of boxes containing at least �

�
an red points �red
boxes�� and let Gn be the set of boxes containing fewer than �

�
an red points �green boxes�
with 
 � �

��� � ��� De�ne u� v� w and t such that un is the number of green points in red
boxes� vn is the number of red points in red boxes� wn is the number of red points in green
boxes� and tn is the number of green points in green boxes� According to these de�nitions�
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v�w � � and u� t � �� �� Moreover� as G is ��nice� each box contains �
���� ��an or more

points� Therefore� each green box contains at least �
���� �� 
�an � �

�
an green points�
Observe that j��i� ��G�j is the total number of edges between opposite color points�

Let us refer to such edges as �within�box� if the points in question lie in the same box� or
�between�box� if not� Let C� �respectively C�� denote the contribution to j��i� ��G�j from
within�box edges that are within green boxes �respectively� red boxes�� Each red point in a
green box is connected� at least� to all the green points of its own box� and there are wn red
points in all the green boxes� As a consequence� C� � �

�wn
an� Similarly� C� � �
�un
an�

Let C� denote the contribution to j��i� ��G�j of between�box edges� As� by ��niceness�
no box can contain more than �

���� ��an points and there are vn red points in red boxes and
tn green points in green boxes� we have

jRnj � vn
�
��� � ��an

�
	v

�� � ��r�n
and jGnj � tn

�
��� � ��an

�
	t

�� � ��r�n
�

Let �G denote the number of pairs of neighbor boxes of opposite colors in G� We have

C� � �G���
an��
�
�
an� � �G

������

�� a�n�

The following isoperimetric inequality� giving a lower bound for �G� can be proved along the
following lines� If Gn includes and entirely green row of boxes� and Rn includes an entirely red
row of boxes� then each column includes a red�green neighbor pair of boxes� which contributes
at least � to �G �remember diagonal neighbors are counted� except for the pair in the right�
most column which contributes �� so that �G � �b�	rnc � �� If Rn containes no entirely red
row or column� and more rows than columns have non�empty intersection with Rn� then there
are at least

p
jRnj such rows� and each contains a red�green neighbor pair which contributes

at least � to �G� so that �G � �
p
jRnj� Combining these and analogous cases we have

�G � min



�
p
jRnj� �

p
jGnj� �

�
�

rn

�
� �



� �min

np
jRnj�

p
jGnj

o

� �

rn
min

�r
v

� � �
�

r
t

� � �

�
�

Using the results obtained so far� we obtain

j��i� ��G�j � C� � C� � C� � An�u� w� �Bn min
np

v�
p
t
o

where An � ���
	 nan and Bn � �

��a
���
n n������ ����� � �������

Remember that u� t � �� �� v � w � � and � � ��� � ��	� When t � ��� ����� �� we
have u � �

��� When v � ���� ��� we have w � �
��� In both cases

j��i� ��G�j � An�u� w� � �
��An�

Finally� when v � ���� �� and t � ��� ����� ��� we have

j��i� ��G�j � Bn min
np

v�
p
t
o
� Bn min

np
��
p

��� ��
op

�� ��

Since we assume � � ��� � ��	� we have min
np

��
p

��� ��
o
� �

� � Hence� as An grows faster

than Bn since an	n� �� joining these three cases we get for n big enough that

j��i� ��G�j � min
�
�
��An�

�
�Bn

p
�� �

� � �
��a

���
n n������ ���� �

	



Theorem � �Lower bounds�� Let � � ��� ���� Then for n big enough� the following lower
bounds hold for any ��nice geometric graph G with n vertices�

minbis�G�

n���a
���
n

� �
����� ���� �lb��

mincut�G�

n���a
���
n

� �
����� ���� �lb��

minla�G�

n���a
���
n

� �
��	��� ������� 	n��� �lb��

minvs�G�

n���a
���
n

� �
�

��� ���� �lb	�

minsc�G�

n���a
���
n

� �
	

�� � ������� 	n��� �lb
�

minbw�G�

n���a
���
n

� �
�

��� ���� �lb��

Proof� The proof of �lb�� and �lb�� is directly obtained from Proposition �� To prove �lb���
take any layout �� using Proposition �� we have�

la���G� �
b�n��cX
i�dn��e

j��i� ��G�j � �
�
�n � �

�
�
����� ����n���a���n �

To prove �lb	�� let � be the degree of the graph �i�e� the maximum degree of its vertices��
Then� for any layout � and any i � �n
� we have j��i� ��G�j � j��i� ��G�j	�� For any ��
nice graph� � � ��

� �� � ��an� Therefore� by Proposition �� for any layout � and any i with
�
�n � i � �

�n� we have j��i� ��G�j � �
�

��� ����n���a

���
n � implying �lb	�� and also �lb
� since

sc���G��
b�n��cX
i�dn��e

j��i� ��G�j � �
�
�n � �

�
�
�

��� ����n���a���n �

Finally� let us prove that �lb�� holds� Before the node at position i� �
�n � i � �

�n� there
have to be at least j��i� ��G�j nodes� all of them connected with some other nodes located
after the position i� So� the �rst of these j��i� ��G�j nodes must have an edge that jumps at
least j��i� ��G�j nodes� In other words� for any layout � there is an edge uv � E�G� with
��uv� ��G�� j��i� ��G�j� Thus �lb�� follows from �lb	��

� The projection ordering

In this section� we characterize the behavior of the projection ordering� Recall that the
projection ordering is obtained through the projection of the nodes on the x�axis� Another
way to see this ordering is to sweep a vertical line starting from x � � to x � �� numbering
vertices in the order the line touches them� As in the previous section� we consider a collection
Xn of n points independently and uniformly distributed in the unit square ��� �
� and work
in the case rn �

p
an	n where an � bn log n with bn � 	 and bn � O �plogn

�
� The

coordinates of a point u are denoted x�u� and y�u�� We dissect the unit square in boxes of






size �rn 
 �rn with � � �	k for some large enough integer k� Let t � n	���an� denote the
total number of boxes� Without loss of generality� we will suppose that �	��rn� and t are
integers�

De�nition �� A set Xn of n points in ��� �
� is said to be ��good if every box contains no
less than p� � ��� ����an points and no more than p� � �� � ����an points� In this case�
the random geometric graph induced by Xn is also said to be ��good�

Later we will prove that with high probability� random geometric graphs are ��good for
any � � ��� ���� The behavior of the Projection ordering on ��good graphs is characterized by
the following result�

Theorem 	� Let Gn be a sequence of ��good graphs with n vertices� and let � be the projec�
tion layout onGn� Then� for any � � ��� �	�� and for any measure f � fbw�vs� sc�cut� bis� lag�
we have

�� � �
�

lim
n��

f���Gn�

Af

�
� � � �

where

Abw � n���a���n � Avs � n���a���n � Asc � n���a���n �

Acut � n���a���n � Abis � n���a���n � Ala � n���a���n �

��� Upper bounds on the projection ordering

De�nition �� Consider the geometric graph G induced by Xn� Given a node u from G� let
��u� denote the cut induced by the projected layout � on u� that is� the number of edges vw
such that x�v� � x�u� and x�u� � x�w�� Given an edge uv from G� let ��uv� denote the
length induced by the � on uv� that is� the number of nodes w such that x�u� � x�w� and
x�w� � x�v��

Lemma �� For any node u and for any edge uv of any ��good graph� we have that

��u� � c���� � n���a���n and ��uv� � c���� � n���a���n

where lim��
 c���� � � and lim��
 c���� � ��

Proof� Every possible edge is between boxes with centers at distance at most rn� Thus�

��u� �
���X
i�


�
�

�
� i� �

��
�

�
� �

�
�

�rn
� p�� � c���� � n���a���n �

On the other hand� ��uv� is bounded above by the number of possible nodes in the columns
of boxes between the column of u and the column of v� Thus�

��uv� � p�

�
�

�
� �

�
�

�rn
� c���� � n���a���n �

�



Corollary �� For any ��good graph G with n nodes� the following upper bounds on the cost
of the projected layout � of G hold�

cut���G�� c���� � n���a���n �ub��

bis���G�� c���� � n���a���n �ub��

bw���G�� c���� � n���a���n �ub��

la���G�� c���� � n���a���n �ub	�

vs���G�� c���� � n���a���n �ub
�

sc���G�� c���� � n���a���n �ub��

Proof� Bounds �ub��� �ub�� and �ub�� follow directly from Lemma �� Bounds �ub	�� �ub
�
and �ub�� hold because for any layout �� we have la���G� � n � cut���G�� vs���G� �
bw���G� and sc���G� � n � vs���G��

��� Lower bounds on the projection ordering

Lemma �� For any sequence Gn of ��good graphs with n vertices� the following lower bounds
on the cost of the projected layout � of Gn hold�

bw���Gn�

n���a
���
n

� c���� �lb��

vs���Gn�

n���a
���
n

� c���� �lb��

lim inf
n��

sc���Gn�

n���a
���
n

� c���� �lb��

lim inf
n��

cut���Gn�

n���a
���
n

� c���� �lb	�

lim inf
n��

bis���Gn�

n���a
���
n

� c���� �lb
�

lim inf
n��

la���Gn�

n���a
���
n

� c���� �lb��

where ci��� are functions that only depend on � and such that lim��
 ci��� � ��

Proof� Let G be a ��good graph with n vertices� Let us prove �lb��� Consider a node u
far enough from the square boundaries �u exists because of goodness�� This node will be
connected with some other node v which is located k � � columns away from the column of
u �v also exists because of goodness�� The length of the edge uv in the projected layout � is
certainly larger than the total number of nodes located at columns between the column of u
and the column of v�

���� uv�G�� p� � �k � �� � �

�rn
� �� � ����� � �� � a���n n����

As bw���G� is the maximal edge length� we obtain the claimed bound�

�



Let us give a proof of �lb��� Consider any node u far enough of the square boundaries�
All the nodes in the k � � columns preceding the columns of u must be connected to some
node in the next column after the column of u� Therefore�

vs���G� � p� � �k � �� � �

�rn
� �� � ����� � �� � a���n n����

Let us prove �lb��� We can extend the previous proof to all the points which are away
from the left and the right borders of the unit square�

sc���G�� p�

�
�

�rn

��
�

�rn
� �k

��
p� � �k � �� � �

�rn

�
�

In this case�

lim
n��

sc���G�

n���a
���
n

� �� 	� � 
��� ����

We prove now �lb	� and �lb
�� Take any node u in the central part of ��� �
�� We have

cut���G� �
k��X
i��

p���k � i� ��

�
�

�rn
� �k

�
�k�

Therefore�

lim
n��

cut���G�

n���a
���
n

� �� 
� � ���� ���� ����

As the dn	�e�th node of the projected layout must be in the central part of ��� �
�� we have

also that limn��
bis�	�G�

n���a
���
n

� �� 
� � ��� � ��� � ����

Finally� let us prove �lb��� We can extend the cut width proof to all the points which
are away from the left and the right borders of the unit square�

la���G� � p�

�
�

�rn

��
�

�rn
� �k

�
�
k��X
i��

p���k � i� ��

�
�

�rn
� �k

�
�k�

In this case�

lim
n��

la���G�

n���a
���
n

� �� �� � �	��� ����� ���� ���

��� Approximability of the projection ordering

In Section �� we have given lower bounds that hold with high probability for all the considered
problems on ��nice graphs� Theorem 	 characterizes the behavior of the Projection ordering
on ��good graphs� Using Cherno��s bounds and Boole�s inequality� one can show that the
probability of a random geometric graph to be both ��nice and ��good tends to one as n
tends to in�nity� Therefore� we have the following result�

Theorem 
� The projection ordering is an approximation algorithm with high probabil�
ity for the Bandwidth� Minimum Linear Arrangement� Minimum Cut� Minimum Sum Cut�
Vertex Separation and Bisection problems on the class Gn�r� with rn �

p
an	n where

an � bn log an with bn �	 and bn � O �plogn
�
�

�



� Conclusion

In this paper we have presented upper and lower bounds for di�erent measures of vertex
orderings� We have also shown that the projection ordering is able to deliver with high
probability solutions whose cost is not more than a constant times bigger the optimum
on a particular class of random geometric graphs for several layout problems� Given the
importance of the considered problems and the intensive use of these graphs in experimental
papers� our result �lls an important gap that existed between theory and practice�

We have considered only the two�dimensional geometric graphs as most real instances
belong to that case� but we think that similar results will also hold on d�dimensional spaces�
Our current work is trying to generalize the results on other models of random geometric
graphs� For instance� it would be interesting to understand how the optimal costs of our
problems change for di�erent radii�
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A Appendix� Proofs of complexity results

In order to prove the theorems� we need to present a technical de�nition together with a
lemma� and then quote some complexity results�

De�nition 	 �Subdivision and homeomorphism�� A graphH is a subdivision of a graph
G if H can be constructed from G by subdividing some of its edges� that is� replacing an edge
by a path of nodes with degree �� Two graphs are homeomorphic if they are subdivisions of
the same graph�

Lemma �� Let H be a subdivision of a graph G� Then mincut�G� � mincut�H��

Proof� We prove it for the insertion of a new node w between an edge uv of G� Let � be
an optimal layout of G where� without lost of generality� ��u� � ��v�� Let � be a layout
of H that corresponds to insert w just after u� Then� cut�G��� � cut�H� ��� To show
that � is optimal for H � let us suppose the contrary� there exists a layout �� of H with
cut�H� ��� � cut�H� ��� In this case� let us build a layout �� of G by removing w from
��� In this case� cut�G���� � cut�H� ��� � cut�H� �� � cut�G���� � cut�G��� which
contradicts the optimality of � with respect to G�

Theorem � ����
�� Bandwidth remains NP�complete even when restricted to caterpillars
with at most one hair attached to each vertex of the body�

Theorem � ����
�� MinCut and VertSep remain NP�complete even when restricted to
planar graphs with maximum vertex degree ��

Proof of Theorem �� Bandwidth remains NP�complete even when restricted to grid graphs
because caterpillars with at most one hair attached to each vertex of the body are grid graphs�
See �gure � for the obvious illustration�

We present a reduction from the MinCut problem restricted to planar graphs with
maximum vertex degree � to the MinCut problem restricted to grid graphs� Let hG�Ki be
an instance of MinCut restricted to planar graphs with maximum vertex degree �� Using
the algorithm of Valiant ���
� one can draw G in such a way that its nodes are located at
positions ��x� �y� for some x� y � N and that edges only follow horizontal and vertical paths
without crossing one another� This embedding only uses an area polynomial in the size of
G� Then� replace each edge by a string of unit disks to produce a grid graph H � As� by
construction� G� is a subdivision of G� we have mincut�G� � K � mincut�G�� � K� which
proves the claimed result� Figure � illustrates this reduction�

Observe that the previous reduction creates graphs with maximum degree � and recall
that for graphs with maximum degree �� the SearchNb problem is identical to theMinCut

problem ��	
� Therefore� we get as corollary that SearchNb remains NP�complete even
when restricted to grid graphs�

For any graph G� the vertex separation of a homeomorphic image of G is identical to the
search number of G ��
� Let us reduce SearchNb restricted to planar graphs with maximum
vertex degree � to VertSep restricted to grid graphs using the same transformation that
we used for MinCut� As the resulting graph H is a grid graph homeomorphic to the input
graph G� we have minvs�H� � K � minsn�G� � K�

��



Proof of Theorem �� We assume that the Bisection problem is only valid for graphs of even
order� Let hG�Ki be an instance of Bisection where G is a planar graph with n nodes and
maximum vertex degree 	� We will reduce it to an instance hH�Ki of Bisection where H is
a unit disk graph such that minbis�G� � minbis�H�� The reduction for unit square graphs
is analogous�

As we did in the proof of Theorem �� we start by embedding G on the plane using
Valiant�s algorithm ���
 in such a way that its nodes are located at positions ��x� �y� for
some x� y � N and that edges only follow horizontal and vertical paths without crossing one
another� Now� we identify each �original� node of the embedding with a unit disk and we
replace each half edge of length l with a string of disks of length bl	�c� As edges had an odd
length� we must join the strings using two additional �extremal� disks as shown in Figure 	�
Therefore� each edge has been replaced by an even number of disks� For each original node
u in V �G�� call its �gadget� the set of disks that represent its adjacent half edges �a gadget
includes the extreme disks� where it ends�� Now� give to each non extreme disk multiplicity
n� �extreme disks retain multiplicity �� and add multiplicity to the original nodes in such a
way that every gadget receives the same amount of disks� H is the resulting graph of this
transformation �which can be computed in polynomial time�� where disks with multiplicity
m are� in fact� m di�erent disks on the same position forming a clique�

We have to prove that hG�Ki is a positive instance of Bisection if and only if hH�Ki
is also a positive instance of Bisection� We do so by showing that gadgets in H behave as
the original nodes in G�

If hG�Ki is a positive instance of Bisection then there exists a bisection B of G such
that bis�G�B� � K� Coloring each gadget of H according to B� the bisection of H coincides
with the bisection B and is a legal bisection �each gadget has the same number of nodes��
Therefore hH�Ki is a positive instance of Bisection�

On the other hand� if hH�Ki is a positive instance of Bisection� we have two cases�
When K � �n� the bisection width of G cannot exceed �n �as G has maximum degree 	��
thus hG�Ki surely is a positive instance of Bisection� When K � �n� consider any gadget�
Each of the nodes of this gadget must be on the same side of the bisection �otherwise� the
bisection width would be larger than �n because of the cliques of size n� introduced in H��
Taking a bisection of G that coincides with the one given to the gadgets of H � one obtains
that hG�Ki is a positive instance of Bisection�

Notice that this last proof works both in l� and l�� All pictures use the Euclidean norm
�l�� for readability purposes�
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Figure �� Any grid graph is a unit disk graph both in l� and l��

Figure �� Any caterpillar with at most one hair attached to each vertex of the body is a unit
disk graph and a grid graph�

hG�Ki

➠ ➠

� units

hH�Ki

Figure �� Reduction fromMinCut restricted to planar graphs with maximum vertex degree �
toMinCut restricted to grid graphs� At left� the input graph� at the center� the input graph
embedded with Valiant�s algorithm� at right� substitution of the edges with paths of disks�
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Figure 	� Reduction from Bisection restricted to planar graphs with maximum vertex
degree 	 to Bisection restricted to unit disk graphs� At top left� the input graph with n � �
nodes� at the top center� the input graph embedded with Valiant�s algorithm� at top right�
substitution of the edges with paths of disks with even length� At bottom� we show how non
extreme disks receive multiplicy n�� extreme disks get multiplicity � and �not shown� original
nodes receive the required multiplicity in order to ensure that all the gadgets contain the
same number of disks�
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