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Abstract

In random geometric graphs, vertices are randomly distributed on [0,1]? and pairs
of vertices are connected by edges whenever they are sufficiently close together. Layout
problems seek a linear ordering of the vertices of a graph such that a certain measure
is minimized. In this paper, we study several layout problems on random geometric
graphs: Bandwidth, Minimum Linear Arrangement, Minimum Cut, Minimum Sum Clut,
Vertex Separation and Bisection. We first prove that some of these problems remain
NP-complete even for geometric graphs. Afterwards, we compute lower bounds that
hold with high probability on random geometric graphs. Finally, we characterize the
probabilistic behavior of the lexicographic ordering for our layout problems on the class
of random geometric graphs.
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1 Introduction

Several well-known optimization problems on graphs can be formulated as Layout Problems.
Their goal is to find a linear ordering (layout) of the nodes of an input graph such that a
certain measure is minimized. Graph layout problems are an important class of problems
with many different applications in Computer Science [4], Biology [15], Archaeology [3] and
Linear Algebra [22]. Finding an optimal layout is NP-hard in general, and therefore it is
natural to develop and analyze efficient methods that give good approximations in practice.
However, evaluating heuristics as simulated annealing, greedy algorithms or spectral methods
is a hard task [20, 21].

A standard way of analyzing the efficiency of an heuristic algorithm is to evaluate its
performance on random instances. Two classes of random instances have been widely used
in the literature to enable comparisons of algorithms for layout and partitioning problems:
random graphs and random geometric graphs. We denote the former class by G, ,, where
n represents the number of nodes and p is the probability of the existence of each possible
edge. Random graphs G, ,, have received much attention and together with the probabilistic
method have become a powerful tool in combinatorics (see e.g. [1]). The approximation
properties of sparse random graphs for different layout problems are considered in [7, 22]
and partitioning algorithms for random graphs are studied in [5, 6]. On the other hand, we
denote the class of random geometric graphs as G,(r), where n is the number of vertices
and r is called the radius. The vertices of a random geometric graph correspond to n points
randomly distributed on the unit square. FEach of its possible edges appears if and only
if the distance between their two end-points is at most r. Random geometric graphs are
considered a relevant abstraction to model graphs that occur in practice in real applications,
such as finite element graphs, VLSI circuits, and communication graphs [11, 12]. Moreover,
since for many problems G, , random graphs do not serve to differentiate good from bad
heuristics [7, 6, 22], random geometric graphs offer a good alternative. Even though many
empirical studies have used random models of geometric graphs [11, 21, 12], its theoretical
study has mainly focussed on parameters as their clique number or chromatic number, or in
their connectivity properties [19].

In this paper, we are concerned with bounds for several layout measures on random
geometric graphs. The layout problems that we consider are: Bandwidth, Minimum Linear
Arrangement, Minimum Cut, Minimum Sum Cut, and Vertex Separation. We also consider
the Bisection problem, which is a partitioning problem, but can be also treated as a layout
problem. All these problems, formally defined in Section 2, are NP-complete. Moreover, we
prove that some of them remain NP-complete even for geometric instances. In Section 3,
we compute lower bounds that hold with high probability on random geometric graphs.
Afterwards, we obtain tight bounds on the cost of the projection ordering that is obtained
by the projection of each node of a given random geometric graph into the z-axis. Section 4
analyzes this ordering. Our main result is the fact that the projection ordering is, with
high probability, a constant approximation algorithm for our layout problems on the class of
random geometric graphs considered here.

2 Definitions and complexity results

We always consider undirected graphs without self loops. A layout ¢ on a graph G = (V, E)
is a one-to-one function ¢ : V — [n] = {1,...,n} with n = |V|. Given a graph G and a



layout ¢ on G, let us define:

L(i, e, {ue V(@) : o(u) <4}
R(i, ¢, {u e V(G) : p(u) > i}
0,

o(i

{ue L(t,p,G) : e R, ¢,G):uw € E(G)}
lo(u) — o(v)] where wv € E(G).
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Auv, ¢, G) =

The problems we consider and their associated measures are:

e Bandwidth (BANDWIDTH): Given a graph G = (V, E), find MINBW(G) = min, BW(p, G)
where BW (¢, G) = maxyuep Aluv, ¢, G).

e Minimum Linear Arrangement (MINLA): Given a graph G = (V, E), find MINLA(G) =
min, LA (¢, G) where LA(¢, G) = e Muv, 0, G) = 3000 1001, 0, G)|.

e Minimum Cut Width (MINCuT): Given a graph G = (V,E), find MINCUT(G) =
min, cUT(p, G) where cUT(p, G) = max], |0(¢, ¢, G)|.

e Vertex Separation (VERTSEP): Given a graph G = (V, E), find MINVS(G) = min,, vs(p, G)
where vs(p, G) = max]_, |0(¢, ¢, G)|.

e Minimum Sum Cut (MINSumCurt): Given a graph G = (V, E), find MINSC(G) =
min, sc(g, G) where sc(e,G) =>"", [0(7, ¢, G)|.

e Bisection (BisecTiON): Given a graph G = (V| E), find MINBIS(G) = min, BIS(p, G)
where Bis(¢, G) = [0(|n/2], ¢, G)|.

It is well known that all the above problems are NP-complete for general graphs [9, 10, 13].

We introduce now several classes of geometric graphs on the plane. These graphs depend
on which kind of norm is used to measure distances. Under the [; norm (the Euclidean norm),
the distance between two points (1, y1) and (z2,y2) is ((z1 — 22)* + (11 — y2)?)"/%. Under
the [, norm, their distance is max{|z; — 22|, |y1 — y2|}.

A graph is a unit disk graph if each vertex can be mapped to a closed, unit diameter disk
in the plane such that two vertices are adjacent (in the graph) if and only their corresponding
disks intersect (in the plane). A graph is a grid graph if it is a node-induced finite subgraph of
the infinite grid. Observe that grid graphs are unit disk graphs both in I; and [ it suffices
to associate each node of the grid with a disk or a square (see Figure 1).

We define the class of random geometric graphs G, (ry,) as the graphs of n nodes that
can be obtained from the following experiment: Let the set A}, consist of n points sampled
uniformly and independently at random from the unit square ([0, 1]?); the nodes of the graph
correspond to those points, and the edges of the graph connect pairs of distinct points whose
distance is at most r,,. Random geometric graphs induce a probability distribution on unit
disk graphs. Observe that, under this distribution, grid graphs have some positive probability.

All through this paper, we use the [, norm. Furthermore, in the following we restrict
our attention to the case

rp = n where @, = b,logn with b, > 00 and bn:(’)(\/logn).
V n

It is important to remark that through this choice, the construction of sparse but connected
graphs is guaranteed: Define the connectivity distance p,, of a random geometric graph by



pn = inf{r | G € G,(r) is connected}. It is known [2] that as n — oo, (\/n/logn) Pn

converges to % almost surely.

Complexity results. For the rest of this section, we will consider the decisional coun-
terparts of the optimization problems previously defined. Let us show now that some of
the layout problems we consider are still hard to solve efficiently, even when restricted to
geometric instances.

Theorem 1. BandDwIDTH, MINCUT and VERTSEP remain INNP-complete even when re-
stricted to grid graphs (and therefore, even when restricted to unit disk graphs).

We could not obtain similar results for MiNSuMCuT, MINLA and BisecTioN. How-
ever, for the BISECTION problem, we are able to give a weak result:

Theorem 2. If BisecTION is NP-complete even when restricted to planar graphs with
maximum vertex degree 4, then BISECTION is NP-complete even when restricted to unit
disk graphs.

The proof of these results is given in the Appendix. Remark that Papadimitriou and
Sideri [18] conjecture the hypothesis of Theorem 2, which is an important open problem.

3 Lower bounds

In this section we find asymptotic lower bounds for the optimum cost of our various layout
problems. As said, we take r,, = \/a,/n where a,, = b,logn with b, — oo as n — oo and
b, =0 (\/@) We consider a collection &), of n points independently uniformly distributed
in the unit square [0,1]%. Consider |2/r,]? little boxes of size %rn X %rn placed packed in
[0,1]% starting at (0,0). Notice that, by construction, any two points of X, in neighboring
boxes (including diagonal neighbors) will be connected by an edge in the geometric graph

induced by A,,.

Definition 1. Given € € (07 %), let us say that a configuration of n points in the unit square
is e-nice if every box has at least (1 — €)a, points and at most (1 + €)a,, points.

Using Chernoff’s bounds and Boole’s inequality, it is possible to show that, given any
€€ (07 %), Pr X, is e-nice] — 1 as n tends to infinity.

Proposition 1. Let € € (07 %) Then for all large enough n, for any e-nice geometric graph
G with n nodes, and any layout ¢ of G, and any integer i € {[in], cee L%nJ}, we have

00, ,G)| > &(1 - e*nt 20",

Proof. Consider n points in an e-nice configuration, and take an arbitrary ordering ¢ of the
n points. Let v = ¢/n and assume « € [i, %] Call the first ¢ points in the ordering “red”
and the others “green”. Let R, be the set of boxes containing at least %ﬁan red points (red
boxes), and let G,, be the set of boxes containing fewer than {3a, red points (green boxes)
with § = %(1 — €). Define u, v, w and t such that un is the number of green points in red
boxes, vn is the number of red points in red boxes, wn is the number of red points in green

boxes, and tn is the number of green points in green boxes. According to these definitions,



v+w=c«and u+t=1-— «. Moreover, as (G is €-nice, each box contains i(l — €)a, or more
points. Therefore, each green box contains at least %(1 —e—Pa, = %ﬁan green points.
Observe that |0(i, ¢, G)| is the total number of edges between opposite color points.
Let us refer to such edges as “within-box” if the points in question lie in the same box, or
“between-box” if not. Let C; (respectively C3) denote the contribution to |6(7, ¢, G)| from
within-box edges that are within green boxes (respectively, red boxes). Each red point in a
green box is connected, at least, to all the green points of its own box, and there are wn red
points in all the green boxes. As a consequence, C > %wnﬁan. Similarly, Cy > %unﬁan.
Let C5 denote the contribution to |0(7, ¢, G)| of between-box edges. As, by e-niceness,
no box can contain more than +(1+ €)a, points and there are vn red points in red boxes and

tn green points in green boxes, we have
on 4v in 4t
R, and |G,| > =
ol 2 1(1+€)an (1+e)r] Gnl 2 1+ ea, (I+er?

Let dG denote the number of pairs of neighbor boxes of opposite colors in G. We have

Cs > 0G(L3a,) (A pa,) = G202,

The following isoperimetric inequality, giving a lower bound for dG, can be proved along the
following lines. If G, includes and entirely green row of boxes, and R,, includes an entirely red
row of boxes, then each column includes a red-green neighbor pair of boxes, which contributes
at least 3 to G (remember diagonal neighbors are counted) except for the pair in the right-
most column which contributes 1, so that 0G > 3|2/r,,| — 2. If R,, containes no entirely red
row or column, and more rows than columns have non-empty intersection with R,,, then there
are at least /|R,,| such rows, and each contains a red-green neighbor pair which contributes
at least 3 to dG, so that 0G > 34/|R,|. Combining these and analogous cases we have

9G > min{g 7l 3v/]Gal, 3 FJ —2} > 3min { VIR, VIGul}

>—m1n
{ 1+¢€’ 1—|—6}

Using the results obtained so far, we obtain

8(i,9,G)| > C1 + Ca+ Cs > Ay (ut w) + By win { Vo, VE}

where A4, = 15 and B,, = 32(1?/2 21— e)2(1 4 )12
Remember that u+t=1-a, v+w—aand € [+,2]. Whent < (1—a)(l—¢) we

have u > Ze. When v < a(1 — €), we have w > ZG' In both cases

10(i, 0, G)| > An(u+ w) > jeA,.

Finally, when v > a(1 —¢) and t > (1 — a)(1 — €), we have
16(7, ¢, G)| > B, mln{\/_ \/_}>B mln{\/_ \/1—04} 1—e.

Since we assume o € [4, 4] we have min {\/_ V(1-a) } > 1 Hence, as A,, grows faster

than B,, since a,/n — 0, joining these three cases we get for n blg enough that

8.2,G)| 2 win (e 3BT} 2 Fral a1 o :




Theorem 3 (Lower bounds). Let € € (0,1). Then for n big enough, the following lower
bounds hold for any e-nice geometric graph G with n vertices:

MINBIS(G) _ 5

S 3(1_ -3
a2 G(1l—¢ (Ib1)
MINCUT(G) _ 4 3
nl/zai/z > 64(1 - 6) (1b2)
MINLA(G) _ 4 3 1
n3/2a§l/2 > 128(1 B 6) (1 —4n ) (1b3)
MINVS(G) _ 4 4
SR 1001 = ¢ (Ib4)
LNSCE? > oL+ 67 (1 —4n™h) (1b5)
n3/2a,
MINBW(G) _ 4 4
VAT 01— € (Ib6)

Proof. The proof of (Ibl) and (1b2) is directly obtained from Proposition 1. To prove (I1b3),
take any layout ¢; using Proposition 1, we have:

[30/4)
LA(, G) > D 1006, 0, G) > (3n —2) Z(1— ) 7n'/?a}/?.
i=[r/4]

To prove (Ib4), let A be the degree of the graph (i.e. the maximum degree of its vertices).
Then, for any layout ¢ and any ¢ € [n], we have |§(7, ¢, G)| > |0(7, ¢, G)|/A. For any e
nice graph, A < 24—5(1 + €)a,,. Therefore, by Proposition 1, for any layout ¢ and any ¢ with
%n <1< %n, we have |§(i, ¢, G)| > 15 (1 —6)_4711/2(1}/27 implying (Ib4), and also (Ib5) since

400
[3n/4]
sC(p,G) > Y 81,0, G)| > (30 —2) 55(1 — e n'/ %)/,
i=[n/4]
Finally, let us prove that (1b6) holds. Before the node at position 7, %n <@ < %n, there

have to be at least |§(¢, ¢, G)| nodes, all of them connected with some other nodes located
after the position . So, the first of these |6(¢, ¢, G)| nodes must have an edge that jumps at
least |6(7, ¢, G)| nodes. In other words, for any layout ¢ there is an edge wv € E(G) with
Auv, ¢, G) > |6(i, ¢, G)|. Thus (Ib6) follows from (1b4). O

4 The projection ordering

In this section, we characterize the behavior of the projection ordering. Recall that the
projection ordering is obtained through the projection of the nodes on the z-axis. Another
way to see this ordering is to sweep a vertical line starting from z = 0 to x = 1, numbering
vertices in the order the line touches them. As in the previous section, we consider a collection
X, of n points independently and uniformly distributed in the unit square [0,1]? and work
in the case r, = y/a,/n where a, = b,logn with b, — oo and b, = O (\/@) The

coordinates of a point u are denoted z(u) and y(u). We dissect the unit square in boxes of



size yr, X yr, with 4 = 1/k for some large enough integer k. Let t = n/(v%a,) denote the
total number of boxes. Without loss of generality, we will suppose that 1/(yr,) and t are
integers.

Definition 2. A set X, of n points in [0,1]? is said to be y-good if every box contains no
less than p_ = (1 — v)v2a, points and no more than py = (1 + v)y2%a, points. In this case,
the random geometric graph induced by &), is also said to be ~-good.

Later we will prove that with high probability, random geometric graphs are v-good for
any v € (0, %) The behavior of the Projection ordering on y-good graphs is characterized by
the following result:

Theorem 4. Let G,, be a sequence of y-good graphs with n vertices, and let = be the projec-
tion layout on G,,. Then, for any € € (0,1/2) and for any measure f € {BW, VS, sC, CUT, BIS, LA},
we have

1—€e< (lim M) <l+ce
where
ABW — nl/za}l/27 AVS — nl/za}l/27 ASC — n3/2a}l/27
ACUT — n1/2a2/27 ABIS — n1/2a2/27 ALA — n3/2a§l/2.

4.1 Upper bounds on the projection ordering

Definition 3. Consider the geometric graph G induced by A,,. Given a node u from G, let
6(u) denote the cut induced by the projected layout = on u, that is, the number of edges vw
such that z(v) < z(u) and z(u) < z(w). Given an edge uv from G, let A(uv) denote the
length induced by the 7 on uw, that is, the number of nodes w such that z(u) < 2(w) and
r(w) < z(v).

Lemma 1. For any node u and for any edge wv of any y-good graph, we have that
0(u) < co(y)-n'?a?? and  A(uv) < ea(y) - n'/%al/?
where lim,_,g cg(y) = 1 and lim, g ex(y) = 1.

Proof. Every possible edge is between boxes with centers at distance at most r,,. Thus,

v YTn

g 2 1
f(u) < Z (; -1+ 1) (——I— 1) — -p?l_ < 09(7)-711/2@?/2.
1=0

On the other hand, A(uv) is bounded above by the number of possible nodes in the columns
of boxes between the column of « and the column of v. Thus,

1 1
AMuv) <p (——I—2)—§c>\'y -nl/za}l/z.
) <pr (2 42) S <)



Corollary 1. For any y-good graph G with n nodes, the following upper bounds on the cost
of the projected layout 7 of G hold:

cuT(m, G) < eg(y) - n'/2a3/? (ubl)
BIS(7, G) < co(y) - n'/2a3/? (ub2)
BW(m,G) < ex(y) - n'/2al/? (ub3)
LA(T, G) < eg(y) - 0?20 (ub4)
vs(m, G) < ex(y) - nt/%al/? (ubb)
sc(m, G) < ex(y) - n®2a3/? (ub6)

Proof. Bounds (ubl), (ub2) and (ub3) follow directly from Lemma 1. Bounds (ub4), (ub5)
and (ub6) hold because for any layout ¢, we have LA(p,G) < n - cuT(p,G), vs(p,G) <
BW(p,G) and sc(p,G) < n-vs(e,G). O

4.2 Lower bounds on the projection ordering

Lemma 2. For any sequence G, of y-good graphs with n vertices, the following lower bounds
on the cost of the projected layout = of GG, hold:

e 2 a) (ib1)

e S > () (b3)

lm inf C‘;ffj;ii“ > es() (1b4)
imint PR > () (1b3)
imint ) > () (b6)

where ¢;(7) are functions that only depend on v and such that lim,_,g ¢;(y) = 1.

Proof. Let G be a y-good graph with n vertices. Let us prove (Ibl). Consider a node u
far enough from the square boundaries (u exists because of goodness). This node will be
connected with some other node v which is located k& — 1 columns away from the column of
u (v also exists because of goodness). The length of the edge wv in the projected layout 7 is
certainly larger than the total number of nodes located at columns between the column of u
and the column of v:

A, uwo,G) > p - (k—2)- L > (y—=1)(2y = 1) - al/2n1/2,
VTn

As BW(7, G) is the maximal edge length, we obtain the claimed bound.



Let us give a proof of (Ib2). Consider any node u far enough of the square boundaries.
All the nodes in the k£ — 2 columns preceding the columns of u must be connected to some
node in the next column after the column of u. Therefore,

1
vs(m, G) > po - (k=2) - — > (y = 1)(2y — 1) - a}/*n*/2.
T'n
Let us prove (1b3). We can extend the previous proof to all the points which are away
from the left and the right borders of the unit square:

cron () (2200 2)

lim sc(m, G)
n—00 n3/2 1/2

In this case,
> 1 — 4y + 572 — 292,

We prove now (1b4) and (Ib5). Take any node u in the central part of [0, 1]%. We have
k-2 1
cur(m,GY> Y prk—i—1 (——2k>2k.
w62 Yt (5
Therefore,

i cur(r,G)

oo 1/23/2 2 1=57+97" =77+ 29
n

As the [n/2]-th node of the projected layout must be in the central part of [0, 1]% we have

BIS(m, )

e 2 1= 574977 =T 20
Finally, let us prove (1b6). We can extend the cut width proof to all the points which
are away from the left and the right borders of the unit square:

1 1
>po [ — ) ([ — - E i — - .
LA(7,G) > p (’ﬂ‘n) (’ﬂ‘n Qk) P i—1) (’ﬂ‘n Qk) 2k

In this case,

also that lim,,_,

lim LA(T, G)

v >1— 6y + 1492 — 167° 4 99* — 245
ke) OOn

4.3 Approximability of the projection ordering

In Section 3, we have given lower bounds that hold with high probability for all the considered
problems on e-nice graphs. Theorem 4 characterizes the behavior of the Projection ordering
on y-good graphs. Using Chernoft’s bounds and Boole’s inequality, one can show that the
probability of a random geometric graph to be both e-nice and ~-good tends to one as n
tends to infinity. Therefore, we have the following result:

Theorem 5. The projection ordering is an approximation algorithm with high probabil-
ity for the Bandwidth, Minimum Linear Arrangement, Minimum Cut, Minimum Sum Cut,
Vertex Separation and Bisection problems on the class G, (r) with r, = /a,/n where
a, = b,loga, with b,, — oo and b, = O (\/@)



5 Conclusion

In this paper we have presented upper and lower bounds for different measures of vertex
orderings. We have also shown that the projection ordering is able to deliver with high
probability solutions whose cost is not more than a constant times bigger the optimum
on a particular class of random geometric graphs for several layout problems. Given the
importance of the considered problems and the intensive use of these graphs in experimental
papers, our result fills an important gap that existed between theory and practice.

We have considered only the two-dimensional geometric graphs as most real instances
belong to that case, but we think that similar results will also hold on d-dimensional spaces.
Our current work is trying to generalize the results on other models of random geometric
graphs. For instance, it would be interesting to understand how the optimal costs of our
problems change for different radii.
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A Appendix: Proofs of complexity results

In order to prove the theorems, we need to present a technical definition together with a
lemma, and then quote some complexity results.

Definition 4 (Subdivision and homeomorphism). A graph H is a subdivision of a graph
G if H can be constructed from G by subdividing some of its edges, that is, replacing an edge
by a path of nodes with degree 2. Two graphs are homeomorphic if they are subdivisions of
the same graph.

Lemma 3. Let H be a subdivision of a graph G. Then MINcUT(G) = MINCUT(H).

Proof. We prove it for the insertion of a new node w between an edge uv of G. Let ¢ be
an optimal layout of G where, without lost of generality, p(u) < ¢(v). Let ¢ be a layout
of H that corresponds to insert w just after u. Then, cuT(G,¢) = cuT(H,¢). To show
that ¢ is optimal for H, let us suppose the contrary: there exists a layout ¢’ of H with
cuT(H,¢') < cur(H,¢). In this case, let us build a layout ¢’ of G by removing w from
¢'. In this case, cUT(G,¢') < cuT(H,¢') < cur(H,¢) = cUT(G,¢’') < cuT(G, ) which
contradicts the optimality of ¢ with respect to G. U

Theorem 6 ([16]). BANDWIDTH remains NP-complete even when restricted to caterpillars
with at most one hair attached to each vertex of the body.

Theorem 7 ([17]). MINCuUT and VERTSEP remain NP-complete even when restricted to
planar graphs with maximum vertex degree 3.

Proof of Theorem 1. BANDWIDTH remains NP-complete even when restricted to grid graphs
because caterpillars with at most one hair attached to each vertex of the body are grid graphs.
See figure 2 for the obvious illustration.

We present a reduction from the MINCUT problem restricted to planar graphs with
maximum vertex degree 3 to the MINCUT problem restricted to grid graphs. Let (G, K) be
an instance of MINCUT restricted to planar graphs with maximum vertex degree 3. Using
the algorithm of Valiant [23], one can draw G in such a way that its nodes are located at
positions (6z,6y) for some z,y € N and that edges only follow horizontal and vertical paths
without crossing one another. This embedding only uses an area polynomial in the size of
G. Then, replace each edge by a string of unit disks to produce a grid graph H. As, by
construction, G’ is a subdivision of G, we have MINCUT(G) < K < MINcUT(G') < K, which
proves the claimed result. Figure 3 illustrates this reduction.

Observe that the previous reduction creates graphs with maximum degree 3 and recall
that for graphs with maximum degree 3, the SEARCHNB problem is identical to the MINCuUT
problem [14]. Therefore, we get as corollary that SEARCHNB remains NP-complete even
when restricted to grid graphs.

For any graph G, the vertex separation of a homeomorphic image of GG is identical to the
search number of G [8]. Let us reduce SEARCHNB restricted to planar graphs with maximum
vertex degree 3 to VERTSEP restricted to grid graphs using the same transformation that
we used for MINCUT. As the resulting graph H is a grid graph homeomorphic to the input
graph G, we have MINVS(H) < K < MINSN(G) < K. O
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Proof of Theorem 2. We assume that the BISECTION problem is only valid for graphs of even
order. Let (G, K) be an instance of BIsSECTION where G is a planar graph with n nodes and
maximum vertex degree 4. We will reduce it to an instance (H, ') of BISECTION where H is
a unit disk graph such that MINBIS(G) = MINBIS(H ). The reduction for unit square graphs
is analogous.

As we did in the proof of Theorem 1, we start by embedding G on the plane using
Valiant’s algorithm [23] in such a way that its nodes are located at positions (6z,6y) for
some z,y € N and that edges only follow horizontal and vertical paths without crossing one
another. Now, we identify each “original” node of the embedding with a unit disk and we
replace each half edge of length [ with a string of disks of length |I/2]. As edges had an odd
length, we must join the strings using two additional “extremal” disks as shown in Figure 4.
Therefore, each edge has been replaced by an even number of disks. For each original node
win V(G), call its “gadget” the set of disks that represent its adjacent half edges (a gadget
includes the extreme disks, where it ends). Now, give to each non extreme disk multiplicity
n? (extreme disks retain multiplicity 1) and add multiplicity to the original nodes in such a
way that every gadget receives the same amount of disks. H is the resulting graph of this
transformation (which can be computed in polynomial time), where disks with multiplicity
m are, in fact, m different disks on the same position forming a clique.

We have to prove that (G, K) is a positive instance of BisecTioN if and only if (H, K)
is also a positive instance of BisEcTioN. We do so by showing that gadgets in H behave as
the original nodes in G.

If (G, K) is a positive instance of BISECTION then there exists a bisection B of G such
that B1s(G, B) < K. Coloring each gadget of H according to B, the bisection of H coincides
with the bisection B and is a legal bisection (each gadget has the same number of nodes).
Therefore (H, K) is a positive instance of BISECTION.

On the other hand, if (H, K) is a positive instance of BISECTION, we have two cases:
When K > 2n, the bisection width of G' cannot exceed 2n (as G has maximum degree 4),
thus (G, K) surely is a positive instance of BisecTioN. When K < 2n, consider any gadget.
Each of the nodes of this gadget must be on the same side of the bisection (otherwise, the
bisection width would be larger than 2n because of the cliques of size n? introduced in H).
Taking a bisection of G that coincides with the one given to the gadgets of H, one obtains
that (G, K') is a positive instance of BISECTION. O

Notice that this last proof works both in [ and /.. All pictures use the Euclidean norm
(13) for readability purposes.
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Figure 1: Any grid graph is a unit disk graph both in I and /.
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Figure 2: Any caterpillar with at most one hair attached to each vertex of the body is a unit
disk graph and a grid graph.
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Figure 3: Reduction from MINCUT restricted to planar graphs with maximum vertex degree 3
to MINCUT restricted to grid graphs. At left, the input graph; at the center, the input graph
embedded with Valiant’s algorithm; at right, substitution of the edges with paths of disks.
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Figure 4: Reduction from BISECTION restricted to planar graphs with maximum vertex
degree 4 to BISECTION restricted to unit disk graphs. At top left, the input graph with n =6
nodes; at the top center, the input graph embedded with Valiant’s algorithm; at top right,
substitution of the edges with paths of disks with even length. At bottom, we show how non
extreme disks receive multiplicy n?, extreme disks get multiplicity 1 and (not shown) original
nodes receive the required multiplicity in order to ensure that all the gadgets contain the
same number of disks.
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