6 research outputs found

    Identify The Authenticity of Rupiah Currency Using K Nearest Neighbor (K-NN) Algorithm

    Get PDF
    The rupiah currency is a valid exchange rate used in transactions in the Republic of Indonesia. The Rupiah is often falsified as paper currency. Rupiah paper has a unique texture characteristic so that if processed digitally, it will be easy to distinguish from fake ones.  Designing the authenticity of Rupiah currency system using the K-NN method aims to facilitate the authenticity of the currency and test the accuracy of the method used. The method used in this research is the method of Gray Level Co-occurrence Matrix (GLCM) as a method of feature extraction and K-Nearest Neighbor (K-NN) algorithm used in the identification process. The testing phase uses data for 18 currency images. The results showed an accuracy rate of 100% for the value k = 1, 77.78% for the value k = 3, and 55.56% for the value k = 5. The highest level of accuracy in a currency authenticity identification system occurs when the value of k = 1 is 100%. The value of k on the classification input using the K-NN can determine the level of accuracy of the classification process

    Invariant Image-Based Currency Denomination Recognition Using Local Entropy and Range Filters

    Get PDF
    We perform image-based denomination recognition of the Pakistani currency notes. There are a total of seven different denominations in the current series of Pakistani notes. Apart from color and texture, these notes differ from one another mainly due to their aspect ratios. Our aim is to exploit this single feature to attain an image-based recognition that is invariant to the most common image variations found in currency notes images. Among others, the most notable image variations are caused by the difference in positions and in-plane orientations of the currency notes in images. While most of the proposed methods for currency denomination recognition only focus on attaining higher recognition rates, our aim is more complex, i.e., attaining a high recognition rate in the presence of image variations. Since, the aspect ratio of a currency note is invariant to such differences, an image-based recognition of currency notes based on aspect ratio is more likely to be translation- and rotation-invariant. Therefore, we adapt a two step procedure that first extracts a currency note from the homogeneous image background via local entropy and range filters. Then, the aspect ratio of the extracted currency note is calculated to determine its denomination. To validate our proposed method, we gathered a new dataset with the largest and most diverse collection of Pakistani currency notes, where each image contains either a single or multiple notes at arbitrary positions and orientations. We attain an overall average recognition rate of 99% which is very encouraging for our method, which relies on a single feature and is suited for real-time applications. Consequently, the method may be extended to other international and historical currencies, which makes it suitable for business and digital humanities application

    Currency security and forensics: a survey

    Get PDF
    By its definition, the word currency refers to an agreed medium for exchange, a nation’s currency is the formal medium enforced by the elected governing entity. Throughout history, issuers have faced one common threat: counterfeiting. Despite technological advancements, overcoming counterfeit production remains a distant future. Scientific determination of authenticity requires a deep understanding of the raw materials and manufacturing processes involved. This survey serves as a synthesis of the current literature to understand the technology and the mechanics involved in currency manufacture and security, whilst identifying gaps in the current literature. Ultimately, a robust currency is desire

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas
    corecore