233 research outputs found

    Palmprint identification using restricted fusion

    Get PDF
    2008-2009 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Palmprint Gender Classification Using Deep Learning Methods

    Get PDF
    Gender identification is an important technique that can improve the performance of authentication systems by reducing searching space and speeding up the matching process. Several biometric traits have been used to ascertain human gender. Among them, the human palmprint possesses several discriminating features such as principal-lines, wrinkles, ridges, and minutiae features and that offer cues for gender identification. The goal of this work is to develop novel deep-learning techniques to determine gender from palmprint images. PolyU and CASIA palmprint databases with 90,000 and 5502 images respectively were used for training and testing purposes in this research. After ROI extraction and data augmentation were performed, various convolutional and deep learning-based classification approaches were empirically designed, optimized, and tested. Results of gender classification as high as 94.87% were achieved on the PolyU palmprint database and 90.70% accuracy on the CASIA palmprint database. Optimal performance was achieved by combining two different pre-trained and fine-tuned deep CNNs (VGGNet and DenseNet) through score level average fusion. In addition, Gradient-weighted Class Activation Mapping (Grad-CAM) was also implemented to ascertain which specific regions of the palmprint are most discriminative for gender classification

    Personal recognition using hand shape and texture

    Get PDF
    Author name used in this publication: Ajay Kumar2006-2007 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Person Identification Using Multimodal Biometrics under Different Challenges

    Get PDF
    The main aims of this chapter are to show the importance and role of human identification and recognition in the field of human-robot interaction, discuss the methods of person identification systems, namely traditional and biometrics systems, and compare the most commonly used biometric traits that are used in recognition systems such as face, ear, palmprint, iris, and speech. Then, by showing and comparing the requirements, advantages, disadvantages, recognition algorithms, challenges, and experimental results for each trait, the most suitable and efficient biometric trait for human-robot interaction will be discussed. The cases of human-robot interaction that require to use the unimodal biometric system and why the multimodal biometric system is also required will be discussed. Finally, two fusion methods for the multimodal biometric system will be presented and compared

    Hand-based multimodal identification system with secure biometric template storage

    Get PDF
    WOS:000304107200001This study proposes a biometric system for personal identification based on three biometric characteristics from the hand, namely: the palmprint, finger surfaces and hand geometry. A protection scheme is applied to the biometric template data to guarantee its revocability, security and diversity among different biometric systems. An error-correcting code (ECC), a cryptographic hash function (CHF) and a binarisation module are the core of the template protection scheme. Since the ECC and CHF operate on binary data, an additional feature binarisation step is required. This study proposes: (i) a novel identification architecture that uses hand geometry as a soft biometric to accelerate the identification process and ensure the system's scalability; and (ii) a new feature binarisation technique that guarantees that the Hamming distance between transformed binary features is proportional to the difference between their real values. The proposed system achieves promising recognition and speed performances on two publicly available hand image databases.info:eu-repo/semantics/acceptedVersio

    Finger texture verification systems based on multiple spectrum lighting sensors with four fusion levels

    Get PDF
    Finger Texture (FT) is one of the most recent attractive biometric characteristic. It refers to a finger skin area which is restricted between the fingerprint and the palm print (just after including the lower knuckle). Different specifications for the FT can be obtained by employing multiple images spectrum of lights. Individual verification systems are established in this paper by using multiple spectrum FT specifications. The key idea here is that by combining two various spectrum lightings of FTs, high personal recognitions can be attained. Four types of fusion will be listed and explained here: Sensor Level Fusion (SLF), Feature Level Fusion (FLF), Score Level Fusion (ScLF) and Decision Level Fusion (DLF). Each fusion method is employed, examined for different rules and analysed. Then, the best performance procedure is benchmarked to be considered. From the database of Multiple Spectrum CASIA (MSCASIA), FT images have been collected. Two types of spectrum lights have been exploited (the wavelength of 460 nm, which represents a Blue (BLU) light, and the White (WHT) light). Supporting comparisons were performed, including the state-of-the-art. Best recognition performance was recorded for the FLF based concatenation rule by improving the Equal Error Rate (EER) percentages from 5% for the BLU and 7% for the WHT to 2%
    corecore