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Abstract: Finger Texture (FT) is one of the most recent attractive biometric characteristic. It refers
to a finger skin area which is restricted between the fingerprint and the palm print (just after includ-
ing the lower knuckle). Different specifications for the FT can be obtained by employing multiple
images spectrum of lights. Individual verification systems are established in this paper by using
multiple spectrum FT specifications. The key idea here is that by combining two various spectrum
lightings of FTs, high personal recognitions can be attained. Four types of fusion will be listed
and explained here: Sensor Level Fusion (SLF), Feature Level Fusion (FLF), Score Level Fusion
(ScLF) and Decision Level Fusion (DLF). Each fusion method is employed, examined for different
rules and analysed. Then, the best performance procedure is benchmarked to be considered. From
the database of Multiple Spectrum CASIA (MSCASIA), FT images have been collected. Two
types of spectrum lights have been exploited (the wavelength of 460 nm, which represents a Blue
(BLU) light, and the White (WHT) light). Supporting comparisons were performed, including the
state-of-the-art. Best recognition performance was recorded for the FLF based concatenation rule
by improving the Equal Error Rate (EER) percentages from 5% for the BLU and 7% for the WHT
to 2%.

1. Introduction

Biometric recognition refers to the applications that is used for verifying or identifying people.
They have been widely discovered over the recent years by exploiting different biometric char-
acteristics such as the earprint [1], palmprint [2], face [3, 4], sclera [5], iris [6, 7], speaker [8–11],
backhand patterns [12] and FT [13,14]. Other studies concentrated on more than one characteristic
such as [15–18].

Any human finger has many characteristics and they can be easily noticed. Basically, each
single finger includes one of the most well known biometric (the fingerprint). Furthermore, it
contains other observable characteristics: the Finger Inner Knuckle (FIK), Finger Outer Knuckle
(FOK), Finger Veins (FV), Finger Geometry (FG) and FT.
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The inner surface texture of fingers have recently been investigated. Fundamentally, they have
similar features of the palmprints (the wrinkles and principal lines). The main features of the FT
can be described by the visible vertical and horizontal lines, where these lines are clearly appeared.
The FTs are unique, reliable and they are different even between the identical twins [19]. Many
benefits can be gained by utilizing the FTs such as their features are stable, they do not affect by
emotional feelings and they have rich patterns [19]. They exist on the palm side skin of the little
finger, ring finger, middle finger and index finger. Fig. 1 demonstrates the essential FT positions
of the four fingers.
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Fig. 1: The essential locations of the FTs, they exist on the palm side skin of a little finger, ring
finger, middle finger and index finger [20]

Fusion strategies have been employed in different fields and applications as in [8, 21], where
various fusions between different features were used in order to improve the recognition perfor-
mance. The major advantage of utilizing fusions in a biometric system is to decrease the error rate.
Fig. 2 shows fusion levels and rules and how they have been applied in this paper.

The aim and contribution here are to investigate a high performance individual verification
system by combining multiple spectrum FT specifications. Various fusion levels and rules are ap-
plied, studied and evaluated in different verification systems. Then, the procedure which attaining
the best result is highlighted and considered.

The organization of this paper after the introduction can be described as follows: the literature
review will be reviewed in Section 2, the methodology of the suggested verification framework
will be illustrated in Section 3, the four fusion levels and rules will be explained in Section 4, the
achieved outcomes will be clarified in Section 5 and the paper will be concluded in Section 6.
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Fig. 2: Different fusion levels and rules between the two spectra of FTs

2. Literature Review

Several studies have investigated the FT for personal recognition. In 2005, Ribaric and Fratric [22]
suggested the first approach of FTs to be combined with palm print. The eigen values of the finger
and palm were employed as types of feature extraction. In 2009, Pavesic et al. [23] proposed a
human authentication system based on the fusion between the FTs and fingerprints of four fingers.
In this study, the authors provide comparisons of three feature extraction methods. These are the
Regularised - Direct Linear Discriminant Analysis (RDLDA), Most Discriminant Features (MDF)
and Principal Component Analysis (PCA). Then, they reported that the RDLDA feature extraction
method obtained the best results. In 2010, Michael et al. [24] presented a recognition fusion sys-
tem based on the palm print and FTs. A tracking procedure named a projectile was proposed to
detect the locations of the five fingers from a video stream. The ridgelet transform was applied as a
feature extraction for the FTs. On the other hand, a directional coding technique was presented to
extract the features of the palm print. In 2010, Michael et al. [25] described the same approaches
as in [24] but with a difference of employing only four fingers and ignoring the thumb. In 2011,
Kanhangad et al. [26] explained a unified framework for the case of verification. Various biomet-
ric characteristics of the hand were been investigated in this work, such as FTs, palm print, hand
geometry, 3D palm print and 3D hand geometry. Each one of these characteristics was separately
examined and then various fusions between the determined characteristics were performed. The
feature extraction method which was used to analyse the FT patterns was the Competitive Coding
(CompCode) [27]. In 2012, Zhang et al. [28] proposed a score fusion method using the summa-
tion rule. The fusion was performed between two types of biometrics, the palm print and the FT
of a middle finger only. The image of the segmented middle finger was treated as a FT region. A
two dimensional wavelet technique was employed to collect the features of both biometrics. The
wavelet coefficients of approximation, and horizontal and vertical details were collected separately
for each biometric. An average filter was applied to the palm print coefficients of the horizontal and
vertical details. Consequently, the feature fusion was implemented between all coefficients of each
biometric. Then, the score fusion was executed after the matching operations. In 2015, Al-Nima
et al. [29] suggested extracting all the FT parts of the four fingers. In this work, it was cited that
collecting more FT patterns will lead to increase the recognition performance. Furthermore, a new
feature extraction method named the Image Feature Enhancement (IFE) was adopted. In 2016,
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Al-Nima et al. [30] suggested a novel approach to establish the Receiver Operating Characteristic
(ROC) graph from an Artificial Probabilistic Neural Network (APNN) by employing the FT char-
acteristic. Three feature extraction methods were examined: the Local Binary Pattern (LBP) with
a statistical calculation method called the Coefficient of Variance (CV), the Gabor filter with the
CV and the statistical CV computations alone in order to present the accuracy of the suggested
approach. The best performance was recorded for the LBP with the CV. Finally, in 2016, Al-
Nima et al. [31] proposed three main contributions: a robust finger segmentation approach, an
enhanced feature extraction method and a novel scheme to salvage the missing FT information.
Such work has drawn considerable state-of-the-art attention in the case of FT recognition. This
study has employed three databases to support the results of the suggested approaches, one of
which was the MSCASIA database, specifically with spectrum 460 nm images. It has been proved
that by employing various spectrum lightings at the capturing step, different FT specifications can
be clarified. This inspired the approach of this study.

It can be observed from the previous literature that utilizing FTs for biometric recognition has
always been considered as a part of study, except in [29,31]. Also, no publication has concentrated
on combining various FT specifications that captured by using different spectra. In addition, the
MSCASIA database has been found to be beneficial to support this work. This is because each par-
ticipant has provided six types of images, and each was captured with a certain spectrum lighting.
Therefore, by utilizing the hand images that contain various FT specifications, an effective human
biometric system can be constructed.

3. Finger Texture Verification Framework

A verification framework based on the FT biometric is suggested. It consists of two stages (learning
and testing) with multiple processes. The flowchart of the suggested framework is given in Fig. 3.

The processes are started by the learning stage as structured below:

(1) Acquiring a hand image.

(2) Consequently, segmenting the fingers can be performed according to [31] or [13].

(3) The Region of Interest (ROI) can be determined for the images of four fingers (index, mid-
dle, ring and little) by applying the largest adaptive rectangle method [26]. Each ROI is
normalized to a size of 30 × 150 pixels as this size is confirmed by many papers such as
[13, 20, 31, 32].

(4) Afterwords, a feature extraction method is applied to the ROI images by utilizing the En-
hanced Local Line Binary Pattern (ELLBP) and the CV computations as in [31]. The reason
of choosing the ELLBP is that this method can professionally analyse the main FT features
(the horizontal and vertical lines) as confirmed in [31]. The essential ELLBP calculations are
given in the following equations:

V EC1(L, c) =
c−1∑
n=1

f(khn − khc)2
(c−n−1) +

L∑
n=c+1

f(khn − khc)2
(n−c−1) (1)

V EC2(L, c) =
c−1∑
n=1

f(kvn − kvc)2
(c−n−1) +

L∑
n=c+1

f(kvn − kvc)2
(n−c−1) (2)
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Fig. 3: The flowchart of the suggested framework
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ELLBPav = (v1 × V EC1) + (v2 × V EC2) (3)

where:

f(x) =

{
1, x ≥ 0
0, x < 0,

(4)

V EC1 represents the computed horizontal value, V EC2 represents the computed vertical
value, L represents the length of the vertical and horizontal vectors, c is a centre pixel loca-
tion, khc represents the centre of a horizontal vector, kvc represents the centre of a vertical
vector, khn represents the neighbourhoods pixels of the horizontal vector, kvn represents the
neighbourhoods pixels of the vertical vector, and v1 and v2 are the weighted summation vari-
ables (v1 + v2 = 1) [31].

(5) It has been cited that using CV calculations can provide effective descriptions for the vari-
ances of the featured images. The resulting images have been partitioned into non-overlapping
windows with a fixed size of 5 × 5 and the CV value is computed for each window [20, 29,
30, 33]. To calculate the CV values, the following equations have been exploited [34]:

AVseg =
1

m

m∑
i=1

wini (5)

SDwin =

√√√√ 1

m− 1

m∑
i=1

(segi − AVwin)2 (6)

CVwin =
SDwin

AVwin

(7)

wherem represents the number of considered pixels, win represents the selected (5×5 pixels)
window, AV represents the average, SD represents the standard deviation and CV represents
the coefficient of variance.

(6) Hereafter, an APNN is applied in terms of verification. The architecture of the APNN is given
in Fig. 4. Principally, the calculations of the APNN are as follows:
After constructing the input values, hidden or pattern layer values are extracted according to
[35, 36]:

Pu,v = exp

[
−
(r − gu,v)

T (r − gu,v)

2β2

]
, u = 1, 2, ..., z , v = 1, 2, ..., s (8)

where Pu,v is the value of a hidden or pattern neuron, r is the vector of input values, gu,v

represents the weights vector, β represents the Gaussian function smoothing parameter, z
represents the number of learning patterns for each subject or class and s represents the num-
ber of classes.
The summation layer then receives the values of the pattern layer and specifies each input
vector to its assigned class as:

Av =
1

z

z∑
i=1

Pu,v, j = 1, 2, ..., s (9)
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where Av represents the value of a summation neuron.
The decision layer uses Equation (10) to perform the winner takes all rule:

Qv =

{
1 if Av = max
0 otherwise , v = 1, 2, ..., s (10)

where Qv represents the value of a decision neuron and max represents the maximum value. 
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Fig. 4: The main structure of the APNN, it includes input, pattern, summation and decision layers

During the learning stage, the weights are established by the APNN. These weights are later
exploited for the testing. New input samples are used in the testing stage and the same learning
processes are followed in order to evaluate the verification performance.

Significant advantages can be observed for the APNN [37]: it measures the confidence (proba-
bility) of any input before producing the output; flexible to add new participants or delete existed
participants; the learning time is very short because it requires only one epoch to perform the learn-
ing stage; and it is not influenced by the local minimum. Applying the FTs to the APNN is similar
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to the one that suggested in [32] and this confirms the proficiency of our proposed verification
method.

4. Biometric Fusion Types

4.1. Fusion Levels

Fusions are usually employed to improve the performance of biometric systems. Four fusion levels
are categorized as follows: SLF, FLF, ScLF and DLF [38]. They can be illustrated as follows:

(1) Sensor Level Fusion (SLF): this fusion is constructed at the sensor level. In this type, multiple
sensors must be used in the biometric system. The utilized sensors can provide different
specifications for the same input. By fusing the collected information, more data will be
considered in the system.

(2) Feature Level Fusion (FLF): this fusion is used in the feature extraction step. The same inputs
are treated with various feature extraction methods. So, the resulting data is fused together
and more feature extractions can be analysed by the system. A reduction process may be
required in this fusion level.

(3) Score Level Fusion (ScLF): this fusion considers the score combinations of multiple match-
ers. The key idea here is that different scores can be generated from different matchers. So,
by combining them the biometric system outputs can be influenced.

(4) Decision Level Fusion (DLF): this fusion usually performs at the last step in any biometric
system. Different recognition decisions can be combined here. Therefore, the biometric
system outcomes may be affected.

In this paper, the SLF was applied for the captured finger images before the starting opera-
tions, as in this case the input information considers the fusion between the FT images of the two
employed spectra. The FLF was applied for the completed extracted features, represented by the
CVs, before the APNN. For the ScLF, the outputs of the summation layer are considered to be the
scores of the APNN, because the summation layer holds the real output values according to [30].
For the DLF, two full systems for the finger images of the two determined spectrum lightings are
established and then the final decision of the two APNNs are competed to perform the employed
fusion rules.

4.2. Fusion Rules

There are various statistical rules which can be employed to perform a fusion operation. Some
of them are known, for example maximum, minimum, AND and OR rules. Others are designed
as suggested rules according to certain applications [39]. In this paper, the following fusion rules
have been considered: average, summation, multiplication, maximum, minimum, concatenation,
AND and OR.

First of all, the average fusion rule between two vectors is represented by the mean combinations
of their components [8, 21]. It can be described in Equation (11) as follows:

Avek =
fk + bk

2
(11)
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where: Ave is the resulting average vector, k is the counter of the elements in each vector (k =
1, 2, ...., q), q is the total number of elements in each vector and it has to be equal for all vectors,
and f and b are the first and second vectors to be fused.

The summation fusion rule is almost similar to the average fusion rule except the dividing part.
Thus, it can be derived from the previous equation as follows:

Sumk = fk + bk (12)

where: Sum is the resulting summation vector.
Similarly, the multiplication rule can be represented as follows:

Mulk = fk · bk (13)

where: Mul is the resulting multiplication vector.
The maximum fusion rule between two vectors applies by selecting the maximum values be-

tween their components [8, 21]. It can be illustrated as follows:

Maxk = MAX(fk,bk) (14)

where: Max is the resulting maximum vector which contains the selected maximum elements of
the two given vectors and MAX is the maximum operation.

Likewise, the minimum fusion rule can be given as follows:

Mink = MIN(fk,bk) (15)

where: Min is the resulting minimum vector which contains the selected minimum elements of the
two given vectors and MIN is the minimum operation.

The concatenation fusion rule between two vectors associates the elements of these vectors into
one vector. It can be highlighted as follows:

Conk = [fk,bk] (16)

where: Con is the resulting concatenation vector which compromises the associated elements of
both fused vectors.

It is not feasible to perform the concatenation rule in the DLF due to the fact that the final output
decision needs to be collected after this level and implementing the concatenation rule here will
not determine the last pursuing outputs. Instead, certain fusion rules that are commonly used are
examined. These are the AND and OR fusion rules, as these rules require logical information to
be applied [40]. So, they can be employed in the DLF. The main equations of these rules are given
in (17) and (18):

Andk = fk AND bk (17)

Ork = fk OR bk (18)

where: And and Or represent the resulting logical operations vectors, AND represents the logical
AND operation and OR represents the logical OR operation.

9



5. RESULTS AND DISCUSSION

5.1. CASIA Multiple Spectrum Palmprint Image Database (Version 1.0)

The CASIA Multiple Spectrum Palmprint Image Database (Version 1.0) [41] is found to be useful
in this study, for simplicity the name of this database is abbreviated to MSCASIA.

Multiple spectrum light sensors were utilized in the MSCASIA database to acquire various
hand specifications. Fundamentally, when different spectra of lights are supplied to a hand skin
different features can be revealed. This is because that each spectrum can penetrate to different
depth through the skin. Six types of hand images were acquired by using special multiple spec-
trum device. This device was designed to capture contactless or touchless hand images, so, there
were no restrictions to a specific position. A dark environment and lightings, which are equally
sourced from the bottom of the device, were constructed. A camera was positioned underneath
the acquisition environment. The users were asked to open their fingers inside the designed envi-
ronment. A total of one hundred participants were contributed. Six hand images were acquired in
2 sessions from each participant, so, 3 hand images were acquired in each session. The elapsed
time between the sessions was over a month. The multiple spectra that were produced by the lights
are as follows: WHT, 940 nm, 850 nm, 700 nm, 630 nm and 460 nm. The overall acquired hand
images is 7200, they are all of an extension JPEG and of a type grayscale. A low resolution of
576× 768 pixels was assigned to each image [41]. Samples of six multiple spectrum hand images
belonging to the same person or subject are shown in Fig. 5.

From the MSCASIA database, images of the wavelength 460 nm (or BLU spectrum) are chosen
to be utilized, because this spectrum involves FTs as highlighted in [42, 43]. Furthermore, due to
the fact that the FTs are always provided by the normal lighting, the images that were captured by
applying the WHT light are selected. This can be considered as a good opportunity to work with
different FT specifications.

Four types of fingers (the little, ring, middle and index fingers) were extracted from the selected
spectrum types of right hand images. Overall, 4800 images of fingers were exploited in this work.
2400 images of fingers belong to the WHT spectrum and 2400 images of fingers belong to the BLU
spectrum. Firstly, 4000 images were used in the learning stage and 800 images were used in the
testing stage as exploited in the state-of-the-art studies [20, 29–31]. Secondly, we have changed
the number of learning and testing samples (by decreasing the number of learning images and
increasing the number of testing images) and we have recorded the obtained evaluations.

The FTs of both spectra have been evaluated in the case of the feature extraction. Various types
of modified LBP versions were examined. Table 1 shows comparisons of each employed spectrum
with some enhanced LBP methods.

It can be observed from this table that worst EER values have been recorded for the methods
that considered the diagonal patterns and implement fewer calculations for all the essential pattern
directions (vertical, horizontal and both diagonals), such as the Centralized Binary Patterns (CBP)
and the Centre - Symmetric Local Binary Pattern (CS-LBP). The Local Gradient Coding - Hor-
izontal and Diagonal (LGC-HD) approach has obtained high percentage values of the EER as it
calculates the gradients of the diagonal features, but it considers useful computations for the gra-
dient of the horizontal features. Nevertheless, it discards the computations of the vertical features,
where these features can be considered as very significant FT specifications. Both the Simplified
LBP (SLBP) and Three - Patch LBP (TPLBP) have reported equivalent percentages. For the FTs
of the WHT spectrum, their values are low. On the other hand, for the FTs of the BLU spectrum,
their values are high. This is due to their considerations of the clear features that could be acquired
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Fig. 5: Samples of a right hand image from the MSCASIA database for certain wavelengths of
lightings. (a) a wavelength of 460 nm contains only FTs without veins; (b) a wavelength of 630
nm contains FTs with veins; (c) a wavelength of 700 nm contains only veins; (d) a wavelength
of 850 nm contains FTs with veins; (e) a wavelength of 940 nm contains only veins; and (f)
wavelengths of WHT contains only FTs [41]
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Table 1 Comparisons between various types of the LBP for the FTs of four fingers

Spectrum WHT of the MSCASIA database

Reference Approach Used variables EER

[44] CSLBP Radius=1, Neighbourhoods=8 69%

[45] CBP Radius=2, Neighbourhoods=8 60%

[46] LGC-HD Radius=1, Neighbourhoods=8 22%

[47] TPLBP Threshold=0.01, Step jump=5, No. of patches=8, Radius=2 and Patch size=3 13%

[48] SLBP Radius=1, Neighbourhoods=8 12%

Proposed as new work ELLBP Length of horizontal and vertical vectors=17pixels 7%

Spectrum BLU of the MSCASIA database

Reference Approach Used variables EER

[44] CSLBP Radius=1, Neighbourhoods=8 74%

[45] CBP Radius=2, Neighbourhoods=8 78%

[46] LGC-HD Radius=1, Neighbourhoods=8 27%

[47] TPLBP Threshold=0.01, Step jump=5, No. of patches=8, Radius=2 and Patch size=3 34%

[48] SLBP Radius=1, Neighbourhoods=8 32%

Proposed as in [31] ELLBP Length of horizontal and vertical vectors=17pixels 5%

Table 2 The EER results for the different fusion methods

Fusion level EER

Average Summation Multiplication Maximum Minimum Concatenation AND OR

rule rule rule rule rule rule rule rule

SLF 4% 4% 97% 5% 5% 2% — —

FLF 2% 2% 18% 3% 7% 2% — —

ScLF 5% 5% 2% 5% 4% 12% — —

DLF 5% 5% 11% 5% 11% — 11% 5%

under the conventional lighting, however, they show high percentages with the micro-textures that
captured by applying the low spectrum wavelength. The ELLBP method has benchmarked the
lowest EER percentages here, so, this approach is able to provide effective analysis for the multi-
ple spectrum features of the FT. With more explanation, the ELLBP concentrates on the essential
features of FTs (the horizontal and vertical lines) and it well considers their weights that given
in Equation (3). The best ELLBP weights for spectrum BLU have been cited as v1 = 0.2 and
v2 = 0.8 [31]. Nevertheless, the best ELLBP weights for the WHT light have experimentally been
found as v1 = 0.7 and v2 = 0.3. It has been observed that these values are perfectly equal to the
weights of the IIT Delhi database [31], which was collected by using a normal lighting too.

In the case of fusion, the four combination levels which have been examined are: the SLF,
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FLF, ScLF and DLF. Furthermore, the six well-known rules that have been investigated are: the
average, summation, multiplication, maximum, minimum and concatenation rules. As mentioned,
the concatenation rule can not be employed in the DLF because it can not provide a clear output
decision suitable for the desired number of outputs. Thus, the concatenation is replaced in this
level of fusion by the AND and OR rules, which are more suitable here because they are logical
operations and the output values are logic. Table 2 demonstrates the performance of applying
different fusion levels and rules.

As it can be observed from Table 2, the average rule has equal EER values to the summation
rule in all fusion methods. This is due to the variance levels of analysed information as these
levels have the same proportional difference for both rules, which leads to the same probabilistic
behaviour by the APNN. The multiplication rule has worst performance in all fusion methods
except the ScLF. The reason for this is that the multiplication rule significantly affects the level
of the data. This has caused increasing the differences between the learning and testing values in
Equation (8) of the APNN. On the other hand, the multiplication rule played an effective role in
the ScLF and this is not strange as increasing the variances in this level of the APNN produces
distinct relationships between the values. Consequently, the final outputs of the APNN in the
decision layer obtain advantages from this fusion. The results of the maximum and minimum rules
vary between them according to their position in each fusion level. They have recorded equal
EER values in the SLF because they generated small effective values from the low resolution FT
images. The maximum rule has attained a noticeable performance in the FLF, while the minimum
rule has recorded unsatisfied performance. This is due to the features of the FT images after the
ELLBP operation, where the specifications are being clearer, and the maximum rule can maintain
the textures. On the other hand, the minimum rule would select the least significant features.
Both rules have comparable performance in the ScLF as their influences are nearly similar in this
level. Again, there is an obvious difference between both rules in the DLF, because in this level
the maximum rule selects the best obtained decisions between the combined samples. However,
the minimum rule will collect the worst achieving decisions between the fused values. So, the
maximum rule has reported better EER performance than the minimum rule. The concatenation
rule has been found to attain the best performance in the SLF and FLF due to increasing the
considered information of FTs. This rule is usually employed in the FLF and it has been cited that
this method has the ability to achieve a significant performance [49]. Interestingly, this method
has achieved acceptable EER in the SLF as the input data to the biometric system were doubled
and increasing the input information will enhance the biometric system performance as confirmed
in [29]. Nonetheless, this rule cannot be considered as a best choice between all the fusion levels,
where it has benchmarked inferior EER value in the ScLF. This is because the number of the score
values has been expanded and this significantly influences the decision of the APNN as it has to
select the best solution between all the determined score values.

It can be noticed that the AND and OR fusion rules have attained exactly the same results as in
the minimum and maximum rules, respectively. This is due to the calculations of these methods,
where the resulting output vector after the maximum rule is similar to the resulting output vector
after the OR rule because both are going to consider the largest values between the fused vectors.
However, the output vector after the minimum rule is similar to the output vector after the AND
rule because both are going to consider the lowest values between the fused vectors.

Overall, the FLF appears to have better performance in different fusion rules such as average,
summation, maximum and concatenation. The SLF and ScLF can give useful outcomes by care-
fully considering the applied rule. Generally, the DLF can be considered as the lowest effective
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level as it is the last operation in the system and it depends on the last collected results from the
previous operations. This is expected because the DLF has limited information to be considered
compared with other fusion levels [40].

Finally, the concatenation rule of the FLF has been selected as the best method, because this is
the only rule which has attained the best EER value in two fusion levels (SLF and FLF) and the
FLF has recorded the best performance against the other fusion levels for various rules (average,
summation, maximum and concatenation).

Previous FT studies such as [13,30,31] has utilized 1 testing sample and 5 learning samples for
each participant in the MSCASIA database. Obviously, one testing sample is too small comparing
with the number of learning samples. Thus, additional comparisons are constructed by increasing
the number of testing samples and decreasing the number of learning samples. Fig. 6 demonstrates
the performance of applying different numbers of testing and learning samples for the same hand
fingers.

 
 NOT=4 , NOL=20                NOT=8 , NOL=16             NOT=12 , NOL=12              NOT=16 , NOL=8 

Number Of Testing (NOT) and Number Of Learning (NOL) Fingers Per Individual 

0 % 

% 10 

20 % 

30 % 

40 % 

50 % 
EER-WHT Spectrum 

EER-BLU Spectrum 

EER-Fusion 

Minimum EER = 2% 

Fig. 6: Comparisons of EER values for the WHT and BLU spectra by using different numbers of
testing and learning samples of hand fingers

Fig. 6 revealed that by reducing the number of learning samples, the EER percentages are
reduced. That is, by using a high number of learning samples for the FTs of a single hand image, the
best EER percentage has achieved 2% after the combination or fusion. By including more number
of testing samples like 2 and reducing the learning samples to 4, this allows approximately 34% of
the employed samples to be examined in the testing stage and around 66% of the employed samples
to be utilized in the learning stage, a comparative EER percentage of 3% has been generated
after the fusion. Now, by reducing the number of the learning samples further, the verification
performance are dramatically reduced to 9% and 30% for the fusion after exploiting 50% and
about 34% of the employed learning samples, respectively. Also, from the figure it can be observed
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that all the EER percentages have been enhanced after using the concatenation rule with the FLF
comparing with the EER percentages of separately employing FTs of the WHT light and FTs of
the BLU light.

6. CONCLUSIONS

This study presented different biometric systems by fusing between two different specifications
of FTs. Acquiring finger images under different spectra can provide different FT specifications.
Two types of spectra were considered. The first spectrum was for the normal WHT light and the
second spectrum was for the BLU wavelength. Combining the FT specifications of the WHT and
BLU spectra together can positively affect the performance of a human verification system. A
large number of FT images from the MSCASIA was employed. That is, 4800 extracted FT images
were used (2400 images from each spectrum). Four fusion levels were described and implemented
in this work. These are the SLF, FLF, ScLF and DLF. All of these levels were examined under
the following rules: average, summation, multiplication, maximum, minimum, concatenation (for
the SLF, FLF and ScLF), AND and OR (for the DLF). The FLF with the concatenation rule has
been chosen as the best method, because the concatenation rule has obtained a best EER value and
the FLF has achieved remarkable performance. The suggested FT verification has attained EER
percentages of 5% and 7% by separately employing the BLU and WHT lights. It is true that the
combination system adds more stages and processes, however, the EER could be reduced to 2%
after fusing the FT specifications for both types of lights.
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