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Abstract 

 

Palmprint Gender Classification Using Deep Learning Methods 

 

 

Minou Khayami 

 

 

Gender identification is an important technique that can improve the performance of authentication 

systems by reducing searching space and speeding up the matching process. Several biometric 

traits have been used to ascertain human gender. Among them, the human palmprint possesses 

several discriminating features such as principal-lines, wrinkles, ridges, and minutiae features and 

that offer cues for gender identification. The goal of this work is to develop novel deep-learning 

techniques to determine gender from palmprint images. PolyU and CASIA palmprint databases 

with 90,000 and 5502 images respectively were used for training and testing purposes in this 

research. After ROI extraction and data augmentation were performed, various convolutional and 

deep learning-based classification approaches were empirically designed, optimized, and tested. 

Results of gender classification as high as 94.87% were achieved on the PolyU palmprint database 

and 90.70% accuracy on the CASIA palmprint database.  Optimal performance was achieved by 

combining two different pre-trained and fine-tuned deep CNNs (VGGNet and DenseNet) through 

score level average fusion. In addition, Gradient-weighted Class Activation Mapping (Grad-CAM) 

was also implemented to ascertain which specific regions of the palmprint are most discriminative 

for gender classification. 
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1.1. Executive summary 

Gender classification plays a very important role in many applications such as security, 

surveillance, context-based indexing, human-computer interaction, demographic research, and 

biometrics. The problem of automated gender assessment is typically treated as a two-class 

classification problem in which features extracted from a set of images corresponding to male 

and female subjects are used to train two-class classifiers. In earlier research, it was observed 

that there exist measurable differences between male and female biometric characteristics which 

can be exploited to improve the performance of recognition applications in surveillance and 

computer vision [1][2]. Besides, automatic human gender classification using palmprint will be 

among the next most popular biometric technology, especially in forensic applications, because 

of its uniqueness and strength[3]. It has been indicated by law enforcement agencies that at least 

30 percent of the prints lifted from crime scenes are of palms and not fingers [4], achieving 

higher accuracy on palmprint gender classification which leads to better palmprint identification 

is important. 

 Although many achievements have been obtained in the face [5][6][7], iris [8][9], and 

fingerprint-based [10][11][12] gender classification, there are a very few efforts focused on 

addressing gender classification by palmprint images. Palmprint images have a large surface area 

containing rich information and can be easily collected. Furthermore, its texture features are 

much more stable [13]. Moreover, in [14] it was reported that biological characteristics of the 

hands are the least infringed when they are collected.  

Few references have reported the identification of human attributes such as gender with 

the help of palmprint images. Wu and Yuan [15] developed a gender classification system that 

relied on the length, width, and aspect ratio of the palm.  Polynomial Smooth Support Vector 

Machine (PSSVM) was employed for gender classification based on geometry features of the 

palm. Geometric properties like boundary and Fourier descriptors on Zernike moments were 

reported by Amayeh et al. [16] Advantages of the fingers and palm region were considered 

separately by dividing them into six different parts, the distance of a given part from two 

different eigenspaces was computed, then score level fusion and LDA was used to identify 

human gender. Kanchan et al. [17] reported that a measurable difference in palmprint ridge 
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density between women and men exists. It has been revealed that the palmprint ridge density is 

significantly higher among women than men. Another study was reported by Amayesh et al. [18] 

based on the north Indian community to infer gender in forensic investigation using palmprints. 

But recently, Convolutional Neural Networks have achieved great performance in image 

classification [19][20] after the pioneering work by Krizhevsky et al.[21] . some studies [22][23] 

used CNN for face and fingerprint gender classification and achieved promising results. Thus, 

this was the motivation to use CNN and design and develop a deep learning methodology for 

palmprint gender classification.  

Although a few studies have been performed on palmprint gender classification, more 

research is required to improve the precision (accuracy rate) and speed of the process. Some of 

the unsolved challenges associated with palmprint gender classification are listed below: 

 

1. Dataset availability – Most deep learning architectures require thousands of sample images 

for training and testing the performance of the network. To date, there are only a few publicly 

available palmprint image datasets with accompanying gender information that can be used 

to train a deep convolutional neural network model.  

2. Time-consuming process – Computation cost for prior methods in gender classification based 

on palmprint is high, and they cannot be used in real-time applications.  

3. Not generalizable – All of the conventional methods in deploying palmprint gender 

classification have used the handcrafted and limited dataset to test their system and analyze 

their result, which is not quite generalizable to other datasets.  

4. Image composition – In the available datasets, some of the images are from the whole hand 

and not only the palmprint region of interest, requiring automated segmentation of the 

regions of interest. However, these larger images also contain features such as, creases, 

wrinkles, and principal lines that could be leveraged for identification purposes. 

5. Data stratification - Most of the publicly available palmprint data is unbalanced between the 

female and male subjects.  

From the literature, it is understood that previous studies were accomplished on limited 

datasets with conventional hand-crafted features and associated machine learning techniques. 

The first aim of this research is to improve the available datasets in terms of overcoming the 
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problem of image composition and data stratification by performing ROI extraction and data 

augmentation. Referring to the previous studies, one main drawback was using low-quality 

images which resulted in low accuracy. However, in this research, low quality contactless 

palmprint images have been used to not only speed up the time of the process and achieve a real-

time system but also enhance the accuracy rate. Hence this work uses large publicly available 

datasets rather than creating a small, limited dataset of palmprints, it can be generalized to every 

other palmprint dataset available or created in the future.  

The goal of this research is to perform gender classification on the publicly available 

palmprint image datasets and achieve high accuracy by using deep learning and CNNs, which 

has not been addressed in previous studies. The architecture of this robust method benefits from 

transfer learning, so it works with any size of datasets and gives the highest accuracy rate to the 

best of found knowledge. A Grad-CAM (Gradient-weighted Class Activation Mapping) is also 

implemented to ascertain which specific regions of the palmprint are most discriminative for 

gender classification. 

Gender classification can assist in individual identification in many ways as mentioned 

above. This work will help individual identification based on palmprint, by reducing the search 

space of biometric databases, as a preprocessing step, which will greatly improve the 

performance of identification tasks. In addition, this work is an effective and real-time method 

for palmprint gender classification due to the proposed architecture and its features. This method 

can also be used for palmprint latent matching to specify the gender of the prints found in crime 

scenes prior to the identification process. Lastly, gender classification on palmprint provides 

spoof detection ability in such cases that, it can verify if a claimed gender for a particular 

palmprint matches its ground truth or not. 
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1.2. Context of the research and motivation 

Automatic gender classification has received increasing attention since gender carries rich and 

distinguished information concerning male and female social activities [24]. Gender 

classification is used to recognize the gender of a person based on the characteristics that 

differentiate between masculinity and femininity. In the area of artificial intelligence, gender 

classification is one of the most important applications of pattern recognition methods [25]. The 

progress of gender classification research has driven many potential applications. For instance, a 

computer system with gender recognition functions has a wide range of applications in 

fundamental and applied research areas that includes: human-computer interaction (HCI) [26], 

the security and surveillance industry [27], demographic research [28], commercial development 

[29], and mobile application and video games [30]. Furthermore, multi-mechanisms are proposed 

to enhance the performance of gender recognition in terms of both accuracy and efficiency [31]. 

Although many achievements have been obtained in the face, iris, and fingerprint-based 

gender classification, there are very few researches addressing gender classification by palmprint 

images. Since all of the conventional methods in deploying palmprint gender classification have 

used the handcrafted and limited dataset to test their system and analyze their result, it is 

important to develop a method that can employ much larger and publicly available datasets so 

that the method would be generalizable to any other datasets. and recently,  Convolutional 

Neural Networks have achieved great performance in gender classification on other biometric 

traits such as face [6][7], iris, and fingerprint [22][23],  thus these were the motivations to use 

CNN and design and develop a robust deep learning methodology for palmprint gender 

classification to improve the precision and the speed of the process so it can be used in real-time 

application.  
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1.3. Literature review 

Identification of gender using palmprint does not have much literature, however, a few studies 

are reported on gender identification using hand geometry, hand shape, and palmprint ridge 

density, which are discussed in the next section. 

1.3.1.    Background and related works of palmprint gender classification 

As mentioned, few references have reported the identification of human attributes such as gender 

with the help of palmprint images. Wu and Yuan [15] developed a gender classification system 

that relied on the length, width, and aspect ratio of the palm. This gender classification method 

was comprised of two main attributes, features were extracted by image processing, and 

Polynomial Smooth Support Vector Machine (PSSVM) was employed for gender classification 

based on geometry features of the palm. Their database contained a total of 180 palm images that 

were collected from 30 persons to verify the validity of their proposed gender classification 

approach, and the classification rate of 85% was achieved. 

 

Amayeh et al. [16] system segmented the hand silhouette into six different parts 

corresponding to the palm and fingers. The geometry of each part was represented by region and 

boundary features based on Zernike moments and Fourier descriptors. For classification, the 

distance of a given part from two different eigenspaces was computed, one corresponding to 

Figure 1. 1. Wu and Yuan Database in thumbnails [15] 
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male class and the other corresponding to the female class. Using each part of the hand 

separately as well as fusing information from different parts of the hand has experimented. They 

used a small database of 20 males and 20 females, and the classification result of 98% was 

reported using score-level fusion and LDA. 

 

Kanchan et al. [17] studied the variation in ridge density in different areas of palmprints 

among men and women. The four prominent areas were analyzed on the palm prints that 

included the central prominent part of the thenar eminence (P1), hypothenar region, inner to the 

proximal axial triradius (P2), medial mount, proximal to the triradius of the second digit (P3) and 

lateral mount, proximal to the triradius of the fifth digit (P4). The mean palmprint ridge density 

among women was reported significantly higher than men in all the designated areas in both 

hands except for the P3 area in the right hand. In their research, significant differences were 

observed in the palmprint ridge density between the different palm areas in men and women in 

right and left hands. A total of 131 individual, 73 men, and 58 women, participated in their study 

Figure 1. 2. (a) Female hand image, (b) male hand image, (c) segmented female hand image [16]. 

Figure 1. 3. Four designated areas on the palmprints that were analyzed for the palmprint ridge density [17]. 
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1.4. Problem statement and objectives 

Gender classification is still an important problem that exists in biometric recognition. Although 

a few studies have been performed on palmprint gender classification, still some challenging 

tasks need more enhancement and continuous research. As mentioned before, the main problems 

in palmprint gender classification are dataset availability, to date, there are only a few publicly 

available palmprint image datasets with accompanying gender information that can be used to 

train a deep convolutional neural network model. This challenge requires the transfer learning 

method to take advantage of the pre-trained convolutional neural network models on larger 

datasets and fine-tune it on available palmprint datasets to have a more accurate result despite 

insufficient data. The next challenge in palmprint gender classification is the time-consuming 

process, and cannot be used in a real-time application, deep learning methodology would 

accelerate the process and makes it more agile. The next challenge this thesis tries to overcome is 

the generalizability of the method to any other dataset. As mentioned before, it is understood 

from the literature that all of the conventional methods in palmprint gender classification have 

used the handcrafted and fairly small datasets to test their system, which is not quite 

generalizable to other datasets. With the use of larger and publicly available datasets to train and 

evaluate this thesis’ method generalizability of it on many applications can be ensured. Image 

composition and data stratification of the image data are the next challenges, and this research 

aims to improve the available datasets in terms of overcoming these problems by performing 

ROI extraction and data augmentation, which are explained in detail in their respective sections. 

The goal of this research is to perform gender classification on the publicly available 

palmprint image datasets and achieve high accuracy by using deep learning methods and CNNs, 

which has not been addressed in previous studies. The architecture of this robust method benefits 

from transfer learning, so it works with any size of datasets and gives the highest accuracy rate to 

the best of found knowledge. A Grad-CAM (Gradient-weighted Class Activation Mapping) is 

also implemented to ascertain which specific regions of the palmprint are most discriminative for 

gender classification. 
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1.5. Contributions of the thesis 

 

In this research, an experimental study is conducted on palmprint gender classification which is 

established that using convolutional neural networks with transfer learning method, is superior to 

other tested models. In order to achieve the objectives of this work, some contributions are 

suggested for gender classification approaches based on palmprint. The contributions of this 

thesis are summarized as follows: 

First, data augmentation and ROI (region of interest) extraction have been performed on 

4 different publicly available palmprint image datasets (KTU, IITD, CASIA, PolyU) for the 

purpose of training deep neural networks. 

Second, as a solution, a new and time-efficient network structure is proposed, the 

proposed work combines and customizes two deep CNN model (VGGNet and DenseNet) pre-

trained on ImageNet [32]. This final model is fine-tuned to learn complex patterns in ridges and 

minutiae of the palmprint images. To the best of found knowledge, this model has the highest 

accuracy rate on the CASIA and PolyU palmprint image datasets.  

Third, performed Gradient-weighted Class Activation Mapping (Grad-CAM), this 

method uses the class-specific gradient information flowing into the final convolutional layer of 

a CNN to produce a coarse localization map of the important regions in the palmprint image and 

specified the specific area of the palmprint that is more important to distinguish between female 

and male class. 
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1.6. Organization of the thesis 

The thesis is structured as follows:  

• Chapter 2 reports the general context of biometry, neural network, and related works.  

• Chapter 3 describes the overall experimental setup, datasets, data augmentation, and ROI 

extraction. It presents the design and development of the networks used in this research 

from the initial baseline network to the final version of the proposed network design.  

• Chapter 4 presents the experimental evaluations and results of the methods described in 

chapter 3.  

• Finally, chapter 5 concludes the thesis and discusses its most important results, 

contributions, and future works. 
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2.1. Introduction 

In this section, an introduction of the biometrics system, different biometric modalities, 

advantages, and disadvantages of different modalities are explained. Features of palmprint trait, 

its advantages, and challenges are introduced. Background information of the convolutional 

neural network, its architectural components, and the deployed design components are discussed 

before moving on to the details explained in the following chapter.  

 

2.2. Biometrics system 

Automatic personal authentication systems that identify or verify the identity of an individual 

using biometric information such as the face, iris, fingerprint, and palmprint play an important 

role in the application of security, access control, forensic, and banking. Unlike conventional 

methods for personal identification, such as personal identification number, password, and key, 

these features cannot be duplicated, lost, or stolen. biometrics are typically time-invariant, easy 

to acquire, and unique in every individual. A biometric system is essentially a pattern recognition 

system that operates by acquiring biometric data from an individual, extracting a feature set from 

the acquired data, and comparing this feature set against the template set in the database. The 

benefit of these types of systems is that they make a great solution for identification or 

verification and they are also simple and easy to use.  

Depending on the application context, a biometric system may operate either in 

verification mode or identification mode. In verification mode, the system validates a person’s 

identity by comparing the captured biometric data with her own biometric templates stored in the 

system database. In such a system, an individual who desires to be recognized claims an identity, 

usually via a personal identification number (PIN), a username, or a smart card, and the system 

conducts a one-to-one comparison to determine whether the claim is true or not. Identity 

verification is typically used for positive recognition, where the aim is to prevent multiple people 

from using the same identity [33]. In the identification mode, the system recognizes an individual 

by searching the templates of all the users in the database for a match. Therefore, the system 

conducts a one-to-many comparison to establish an individual’s identity, without the subject 



Chapter 2. Background 

13 
 

having to claim an identity. Identification is a critical component in negative recognition 

applications where the system establishes whether the person is who she denies being. The 

purpose of negative recognition is to prevent a single person from using multiple identities[33]. 

 

2.2.1. Biometric modalities 

There are different kind of biometric modalities which can be classified into two categories: 

Physical biometric and behavioral biometric. Physical biometrics are like the image of a part of 

the human body such as the face, iris, fingerprint, or palmprint. As for behavioral biometric, it 

uses a person’s behavioral traits such as signature, the way each person types, or walks. There 

are also morpho-behavioral biometrics namely voice, which relies at the same time on the 

morphology of vocal cords and the behavior of it, since voice may change easily depending on 

the emotional state of the person. Figure 2.1. demonstrates some examples of different biometric 

modalities.  

 

Figure 2. 1: Different biometric modalities. 
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2.2.1.1. Palmprint features 

Several biometric characteristics exist and are in use in various applications. Each biometric has 

its strengths and weaknesses, and the choice depends on the application. Voice is very less 

accurate, keystroke needs a long observation time, the face is affected due to pose, illumination, 

and aging factors, iris sensor is very expensive, hand geometry varies as children grow, wearing 

of rings and rapid growth of pregnant ladies in a short time, DNA is not user-friendly, the 

fingerprint is unclear for elderly persons and manual labors and even missing, gait is influenced 

by medical conditions, clothing, surface, and footwear, Signature is easy to forge, palm print 

images are large in size and thus the sensor is bulkier. No single biometric is expected to 

effectively meet the requirements of all the applications. In other words, no biometric is 

“optimal.” The match between a specific biometric and an application is determined depending 

upon the operational mode of the application and the properties of the biometric characteristic. 

As the search for a more accurate biometrics system continues, hand biometrics and in 

particular palmprints, are becoming the biometric of choice, especially for deployment for access 

control at the point of entrance such as airports, federal buildings, and other highly sensitive 

places. Palmprint is one of the important biometrics traits and has several advantages over other 

characteristics, such as low-resolution imaging, low-intrusiveness, stable line features, and low-

cost capturing device. Indeed, since the principal lines and wrinkles can be observed under low-

resolution images (e.g., 100 dpi or lower), palmprint systems do not require high resolution 

capturing devices. The area of the palm is much larger than the area of a finger and as a result, 

palmprint contains more information than fingerprint beside ridges, such as principal lines and 

wrinkles so it is more distinctive [34]. Patterns in palmprint such as Principal lines, wrinkles,  

Figure 2. 2: Figure Palmprint feature definitions with principal lines and wrinkles [3]. 
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ridges, minutiae points, singular points, and texture are a very reliable biometric trait and to 

extract these features we need minimum cooperation from the user.  

Various features can be extracted at different image resolutions. For features such as 

minutiae points, ridges, and singular points, a high-resolution image, with at least 400 dpi (dots 

per inch), is required for feature extraction. However, features like principal lines and wrinkles, 

which are defined in figure 2.2., can be obtained from a low-resolution palmprint image with less 

than 100 dpi. In general, high-resolution images are essential for some applications such as law 

enforcement, where ridges, singular points, and minutiae points are extracted and matched in 

latent prints for identification and verification. For civil and commercial applications, low-

resolution palmprint images are more suitable than high-resolution images because of their 

smaller file sizes, which results in shorter computation times during preprocessing and feature 

extraction. Therefore, they are useful for many real-time palmprint applications [35]. The details 

of these features hardly change throughout the life of a person. And, these distinctive features 

such as principal lines and wrinkles can be captured even with a lower resolution scanner, 

therefore in comparison with iris, the cost of capture devices for palmprint is much less. When 

using a high-resolution palmprint scanner, all the features of the palm such as hand geometry, 

ridge and valley features (e.g., minutiae and singular points such as deltas), principal lines, and 

wrinkles may be combined to build a highly accurate biometric system. Compared with ridges 

and wrinkles, principal lines are usually the consequence of genetic effects. therefore, they are 

the most significant features in palmprint images and have good permanence. 

 

2.2.2. Properties of biometric modalities  

Biometric authentication presents several advantages compared to traditional identification ways 

like passwords or cards because it establishes a strong link between an individual and their 

identity. The principal properties of a biometric modality are the following: 

 

• Universality: The whole population should possess this modality (physical or behavioral 

characteristic). 
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• Distinctiveness: Two different individuals must have different biometrics 

representations. 

• Stability: To ensure individual authentication success, biometric modality should be 

relatively stable over time and it also must be stable regardless conditions of acquisition 

(external conditions, emotional conditions of the person, etc.) 

• Collectability: The biometric modality must be acquired. 

• Acceptance: The acceptance and the facility of usage are related to the acquisition 

constraints of a biometric modality. 

• Circumvention: The biometric modality must not be easily falsified. 

• Performance: Biometric recognition should be accurate, fast, and robust with regards to 

operational and environmental changes. 

All modalities do not possess all these properties or may possess them with different degrees. 

Hence, there is no ideal or perfect modality. The trade-off between the presence and absence of 

some of these properties is required according to each system's needs, regarding the choice of 

biometric modality. 

 

2.2.3. Advantage and disadvantage of each modality  

A comparison between different biometric modalities according to the seven properties 

mentioned previously (universality, distinctiveness, stability, collectability, acceptance, 

Circumvention, performance) is presented in table 2.1. The quality degree accorded to each 

modality is classified into three classes: high, medium, and low referred to the following 

notations • • •, • • and •, respectively. This table originating from [33] indicates that behavioral 

biometric modalities (keystroke, odor, or signature) present low recognition performances unlike 

intrusive data such as methods based on DNA or retina. However, data are given from palmprint 

or hand geometry presents the advantage that they do not possess any low criterion compared to 
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other modalities. Moreover, they are acquired from a single biometric modality which is hand 

trait. These advantages justify the choice of palmprint modality which is treated in this thesis. 

2.2.4. Structure of a biometric system  

The structure of a biometric system consists of two different phases: enrollment and 

authentication, as shown in figure 2.3. Enrollment is common for both verification and 

identification modes. It is the preliminary phase where the biometric data of a user is registered 

for the first time in the system. During this phase, one or more biometric modalities are captured 

and stored as templates in the database. This phase is very crucial since it influences, later, the 

whole recognition process. In fact, the quality of enrolled data is essential for ulterior 

Table 2. 1: comparison of biometric modalities according to seven properties: Universality (U), 
Distinctiveness (D), Stability (S), Collectability (Co), Acceptance (A), Circumvention (Ci), Performance 

(P). ●●●: high degree, ●●: medium degree, ●: low degree [1].  

Biometric 

modality 

 U D S Co A Ci P 

Face  ●●● ● ●● ●●● ●●● ● ● 

Iris  ●●● ●●● ●●● ●● ● ● ●●● 

Fingerprint  ●● ●●● ●●● ●● ●● ●● ●●● 

Hand geometry  ●● ●● ●● ●●● ●● ●● ●● 

Palmprint  ●● ●●● ●●● ●● ●● ●● ●●● 

Keystroke  ● ● ● ●● ●● ●● ● 

Odor  ●●● ●●● ●●● ● ●● ● ● 

Retina  ●●● ●●● ●● ● ● ● ●●● 

Signature  ● ● ● ●●● ●●● ●●● ● 

Voice  ●● ● ● ●● ●●● ●●● ● 

Hand vein  ●● ●● ●● ●● ●● ● ●● 

DNA  ●●● ●●● ●●● ● ● ● ●●● 

Figure 2. 3: Structure of biometric systems. 
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identification phases because acquired data are considered as references for the person. A set of 

samples should be captured to consider the variability of the biometric modality of a person. 

A biometric system is composed of 4 modules, some of them are common for enrollment 

and authentication phases namely acquisition, features extraction, matching, and making a 

decision. Acquisition and feature extraction are two modules presented in the enrollment and 

authentication phases. Features extraction is a data representation (e.g. image or signal) as a 

vector that should be representative for data and discriminant versus other data of other 

individuals. During the enrollment phase, the feature vector extracted from the biometric sample 

is called reference and stored in a database. During the authentication phase, acquisition and 

features extraction modules allow achieving a representation of biometric data to be tested later 

in features space. The matching module is used during the authentication phase to compare the 

feature vector extracted for a test with the reference feature vector. The decision module consists 

of deciding the output of a matching module which generates a similarity score between two 

feature vectors. For verification applications, the matching is executed only once, between 

reference data and test data, and a decision of” true” or” false” is taken. For identification 

applications, the matching is carried out between all references stored in the database and the 

decision is the answer to the following question:” Does this person exist in the database, and if 

so, who is he/she?” 

 

2.2.5. Evaluation of a biometric system 

To evaluate the performance of a biometric system, three principal criteria have to be already 

defined clearly: 

1. False Rejection Rate or FRR: This rate represents the percentage of individuals expected 

to be recognized but they are nevertheless rejected by the system. 

2. False Acceptance Rate or FAR: This rate represents the percentage of individuals 

expected to be not recognized but they are nevertheless accepted by the system. 
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3. Equal Error Rate or EER: This rate represents the optimal performance measure and is 

computed depending on the first two criteria. It is achieved when FAR=FRR, i.e. the best 

trade-off between false rejections and false acceptances. 

Figure 2.4 shows the FAR and FRR diagram according to distributions of genuine and 

imposter scores. The EER is represented in Figure 2.5. 

 

 

 

 

Figure 2. 4: FAR and FRR diagram 

Figure 2. 5: ROC curve 
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There are two ways to measure the biometric system performance, according to the mode 

(authentication or identification): 

• If the system works in authentication mode, then the ROC (Receiver Operating 

Characteristic) curve is used. This curve draws the false rejection rate depending on the 

false acceptance rate. The more this curve fits the mark shape the more the system is 

efficient with a high Recognition Rate (RR). The results of this research are measured 

based on this evaluation method (The area under the ROC curve). 

 

• In the case of the identification mode, the CMC (Cumulative Match Characteristic) curve 

is used. The CMC curve provides the percentage of recognized individuals according to a 

variable called a rank. A system is said to recognize at the rank 1 when the nearest image 

is selected as the recognition result, and a system is said to recognize at the rank 2 when 

it selects, among two images, the one that best matches the input image. Subsequently, 

the more the rank is high the more the correspondent recognition rate is related to a low-

security level. 

 

2.3. Soft biometrics  

Recently for improving the performance of traditional biometric systems, the use of soft 

biometrics has grown. Soft biometrics are characteristics that can be used to describe an 

individual, but they are not fully distinctive by themselves in recognition tasks. Soft biometric 

traits include characteristics such as gender, height, weight, hair type, scars, marks, etc. The 

beginnings of soft biometrics science were laid by Alphonse Bertillon in the nineteenth century, 

who first introduced the idea for a personal identification system based on biometric, 

morphological, and anthropometric determinations. He used traits like colors of eye, hair, beard, 

and skin; shape and size of the head; general discriminators like height or weight and also a 

description of indelible marks such as birthmarks, scars, or tattoos. A great majority of those 

descriptors fall at present into the category of soft biometrics. Soft biometrics is defined to be a 

set of characteristics that provide some information about the individual but are not able to 

individually authenticate the person, mainly due to lack of distinctiveness and permanence. 
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soft biometrics are not expensive to compute, can be sensed at a distance, do not require 

the cooperation of the surveillance subjects, and have the aim to narrow down the search from a 

group of candidate individuals. Moreover, we here note that the human compliance of soft 

biometrics is the main factor, which differentiates soft biometrics from classical biometrics 

offering new application fields. Researchers have a new definition of soft biometrics which is as 

follows, Soft biometric traits are physical, behavioral, or adhered human characteristics, 

classifiable in pre-defined human compliant categories. These categories are, unlike in the 

classical biometric case, established and time-proven by humans to differentiate individuals. In 

other words, the soft biometric traits instances are created in a natural way, used by humans to 

distinguish their peers. 

Recently, soft biometric traits have been employed to preliminary narrow down the 

search of a database, in order to decrease the computational time for the classical biometric trait. 

Another application approach is to fuse soft biometrics and classical biometric traits to increase 

system reliability. Soft biometrics impart systems substantial advantages: they can be partly 

derived from the main detected classical biometric identifier, their acquisition is nonobtrusive 

and does not require enrollment, training can be performed in advance on individuals out of the 

specific identification group. 

 

2.3.1. Gender features of palmprint 

In the recent past, gender dimorphism of the fingerprint ridge density has been explored by 

researchers in different populations worldwide. In [36] Jantz observed differences in gender and 

ethnicity for finger ridge count correlations, and several other kinds of research pointed out that 

females have finer epidermal ridge details than males [37][38]. Palmprint and fingerprint ridge 

density is determined by two characters: ridge width and distance between ridges. The thickness 

of the epidermal ridges varies between individuals, females having finer ridges, and therefore, 

greater ridge density than males [39]. The differences in the ridge density between males and 

females may also be the result of overall size dimorphism. The larger the size of the palm, the 

greater is the distance between the ridges and lesser will be the ridge density [40][41]. 
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Palmprints share most of the features with fingerprints and also possess much larger skin area 

and as explained before, other discriminative features such as principal lines and creases. 

Palmprint recognition has considerable potential as a personal identification technique.  

According to a study by Jain and Feng [42], about 30% of the latent prints recovered 

from crime scenes are from palms. Hence, there is a growing need for palmprint databases 

worldwide. When a person touches a surface or grabs an object, an impression of the friction 

ridges may be left behind. Detailed analysis of fingerprints and palmprints at the crime scene, 

becomes useful to identify the suspect in a particular case. Often, the prints collected from crime 

scenes, weapons of an offense such as knife hilts, gun grips, steering wheels, and windowpanes 

belong to palms and fingers [43]. The sex differences in palm print ridge density can even be 

valuable in the identification of a dismembered hand during medicolegal investigations to 

establish the identity of an individual in cases of mass disasters/mass homicides [17]. Though 

analysis of ridge density has been used for the distinction of sex from fingerprints 

[41][44][45][46], studies on its application in palmprint ridge density are limited. If the gender of 

the suspect could be inferred from the prints available at the crime scene application of interest, 

then the burden of the investigation is reduced to half and the investigations may be directed 

towards either a male or a female suspect accordingly. 

Several studies show that females have finer ridge patterns over the palmar surface than 

males and show significantly greater palmprint ridge density than males. The distal region of the 

palm is shown to have finer ridges than the proximal region among males and females. 

Therefore, apart from the matters relating to sex inference at the crime scene, palmprint ridge 

density can be considered as a trait for individual and population variation in forensic 

anthropology [47]. 

Gender classification of palmprint images is an interesting yet challenging problem, it is a 

rather novel research topic in computer vision. Automatic gender classification could be of 

important value in human-computer interaction, such as personal identification. Also, it is a 

useful preprocessing step for palm recognition. A computer system with the capability of gender 

classification has a wide range of applications in basic and applied research areas, including 

man-machine communication, security, law enforcement, demographics studies, psychiatry, 

education, and telecommunication. Gender classification on palmprint reduces the searching 
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space and speeds up the identification process. It also gives us spoof detection ability in such 

case that a fake palmprint data may contain different gender information than the actual gender 

of the subject. 

2.4. Convolutional Neural Networks 

Convolutional Neural Network is a type of artificial neural network whose layers resemble the 

simple and complex cells in the primary visual cortex [48]. The connectivity is inspired by the 

biological brain neurons, where each neuron receives input signals (x0) from its dendrites and 

produces output signals along its axon, which in turn connects to different other neurons. The 

signals are multiplied with the dendrites ( x0.w0 ) of other neurons while passing along the axons. 

The signals are only sent (fired) through the axon when the summation is above a certain 

threshold, which can be modeled as activation function ƒ [49]. This phenomenon can be shown 

as a mathematical model as in Figure 2.6. 

 

The CNNs have local connectivity property, where each neuron is only connected to a 

small region (receptive field) of adjacent layers. The neurons in the layers of a CNN are three 

dimensional (height, width, and depth) and are connected only to the receptive field of the 

previous layer. CNNs have weight sharing property and form a feature map with replicated units 

sharing the same weight and bias, which makes all the neurons in the layer detect the same 

features. This feature decreases the parameters and so helps in reducing the memory cost.  

Figure 2. 6: Biological neuron and its mathematical model [18]. 
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The architectural overview of a convolutional neural network is composed of distinct layers, 

which transforms the input to output through certain functions. The layers and activation 

functions are described below. 

 

2.4.1. Architectural components 

i. Convolutional layer: 

Convolutional Layer is the core building block of the network. It consists of a set of learnable 

filters with small receptive fields but extends through the full depth of the input volume. When 

the input passes through the convolution layer, each filter is slid across the width and height of 

the input volume computing the dot product between the entries of the filter and the input at that 

position. This produces a two-dimensional activation map and these activation maps are stacked 

along the depth dimension for all filters, producing the output of the convolutional layer.  

 

ii. Max pulling layer: 

Pooling is a form of the non-linear down-sampling method used to achieve spatial invariance 

by progressively reducing the spatial size of feature maps and the number of parameters. The 

pooling layer is also called a subsampling layer. There are many variants of pooling, such as 

average pooling, L2-norm pooling, etc., in which Max pooling is a popular one, outperforming 

the other subsampling operations [50]. 

Figure 2. 7: Illustration of convolutional layer output calculation. 
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In the construction of neural networks in this thesis, the max pool layer is used as a sub-

sampling layer. Generally, the pooling layer comes after the convolutional layer but is not 

necessary. The most common pooling layer window size is 2 × 2, with a stride of 2 and is 

applied independently along with the depth of the input, by which the width and height are 

reduced by 2 while the depth remains the same. The max-pooling function applies the window to 

the input patch and computes the maximum in the neighborhood as shown in Figure 2.8. 

 

iii. Rectified Linear Unit layer: 

This layer applies a non-saturating nonlinearity activation function to model the neuron’s 

output [51]. There are different kinds of activation functions such as, tanh, sigmoid, softplus, etc. 

Rectified Linear Unit (ReLU) is used in this thesis, as ReLUs are said to train several times faster 

than their equivalents with tanh units and also reduce over-fitting [21]. 

The ReLU activation function is defined as: 

ƒ(𝑥) = 𝑚𝑎𝑥⁡(0, 𝑥)      (2. 1) 

The plot of the Rectified Linear Unit function is shown in Figure 2.9. The function thresholds 

the activations at zero. This creates a disadvantage that if at all any neuron is updated to zero, 

then the gradient passing through it will always be zero since the gradient of zero is a zero. 

Generally, ReLU is added after each pair of convolution and pooling layer. 

 

Figure 2. 8: Illustration of Max pooling layer calculation. 
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iv. Fully Connected Layer: 

In the fully connected layer, neurons have connections to all activations in the previous layer. 

It is generally used as the last layer which holds the output scores and is also called the “output 

layer”. Its activations are computed with a matrix multiplication and bias offset. The output of 

the fully connected layer is 1×1×C, where C is the number of class labels. 

 

2.4.2. Employed design components 

In this section, preprocessing steps and the design method chosen for training all of the 

CNNs model used in this research are explained. While the individual architectures are explained 

in their respective sections, the design steps taken for modeling the data and the network are 

explained as the following. 

 

i. Data preprocessing: 

Data preprocessing is a method used to transform the raw input data into an evenly 

distributed, scaled data within a range, understandable to the network. Data preprocessing is 

proven to improve the training process of the neural networks. Data can be preprocessed by 

mean subtraction or normalization. In this thesis, all the training data is normalized by centering 

the data to have a zero mean and scaling to [-1 1] range. 

Figure 2. 9: Plot of ReLU function 
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ii. Weight initialization:  

The network weights are initialized before training in order to avoid the diminishing of the 

input signal variance as it passes through the layers. In CNN-a, which is not a very deep network, 

the weights are initialized randomly with Gaussian random numbers. This scaling of inputs 

ensures that all the neurons in the network initially have approximately the same output 

distribution and empirically improves the rate of convergence [49]. Very low weights shrink the 

signal, while with very large weights the signal grows at each layer and becomes useless.  

 

iii. Batch normalization: 

Ioffee and Szegedy [52] address the internal covariate shift, a phenomenon named as the 

change in the distribution of network activations due to the change in parameters during training, 

which needs a careful parameter initialization and lower learning rates. They have introduced the 

Batch Normalization method to avoid saturating nonlinearities by applying normalization of the 

layer inputs for each training mini-batch. 

 

iv. Regularization Method: Drop out: 

The neural network is prone to overfitting, a phenomenon where the network has a very low 

training loss but could not generalize to novel data. Dropout is a regularization method to address 

the overfitting issue to some extent and has shown to improve performance [53]. The dropout 

technique drops out the units in a neural network below a certain threshold p, where p is between 

[0, 1]. A dropout of 0.5 is used in the CNN-a network and 0.7 in all of the other networks. 

 

Figure 2. 10: Schematic diagram showing the thinning of neural network after dropout [24]. 
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v. Softmax cross-entropy Loss: 

The softmax layer is used as the classifier layer in the neural network and the network is 

trained under a loss function. In the networks in this thesis, the cross-entropy loss is used as a 

cost function to train the network. The cost function is used to calculate the loss between the 

predicted and true labels and this layer will be right after the fully connected layer. The softmax 

function scales the scores to be in [0,1] range and all scores sum to one. To reduce the chance of 

over-fitting the ℓ2 norm can be added to the loss function, resulting in an overall loss function as: 

ℒ𝑓𝑖𝑛𝑎𝑙 =⁡ℒ𝑐𝑙𝑎𝑠𝑠 +⁡⋋1‖𝑊𝑓𝑐‖𝐹
2
     (2. 2) 

 

Where ℒ𝑐𝑙𝑎𝑠𝑠 =⁡−∑ 𝑝𝑖 log(𝑞𝑖)𝑖  is the cross-entropy loss, and ‖𝑊𝑓𝑐‖
2
𝐹
 denotes the Frobenius 

norm of the weight matrix in the last layer. This loss function can be minimized using a 

stochastic gradient descent algorithm. 

 

vi. Optimization Method: Stochastic Gradient Descent: 

An optimization method is used to minimize the loss function. Gradient descent is an 

iterative method of minimizing a differentiable loss function 𝐽(𝜃) by updating the parameters in 

the negative direction of the gradient of the loss function. Stochastic gradient descent is a variant 

of gradient descent, which performs parameter update in the negative direction for each training 

iteration to minimize the gradient. The gradient is computed, and the weights are updated over 

small batches of training data for every iteration. The general form of the stochastic gradient can 

be given as: 

𝜃 = ⁡𝜃 − ⁡𝜂. 𝛻𝜃𝐽(𝜃; 𝑥
(𝑖); 𝑦(𝑖))     (2. 3) 

 

where 𝜂 is the learning rate or step size in this equation. The learning rate can be kept 

constant or changed for every or after certain iterations. There are other methods of gradient 

descent algorithms: Adagrad, Adam, RMSprop, and Adadelta, which after empirical evaluation 

of these methods, stochastic gradient descent (SGD) is employed in all the trained neural 

networks in this thesis.
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3.1. Introduction 

In this section, an overview of the detailed approaches of the experimental setup is described. 

The main contributions of the thesis are ROI extraction of the palmprint image datasets and 

developing a deep neural network model to achieve high accuracy in classifying the gender of 

palmprint images.  

Four different publicly available palmprint image datasets were divided into the train, 

validation, and test sets to evaluate the performance of four deep neural network models that are 

presented in this thesis. for simplicity, each network is given the following abbreviations. 

1. CNN-a: Initial baseline CNN based on VGGNet. 

2. CNN-VGG: Pretrained VGGNet-E on ImageNet, fine-tuned, and modified based on the 

palmprint image datasets. 

3. CNN-Dense: Pretrained DenseNet121 on ImageNet, modified to train on smaller 

available datasets. 

4. CNN-b: The proposed deep learning neural network which is a combination of CNN-

VGG and CNN-Dense. 

 

 

Figure 3. 1: Overview of the experimental setup. 
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3.2. Datasets 

This section represents all of the publicly available palmprint datasets that are used in this 

research.  

i. KTU CVPR Lab. Palmprint Database-2 

This database contains 15440 color images corresponding to 534 different palms in BMP 

image format. Each image in this database was taken using a low-cost CCD camera with 

a resolution of 768 × 576 pixels at 75 dpi. The number of samples per individual in the 

database was restricted between 13 and 40. Since the images were taken in different 

sessions some variations were appeared in the images, like focus, illuminations, and pose 

of the hand [54]. 

 

ii. CASIA Palmprint Image Database 

CASIA Palmprint Image Database contains 5502 palmprint images captured from 312 

individuals (74 females and 238 males). For each subject, palmprint images from both 

left and right hands were collected. All palmprint images are 8 bit gray-level JPEG files 

[55]. 

 

 

 

Figure 3. 2: Sample of images in KTU database. 

Figure 3. 3: Sample of images in CASIA database. 
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iii. PolyU Multispectral Palmprint Database 

Multispectral palmprint images were collected from 250 volunteers, including 206 males 

and 44 females. The PolyU Multispectral Palmprint database contains 15 kinds of 

palmprint images,  which were taken from 15 different spectra using a piece of 

equipment developed by the PolyU Biometric Research Center. The spectra included 

Blue, Blue_Infrared, Green, Green_Blue, Green_Blue_Infrared, Green_Infrared, Infrared, 

Red, Red_Blue, Red_Blue_Infrared, Red_Green, Red_Green_Blue, 

Red_Green_Blue_Infrared, Red_Green_Infrared, and Red_Infrared. Each hand has 12 

images under each spectrum. This database includes 250 people and 90,000 images [56].  

 

 

iv. IIT Delhi Touchless Palmprint Database 

The IIT Delhi palmprint image database consists of the hand images collected from 230 

users, all the images are in bitmap (*.bmp) format. Seven images from each subject, from 

each of the left and right hand, are acquired in varying hand pose variations. The 

resolution of the images in this dataset is 800 × 600 pixels [57]. 

 

 

Figure 3. 4: Sample of images in PolyU database. 

Figure 3. 5: Sample of images in IIT Delhi Palmprint database. 
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Each dataset was divided into three different subsets for training, validating, and testing 

purposes. Table 3.1. shows detailed information on the palmprint datasets used in this project. 

 

Table 3. 1: Detail information of the palmprint datasets 

 

 

 

3.2.1. Palmprint ROI extraction 

ROI extraction is a crucial step and it greatly affects the final results. Most of the existing 

methods extract ROI according to some key points between fingers or in palm boundary, or some 

external factors. And these methods assume that the palmprint images have been well aligned 

before performing feature extraction and matching. It is important to define a coordinate system 

that is used to align different palmprint images for matching. To extract the central part of a 

palmprint, for reliable feature measurements, the gaps between the fingers are used as reference 

points to determine a coordinate system [1]. The five major steps in processing the image are as 

follows: 

1. Applied a lowpass filter, 𝐿(𝑢, 𝑣), such as Gaussian smoothing, to the original image, 

𝑂(𝑥, 𝑦). A threshold, 𝑇𝑝, is used to convert the convolved image to a binary image, 

𝐵(𝑥, 𝑦), as shown in Figure 3. 5(b). 

Dataset Number of 

 images 

Number of  

female’s hand 

Number of  

male’s hand 

Number of 

palmprints 

images for each hand 

Number of 

 spectra 

PolyU Multispectral 

Palmprint [56] 
 

90,000 88 412 24 15 

CASIA Palmprint 

Image Database [55] 

 

5,502 74 238 1~16 1 

KTU Palmprint 

Database [54] 

 

15,440 - - 13~40 1 

IIT Delhi Palmprint 

Database [57] 

3,220 - - 14 1 
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2. Obtained the boundaries of the gaps, (𝐹𝑖𝑥𝑗, 𝐹𝑖𝑦𝑗)(𝑖 = 1,2), between the fingers, using a 

boundary tracking algorithm, Figure 3. 6(c). The boundary of the gap between the ring 

and middle fingers is not extracted since it is not useful for the following processing. 

3. The tangent of the two gaps is computed. (𝑥1, 𝑦1) and (𝑥2, 𝑦2) are assumed to be any 

points on (𝐹1𝑥𝑗, 𝐹1𝑦𝑗) and (𝐹2𝑥𝑗, 𝐹2𝑦𝑗), respectively. If the line (𝑦 = 𝑚𝑥 + 𝑐) passing 

through these two points satisfies the inequality, 𝐹𝑖𝑦𝑗 ≤ 𝑚𝐹𝑖𝑥𝑗 + 𝑐, for all 𝑖 and 𝑗 (in 

Figure 3. 6(d) ), then the line (𝑦 = 𝑚𝑥 + 𝑐) is considered to be the tangent of the two 

gaps. 

4. Lined up (𝑥1, 𝑦1) and (𝑥2, 𝑦2) to get the Y-axis of the palmprint coordinate system, and 

used a line passing through the midpoint of these two points, which is perpendicular to 

the Y-axis, to determine the origin of the coordinate system as shown in Figure 3. 6(d). 

5. Extracted a sub-image of a fixed size based on the coordinate system. The sub-image is 

located at a certain area of the palmprint image for feature extraction (Figure 3. 6(e) and 

3. 6(f) ). 

 

Figure 3. 6: The main steps of ROI extraction. (a) Original image, (b) binary image, (c) boundary 

tracking, (d) building a coordinate system, , (e) extracting the central part as a sub image, and (f) 

preprocessed result [1]. 
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3.2.2. Data augmentation 

The data is augmented by techniques such as flipping, adding a small amount of distortion to 

increase the number of samples. Data augmentation resulted in creating a more robust model that 

learns better characteristics for making distinctions between data images. The generalization of 

the model as well as training the network with a small amount of data achieved with data 

augmentation. The images are randomly rotated between [6°, 24°], horizontally shifted between 

x and y values of [15, 20], and randomly noised with Gaussian and salt & pepper noise at 

different random noise levels between [0.05, 0.3]. Sometimes, one image may also be 

combinedly shifted and added noise randomly. 

 

3.3. Baseline CNN-a network 

CNN-a is the abbreviation given to the baseline convolutional neural network based on the 

VGGNet model in this research.  

 

3.3.1. Architecture 

The VGGNet achieves state-of-the-art image classification performance, which also took second 

place in the ILSVRC-2014 (ImageNet Large Scale Visual Recognition Challenge) classification 

challenge [58]. There are five configurations of VGGNet, which are denoted as VGGNet-A, B, 

C, D, E. Here, we choose VGGNet-E (widely known as VGG-19), which gives the best result in 

this experiment. This network with some modifications is considered a baseline network in this 

work. It takes grayscale images for training and testing. The CNN-a network architecture built 

for palmprint gender classification consists of 19 layers, where each convolutional and max pool 

layer pair are followed by a ReLU layer. The last fully connected layer is followed by a softmax 

layer, which calculates the probabilities and the label with the highest probability will be 

assigned as the final output. 

The detailed network architecture is presented in Figure 3. 6. Each input palmprint image, 

after ROI extraction and resizing, is normalized to a 128 × 128 grayscale images. Each pair of 
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Conv + Maxpool is followed by a rectified linear layer, which allows the network to train several 

times faster [59]. A dropout layer is added as a regularization layer to prevent overfitting [53]. 

The final layer, after the fully connected layer, is a softmax layer that classifies the input 

palmprint image into the respective gender class. 

 

Figure 3. 7: CNN-a architectural elements 

 

All of the layers initialized by Gaussian random numbers and in FC7, the biases were 

initialized with 1, the value of the standard deviation of the Gaussian distribution was set to 

0.005 and the activation function f as said before was Rectified Linear Units (ReLU):  

𝑥ℓ = 𝑓(𝑢ℓ),𝑤𝑖𝑡ℎ⁡𝑢ℓ =⁡𝑊ℓ𝑥ℓ−1 + 𝑏ℓ     (3. 1) 

𝑅𝑒𝐿𝑈(𝑢ℓ) = 𝑚𝑎𝑥(𝑢ℓ, 0)      (3. 2) 

 

Where ℓ represents the current layer, 𝑊𝑙   is the weight of ℓ layer, 𝑥𝑙−1 represents the 

output of  ℓ-1 layer (input of current layer), 𝑏𝑙 is the bias. 𝑢𝑙 is the input of ReLU. In FC8 (which 

is the last fully connected layer), the biases were initialized with 0, the value of the standard 

deviation of the Gaussian distribution was 0.01. The above-mentioned values for biases and 

standard deviations were chosen empirically through the experiment. There were three fully 

connected layers in the configuration of network CNN-a, the first two had 4,096 neurons, and the 

third one performed 2-class classification and thus contained 2 neurons (one for each class). The 

final layer was the soft-max transform layer. 
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Score normalization: 

Normalization is used to improve the speed by reducing the difference in the data [60]. The 

scores obtained from the CNN-a are preferably normalized to get the best results. Two types of 

score normalizations are evaluated, Soft normalization and Hard normalization, computed using 

the following formulae (3.3)(3.4) [61]. 

i. Soft Normalization: 

𝑁𝑜𝑟𝑚 = (𝑋 − 𝑀𝑒𝑎𝑛) (𝑆𝑡𝑑𝐷𝑒𝑣)⁄     (3. 3) 

X: input score vector 

Mean: mean of the input vector 

StdDev: standard deviation of the input vector 

ii. Hard Normalization: 

𝑁𝑜𝑟𝑚 = (𝑋 − 𝑀𝑖𝑛) (𝑀𝑎𝑥 −𝑀𝑖𝑛)⁄      (3. 4) 

X: input score vector 

Min: minimum value of the vector 

Max: maximum value of the vector 

 

3.3.2. CNN-a + SVM classifier 

Linear Support Vector Machines (SVM) are widely used for binary classification, which is one 

of the main points of this research and is based on statistical learning theories [62]. SVM is 

relatively insensitive to the number of data points and the classification complexity does not 

depend on the dimensionality of the feature space [63], which helps the method to learn a larger 

set of patterns. SVM classifier used for classification in this research mainly because as said 

before is a binary classifier that can optimally separate two classes. It exhibits many advantages 

in solving the small sample size problem, and it has been successfully applied in gender 

classification [64][65][66]. The features from the last fully connected layer were used to train 
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SVM directly. To find out the best model 10-fold cross-validation was carried out on the CASIA 

Palmprint Image database and PolyU Multispectral Palmprint Database. 

3.3.3. CNN-a + PCA + SVM 

Principal Component Analysis or PCA is a technique used to emphasize variation and bring out 

strong patterns in a dataset and is widely used to reduce the dimensionality of large data sets, by 

transforming a large set of variables into a smaller one that still contains most of the information 

in the large set. Reducing the number of variables or features comes at the expense of accuracy 

and on the other hand, it makes the large data set simpler, easy to explore, and visualize. Also, it 

reduces the computational complexity of the model which makes analyzing data much easier and 

faster for machine learning algorithms without extraneous variables to process. After training the 

SVM with features from the last fully connected layer of the CNN-a network, PCA was applied 

to reduce dimension, and SVM has trained again.  

 

3.4. VGGNet transfer learning 

In transfer learning, a model trained on one task is repurposed on another related task, usually by 

some adaptation toward the new task. For example, one can imagine using an image 

classification model trained on ImageNet [32] to perform texture classification. It would be 

plausible to use the representation learned by a model, trained for general-purpose classification, 

for a different image processing task. There have been many works based on pre-trained deep 

learning models to perform a different task in the past few years. 

There are two main ways in which the pre-trained model is used for a different task. In 

one approach, the pre-trained model, a language model as an example, is treated as a feature 

extractor, and a classifier is trained on top of it to perform classification. In the other approach, 

the whole network, or a subset of it, is fine-tuned on the new task. Therefore, the pre-trained 

model weights are treated as the initial values for the new task and are updated during the 

training stage. 

Transfer learning is used to train a model on a small or of an insufficiently sized dataset 

to achieve good performance results, where a network trained on a larger dataset is used to 
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initialize the weights. Transfer learning is an approach applied for leveraging the knowledge of 

already learned networks, whose extracted features are found to be very powerful in object 

detection and classification problems [67]. 

The VGGNet-E (up to 19 layers) is fine-tuned to classify the gender of palmprint images 

for the following two reasons. First, it is a good model that has been trained by a large-scale 

dataset, whereas there are limited palmprint images to train a net directly. Second, VGGNet is a 

deep network that can extract many abstract or high-level palmprint features. Thus, it is 

conducive to find out the difference between different gender palmprint images. 

CNN-VGG is a pre-trained VGGNet-E model on the ImageNet dataset which was used 

and then fine-tuned using the train set which is a subset of the palmprint datasets presented 

before. One more fully connected layer is also added on top of the CNN-a network to form 

CNN-VGG, because in the CNN-a model the neurons in the last fully connected layer changed 

from 4096 to 2 and such a sudden change may influence performance, thus in an effort to 

transition smoothly the number of neurons in the additional fully connected layer was set to 

1,000. The entire model design of CNN-VGG ends up with a total of 20 layers including fully 

connected layers. Unlike the CNN-a network, all the layers of the CNN-VGG model up to the 

last fully connected layer were initialized by the weights from the pre-trained model of the 

VGGNet-E model on the ImageNet dataset. 

 

 

 

Figure 3. 8: CNN-VGG architectural elements 
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3.5. DenseNet transfer learning 

DenseNet is a network architecture where each layer is directly connected to every other layer in 

a feed-forward fashion (within each dense block). For each layer, the feature maps of all 

preceding layers are treated as separate inputs whereas its own feature maps are passed on as 

inputs to all subsequent layers. This connectivity pattern yields state-of-the-art accuracies on 

CIFAR 10/100 (with or without data augmentation) and SVHN. On the large scale ILSVRC 

2012 (ImageNet) dataset, DenseNet achieves similar accuracy as ResNet but using less than half 

the number of parameters. 

In this thesis, CNN-Dense has been introduced for gender classification on palmprint 

images. The underlying research work is two-fold: 

a. The proposed work customizes DenseNet121, a preeminent CNN model pre-trained on 

ImageNet(animal dataset). As palmprint features substantially differ from animals, this model is 

fine-tuned to learn complex patterns in ridges and minutiae of the palmprint images. 

b. In order to ascertain the aid of specific layers of the proposed framework, the layer-

specific feature analysis is carried out through the visualization of the palmprint features learned 

by arbitrary layers. It helps in selecting the layers of a pre-trained model to fine-tune for 

palmprint gender classification. 

The proposed model incorporates DenseNet121 [68] as a basic building block with major 

customization. DenseNet is best suitable for the aforesaid problem due to some important 

observations as it facilitates feature reuse at each subsequent layer inside a dense block and 

constitutes more feature maps. It also resolves the vanishing gradient problem using a direct path 

to all preceding layers to route residuals during backpropagation. Furthermore, it outperformed 

another state-of-the-art CNN architectures in the ImageNet challenge [69]. DenseNet was 

induced from ResNet [70], where a layer receives outputs from the previously second or third 

layer through residual connections and the outputs are added on the same depth as shown in 

Figure 3.8(a). During backpropagation, these residual connections route residuals (errors) 

directly to the previous layers to let the network learn faster. DenseNet uses a series of dense 

blocks with transition layers between them. Figure 3.8(b) shows a dense block where a separate 

connection exists between each layer to all subsequent layers inside a block. Hence, a dense 

block with L layers has a total L(L+1)/2 connections among them [68]. 
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In ResNet, the output of layer-𝑙 is  

𝑥[𝑙] = 𝑓(𝑊 × 𝑥[𝑙 − 1] + 𝑥[𝑙 − 2])     (3. 5) 

whereas, in DenseNet 

𝑥[𝑙] = 𝑓(𝑊 × ℎ(𝑥[𝑙 − 1], 𝑥[𝑙 − 2],… , 𝑥[𝑙]))    (3. 6) 

Here, h denotes the stacking of layers. DenseNet is considered better then ResNet in the 

manner that; it concatenates features as opposed to ResNet which adds them up. Moreover, 

DenseNet constitutes immense features and has fewer learning parameters, in fact, less than half 

as compared to ResNet. These observations raise motivation to apply DenseNet for palmprint 

gender classification. In a dense block, the nth layer gets feature-maps of all previous layers, 

𝑋0, 𝑋1, … , 𝑋𝑛−1 as input. Therefore, the feature map of the nth layer represented by: 

𝑋𝑛 = 𝐹𝑛([𝑋0, 𝑋1, … , 𝑋𝑛−1])      (3. 7) 

Here [𝑋0, 𝑋1, … , 𝑋𝑛−1] constitutes the concatenation of all previous feature-maps output 

in layer 0,… , 𝑛 − 1. 𝐹𝑛⁡is a function performing three subsequent operations, i.e. 𝐵𝑁 ⟶

𝑅𝑒𝐿𝑈 ⟶ 𝐶𝑜𝑛𝑣(3×3) . These represent Batch normalization (BN), Rectified Linear Unit function 

(ReLU), and Convolution respectively [68]. 

Figure 3. 9: (a) Residual connection, and (b) Dense block [63]. 
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 In this research, the Schematic design of the CNN-Dense is illustrated in Figure 3.10 

where DenseNet acts as a feature extractor, and SVM is a classifier. DenseNet121 is a deep CNN 

model pre-trained on the ImageNet dataset, which contains 4 dense blocks containing 6, 12, 24, 

and 16 dense layers, respectively. Each dense layer constitutes k feature maps as output yet 

receives comparatively more inputs. Besides, a bottleneck layer is introduced between each 

dense layer which performs 1 ∗ 1 convolution. Therefore, a dense block has the following 

arrangement of layers, 𝐵𝑁 ⟶ 𝑅𝑒𝐿𝑈 ⟶ 𝐶𝑜𝑛𝑣(1×1) ⟶ ⁡𝐵𝑁 ⟶ 𝑅𝑒𝐿𝑈 ⟶ 𝐶𝑜𝑛𝑣(3×3)⁡. At the end 

of the second dense block, a transition layer is used that performs convolution with the kernel 

size of 1 ∗ 1 and average pooling [68]. Therefore, this transition layer is defined by 𝐵𝑁 ⟶

⁡𝐶𝑜𝑛𝑣(1×1) ⟶⟶⁡𝐴𝑣𝑔𝑝𝑜𝑜𝑙𝑖𝑛𝑔(2×2). Collectively, these constitute over 400 layers (including 

BN, ReLU, dropouts, etc.).  

Since this model is huge and could not be trained with palmprint images in the available 

datasets, the CNN-Dense selects only up to the first two dense blocks (with approx. 50 layers) 

for feature extraction. The output of the pooling layer (pool_2) after the second dense block 

represents the gender features of palmprint learned by the CNN-Dense model. Further, a flatten 

layer is added to form a 401 408-dimensional feature vector. For further down-sampling, two 

fully connected (fc) layers are added with 512 and 128 neurons, respectively. Besides, two 

dropout layers (with probability 0.4) are also used to remove overfitting in fc layers.  

The FC layers (first sub-block of classification block) with 3 units corresponded to fc1, 

fc2, and fc3. Indeed, the three FC layers (fc1, fc2, and fc3) are used during model training while 

the softmax classifier is employed. In such a case, the last FC layer i.e. fc3 contains two neurons 

corresponding to two gender categories, and the softmax classifier is applied to this layer. 

However, model training requires the softmax classifier, due to which an additional fc layer 

consisting of two neurons, is added after the second fc layer. Once the training is completed, this 

softmax layer (fc3) is replaced with the SVM classifier. Then, the SVM is trained on the features 

constituted by the second fc layer (fc2) and further used to map the given palmprint image to the 

correct gender category. Here, it is worth noting that in the CNN-Dense model, the feature 

extractor part and SVM classifier is trained separately. Though in our experiments SVM 

classifier exhibits better performance compared to Softmax, therefore, it is added as a classifier 

after the second fc layer.  
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The entire model design ends up with a total of 56 layers including Batch Normalization, 

ReLU, and Dropouts. Moreover, since the initial layers are aimed to constitute basic features, 

such as points, edges, blobs, etc., they are not involved in training, while the remaining layers are 

fine-tuned. In our experiment, the initial 27 layers are kept frozen and the rest 29 layers are 

retrained as shown in Figure 3.10 on palmprint images of the available palmprint datasets. 

 

3.6. Proposed CNN-b network 

CNN-b is the proposed network for performing palmprint gender classification on the PolyU 

Multispectral Palmprint database and CASIA Palmprint Image Database. After investigating the 

performance of deep convolutional neural networks on classification tasks, an idea to combine 

two networks at the training phase was implemented. Many attempts were made in order to 

determine at what layer or after how many layers the features had to be combined in a vector. 

Here, the network which has achieved the highest test accuracy of  90.70% on the CASIA 

palmprint dataset and 94.87% on the PolyU palmprint image database is discussed. 

 

3.6.1. Architecture 

CNN-b network is a fusion of two networks, of which one is CNN-VGG and the other CNN-

Dense. Both the networks take in the image input and the features extracted from them are 

combined at feature level and the loss is calculated accordingly. The schematic diagram of CNN-

b architecture is shown in figure 3.11. Both the networks take the same batch of input images. 

Figure 3. 10: CNN-Dense architectural elements 
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both networks as said before are pre-trained on ImageNet datasets and also they are trained 

on all of the images from the KTU Palmprint Database and IIT Delhi Palmprint Database which 

do not have a gender label but they help to fine-tune the network for gender classification. With 

this design obtaining different features from both networks increases the image information and 

as a result, the network achieves better performance.  

 

 

i. Score Level Fusion 

Fusion is a method of combining the scores from different classifiers to improve classification 

performance. Even though there are many types of classifier fusion schemes [71], the most used 

are the following - feature level fusion and score level fusion. 

1. Feature level fusion: In this method, the features extracted from the trained models are 

fused into a vector. 

2. Score level fusion: In this method, the features are extracted from different classifiers, 

and their soft output scores (between [0,1]) are fused by minimum, maximum, product, 

and average fusion rules. These techniques are class-conscious fusion techniques for soft 

labels [72]. 

In this thesis, score level fusion with an average rule is used. The fusion of classifiers does 

not produce any better results if all the classifiers produce the same errors or are correlated. After 

Figure 3. 11: Architectural elements of the proposed CNN-b network 
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doing an empirical study on the different fusion methods, it is established that the average score 

level fusion of CNN-VGG + CNN-Dense has shown improved accuracy. 

ii. Score level Average Fusion 

Following [72], a simple aggregation rule for average is used. Let for a test input and Class 

labels = (1, 2, … , 𝐶), the scores for each classifier be: 

s1 =⁡ {⁡𝛼1, 𝛼2, … , 𝛼C⁡},𝑤ℎ𝑒𝑟𝑒⁡s1 ∈ ⁡ [0,1] 
 

𝑠2 = ⁡ {⁡𝛽1, 𝛽2, … , 𝛽𝐶 ⁡}, 𝑤ℎ𝑒𝑟𝑒⁡𝑠2 ∈ ⁡ [0,1]       (3. 8) 

𝑠3 = ⁡ {⁡𝛾1 , 𝛾2 , … , 𝛾𝐶 ⁡}, 𝑤ℎ𝑒𝑟𝑒⁡𝑠3 ∈ ⁡ [0,1] 

Then the average fusion of the score be, 

𝑆[𝑖] = ⁡ (𝑠1[𝑖] + 𝑠2[𝑖] + 𝑠3[𝑖]) 3⁄ ; 𝑓𝑜𝑟⁡𝑖⁡ ∈ 𝐶⁡       (3. 9) 

The output label is the max(S). 

 

3.7. Grad-CAM 

Gradient-weighted Class Activation Mapping (Grad-CAM), uses the class-specific gradient 

information flowing into the final convolutional layer of a CNN to produce a coarse localization 

map of the important regions in the image.  

convolutional layers naturally retain spatial information, which is lost in fully connected 

layers, it is expected that the last convolutional layers to have the best compromise between 

high-level semantics and detailed spatial information. The neurons in these layers look for 

semantic class-specific information in the image. Grad-CAM uses the gradient information 

flowing into the last convolutional layer of CNN to assign importance values to each neuron for 

a particular decision of interest. To obtain the class-discriminative localization map  

𝐿Grad−CAM
𝒸 ∈ ℝ𝑢×𝑣 ⁡  of width u and height v for any class c, first, the gradient of the score for 

class c, 𝑦𝑐 (before the softmax) is computed, with respect to feature map activations 𝐴𝑘 of a 

convolutional layer, i.e. 
𝜕𝒴𝒸

𝜕𝐴𝑘
⁡. These gradients flowing back are global-average-pooled over the 
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width and height dimensions (indexed by 𝑖⁡ and 𝑗 respectively) to obtain the neuron importance 

weights 𝛼𝑘
𝑐 : 

𝛼𝑘
𝒸 =⁡

1

𝑍
∑⁡∑⁡⁡

𝑗𝑖

⏞      
⁡

global⁡average⁡pooling

𝜕𝒴𝒸

𝜕𝐴𝑗𝑖
𝑘

⏟
gradients⁡via⁡backprop

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3. 10) 

     

During the computation of  𝛼𝑘
𝒸 ⁡while backpropagating gradients concerning activations, 

the exact computation amounts to successive matrix products of the weight matrices and the 

gradient with respect to activation functions till the final convolution layer that the gradients are 

being propagated to. Hence, this weight 𝛼𝑘
𝒸 ⁡represents a partial linearization of the deep network 

downstream from A, and captures the ‘importance’ of feature map k for a target class c. 

Then a weighted combination of forwarding activation maps was performed and followed by 

ReLU to obtain, 

𝐿Grad−CAM
𝒸 = 𝑅𝑒𝐿𝑈⁡ (∑𝛼𝑘

𝑐𝐴𝑘

𝑘

)
⏟      

linear⁡combination

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3. 11) 

  

This results in a coarse heatmap of the same size as the convolutional feature maps. 

ReLU was applied to the linear combination of maps to only focus on the features that have a 

positive influence on the class of interest. As expected, without this ReLU, localization maps 

sometimes highlight more than just the desired class and perform worse at localization. 
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4.1. Baseline CNN-a: Training and results 

CNN-a is the abbreviation given to the baseline convolutional neural network in this research. 

The following explains the training of the network and its results. the architecture of this network 

is explained in section 3.3.1. 

The CNN-s is trained for roughly 3000 epochs on normalized grayscale images, with a 

learning rate fixed at 0.001 throughout the training with a batch-size of 64. Within 3,000 

iterations the verification accuracy was seen to be improved, and the training loss was declining. 

However, after 3,000 iterations, training loss stopped declining and further training could not 

improve the model. Thus, we trained the network for 3,000 iterations, also the softmax layer is 

used as the classifier at the end of the network. It is a logistic function that computes the 

probabilities.  Finally, the CNN-a model was obtained. The results of this network on both 

dataset CASIA palmprint image database and PolyU Multispectral Palmprint Database are 

shown in Table 4.1 and Table 4.2. 

 

4.1.1. CNN-a + SVM: Training and results 

The hyperparameter selection is done by grid search using n-Fold cross-validation. The grid 

search is done through an automatic selection of a range of C and g values. This search range is 

changed automatically until the best cross-validation accuracy is found. Through this study, 

different kernel functions were tested, and their results are reported in Table 4.1 and Table 4.2. 

The average accuracy was obtained by the following equations: 

𝑋𝑖 = ⁡
𝐶

𝑁
× 100%⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4. 1) 

 

𝑋 = ⁡
∑ 𝑋𝑖
𝑛
𝑖=1

𝑛
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4. 2) 

           

𝑆 = ⁡√
∑ (𝑋𝑖 − 𝑋̅)2
𝑛
𝑖=1

𝑛(𝑛 − 1)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4. 3) 
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Where 𝑋𝑖⁡denotes the 𝑖-th correct classification rate, C is the number of correct trials, 𝑁 is 

the number of testing samples. And 𝑋̅ is the average of 𝑋𝑖 , because we carry out 10-fold cross-

validation, so 𝑛 = 10. 𝑆 denotes the standard deviation.  

4.1.2. CNN-a + PCA + SVM: Training and results 

Principal Component Analysis or PCA is a technique used to emphasize variation and bring out 

strong patterns in a dataset and is widely used to reduce the dimensions. After applying PCA, 

SVM has trained again and the whole network was tested on the test set for both CASIA and 

PolyU palmprint image databases. The results of this experiment are shown in table 4.1 and 

Table 4.2.  

 

Table 4. 1: Test result of CNN-a, CNN-a + SVM, CNN-a + PCA + SVM on CASIA Palmprint Image 

Database. 

 

 

Method Kernel 

function 

Average 

Accuracy (%) 

Standard 

Deviation (%) 

Average 

Accuracy of 

Female (%) 

Average 

Accuracy of 

male (%) 

CNN-a Linear  

Polynomial  

Radial Basis 

58.12 

48.32 

42.65 

9.56 

3.31 

1.87 

26.06 

0.12 

87.67 

92.28 

98.67 

10.08 

CNN-a + SVM Linear  

Polynomial  

Radial Basis 

62.23 

54.46 

48.12 

10.08 

2.56 

1.67 

27.87 

0.09 

85.78 

93.67 

99.56 

12.34 

CNN-a + PCA + 

SVM 

Linear  

Polynomial  

Radial Basis 

69.43 

70.02 

73.88 

4.65 

6.94 

7.08 

50.45 

69.43 

69.51 

87.34 

69.92 

77.50 
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Table 4. 2: Test result of CNN-a, CNN-a + SVM, CNN-a + PCA + SVM on PolyU Multispectral 

Palmprint Database. 

 

 

4.2. CNN-VGG: Retraining and results 

Here, in this work, the VGGNet-19 pre-trained network model with one additional fully 

connected layer is used as a feature extractor. The available VGGNet-19 trained model on the 

ILSVRC-2014 dataset is used with the tutorial code from TensorFlow2 to retrain the network’s 

final softmax layer for gender classification on palmprint. Keeping all the layer weights of the 

model, only the final softmax layer is retrained. In short, the layers acted as a feature extractor, 

and the final layer is trained on these extracted features to produce probabilities of 2 classes. The 

following describes the retraining of CNN-VGG on the train set.  

 
2 https://github.com/machrisaa/tensorflow-vgg 

Method Kernel 

function 

Average 

Accuracy (%) 

Standard 

Deviation (%) 

Average 

Accuracy of 

Female (%) 

Average 

Accuracy of 

male (%) 

CNN-a Linear  

Polynomial  

Radial Basis 

68.12 

52.11 

78.23 

8.32 

2.01 

0.27 

58.19 

20.42 

87.15 

78.25 

89.03 

60.11 

CNN-a + SVM Linear  

Polynomial  

Radial Basis 

68.09 

70.43 

72.87 

8.98 

1.30 

1.04 

38.87 

20.62 

90.32 

80.34 

92.0 

60.55 

CNN-a + PCA + 

SVM 

Linear  

Polynomial  

Radial Basis 

78.23 

80.22 

90.56 

2.94 

2.51 

1.38 

87.45 

69.43 

89.59 

73.12 

72.86 

99.00 

https://github.com/machrisaa/tensorflow-vgg
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First, the network is trained on all of the data from KTU and IITD palmprint datasets, 

then for the CASIA dataset the training set contained 4,032 images (126 hands from female and 

male respectively), and 448 images (14 hands from female and male respectively) selected as a 

test set. For the PolyU palmprint dataset all training images of 15 spectra combined as a whole 

training set to train CNN-VGG. Each spectrum has 88 hands for training (44 hands from female 

and male respectively, totally 2,112 images and half of them are original images), 32 hands for 

validation (16 hands from female and male respectively, totally 768 images and half of them are 

original images), and 56 hands for testing (28 hands from female and male respectively, 

including 672 original and 672 augmented data). There is no imbalance between males and 

females in these three datasets. This network achieves a 78.31% accuracy rate on CASIA and 

92.26% on PolyU test sets. feature reduction by PCA could not improve performance. This is 

probably because with enough training data, VGGNet is not overfitting and the extracted features 

could represent the image well, thus linear feature reduction brings a negative effect. 

 

4.3. CNN-Dense: Retraining and results 

For training this model, Stochastic Gradient Descent (SGD) optimizer with momentum is 

employed, as plain SGD can make erratic updates on non-smooth functions. SGD with 

momentum updates the weights with the moving average of the changes in individual weights for 

a single training sample. If everything is labeled with t then the moving average is given as: 

𝛥𝑊ℎ𝑙
(𝑛)(𝑡) = 𝜂∑𝑑𝑒𝑙𝑡𝑎𝑙

(𝑛)(𝑡)

𝑝

+ 𝛼.𝛥𝑊ℎ𝑙
(𝑛)(𝑡 − 1)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4. 4) 

 

where the second term 𝛼. 𝛥𝑊ℎ𝑙
(𝑛)
(𝑡 − 1) is the momentum, which increases for 

dimensions where gradients point in the same direction and decrease for those with changing 

direction. Therefore, leads to fast convergence. Here, α is the momentum parameter, when α is 

zero, it works as simple SGD, whereas small values of α fluctuate updating function to a great 

extent. If α increases, it adds a contribution from previous training samples [73]. In our 

experiment, α is set to 0.9, as a large value turns out to have a smoother curve. 
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In order to train the feature extractor, the softmax loss function is used to calculate 

residuals which are backpropagation for weight adjustment in the early layers. After training the 

feature extractor, the further task is to train the SVM classifier. To achieve this, the softmax 

classifier is removed and training features are extracted from the second fc layer. This network is 

also retrained on the same train set as CNN-VGG and achieves an accuracy rate of 85.64% for 

CASIA and 92.69% for the PolyU palmprint image database.  

 

4.4. Proposed CNN-b: Training and results 

The CNN-b network (architecture explained in section 3.6.1.) is trained on the same train sets as 

CNN-VGG and CNN-Dense networks. After an empirical study, the initial learning rate of 0.001 

is used with stochastic gradient descent and softmax cross-entropy loss function. a dropout of 0.7 

is used. This network is trained for 10k steps with a batch size of 64. The result of this network 

on both CASIA and PolyU palmprint database along with CNN-a, CNN-VGG, CNN-Dense is 

shown on the ROC curve. To the best-known CNN-b network has the highest accuracy rate 

among the literature and the other networks implemented in this research. it achieves a 94.87% 

accuracy rate on the PolyU multispectral palmprint database and 90.70% on the CASIA 

palmprint image database.  

 

4.4.1. K-Fold cross-validation 

Cross-validation or rotation estimation is a validation technique used to do a statistical analysis 

of the data and to avoid overfitting the model on train data [74]. K-Fold cross-validation is a non-

exhaustive cross-validation technique, where the original data are divided into K equal sized 

subsamples. In each rotation, each subsample is retained as a validation set and the remaining K-

1 subsamples are used for training the K models. 

A common choice for K-Fold cross-validation is K=10. The augmented data is randomly 

split into 10 sets and the training follows the training parameters of the CNN-b and is trained for 

10k steps. 
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Figure 4. 2: ROC curve of all the CNN models tested on CASIA palmprint dataset. 

Figure 4. 1: ROC curve of all the CNN models tested on PolyU palmprint dataset. 
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4.5. Comparison of performances between different methods of palmprint 

and fingerprint gender classification 

In this section, the performance of the proposed network is compared with similar methods 

found in the literature. In [15] Wu and Yuan used very basic geometric properties such as length, 

aspect ratio, and width with polynomial smooth- SVM and got 85% accuracy in gender 

prediction. Whereas in [16] the authors used Geometric features, boundary, and Fourier 

descriptors on Zernike moments of hand geometry and achieved a 98% result on a dataset of 40 

Palmprints. In another study by Xie et al. [75] fine-tuned a VGGNet to achieve a 20-layer 

network and experimental results show that they achieved a 92.1% accuracy rate on PolyU 

multispectral palmprint database and 80.09% accuracy on the CASIA palmprint image database. 

All the accuracy results in Table 4. 3 are reported in the papers mentioned in this section.  

The drawback of the reported method in [16] is that it is not suitable for low resolution 

and far distance images captured using the touch-free method. As they need touch-based palm 

acquisition. On the contrary, the proposed method in this study is suitable for both the 

approaches: touch-based and touch-free. The performance of the proposed method in this 

research outperformed the other methods with an accuracy rate of 94.87% on the PolyU dataset 

and 90.70% accuracy on the CASIA dataset.  

Table 4. 3: Comparative analysis of palmprint-based gender classification methods 

Authors Database Classification Accuracy 

Amayeh et al. 

 [16] 

20 Male, 

20 Female 

Score Level 

Fusion 

98% 

Wu & Yuan 

[15] 

180 Palmprint images of 

30 voluntaries 

PSSVM 85% 

Xie et al. 

[75] 

PolyU & 

CASIA datasets 

CNN 92.1% 

80.09% 

Proposed method PolyU & 

CASIA datasets 

CNN 94.87% 

90.70% 
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In the following, a review of research papers on fingerprint-based gender classification is 

represented. Based on the results reported in Table 4. 3 the performance of the proposed method 

for palmprint-based gender classification is comparable to the performance of fingerprint-based 

gender classification methods. 

Table 4. 4: Analysis of the literature for fingerprint-based gender classification [76] 

Reference 

Publication 

Feature 

Extraction 

Database 

Description 
Algorithms Accuracy 

Ashish 
Mishra et al 

[77] 

orientation field 
& singular 

points, minutiae, 

incipient ridges 

NIST 
SVM, 

NN 

SVM 76.06% 

NN 83.7% 

Ronny 

Merkel et al 

[78] 

Binary Pixels, 
Mean print gray 

value, mean 

variance, Local 

image regions, 

Gradients, 

Tamura contrast, 

coherence, 

Benford's Law 

CWL & CLSM 

WEKA 

Machine learning 

toolbox, 

LMT 

- 

Prabha et al 

[79] 

multi-resolution 

statistical 
Own dataset 

Back 

propagation neural 

network 

96.60% 

S.S. Gornale 

et al [80] 

DWT and Gabor 

based 
Own dataset 

LDA & 

QDA 
97% 

Dr. Ashish 

Mishra et al 

[81] 

Ridge count, 
Ridge density, 

Ridge thickness 

to valley 

thickness ratio 

(RTVTR), Ridge 

width and 

Fingerprint 

patterns and 

Pattern types 

Own dataset 
SVM, 

NN 

SVM 76.06% 

NN 83.7% 

Sri Suwarno 

et al [82] 

RIDGE DENSITY 

DWT 
- - - 

A. S. 

Falohun et al [83] 

RTVTR 

DWT/PCA 

own 

dataset 
ANN 

Female 80% 

Males 72.86% 

Shivanand 

Gornale [84] 

DWT and Gabor 

based 
Own dataset LDA & QDA 97% 

Mangesh K. 

Shinde et al [85] 
DWT and SVD Own dataset KNN 

Male 82.90% 

Female 82.60% 
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4.6. GRAD-CAM: Results 

This is the result of applying GRAD-CAM. GRAD-CAM uses the gradients of any target 

concept, flowing into the final convolutional layer to produce a coarse localization map 

highlighting important regions in the image for predicting the concept which is gender in this 

research. To explain it in more detail, the final convolutional feature map is taken and the weight 

of every channel in that feature with the gradient of the class concerning the channel is 

calculated. It indicates how intensely the input image activates different channels by how 

important each channel is with regards to the class, and it does not require any re-training or 

change in the existing architecture.  

As explained in Section 3.7, the gradient of the class output value with respect to the 

feature map is computed. Then the gradients are pooled over all the axes leaving out the channel 

dimension. Finally, the output feature map with the computed gradient values is weighted. Then 

the average of the weighted feature map along the channel dimension is calculated and resulted 

in a heat map. Then the heat map is normalized to make the values between 0 and 1. Then the 

existing heat map is resized to match the palmprint image size. The original palmprint image and 

the heat map are blended to superimpose the heat map on to the image. 

As shown in Figures 4.3 and 4.4, the GRAD-CAM has specified the specific areas of the 

palmprint are considered by CNN to distinguish between female and male classes. These heat 

maps show that the network is looking at the parts that are highlighted in red for making the 

classification decision, which are different areas for male and female classes.  To recognize the 

male class, it can be observed that the network focuses on the hypothenar part of the palmprint. 

For the female class, it looks between the principal lines and the interdigital part of the 

palmprint.  
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Figure 4. 3: Original image and GRAD-CAM visualization of 8 different samples for the "male" class. 
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Figure 4. 4: Original image and GRAD-CAM visualization of 8 different samples for the "female" class. 



 

57 
 

 

Chapter 5:  

Conclusion and future work 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5. Conclusion and Future Work 

58 
 

5.1. Conclusion 

In this work, an effective and feasible method for gender classification by palmprint images is 

proposed which is a supervised deep learning approach for the problem of palmprint gender 

classification that was developed and investigated. Four publicly available palmprint image 

datasets were used for training and testing the deployed methods. Preprocessing steps such as 

ROI extraction and data augmentation was performed on the data. Four deep convolutional 

neural networks were trained and tested on the image dataset (CNN-a, CNN-VGG, CNN-Dense, 

CNN-b). CNN-VGG and CNN-Dense were already pre-trained on the ImageNet dataset for 

improving the performance of the network as well as reducing the time of computation greatly. 

The proposed CNN-b network which is made by combining two deep convolutional 

neural networks (CNN-VGG and CNN-Dense) achieved the best result to the best known, the 

accuracy rate for the CASIA palmprint dataset was 90.70% and on PolyU multispectral 

palmprint image datasets was 94.87%. In this work, since the model was trained on publicly 

available datasets and because of the techniques used for designing the final model, it can be 

easily generalizable for any other dataset with any size of data.  

The GRAD-CAM method is also performed and the resulted heat maps showed the 

specific area of the palmprint that is more important to distinguish between female and male 

classes (hypothenar for male class and interdigital/between principal lines for female class). 

These heat maps indicate where is the network looking when making the classification decision. 
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5.2. Future work  

Since gender classification can assist in individual identification in many ways this work can be 

considered as a helpful preprocessing step on the task of individual identification based on 

palmprint, by reducing the search space of biometric databases, the identification task could 

achieve a higher accuracy rate with the less computational process. 

Multimodal Biometrics is an emerging subject that integrates two or more biometric 

features to overcome certain limitations of using them individually. For future research, a robust 

suggestion of extracting gender information from multiple source samples can be discussed to 

minimize the search time for the identification and verification process. Since various researches 

have been carried out on the determination of gender from fingerprints it can be a good 

suggestion to combine it with palmprint to enhance the accuracy rate of the system. The fusion 

of information for this kind of system can be done at four different levels such as sensor level, 

match score level, feature level, and decision level fusion [86]. 

  This method can also be used for palmprint latent matching to specify the gender of the 

prints found in crime scenes before the identification process. It can also be performed on partial 

palmprint latent found on crime scenes as GRAD-CAM results presented which part of the 

palmprint is more important in distinguishing between female and male. So, as researched, it can 

be investigated for that matter as well.  

Also, more image data can be acquired for training the deep models, since there are 

proven results that the increased data improve the classification performance and widens the 

features available for the system to learn. 
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