56 research outputs found

    A geometrical characterization of factors of multidimensional Billiard words and some applications

    Get PDF
    AbstractWe consider Billiard words in alphabets with k>2 letters. Such words are associated with some k-dimensional positive vector Ī±ā†’=(Ī±1,Ī±2,ā€¦,Ī±k). The language of these words is already known in the usual case, i.e. when the Ī±j are linearly independent over Q and so for their inverses. Here we study the language of these words when there exist some linear relationships. We give a new geometrical characterization of the factors of Billiard words. As a consequence, we get some results on the associated language, and on the complexity and palindromic complexity of these words. The situation is quite different from the usual case. The languages of two distinct Billiard words with the same direction generally have a finite intersection. As examples, we get some Standard Billiard words of three letters without any palindromic factor of even length, or Billiard words of three letters whose palindromic factors have a bounded length. These results are obtained by geometrical methods

    A characterization of balanced episturmian sequences

    Full text link
    It is well known that Sturmian sequences are the aperiodic sequences that are balanced over a 2-letter alphabet. They are also characterized by their complexity: they have exactly (n+1)(n+1) factors of length nn. One possible generalization of Sturmian sequences is the set of infinite sequences over a kk-letter alphabet, kā‰„3k \geq 3, which are closed under reversal and have at most one right special factor for each length. This is the set of episturmian sequences. These are not necessarily balanced over a kk-letter alphabet, nor are they necessarily aperiodic. In this paper, we characterize balanced episturmian sequences, periodic or not, and prove Fraenkel's conjecture for the class of episturmian sequences. This conjecture was first introduced in number theory and has remained unsolved for more than 30 years. It states that for a fixed k>2k> 2, there is only one way to cover Z\Z by kk Beatty sequences. The problem can be translated to combinatorics on words: for a kk-letter alphabet, there exists only one balanced sequence up to letter permutation that has different letter frequencies

    On the Structure of Bispecial Sturmian Words

    Full text link
    A balanced word is one in which any two factors of the same length contain the same number of each letter of the alphabet up to one. Finite binary balanced words are called Sturmian words. A Sturmian word is bispecial if it can be extended to the left and to the right with both letters remaining a Sturmian word. There is a deep relation between bispecial Sturmian words and Christoffel words, that are the digital approximations of Euclidean segments in the plane. In 1997, J. Berstel and A. de Luca proved that \emph{palindromic} bispecial Sturmian words are precisely the maximal internal factors of \emph{primitive} Christoffel words. We extend this result by showing that bispecial Sturmian words are precisely the maximal internal factors of \emph{all} Christoffel words. Our characterization allows us to give an enumerative formula for bispecial Sturmian words. We also investigate the minimal forbidden words for the language of Sturmian words.Comment: arXiv admin note: substantial text overlap with arXiv:1204.167

    Factor versus palindromic complexity of uniformly recurrent infinite words

    Get PDF
    We study the relation between the palindromic and factor complexity of infinite words. We show that for uniformly recurrent words one has P(n)+P(n+1) \leq \Delta C(n) + 2, for all n \in N. For a large class of words it is a better estimate of the palindromic complexity in terms of the factor complexity then the one presented by Allouche et al. We provide several examples of infinite words for which our estimate reaches its upper bound. In particular, we derive an explicit prescription for the palindromic complexity of infinite words coding r-interval exchange transformations. If the permutation \pi connected with the transformation is given by \pi(k)=r+1-k for all k, then there is exactly one palindrome of every even length, and exactly r palindromes of every odd length.Comment: 16 pages, submitted to Theoretical Computer Scienc

    Extremal properties of (epi)Sturmian sequences and distribution modulo 1

    Get PDF
    Starting from a study of Y. Bugeaud and A. Dubickas (2005) on a question in distribution of real numbers modulo 1 via combinatorics on words, we survey some combinatorial properties of (epi)Sturmian sequences and distribution modulo 1 in connection to their work. In particular we focus on extremal properties of (epi)Sturmian sequences, some of which have been rediscovered several times

    Episturmian words: a survey

    Get PDF
    In this paper, we survey the rich theory of infinite episturmian words which generalize to any finite alphabet, in a rather resembling way, the well-known family of Sturmian words on two letters. After recalling definitions and basic properties, we consider episturmian morphisms that allow for a deeper study of these words. Some properties of factors are described, including factor complexity, palindromes, fractional powers, frequencies, and return words. We also consider lexicographical properties of episturmian words, as well as their connection to the balance property, and related notions such as finite episturmian words, Arnoux-Rauzy sequences, and "episkew words" that generalize the skew words of Morse and Hedlund.Comment: 36 pages; major revision: improvements + new material + more reference
    • ā€¦
    corecore