2,590 research outputs found

    On the swap-distances of different realizations of a graphical degree sequence

    Get PDF
    One of the first graph theoretical problems which got serious attention (already in the fifties of the last century) was to decide whether a given integer sequence is equal to the degree sequence of a simple graph (or it is {\em graphical} for short). One method to solve this problem is the greedy algorithm of Havel and Hakimi, which is based on the {\em swap} operation. Another, closely related question is to find a sequence of swap operations to transform one graphical realization into another one of the same degree sequence. This latter problem got particular emphases in connection of fast mixing Markov chain approaches to sample uniformly all possible realizations of a given degree sequence. (This becomes a matter of interest in connection of -- among others -- the study of large social networks.) Earlier there were only crude upper bounds on the shortest possible length of such swap sequences between two realizations. In this paper we develop formulae (Gallai-type identities) for these {\em swap-distance}s of any two realizations of simple undirected or directed degree sequences. These identities improves considerably the known upper bounds on the swap-distances.Comment: to be publishe

    On realization graphs of degree sequences

    Get PDF
    Given the degree sequence dd of a graph, the realization graph of dd is the graph having as its vertices the labeled realizations of dd, with two vertices adjacent if one realization may be obtained from the other via an edge-switching operation. We describe a connection between Cartesian products in realization graphs and the canonical decomposition of degree sequences described by R.I. Tyshkevich and others. As applications, we characterize the degree sequences whose realization graphs are triangle-free graphs or hypercubes.Comment: 10 pages, 5 figure

    The mixing time of the switch Markov chains: a unified approach

    Get PDF
    Since 1997 a considerable effort has been spent to study the mixing time of switch Markov chains on the realizations of graphic degree sequences of simple graphs. Several results were proved on rapidly mixing Markov chains on unconstrained, bipartite, and directed sequences, using different mechanisms. The aim of this paper is to unify these approaches. We will illustrate the strength of the unified method by showing that on any PP-stable family of unconstrained/bipartite/directed degree sequences the switch Markov chain is rapidly mixing. This is a common generalization of every known result that shows the rapid mixing nature of the switch Markov chain on a region of degree sequences. Two applications of this general result will be presented. One is an almost uniform sampler for power-law degree sequences with exponent γ>1+3\gamma>1+\sqrt{3}. The other one shows that the switch Markov chain on the degree sequence of an Erd\H{o}s-R\'enyi random graph G(n,p)G(n,p) is asymptotically almost surely rapidly mixing if pp is bounded away from 0 and 1 by at least 5log⁡nn−1\frac{5\log n}{n-1}.Comment: Clarification

    Algebraic matroids with graph symmetry

    Get PDF
    This paper studies the properties of two kinds of matroids: (a) algebraic matroids and (b) finite and infinite matroids whose ground set have some canonical symmetry, for example row and column symmetry and transposition symmetry. For (a) algebraic matroids, we expose cryptomorphisms making them accessible to techniques from commutative algebra. This allows us to introduce for each circuit in an algebraic matroid an invariant called circuit polynomial, generalizing the minimal poly- nomial in classical Galois theory, and studying the matroid structure with multivariate methods. For (b) matroids with symmetries we introduce combinatorial invariants capturing structural properties of the rank function and its limit behavior, and obtain proofs which are purely combinatorial and do not assume algebraicity of the matroid; these imply and generalize known results in some specific cases where the matroid is also algebraic. These results are motivated by, and readily applicable to framework rigidity, low-rank matrix completion and determinantal varieties, which lie in the intersection of (a) and (b) where additional results can be derived. We study the corresponding matroids and their associated invariants, and for selected cases, we characterize the matroidal structure and the circuit polynomials completely

    Graph realizations constrained by skeleton graphs

    Get PDF
    In 2008 Amanatidis, Green and Mihail introduced the Joint Degree Matrix (JDM) model to capture the fundamental difference in assortativity of networks in nature studied by the physical and life sciences and social networks studied in the social sciences. In 2014 Czabarka proposed a direct generalization of the JDM model, the Partition Adjacency Matrix (PAM) model. In the PAM model the vertices have specified degrees, and the vertex set itself is partitioned into classes. For each pair of vertex classes the number of edges between the classes in a graph realization is prescribed. In this paper we apply the new {\em skeleton graph} model to describe the same information as the PAM model. Our model is more convenient for handling problems with low number of partition classes or with special topological restrictions among the classes. We investigate two particular cases in detail: (i) when there are only two vertex classes and (ii) when the skeleton graph contains at most one cycle.Comment: 19 page

    Marathon: An open source software library for the analysis of Markov-Chain Monte Carlo algorithms

    Full text link
    In this paper, we consider the Markov-Chain Monte Carlo (MCMC) approach for random sampling of combinatorial objects. The running time of such an algorithm depends on the total mixing time of the underlying Markov chain and is unknown in general. For some Markov chains, upper bounds on this total mixing time exist but are too large to be applicable in practice. We try to answer the question, whether the total mixing time is close to its upper bounds, or if there is a significant gap between them. In doing so, we present the software library marathon which is designed to support the analysis of MCMC based sampling algorithms. The main application of this library is to compute properties of so-called state graphs which represent the structure of Markov chains. We use marathon to investigate the quality of several bounding methods on four well-known Markov chains for sampling perfect matchings and bipartite graph realizations. In a set of experiments, we compute the total mixing time and several of its bounds for a large number of input instances. We find that the upper bound gained by the famous canonical path method is several magnitudes larger than the total mixing time and deteriorates with growing input size. In contrast, the spectral bound is found to be a precise approximation of the total mixing time
    • 

    corecore