
ar
X

iv
:1

50
8.

00
54

2v
2

 [
m

at
h.

C
O

]
 7

 F
eb

 2
01

7

Graph realizations constrained by skeleton graphs✩

Péter L. Erdősa,3, Stephen G. Hartkeb,1, Leo van Ierselc,2, István Miklósa,3

aAlfréd Rényi Institute, Reáltanoda u 13-15 Budapest, 1053 Hungary

email: <erdos.peter,miklos.istvan>@renyi.mta.hu
bDepartment of Mathematical and Statistical Sciences, University of Colorado Denver,

Colorado, Denver, USA

email: stephen.hartke@ucdenver.edu
cDelft Institute of Applied Mathematics, Delft University of Technology, PO-box 5,

2600AA, Delft, Netherlands

email: l.j.j.v.iersel@gmail.com

Abstract

In 2008 Amanatidis, Green and Mihail introduced the Joint Degree Matrix
(JDM) model to capture the fundamental difference in assortativity of networks
in nature studied by the physical and life sciences and social networks studied
in the social sciences. In 2014 Czabarka proposed a direct generalization of the
JDM model, the Partition Adjacency Matrix (PAM) model. In the PAM model
the vertices have specified degrees, and the vertex set itself is partitioned into
classes. For each pair of vertex classes the number of edges between the classes
in a graph realization is prescribed. In this paper we apply the new skeleton
graph model to describe the same information as the PAM model. Our model
is more convenient for handling problems with low number of partition classes
or with special topological restrictions among the classes. We investigate two
particular cases in detail: (i) when there are only two vertex classes and (ii)
when the skeleton graph contains at most one cycle.

Keywords:
2010 MSC: 05C07
degree sequences; Joint Degree Matrix; Partition Adjacency Matrix; skeleton
graph; forbidden edges; Tutte gadget; Edmonds’s blossom algorithm

✩This research started when the 2nd and 3rd authors visited the MTA A. Rényi Institute
of Mathematics, Budapest in the Fall of 2013.

1Partly supported by a U.S. Fulbright Scholar Fellowship and by a grant from the Simons
Foundation (#316262 to Stephen Hartke).

2Partly funded by the Netherlands Organisation for Scientific Research (NWO), including
Veni grant 639.071.106 and Vidi grant 639.072.602 and by the 4TU Applied Mathematics
Institute.

3PLE and IM were supported partly by the Hungarian National Research, Development
and Innovation Office NKFIH, under the grants K 116769 and SNN 116095.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/129702754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1508.00542v2

1. Introduction

In the last fifteen years, the exponential development of network theory has
raised the practical problem of realizing and sampling large graphs with given
degree sequences. Finding a realization of a given degree sequence (among
simple graphs or graphs with a given maximum number of parallel edges or/and
loops) has long been shown to be an easy problem. Havel [12] first solved the
problem in 1957, and his algorithm was reinvented by Hakimi [11] in 1962. An
even older but less efficient way to find realizations can be derived from Tutte’s
f -factor results [25, 26]. Another method was due to Paul Erdős and Gallai [7]
in 1960, but the resulting algorithm was derived from Havel’s approach. All
these methods lack the ability of generating all (or even a large number of
different) realizations. The problem of determining if there exists a graph with
given degree sequence and satisfying other specified conditions will be called in
this paper the realization problem.

In many situations, it is not feasible to generate all realizations, as the num-
ber of possible realizations can be exponential or larger in the length of the
degree sequence. In this case, practical applications may require reasonable
sampling methods of the “typical” realizations. A common approach is to use
Markov Chain Monte Carlo methods, which require some simple operations that
transform one realization into another, slightly different realization. Addition-
ally, it must be possible to transform any given realization into any other using
these operations. This particular subproblem of the sampling procedure will be
called in this paper the connectivity problem (also known as the irreducibility
problem in the context of Markov Chain Monte Carlo processes for sampling
random realizations).

In modern graph theory the first such manipulation was Havel’s swap op-
eration from [12]. (The terminology and notation used in this paper will be
introduced in detail in Section 2.) It is interesting to remark that his method
was applied already by Petersen [18] in 1891, who essentially showed that any
realization of a given degree sequence can be transformed into any other real-
ization of the same degree sequence by a series of such swap operations. In 1951
Senior [20] also used this approach to construct possible hydrocarbon molecules
with given atomic composition. For bipartite graphs it was done by Ryser [19]
in 1963, and all these results have been invented again and again.

Recently a large number of real-world social and biological networks were
studied in detail. One important distinction between these two types of networks
lies in their overall structure: social networks typically have a few very high
degree vertices and many low degree vertices with high assortativity (where
a vertex is likely to be adjacent to vertices of similar degree), while biological
networks are generally disassortative (in which low degree vertices tend to attach
to those of high degree). It is easy to see that the degree sequence alone cannot
capture these differences. There are several approaches to address this problem.
See the paper of Stanton and Pinar [22] for a detailed description of the current
state-of-the-art.

One way to address this problem is the joint degree matrix model (or

2

JDM for short). This model is more restrictive than the degree distribution,
but it provides a way to enhance results based on degree distribution. It was
introduced by Amanatidis, Green and Mihail [1] and Stanton and Pinar [22].
In essence, the JDM specifies the exact number of edges between vertices of
degrees i and j. More precisely, a joint degree matrix J (G) = [Jij] of the
graph G = (V,E) is a ∆ × ∆ matrix (∆ is the maximum degree of G) where
Jij = |{xy ∈ E(G) : d(x) = i and d(y) = j}|. It is clear that the degree
sequence of the graph is determined by its JDM:

(the number of vertices of degree i) =
1

i

(

Jii +

∆
∑

ℓ=1

Jiℓ

)

. (1)

The novelty of this definition is that values Jij are exact numbers, and not
expectations, like in earlier approaches, see for example [16].

The existence problem for the JDM model is not hard: already Patrinos and
Hakimi [17] presented in 1976 an Erdős-Gallai-type theorem for joint degree
matrices, essentially characterizing precisely those matrices which are the joint
degree matrix for some graph, though using different terminology. Another
proof for this result was given in [1], see also [2]. Stanton and Pinar [22] gave
a separate, constructive proof for this theorem, which builds a particular graph
that has a given matrix as its JDM. Czabarka, Dutle, Erdős and Miklós [3]
presented a simpler proof using a construction algorithm that can create every
graph with a given JDM. See also [10].

The connectivity problem for the JDMmodel proved to be more complicated.
Stanton and Pinar [22] solved it for the space of all multigraph realizations.
For simple graphs it was resolved affirmatively by Czabarka, Dutle, Erdős and
Miklós [3].

The JDM model suggests a more general restricted degree sequence problem:
the partition adjacency matrix model (or PAM for short). In this generality,
it was introduced by É. Czabarka [4]. Let Π = (P1, · · ·Pk) be a partition of the
vertex set V of the graph G. Let d be the degree sequence of G, and let M be
the following k×k matrix: if i 6= j then the entry Mi,j is the number of edges in
the bipartite subgraph G[Pi, Pj], while Mi,i is the number of edges within the
induced subgraph G[Pi]. The matrix M is called the partition adjacency matrix
of the graph G for the partition Π. Clearly the PAM-problem is: we are given
a positive integer sequence on the partitioned V and a matrix M and we want
to decide whether there is a graph G with the given degree sequence and with
the given PAM.

The joint degree matrix determines the degree sequence itself by equation
(1). Therefore the JDM is clearly an instance of the PAM-problem. The PAM
problem in full generality is probably quite complicated: when we have, say,
√

|V | partition classes, then the problem is conjectured to be NP-complete.

In this paper we will consider an auxiliary structure to describe the PAM prob-
lem. This is a more convenient description when there are only a small, say,

3

linear number of items in M which are not zero. This object also provides struc-
tural properties of the edges among the vertex partitions. This description is
based on the notion of a skeleton graph, and it is described in detail in Section 2.

We study two particular skeleton graphs in detail: the first one consists of
two partition classes with edges inside the classes allowed, while in the second
one each of its components contains at most one cycle while the classes have
no edges inside. In both cases we show how to quickly construct graphical
realizations in all feasible cases. We also consider whether the space of all
realizations are connected. The answers in both cases are almost affirmative:
the space is connected if we use swaps as well as an additional operation called
double swaps.

2. Definitions and tools

Let G = (V,E) be a simple graph with vertex set V = {v1, . . . , vn} and edge
set E (no multiple edges nor loops). Denote d(G) = (d(v1), . . . , d(vn)) its degree
sequence. This sequence is not ordered in any way. G is called a realization of
the previous sequence. A sequence d = (d1, . . . , dn) of nonnegative integers
is graphical if it has at least one realization. The set of all realizations of a
graphical degree sequence d is denoted by G(d).

We consider realizations of a degree sequence d = (d1, . . . , dn) that are
restricted by a “skeleton” graph S in the following way. We fix a partition
Π = {U,W, . . .} of V.

A skeleton graph is an edge-weighted graph S = (Π;B, w) on the partition
classes in Π with possible loops. We will refer to a vertex of S as a class and
the edges of the skeleton graph S are referred to as bones. We will use the
following, very natural, notation: for U,W ∈ Π, if the pair UW is a bone in B,
then w(UW) is its weight (in S). If U = W then it is a loop. If UW is not
a bone in B then w(UW) = 0.Furthermore, G[U,W] is the induced bipartite
subgraph in G while G[U,U] = G[U] is the induced simple graph within U. The
graphs G[U,W] are the component graphs of G. When the partition classes in
Π consist of all vertices with the same degrees, then all the introduced notions
are equivalent to the notions used for the Joint Degree Matrix model in [3].

We will say that the realization G of degree sequence d is consistent with
the skeleton graph S if

∀U,W ∈ Π w(UW) =
∣

∣E (G[U,W])
∣

∣. (2)

We say that the pair (d,S) is graphical if there exists a realization G of d
which is consistent with S. See for example in Figure 1 a skeleton graph S
and a realization G that is consistent with S. We will consider several different
realizations of a degree sequence, even ones that are not consistent with the
skeleton graph. However we will not consider realizations which have edges in
a component graph without a corresponding bone. Therefore, we call a pair of
vertices within a component graph with a corresponding bone a chord, and each
other pair of vertices a non-chord. So a chord is a pair of vertices which may

4

a

b

c

d e

f

g

3

1

1

2

1

Figure 1 The dashed circles illustrate the classes of a skeleton graph S, while
its bones are indicated by gray dashed tubes. The dots and solid lines show
a graph G that is consistent with S.

form an edge in a consistent realization. A realizationG of a degree sequence d is
weakly consistent with S if all of the edges of G are chords. Here property (2)
may not hold. Although the existence problem of weakly consistent realizations
is not interesting in itself, we will use it as a tool. Before we discuss this, we
recall some details about Tutte’s f -factor theorem and its applications.

In 1947 Tutte completely characterized the graphs with perfect matchings (see
[24]). In 1952 he generalized this result for the so called f -factor problem.
Two years later, in 1954, Tutte found the following brilliant way to reduce the
problem of finding an f -factor in a given graph to finding a perfect matching
(a 1-factor) in an auxiliary graph ([26]). Let G be a simple graph and let f(v)
be a non-negative integer for each v ∈ V . Then a subgraph F of G in which
each vertex v ∈ V has degree f(v) is an f -factor of G. Any f -factor in G can
be represented as a perfect matching in the auxiliary graph T(G, f):

V (T) =
{

v1, . . . , vd(v)−f(v)

∣

∣v ∈ V (G)
}

⋃

{

ev, eu
∣

∣vu = e ∈ E(G)
}

(3)

E(T) =
{

viev
∣

∣ i = 1, . . . , d(v)− f(v); e = vu ∈ E(G)
}

⋃

(4)
⋃

{

eveu
∣

∣ e = vu ∈ E(G)
}

.

It is easy to see that there is a natural bijection between the f -factors in G
on one hand and the perfect matchings in T(G, f) on the other hand. More
precisely, given the perfect matching M in T(G, f), the requested subgraph in

5

G is
{

e ∈ E
∣

∣ e = vu, eveu ∈ M
}

.

In 1965, Edmonds described an effective algorithm to find a maximum matching
in G ([5]). Then, in the same year, he extended his approach for edge-weighted
graphs ([6]): his blossom algorithm finds a maximum-weight perfect matching in
strongly polynomial time. We will use this result extensively in this paper. The
classical existence problem for degree sequences can be easily solved by Tutte’s
f -factor theorem and Edmonds’ algorithm: take as graph G the complete graph
on n vertices and for the function f the degree sequence. (See for example [13]
for an outstanding application.) However, this method is less efficient than the
methods based on Havel’s observation, and it can not be used to find all possible
realizations (see for example [14]). Nevertheless, Edmonds’ blossom algorithm
is excellent to find weakly consistent realization to any skeleton graph:

Observation 2.1. For any degree sequence d and any skeleton graph S =
(Π;B, w), one can decide in strongly polynomial time whether there exists a
realization of d that is weakly consistent with S.

Proof. The graph G in the f -factor problem consists of all chords defined by the
skeleton graph, while the f -function is equal to the given degree sequence.

It is clear that the f -factor approach cannot directly find consistent realizations
for any ”reasonable” skeleton graph problem: it has no control over the exact
number of edges in the component graphs. We even cannot enforce that all
bones contain at least one edge in the derived realization. We need additional
ideas to find consistent realizations. For that end we will extensively use some
restricted versions of Havel’s swap operation.

Definition 2.2 (unrestricted / restricted / S-preserving swap operations).

(R1) Let G be a realization of the graphical sequence d, if a, b, c and d are
vertices of G satisfying ab, cd ∈ E and bc, ad /∈ E, then the graph G′ =
(V,E′) with E′ = E ∪ {bc, ad} \ {ab, cd} is another realization of d. This
swap operation, denoted by ab, cd ⇒ bc, ad, was introduced by Havel [12].
It is also known, for example, as switch or rewiring or infusion operation.

(R2) Let S be a skeleton graph, and let G be a realization of d that is weakly
consistent with S. If all vertex pairs in (R1) are chords, then G′ will
be weakly consistent with S. Then the operation is a restricted swap

operation.

(R3) If G is consistent with the skeleton graph S and G′ is also consistent
with S, then this operation is an S-preserving swap operation.

As we mentioned earlier already Petersen proved ([18]) that any realization of
a given degree sequence can be transformed into another one by consecutive
unrestricted swap operations. Havel’s result gives a rather crude algorithm to
find such a swap sequence: the number of steps may be twice the number of

6

edges in the worst case. It is very natural to ask what the minimum length of
such a swap sequence is. This question was studied in details by Erdős, Király
and Miklós ([8]). Next we will summarize the main findings of this paper:

Regular swap sequences: Let G and G′ be two realizations of the degree
sequence d. The symmetric difference ∇ = E(G)△E(G′) of their edges has
a natural 2-coloration: an edge in ∇ is red or blue depending on whether it
belongs toG orG′. Denote by r(G,G′) the number of red edges in the symmetric
difference (which is of course also the number of blue edges).

Lemma 2.3. Every vertex in ∇ has an equal number of red and blue adjacent
edges. Moreover, the symmetric difference ∇ can be decomposed into even length
alternating (with respect to the coloration) circuits (closed walks), where no
circuit contains any vertex more than twice.

Consider now two realizations G and G′ such that ∇ is one alternating circuit,
C.

Lemma 2.4. There exists a sequence of consecutive swap operations transform-
ing realization G into G′ with the following properties: (i) Along the process
every swap is applied for vertex pairs belonging completely to V (C). (ii) If G1

and G2 are two consecutive realizations along the sequence then r(G1, G
′) −

r(G2, G
′) ∈ {0, 1, 2}. (iii) The length of this swap sequence is r(G,G′)− 1.

The described swap sequence is called a regular swap sequence.

Theorem 2.5 (Erdős - Király - Miklós, [8]). Let G and G′ be arbitrary realiza-
tions of degree sequence d. Every shortest possible swap sequence can be reordered
such that this realigned sequence is identical with a series of subsequent regular
swap sequences, corresponding to a circuit decomposition of the symmetric dif-
ference ∇. The length of this swap sequence is r(G,G′)− the maximum possible
number of circuits in a decomposition, and hence is at most r(G,G′)− 1.

With some lack of precision we also call the swap sequence described above as
a regular swap sequence, and a shortest regular swap sequence, respectively.
Two further useful observations:

Remark 2.6.

(i) Any particular alternating circuit in ∇ can be extended into a complete
decomposition of ∇.

(ii) If an arbitrary swap sequence transforms G into G′ then the inverse swap
sequence transforms G′ into G (here we do not define the notion inverse,
because it is self-evident).

The following is easily verified.

Observation 2.7. In an S-consistent realization G, a swap ab, cd ⇒ bc, ad is
S-preserving if and only if (a and c) or (b and d) are in the same class of S.

7

One of our motivating questions is whether the space of realizations of a graph-
ical sequence consistent with a given skeleton graph is connected using swaps.
In the classic cases this is true (see, for example, Theorem 2.5) as well as in the
Joint Degree Matrix case (see [3]). However, as we will see later on, there is not
so neat answer for the skeleton graph problems. The obvious reason for this is
that Theorem 2.5 does not apply for this case, since a regular swap sequence
does not necessarily use S-preserving swap operations.

3. Graph realizations with a given number of edges crossing a given

bipartition

We start our investigations with one of the most simple skeleton graphs. Let
V = {v1, . . . , vn} be a vertex set, d a degree sequence, Π2 = (U,W) a partition
of V , k ∈ N and let S(k) = (Π2;B, w) be a skeleton graph with two vertices,
a weight-k UW bone and two loops, whose weights are completely defined by
d and k. The edges with end vertices in both classes are called the crossing

edges.
The conventional description is the following: Given the degree sequence d,

a bipartition of the vertex set and a natural number k, decide if there exists a
graph that realizes the given degree sequence and has precisely k crossing edges.

When k is equal to the total number of edges, i.e. both classes induce
the empty graph, then this coincides with the usual bipartite degree sequence
problem.

When W has no inner edges, then no direct greedy method (like Havel’s
lemma) is known to construct a consistent realization. The reason for that is
simple: we just do not know the U -side of the bipartite degree sequence in the
component graph G[U,W]. However, the Tutte - Edmonds method provides an
effective solution for the existence problem.

3.1. Existence

It is clear that any realization of d is automatically weakly consistent. In this
subsection we consider the existence problem for consistent realizations.

Theorem 3.1. We can decide in polynomial time whether there exists a real-
ization of d that is consistent with S(k).

The number of crossing edges in a realization G is denoted ǫ(G). The set of
all realizations of degree sequence d with ℓ crossing edges is denoted Gℓ(d).

Let G ∈ Gℓ(d) and let G′ be the realization derived from G by the swap
operation ac, bd ⇒ bc, ad. By simple case analysis it is easy to see that

|ǫ(G)− ǫ(G′)| ∈ {0, 2}. (5)

Lemma 3.2. Let G and G′ be realizations of d with ǫ(G) < ǫ(G′). Then

(i) ǫ(G) ≡ ǫ(G′) (mod 2);

8

(ii) for all ℓ ∈ {ǫ(G), ǫ(G)+2, . . . , ǫ(G′)}, there exists a realization G′′ ∈ Gℓ(d).

Proof. By Theorem 2.5 there is a regular swap sequence turning G into G′. By
equation (5), the realizations in this sequence either all have an even number
of crossing edges or all have an odd number of crossing edges. Moreover, this
sequence hits a realization G′′ with ǫ(G′′) = ℓ for any ǫ(G) ≤ ℓ ≤ ǫ(G′) with
ℓ = ǫ(G) (mod 2).

Denote by ǫm(d) the minimum value of ℓ such that Gℓ is not empty, and
similarly denote by ǫM (d) the maximum value. By Lemma 3.2 the sets

Gǫm(d)(d),Gǫm(d)+2(d), . . . ,GǫM(d)(d) (6)

of all weakly consistent realizations are not empty while all other sets Gℓ(d) are
empty.

Edmonds’ blossom algorithm [6] applied to the Tutte gadget T(Kn,d) can
easily find the minimum and maximum values ǫm(d) and ǫM (d) together with
the corresponding realizations consistent with S(ǫm(d)) and S(ǫM (d)), respec-
tively.

We first assign weight 0 to all crossing edges in T(Kn,d), while to all other
edges we assign weight 1. Then any maximum weight perfect matching cor-
responds to a realization G which contains the minimum possible number of
crossing edges. Therefore ǫm(d) = ǫ(G). To determine ǫM we just reverse the
edge weights. So the solution of the maximum weight matching problem for this
graph provides the value ǫM (d) and a realization G ∈ GǫM(d).

The formula (6) gives all other possible ǫ values while the proof of Lemma
3.2 (ii) describes the way to find realizations with specific ǫ-values.

This proof seems to be easy and straightforward. However, the situation is
more complicated. First of all, as far as the authors are aware, this is the very
first solved degree sequence type problem without some direct, greedy type
solution. Secondly, it is somewhat unusual to solve an existence problem, where
the two extremal solutions can be found directly, while the solutions inbetween
can be inferred only indirectly from the extremal solutions. Finally, we think
that it is a small miracle that this proof works at all. Consider the following,
slightly different question: the vertices, equipped by a degree sequence d, are
partitioned into three classes: U,W,Z. We are looking for a realization G of d
which has exactly k edges between U and W. There is no any other restriction.
(Of course this problem does not belong to the skeleton graph problem class, but
the difference is tiny.) For this problem, Lemma 3.2 does not hold. Therefore,
finding realizations with minimum m and maximumM number of crossing edges
does not help to solve the problem if m < k < M . Actually, this problem seems
to be quite hard, and the authors were not able to provide a polynomial-time
algorithm solving it despite of serious efforts.

3.2. Connectivity

Now consider two realizations G,G′ of degree sequence d, consistent with the
skeleton graph S(k) = (Π2;B, w). Is it true that in such a situation there always

9

exists a sequence of S-preserving swaps that turn G into G′? The following
counter example shows that the answer to the above question is “no”.

Theorem 3.3. There exist graphs G,G′ that have the same vertex set V , the
same degree sequence d and that are both consistent with the skeleton graph
S(k) = (Π2;B, w) described above, such that there exists no sequence of S-
preserving swaps that turn G into G′.

Proof. We construct an example as follows. Let d = (6, 6, 3, 3, 3, 3, 1, 1) be the
degrees of vertices (u3, w7, u2, w6, u1, w5, u0, w4). Let S be the skeleton graph
with Π = {U,W} with U = {u0, u1, u2, u3},W = {w4, w5, w6, w7} and with
bone UW with weight k = 7. Then both vertex classes must contain 3 edges.
In Figure 2 we show all realizations of this degree sequence that are consistent
with S. There is a single S-preserving swap that turns G1 into G2, namely the
swap u2w5, u1w6 ⇒ u1w5, u2w6. However, there is no S-preserving swap that
turns G1 into G3 or G2 into G3. (See Figure 3 where the red and blue chords
can be found in only one realization, while the black chords are in both.) Hence,
there is no sequence of S-preserving swaps that turns G1 or G2 into G3.

U W

(a) G1

u3

u2

u1

u0

w7

w6

w5

w4

(b) G2

U W

(c) G3

Figure 2 There is no sequence of S-preserving swaps that turns G1 or G2

into G3.

Motivated by Theorem 3.3, we define a double swap as the simultaneous ap-
plication of two disjoint swaps, i.e., if a, b, c, d, e, f, g, h are eight distinct vertices
of graph G = (V,E) such that ab, cd, ef, gh ∈ E and bc, ad, fg, eh /∈ E, then
the result of applying the double swap ab, cd, ef, gh ⇒ bc, ad, fg, eh is the graph
G′ = (V,E ∪ {ab, cd, ef, gh} \ {bc, ad, fg, eh}). A double swap is S-preserving,
for some skeleton graph S, if G′ is consistent with S.

Theorem 3.4. For every two graphs G,G′ that have the same vertex set V ,
the same degree sequence d and that are both consistent with the same skeleton
graph S(k) = (Π2;B, w), there exists a sequence of S-preserving swaps and
double swaps that turn G into G′.

10

U W

(a) for G1 and G2

u3

u2

u1

u0

w7

w6

w5

w4

(b) for G2 and G3

U W

(c) for G1 and G3

Figure 3 The red and blue chords come from one realization, while the black
ones come from both. The realizations themselves come from Figure 2.

Proof of Theorem 3.4. The proof is by induction on r(G,G′). Let’s recall
that this is the number of red edges in G△G′ which is 1

2 |E(G)△E(G′)|. If
r(G,G′) = 0 then G = G′ and we are done. Moreover, if r(G,G′) = 2 then we
can turn G into G′ by applying the single swap consisting of the red and blue
edges of ∇ and we are again done. (It is easy to see that r(G,G′) cannot be
1.) Hence, assume r(G,G′) ≥ 3. In a sequence of lemmas we will show that
we can always find an S-preserving swap and/or double swap sequence which
reduces r(G,G′). In each lemma we identify an alternating circuit in ∇ s.t. the
regular swap subsequence processing this circuit will apply only S-preserving
swaps, and will hence satisfy the conditions described in Theorem 3.4.

Lemma 3.5. If one can find an alternating circuit C ⊂ ∇ completely within
a vertex class, say, U , then the regular swap subsequence processing C (see
Theorem 2.5) provides S-preserving swaps at each step.

Proof. Indeed, the regular swap sequence can start with that particular circuit—
see Lemma 2.6(i)—and the process uses chords of this circuit, therefore all swap
operations happen inside class U and hence all swaps are S-preserving.

From now on we assume that there exists no alternating circuit completely
within any vertex class. To make the references easier for different type of
chords in the realizations, we introduce two further notions: we say that a
chord is black if it is an edge in both G and G′. It is white if it is an edge
neither in G nor in G′.

Lemma 3.6. Assume that there exists a red crossing edge and a blue crossing
edge that share an endpoint. Then we can identify an alternating circuit C such
that the regular swap subsequence which processes C provides only S-preserving
swaps.

Proof. Suppose that e1 = uv is a red crossing edge and e2 = xv is blue crossing
edge, where u, x ∈ U and v ∈ W ; see Figure 4. We first show that there

11

ua

x

v

b

e1

e2

U W

Figure 4 A red crossing chord and a blue crossing chord that share an endpoint.
The red chord is an edge in G but not in G′. Analogously the blue chord is
an edge in G′ but not in G. Either au is blue but ax is not blue, or bx is red
but bu is not red.

is a vertex a ∈ V (G) \ {u, v, x} such that au is blue but ax is not blue, or
there is a vertex b ∈ V (G) \ {u, v, x} such that bx is red but bu is not red.
If no such vertex a exists, then db(u) < db(x), and if no such vertex b exists,
then dr(x) < dr(u). But since dr(u) = db(u) and dr(x) = db(x) we have
dr(u) = db(u) < db(x) = dr(x), which contradicts the previous sentence.

Hence such vertex a or vertex b exists. Without loss of generality assume
that there exists a vertex a such that au is blue but ax is not blue.

If ax is red or black, then we apply the S-preserving swap au, uv, xv, ax to
G to obtain G∗, a consistent realization. Since r(G∗, G′) < r(G,G′) therefore
the induction applies.

If ax is white, then we apply the swap au, xv ⇒ ax, uv for realization G. (Here
we apply Lemma 2.6 (ii).) For the derived realization G∗ the number of red
edges within E(G)△E(G∗) is smaller than r(G,G′) and induction applies.

From now on we assume that there exist no adjacent red and blue crossing
edges.

Lemma 3.7. Assume there exists a red-blue alternating trail T where the first
chord of T is a red crossing one, the last chord is a blue crossing one, and
the other chords of T are not crossing ones. (Then T consists of at least four
chords.) Then we can identify an S consistent realization G∗ with the property,
that |E(G)△E(G∗)| < 2r(G,G′) and |E(G∗)△E(G′)| < 2r(G,G′), therefore the
inductive hypothesis applies.

Proof. Suppose that such an alternating trail T exists. Let e1 = uv be the red
crossing edge in T and e2 = xy be the blue crossing edge, where u, x ∈ U ,
v, y ∈ W , and the other edges of T lie within W . Let R be the subtrail of T
from v to y formed from T by removing e1 and e2, then R contains at least two
chords. See Figure 5 for a picture.

Consider the pair uy. Since Lemma 3.6 does not apply, uy is a black or
white chord. If uy is black, then denote by C the chord circuit (R, vu, uy). This

12

u

x

v

y

R

e1

e2

U W

Figure 5 A red crossing chord and a blue crossing chord connected by a red-
blue alternating chord trail in G. Recall, that a red chord is an actual edge
in G but a non-edge in G′ and a blue chord is a non-edge in G but an edge
in G′.

has exactly two crossing chords, one is red (an edge in G but non-edge in G′),
the other is blue (a non-edge in G but an edge in G′), and it alternates between
red and blue chords: every second chord is red, the others are blue. Denote by
C∗ the chord circuit derived from C by switching blue and red chords along C
and denote by G∗ the graph derived from G′ by exchanging C and C∗. Then
G∗ is clearly another realization of d and since C∗ has two crossing chords,
one is an edge, the other is a non-edge, therefore, G∗ is consistent with the
skeleton graph S(k). Since trail R contains at least one red chord, the number
of red edges in E(G) △ E(G∗) is smaller than r(G,G′) and, consequently, the
inductive assumption applies for G and G∗: there exists a sequence Σ1 of S-
preserving swaps and double swaps transforming G into G∗. Furthermore, since
T was not closed, the number of red edges in E(G′) △ E(G∗) is smaller than
r(G,G′) and, therefore, the inductive assumption applies for G∗ and G′ as well:
there exists a sequence Σ2 of S-preserving swaps and double swaps transforming
G∗ into G′. So the swap-sequence Σ1 ◦Σ2 transforms G into G′ via S-preserving
operations.

If uy is white, then we consider exactly the same circuit C and let C∗ be derived
in the same way. However, G∗ is now derived from G by exchanging C and C∗.
Again G∗ is consistent with the skeleton graph S(k). Since r(G,G∗) = |T |/2 <
r(G,G′), there exists an S-preserving swap sequence Σ1 from G to G∗. Similarly
there exists an S-preserving swap sequence Σ2 transforming G∗ into G′. So the
swap-sequence Σ1 ◦ Σ2 transforms G into G′ via S-preserving operations.

Now we are ready to finish the proof of Theorem 3.4: Consider the symmetric
difference ∇. Assume at first there is a connected component in ∇ containing
both red and blue crossing chords. Then they are connected with an alternating
chord trail and traversing it will reveal a red and blue crossing chord pair as in
Figure 5. Therefore we may assume that no connected component has both red
and blue crossing chords. Next we decompose it into alternating chord circuits
and let C1 and C2 be two of them, the first has red crossing chords while the
second one has blue crossing chords. By our assumptions these two circuits are
vertex disjoint.

13

Let Σ1 denote a regular swap sequence processing C1 and let Σ2 denote the
analogous regular sequence for C2. Now we execute Σ1 step by step while the
required swaps are S-preserving. Let Σ1(i) denote the last performed operation.
If the swap Σ1(j), where j ≤ i, produced realization H and r(H,G′) is smaller
than r(G,G′), then the inductive hypothesis applies. So we suppose here that
the operations Σ1(1), . . . ,Σ1(i) only split the alternating chord circuits into
smaller ones.

At this point we execute the swap sequence Σ2 step by step while the required
swaps are S(k)-preserving. Let Σ2(j) denote the last performed operation. We
let H denote the current realization, which is consistent with S(k) and has
r(H,G′) equal to r(G,G′).

Now we execute the double swap Σ1(i+1) and Σ2(j+1) which together produce
a new realization H ′ which is consistent with S(k) and for which r(H ′, G′) is
smaller than r(G,G′). The inductive hypothesis applies. This completes the
proof of Theorem 3.4.

4. Multipartite graph realizations

This section considers skeleton graphs with more than two classes but with-
out loops. First, we consider skeleton graphs that contain exactly one odd cycle.

Lemma 4.1. Let V be the underlying vertex set with partition Π = (U1, . . . ,
U2k−1), let d be a sequence of |V | integers, and S = (Π;B, w) a skeleton graph
consisting of exactly one odd cycle U1U2, U2U3, · · · , U2k−1U1 with an otherwise
undefined weight function w. Then there exists at most one weight function w
for which G(S(w)) is not empty. (Here S(w) is a shorthand for S = (Π;B, w).)

Proof. Assume that G is a realization of d which is weakly consistent with
skeleton graph S = (Π;B). (Recall: there is no edge in G outside B.) Let D(U)
(for U ∈ Π) denote D(U) =

∑

u∈U d(u). (This is the total degree of U in the
skeleton graph.) Furthermore let α denote the number of edges in the bone
U1U2. Then there are D(U1)− α edges in the bone U1U2k−1.

We can calculate the number of edges in the bone U2U3: it is D(U2) − α.
The number of edges along the bone U3U4 is D(U3) −D(U2) + α. And so on:
we can calculate the number of edges in all bones, one by one. We finish it to
calculate the number of edges in the bone U2k−2, U2k−1 which is some β, a linear
function of α with coefficient 1. Finally we know that α+ β = D(U2k−1). So α
is fully determined. If a weakly consistent realizations exists then the solution
for α must provide non-negative integer values w∗(UiUi+1) for all bones.

The easy consequence is that all weakly consistent realizations are consistent
with exactly the same weight function: each belongs to S(w∗).

By the above lemma, we can solve the existence problem for this particu-
lar skeleton graph by deciding if there exists a realization of d that is weakly
consistent with S. But Observation 2.1 does exactly this for us.

14

Corollary 4.2. There exists a polynomial algorithm to decide the existence of
a consistent realization to the skeleton graph problem above.

Before we proceed to even cycles we need some definitions and a result about
restricted degree sequence problems from [9]. Let F be a subset of the vertex
pairs from V . The other vertex pairs on V are called chords. Let d be a degree
sequence on V . We are interested in those realizations of d which completely
miss F (the forbidden set of non-chords). The set of all such realizations is
denoted by GF (d).

Consider a realization G = (V,E) ∈ GF (d) where v1, . . . , v2k is an alternat-
ing (edge, non-edge, ... etc.) circuit of chords. Assume that all pairs vivj which
would divide C into two even chord circuits (these are the pairs i, j ∈ {1, . . . , 2k}
with j = i + 1 (mod 2) and |i − j| > 1) are forbidden (they are not chords).
Then the operation which exchanges the edges and non-edges along the circuit
C is called an F -swap. It is clear that if F = ∅ then this notion coincides with
Havel’s swap notion. The following result follows directly from Theorem 2.3
of [9]: the space GF (d) is connected under F -swaps. More precisely:

Theorem 4.3 ([9]). Let G,G′ ∈ GF (d) be two realizations. Then there exists
a sequence of F -swaps which turns G into G′. Moreover if the symmetric dif-
ference between G and G′ is one alternating chord circuit, then all the F -swaps
happen within the vertex set of C.

We continue our investigations with considering skeleton graphs consisting of
one even cycle: we use similar notations as before except that the last vertex
partition is denoted by U2k and the cycle is modified accordingly.

The existence problem for such skeleton graphs was originally raised for the
case k = 2 by László A. Székely [23]; he also suggested a solution for this
particular question.

Now we can do the same calculation here that happened in the proof of
Lemma 4.1. However, the final equation contains no α, it is just an alternating
sum of D(Ui)s, an identity. Therefore there may exist several feasible values for
α, and it is possible to find all feasible weight functions (a constant number)
and to find at least one consistent realization for each feasible weight function
in polynomial time. More precisely:

Lemma 4.4. Let S = (Π;B) be a skeleton graph consisting of exactly one cycle
C with an undefined weight function. Let α denote the weight of U1U2 under
a realization consistent with S. Then there exist a minimum possible value αm

and a maximum possible value αM , and each value α = αm, αm + 1, . . . , αM

appears as feasible bone weight on U1U2. Finally one can provide one consistent
realization for each possible weight function in polynomial time.

Proof. When our cycle C has odd length, then Lemma 4.1 and Corollary 4.2 ap-
ply and we have nothing to prove. So assume now that C = (U1U2, . . . , U2kU1).
Applying the method of Observation 2.1 with weight 0 for all chords in the bone

15

U1U2 and 1 for all other chords, the derived maximum weight perfect 1-factor
provides the value αm and a corresponding degree sequence realization. If we
consider the opposite weight function then the maximum weight perfect 1-factor
provides the value αM and a corresponding degree sequence realization.

Finally one can find in polynomial time at least one realization for each value
α = αm, αm + 1, . . . , αM applying Theorem 4.3 as follows: from this statement
we know that G can be transformed into G′ using F -swaps. In this setup the
chords are the vertex pairs within the bones, all other vertex pairs are forbidden.
When G and G′ are from G(Π,B) then they can be consistent with different
weight functions w and w′. In any procedure transforming G into G′ each F -
swap alters the edges and non-edges along an alternating chord circuit C′. There
are two possibilities: this C′ can go around the bone-circuit C zero or an even
number of times or an odd number of times. In the first case for each bone the
number of edges in this bone before and after the swap will be the same. In the
second case the numbers of the edges within the bones increase and decrease
with exactly one, alternately. Therefore each possible value α between αm and
αM must occur in the bone U1U2.

Now we discuss in short another possible multipartite skeleton graph:

Lemma 4.5. Let the skeleton graph S = (Π;B, w) be a tree and let L be a leaf
in this tree. Assume that realization G ∈ G(d) is consistent with S. Then the
weight function w and the value D(L) are completely determined by the values
D(U), U 6= L.

Proof. This statement is almost trivial. One can argue in the same way as it
happened in the proof of Lemma 4.1: starting from the leaves different from
L and working along the paths toward L one can determine all D(UW) values
along the tree. At the last step on the unique bone UL the value w(UL) must
be the same as D(L).

Putting together these statements we have the following result:

Theorem 4.6. Let d be a sequence of |V | positive integers and let S = (Π;B)
be a connected skeleton graph with at most one cycle. Then we can find in
polynomial time all weight functions w for which there exists realizations of d
which are consistent with the skeleton graph S = (Π;B, w) along with at least
one realization for each possible weight function.

Proof. We may and will assume that the skeleton graph has exactly one cycle
C and trees connected to the vertices of that cycle because otherwise Lemma
4.5 would apply. If at vertex class U of C in the connected tree the vertex
U has a neighbors, then we consider a disjoint subtrees, all rooted in U . For
each subtree the application of Lemma 4.5 determine the corresponding weight
function values, and together they determine the “residual” D(U) for the cycle
C. This can be done in polynomial time.

16

If C is odd, then it provides one unique weight function as possible setup for
consistent realizations. The usual application of the Tutte method provides in
polynomial time a weakly consistent realization of d which will be automatically
consistent.

If C is even, then the application of Lemma 4.4 provides the possible weight
functions, together with actual consistent realizations for each possible weight
function.

This finished the discussion of the existence problem of consistent realizations for
skeleton graphs S = (Π;B, w) where all connected components contain at most
one cycle. In the remainder of this section we discuss briefly the connectivity
problem of the space of all consistent realizations.

First of all we have to recognize that instead of asking the connectivity of the
realization space G(S) under the regular swap operations we have to consider
the F -swap operations, defined by the forbidden edges outside the active bones.

Assume that our skeleton graph is connected and it has at most one cycle.
If this cycle is odd, then there is at most one weight function for which G(S) is
not empty, and every weakly consistent realization will be automatically con-
sistent as well, so the F -swap operations do not destroy the consistency. The
application of Theorem 4.3 proves the connectivity of the space.

When the cycle under consideration is even then we have a more complex
situation. First of all there may be several different weight functions with con-
sistent realizations, and—similarly to the bipartite case S(k)—it is possible that
G(S) is not connected under F -swaps. However, again similarly to the bipar-
tite case, one can organize the F -swap sequence such that whenever we have
to leave the current weight function w into w′—which differs from w with one
on each bone along the cycle—then the next F -swap goes back again to the
original weight function. Thus, G(S) is connected under F -swaps and “double
F -swaps”.

References

[1] Amanatidis, Y. - Green, B. - Mihail, M.: Graphic realizations of joint-
degree matrices. Manuscript. (2008),

[2] Amanatidis, G. - Green, B. - Mihail, M.: Graphic Realizations of Joint-
Degree Matrices, arXiv 1509.07076 (2015), 1–18.

[3] Czabarka, É. - Dutle, A. - Erdős, P.L. - Miklós, I.: On Realizations of a
Joint Degree Matrix, Discrete Appl. Math. 181 (2015), 283–288.

[4] Czabarka, É.: On realizations of a Partition Adjacency Matrix, (2014),
unpublished manuscript

[5] Edmonds J.: Paths, trees, and flowers. Can. J. Math. 17 (1965), 449–467.

17

[6] Edmonds J.: Maximum matchings and a polyhedron with 0,1-vertices.
Journal of Research National Bureau of Standards Section 69B (1965),
125–130.

[7] Erdős, P. - Gallai, T.: Gráfok elő́ırt fokú pontokkal (Graphs with prescribed
degree of vertices), Mat. Lapok, 11 (1960), 264–274. (in Hungarian)

[8] Erdős, P.L. - Király, Z. - Miklós, I.: On the swap-distances of different real-
izations of a graphical degree sequence,Comb. Prob. Comp. 22 (3) (2013),
366–383. doi:10.1017/S0963548313000096

[9] Erdős, P.L. - Kiss, S.Z. - Miklós, I - Soukup, L.: Approximate Count-
ing of Graphical Realizations. PLOS One (2015), pp 20. #e0131300. DOI:
10.1371/journal.pone.0131300.

[10] Gjoka, M. - Tillman, B. - Markopoulou, A.: Construction of Simple Graphs
with a Target Joint Degree Matrix and Beyond, Proceedings of IEEE IN-

FOCOM April 26 – May 1, Honkong, PR Chine (2015), 1553–1561. ISBN
978-1-4799-8381-0

[11] Hakimi, S.L.: On the realizability of a set of integers as degrees of the
vertices of a graph, SIAM J. Appl. Math. 10 (1962), 496–506.

[12] Havel, V.: A remark on the existence of finite graphs (in Czech), C̆asopis
Pĕst. Mat. 80 (1955), 477–480.

[13] Jerrum, M.R. - Sinclair, A. - Vigoda, E.: A Polynomial-Time Approxima-
tion Algorithm for the Permanent of a Matrix with Nonnegative Entries,
Journal of the ACM 51(4) (2004), 671–697.

[14] Hyunju Kim - Toroczkai. - Erdős, P.L. - Miklós, I. - Székely, L.A.: Degree-
based graph construction, J. Phys. A: Math. Theor. 42 (2009) 392001
(10pp)

[15] Király, Z.: Recognizing graphic degree sequences and generating all real-
izations, EGRES Technical Report TR-2011-11 ISSN 1587-4451 (2012),
1–11.

[16] Mahadevan, P. - Krioukov, D. - Fall, K. - Vahdat, A.: Systematic
topology analysis and generation using degree correlations, ACM SIG-

COMM Computer Communication Review 36(4) (2006), 135–146. DOI:
10.1145/1151659.1159930

[17] Patrinos, A.N. - Hakimi, S.L.: Relatons between graphs and integer-pair
sequences, Discrete Mathematics 15 (1976) 437–358.

[18] Petersen, J.: Die Theorie der regulären Graphs, Acta Math. 15 (1891),
193–220.

[19] Ryser, H. J.: Combinatorial Mathematics, Carus Math. Monograph bf 14,
Math. Assoc. of America, 1963.

18

[20] Senior, J.K.: Partitions and their Representative Graphs, Amer. J. Math.,
73 (1951), 663–689.

[21] Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency Al-
gorithms and Combinatorics 24. Springer. (2004), Chapter 26.

[22] Stanton, I. - Pinar, A.: Constructing and sampling graphs with a prescribed
joint degree distribution, ACM Journal on Experimental Algorithms 17 (1)
(2012), Article No. 3.5

[23] L.A. Székely, personal communication (2014).

[24] Tutte, W.T.: The factorization of linear graphs, J. London Math. Soc. 22

(1947), 107–111.

[25] Tutte, W.T.: The factors of graphs, Canad. J. Math. 4 (1952), 314–328.

[26] Tutte, W.T.: A short proof of the factors theorem for finite graphs, Canad.
J. Math. 6 (1954), 347–352.

19

	1 Introduction
	2 Definitions and tools
	3 Graph realizations with a given number of edges crossing a given bipartition
	3.1 Existence
	3.2 Connectivity

	4 Multipartite graph realizations

