1,786 research outputs found

    Get Out of the Valley: Power-Efficient Address Mapping for GPUs

    Get PDF
    GPU memory systems adopt a multi-dimensional hardware structure to provide the bandwidth necessary to support 100s to 1000s of concurrent threads. On the software side, GPU-compute workloads also use multi-dimensional structures to organize the threads. We observe that these structures can combine unfavorably and create significant resource imbalance in the memory subsystem causing low performance and poor power-efficiency. The key issue is that it is highly application-dependent which memory address bits exhibit high variability. To solve this problem, we first provide an entropy analysis approach tailored for the highly concurrent memory request behavior in GPU-compute workloads. Our window-based entropy metric captures the information content of each address bit of the memory requests that are likely to co-exist in the memory system at runtime. Using this metric, we find that GPU-compute workloads exhibit entropy valleys distributed throughout the lower order address bits. This indicates that efficient GPU-address mapping schemes need to harvest entropy from broad address-bit ranges and concentrate the entropy into the bits used for channel and bank selection in the memory subsystem. This insight leads us to propose the Page Address Entropy (PAE) mapping scheme which concentrates the entropy of the row, channel and bank bits of the input address into the bank and channel bits of the output address. PAE maps straightforwardly to hardware and can be implemented with a tree of XOR-gates. PAE improves performance by 1.31 x and power-efficiency by 1.25 x compared to state-of-the-art permutation-based address mapping

    Topology-aware GPU scheduling for learning workloads in cloud environments

    Get PDF
    Recent advances in hardware, such as systems with multiple GPUs and their availability in the cloud, are enabling deep learning in various domains including health care, autonomous vehicles, and Internet of Things. Multi-GPU systems exhibit complex connectivity among GPUs and between GPUs and CPUs. Workload schedulers must consider hardware topology and workload communication requirements in order to allocate CPU and GPU resources for optimal execution time and improved utilization in shared cloud environments. This paper presents a new topology-aware workload placement strategy to schedule deep learning jobs on multi-GPU systems. The placement strategy is evaluated with a prototype on a Power8 machine with Tesla P100 cards, showing speedups of up to ≈1.30x compared to state-of-the-art strategies; the proposed algorithm achieves this result by allocating GPUs that satisfy workload requirements while preventing interference. Additionally, a large-scale simulation shows that the proposed strategy provides higher resource utilization and performance in cloud systems.This project is supported by the IBM/BSC Technology Center for Supercomputing collaboration agreement. It has also received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 639595). It is also partially supported by the Ministry of Economy of Spain under contract TIN2015-65316-P and Generalitat de Catalunya under contract 2014SGR1051, by the ICREA Academia program, and by the BSC-CNS Severo Ochoa program (SEV-2015-0493). We thank our IBM Research colleagues Alaa Youssef and Asser Tantawi for the valuable discussions. We also thank SC17 committee member Blair Bethwaite of Monash University for his constructive feedback on the earlier drafts of this paper.Peer ReviewedPostprint (published version

    GHOST: Building blocks for high performance sparse linear algebra on heterogeneous systems

    Get PDF
    While many of the architectural details of future exascale-class high performance computer systems are still a matter of intense research, there appears to be a general consensus that they will be strongly heterogeneous, featuring "standard" as well as "accelerated" resources. Today, such resources are available as multicore processors, graphics processing units (GPUs), and other accelerators such as the Intel Xeon Phi. Any software infrastructure that claims usefulness for such environments must be able to meet their inherent challenges: massive multi-level parallelism, topology, asynchronicity, and abstraction. The "General, Hybrid, and Optimized Sparse Toolkit" (GHOST) is a collection of building blocks that targets algorithms dealing with sparse matrix representations on current and future large-scale systems. It implements the "MPI+X" paradigm, has a pure C interface, and provides hybrid-parallel numerical kernels, intelligent resource management, and truly heterogeneous parallelism for multicore CPUs, Nvidia GPUs, and the Intel Xeon Phi. We describe the details of its design with respect to the challenges posed by modern heterogeneous supercomputers and recent algorithmic developments. Implementation details which are indispensable for achieving high efficiency are pointed out and their necessity is justified by performance measurements or predictions based on performance models. The library code and several applications are available as open source. We also provide instructions on how to make use of GHOST in existing software packages, together with a case study which demonstrates the applicability and performance of GHOST as a component within a larger software stack.Comment: 32 pages, 11 figure

    TrIMS: Transparent and Isolated Model Sharing for Low Latency Deep LearningInference in Function as a Service Environments

    Full text link
    Deep neural networks (DNNs) have become core computation components within low latency Function as a Service (FaaS) prediction pipelines: including image recognition, object detection, natural language processing, speech synthesis, and personalized recommendation pipelines. Cloud computing, as the de-facto backbone of modern computing infrastructure for both enterprise and consumer applications, has to be able to handle user-defined pipelines of diverse DNN inference workloads while maintaining isolation and latency guarantees, and minimizing resource waste. The current solution for guaranteeing isolation within FaaS is suboptimal -- suffering from "cold start" latency. A major cause of such inefficiency is the need to move large amount of model data within and across servers. We propose TrIMS as a novel solution to address these issues. Our proposed solution consists of a persistent model store across the GPU, CPU, local storage, and cloud storage hierarchy, an efficient resource management layer that provides isolation, and a succinct set of application APIs and container technologies for easy and transparent integration with FaaS, Deep Learning (DL) frameworks, and user code. We demonstrate our solution by interfacing TrIMS with the Apache MXNet framework and demonstrate up to 24x speedup in latency for image classification models and up to 210x speedup for large models. We achieve up to 8x system throughput improvement.Comment: In Proceedings CLOUD 201

    Improving the Performance and Energy Efficiency of GPGPU Computing through Adaptive Cache and Memory Management Techniques

    Get PDF
    Department of Computer Science and EngineeringAs the performance and energy efficiency requirement of GPGPUs have risen, memory management techniques of GPGPUs have improved to meet the requirements by employing hardware caches and utilizing heterogeneous memory. These techniques can improve GPGPUs by providing lower latency and higher bandwidth of the memory. However, these methods do not always guarantee improved performance and energy efficiency due to the small cache size and heterogeneity of the memory nodes. While prior works have proposed various techniques to address this issue, relatively little work has been done to investigate holistic support for memory management techniques. In this dissertation, we analyze performance pathologies and propose various techniques to improve memory management techniques. First, we investigate the effectiveness of advanced cache indexing (ACI) for high-performance and energy-efficient GPGPU computing. Specifically, we discuss the designs of various static and adaptive cache indexing schemes and present implementation for GPGPUs. We then quantify and analyze the effectiveness of the ACI schemes based on a cycle-accurate GPGPU simulator. Our quantitative evaluation shows that ACI schemes achieve significant performance and energy-efficiency gains over baseline conventional indexing scheme. We also analyze the performance sensitivity of ACI to key architectural parameters (i.e., capacity, associativity, and ICN bandwidth) and the cache indexing latency. We also demonstrate that ACI continues to achieve high performance in various settings. Second, we propose IACM, integrated adaptive cache management for high-performance and energy-efficient GPGPU computing. Based on the performance pathology analysis of GPGPUs, we integrate state-of-the-art adaptive cache management techniques (i.e., cache indexing, bypassing, and warp limiting) in a unified architectural framework to eliminate performance pathologies. Our quantitative evaluation demonstrates that IACM significantly improves the performance and energy efficiency of various GPGPU workloads over the baseline architecture (i.e., 98.1% and 61.9% on average, respectively) and achieves considerably higher performance than the state-of-the-art technique (i.e., 361.4% at maximum and 7.7% on average). Furthermore, IACM delivers significant performance and energy efficiency gains over the baseline GPGPU architecture even when enhanced with advanced architectural technologies (e.g., higher capacity, associativity). Third, we propose bandwidth- and latency-aware page placement (BLPP) for GPGPUs with heterogeneous memory. BLPP analyzes the characteristics of a application and determines the optimal page allocation ratio between the GPU and CPU memory. Based on the optimal page allocation ratio, BLPP dynamically allocate pages across the heterogeneous memory nodes. Our experimental results show that BLPP considerably outperforms the baseline and state-of-the-art technique (i.e., 13.4% and 16.7%) and performs similar to the static-best version (i.e., 1.2% difference), which requires extensive offline profiling.clos
    • 

    corecore