
Topology-Aware GPU Scheduling for Learning Workloads
in Cloud Environments

Marcelo Amaral
Barcelona Supercomputing Center

Universitat Politècnica de Catalunya
marcelo.amaral@bsc.es

Jordà Polo
Barcelona Supercomputing Center

jorda.polo@bsc.es

David Carrera
Barcelona Supercomputing Center

Universitat Politècnica de Catalunya
david.carrera@bsc.es

Seetharami Seelam
IBM Watson Research Center

sseelam@us.ibm.com

Malgorzata Steinder
IBM Watson Research Center

steinder@us.ibm.com

ABSTRACT
Recent advances in hardware, such as systems with multiple GPUs
and their availability in the cloud, are enabling deep learning in
various domains including health care, autonomous vehicles, and In-
ternet of Things. Multi-GPU systems exhibit complex connectivity
among GPUs and between GPUs and CPUs. Workload schedulers
must consider hardware topology and workload communication re-
quirements in order to allocate CPU and GPU resources for optimal
execution time and improved utilization in shared cloud environ-
ments.

This paper presents a new topology-aware workload placement
strategy to schedule deep learning jobs on multi-GPU systems. The
placement strategy is evaluated with a prototype on a Power8 ma-
chine with Tesla P100 cards, showing speedups of up to ≈1.30x
compared to state-of-the-art strategies; the proposed algorithm
achieves this result by allocating GPUs that satisfy workload re-
quirements while preventing interference. Additionally, a large-
scale simulation shows that the proposed strategy provides higher
resource utilization and performance in cloud systems.

CCS CONCEPTS
• Theory of computation → Scheduling algorithms; Graph
algorithms analysis;Machine learning theory; •Computer systems
organization → Cloud computing;

KEYWORDS
Scheduling, Placement, GPU, Multi-GPU, Performance Analysis,
Resource Contention, Workload Interference and Deep Learning.

ACM Reference format:
Marcelo Amaral, Jordà Polo, David Carrera, Seetharami Seelam, and Malgo-
rzata Steinder. 2017. Topology-Aware GPU Scheduling for Learning Work-
loads in Cloud Environments. In Proceedings of SC17, Denver, CO, USA,
November 12–17, 2017, 12 pages.
DOI: 10.1145/3126908.3126933

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SC17, Denver, CO, USA
© 2017 ACM. 978-1-4503-5114-0/17/11. . . $15.00
DOI: 10.1145/3126908.3126933

IBM Power8 using NVLink NVIDIA DGX-1 using NVLink

CPU

GPU1 GPU2

CPU

PCI-e

Switch

PCI-e

Switch

GPU1 GPU3

GPU2 GPU4

PCI-e

Switch

PCI-e

Switch

GPU5 GPU7

GPU6 GPU8

GPU3 GPU4

NVLink (20GB/s unidirectional)

PCI-e v3 x16 (16GB/s unidire.)

Inter-socket (e.g., QPI, BW varies)
M

E
M

M
E

M CPU CPU

M
E

M

M
E

M

Figure 1: Examples of GPU physical topology.

1 INTRODUCTION
Recent advances in the theory of Neural Networks (NNs), new
computer hardware such as Graphic Processing Units (GPUs), avail-
ability of training data, and the ease of access through cloud have
allowed Deep Learning (DL) to be increasingly adopted as a part
of business-critical processes in health care, autonomous vehicles,
natural language processing, and Internet of Things. Consequently,
many on-line platforms that o�er image-processing and speech-
recognition systems leveraged by trained DL NNs are emerging to
deliver various business critical services, such as IBM Watson [23],
Microsoft Project Oxford [31], Amazon Machine Learning [2], and
Google Prediction API [16].

Training DL NNs is a computationally intensive process. An
image-processing application, for instance, might demand the anal-
ysis of millions of pixels in one of many layers of the NN that takes
several hours to days of computations [10]. A promising approach
to increase the levels of e�ciency in processing time and power
consumption of the training process is using one or more GPUs.
Computing the NNs on multiple GPUs further reduces training
times, enables to handle larger amounts of data, and increases the
accuracy of the trained models. Hence, multiple GPUs has become
a common practice for DL applications [10, 18]. Although training
on multiple GPUs can deliver many advantages, it presents new
challenges in workload management and scheduling for obtaining
an optimal performance. The performance depends on both the
GPUs and CPUs connectivity on the physical topology, and the
application’s tasks communication pattern.

To illustrate this issue, consider Figure 1 which shows the connec-
tivity topology between the GPUs and CPUs for two representatives
DL cognitive systems. In these systems, multiple link technologies
such as PCI-e and NVLink connect GPUs to each other and GPUs
to host CPUs. NVLink o�ers better bandwidth and lower power



SC17, November 12–17, 2017, Denver, CO, USA Marcelo Amaral, Jordà Polo, David Carrera, Seetharami Seelam, and Malgorzata Steinder

consumption over PCI-e. In the �gure, IBM Power8 system consists
of four GPUs and two CPUs with two GPUs per CPU socket. The
two GPUs on each socket are connected with dual lane NVLink
to achieve up to 40GB/s unidirectional bandwidth, and each of the
GPUs is also linked to the socket with two lanes of NVLink. The
two CPUs are connected via the system bus. NVIDIA DGX-1 has
8 GPUs connected to two CPU sockets. The GPUs are connected
over a hybrid cube-mesh topology: the 12 edges of the cube are
connected via single lane NVLink, and the diagonals of two of six
faces are also connected via NVLink. Each of the GPUs is also con-
nected to a PCI-e switch so it can communicate to a GPU that is
not connected to it via the NVLink and communicate to the CPU
as well.

In these systems, communications can take place directly be-
tween devices, in the so-called Peer-to-Peer model (P2P), or it should
be routed through the main memory of the processors containing
the bus controllers. For example, in the case of DGX-1, the commu-
nication between GPU1 and GPU5 will go over the PCI-e switches
and the system bus (such as quick path interconnect – QPI). As a
result of these complex connectivity topologies between di�erent
GPUs, the application performance depends on which GPUs are
allocated for computations and how the GPUs are connected to
each other (via PCI-e or NVLink).

Additionally, this challenge becomes acute in shared systems,
like cloud computing, where multiple applications from di�erent
users share the GPUs on the system. At this time, it is uncom-
mon to share a single GPU between two applications so sharing
here means di�erent applications get di�erent sets of GPUs. Jobs
in this environment have varied GPU requirements: some need a
single GPU, some need GPUs with NVLink, others need multiple
GPUs but communication requirements are minimal, etc. In such
environments, cloud scheduler should be able to take the commu-
nication requirements of the workloads, consider the topology of
the system, consider existing applications and their GPU and link
utilization and provision the GPUs for the new workload that meet
the workload requirements. This enables users to get access to the
resources necessary without worrying about the detailed topology
of the underlying hardware. Major cloud providers such as IBM,
Amazon, Google, Microsoft, and others provide multi-GPU systems
as a service today via virtual machines, and most of them have sys-
tems with similar GPU topology described in Figure 1; so that job
scheduling and resource management becomes critical at the time
of running multi-GPU based applications on a shared system. Thus,
those systems require the same placement functionality proposed
in this work to fully exploit the capabilities of modern cognitive
systems. Furthermore, both cloud and HPC systems can bene�t
from a GPU topology-aware schedule.

In this paper, we present an algorithm with two new scheduling
policies for placing GPU workloads in modern multi-GPU systems.
The foundation of the algorithm is based on the use of a new graph
mapping algorithm that considers the job’s performance objectives
and the system topology. Applications can express their perfor-
mance objectives as Service Level Objectives (SLOs) that are later
translated into abstract Utility Functions. The result of using the
proposed algorithm is a minimization of the communication cost,

reduction of system resource contention and an increase in the
system utilization.

The major contributions of this paper are:
• Performance characterization of placement strategies and inter-

ference from co-scheduled jobs over a modern Power8 system
composed of NVLinks. The results show that using pack instead
of spread for a job with high GPU communication gives a speedup
≈1.30x. Additionally, the results indicate that co-schedule jobs
with high GPU communication instead of running them solo can
conduct to a slowdown of ≈30% (Section 3).

• A topology-aware placement algorithm that places jobs based
on its utility with best-e�ort on preventing SLO violations. Two
scheduling policies are de�ned: TOPO-AWARE-P allowing to
postpone the placement of unsatis�ed jobs, and TOPO-AWARE
that always place jobs when resources are available (Section 4).

• A prototype evaluation of the proposed algorithm showing the
performance improvements that a topology-aware scheduling
confers for DL workloads using multiple GPUs. The results show
a speedup of up to ≈1.30x in the cumulative execution time and
no SLO violations compared to greedy approaches (Section 5).

• A trace-driven simulation to analyze the topology-aware place-
ment algorithm on a large-scale cluster. The results show that
the proposed algorithm outperforms the greedy algorithms in
the execution time, with no or fewer SLO violations (Section 5).

Section 6 discusses the state of the art and related work, and Sec-
tion 7 presents summary, conclusions, and future works.

2 DEEP LEARNINGWORKLOADS
This section presents DL frameworks and their characteristics that
are relevant for topology-aware scheduling in multi-GPU execu-
tions. With the increasing popularity of the DL methods, several
deep learning software frameworks have been proposed to enable
e�cient development and implementation of DL applications. The
list of available frameworks includes, but is not limited to, Ca�e,
Theano, Torch, TensorFlow, DeepLearning4J, deepmat, Eblearn,
Neon, PyLearn, among others [3]. While each framework develops
di�erent algorithms and tries to optimize various aspects of train-
ing, they share similar GPU communication algorithms [42]. This
work is focused on one of the most popular frameworks at this time,
Ca�e, but our results are equally applicable to other frameworks.
Various NN models are implemented for Ca�e, including AlexNet,
Ca�eRef (based on AlexNet) and GoogLeNet. We use those mod-
els for evaluating the e�cacy of the topology-aware scheduling
algorithm presented in this paper.

DL frameworks have two main approaches to divide the work-
load when using multiple GPUs: data-parallelization and model-
parallelization. In data-parallelization, the data is partitioned and
spread to di�erent GPUs, and in model-parallelization, the NN
model is partitioned, and di�erent GPUs work on di�erent parts of
the model, for example, each GPU will have di�erent NN layers of
a multi-layer NN. However, while the model-based parallelism is
expected to be more communication intensive, it is still uncommon
for cloud deployments, and therefore we focused all experiments
on data-parallelization. We expect that topology-aware scheduling
is even more critical for model-parallelization workloads because
of the higher communication requirements.



Topology-Aware GPU Scheduling for Learning Workloads
in Cloud Environments SC17, November 12–17, 2017, Denver, CO, USA

Additionally, a key parameter that plays a signi�cant role in the
communication is the batch size. It determines how many samples
per GPU the NN will analyze in each training step, and directly
impacts the amount of communication and computation in each
step. The lower the batch size is, the noisier the training signal is
going to be; the higher it is, the longer it will take to compute the
stochastic gradient descent. Noise is an important component for
solving nonlinear problems. Hence, small batches size is a new trend
for training DL NNs, which also determines the level of parallelism
the NN can reach since the batch size partitions the dataset [6].

The next section presents an evaluation of the impact of di�erent
placement strategies on execution time with three di�erent NNs
(AlexNet, Ca�eRef, and GoogleNet) and each NN with four di�erent
batch sizes (tiny, small, medium, big).

3 EVALUATING THE IMPACT OF
PLACEMENT STRATEGIES

In this section, we evaluate two general purpose workload place-
ment strategies: pack and spread. Later, in Section 4, we combine
them into the utility function used in our proposed algorithm.

The main sources of performance perturbation on multi-GPU
applications are how the allocated GPUs are connected, i.e. the
topology, and how much of the shared bus bandwidth other ap-
plications are utilizing. To illustrate it, Figure 2 shows di�erent
workload placement strategies that can be de�ned on top a single
machine with hardware topology composed of two sockets and
two GPUs per socket (the same topology shown in Figure 1 for the
Power8 system). The GPUs within the same socket are located at
a “shorter” distance (from a topology perspective) than the GPUs
located across sockets. Besides, GPUs on the same socket can utilize
the higher bandwidth and lower latency network (e.g., NVLink) to
communicate instead of going over the PCI-e and the QPI links to
communicate across CPU sockets.

Sub-Optimal Placement

CPU

MEM

GPU0 GPU1

CPU

GPU2 GPU3

Optimal Placement

MEM

CPU

MEM

GPU0 GPU1

CPU

GPU2 GPU3

MEM

a) High Cross-Socket Comm. b) High Peer-to-Peer Comm.

c) High External Interference d) Low External Interference

CPU

MEM

GPU0 GPU1

CPU

MEM

GPU2 GPU3

CPU

MEM

GPU0 GPU1

CPU

GPU2 GPU3

MEM

P
2

P
In

te
rf

er
en

ce

Figure 2: Pack vs. Spread, and collocation vs. solo.

Therefore, the �rst workload placement strategy is pack, which
systematically favors minimizing the distance between GPUs, to
prioritize the performance of GPU-to-GPU communication. The
second workload placement strategy is spread, which attempts to
allocate GPUs from di�erent sockets and prioritize the performance
of CPU-to-GPU communication. Spread promotes better resource
utilization and minimizes fragmentation.

Another factor that impacts the performance of either pack or
spread placement schemes is the interference introduced by other
applications sharing the system resources. For this reason, the
placement algorithms should take not only the static topology of

the system but also the runtime utilization metrics from currently
executing applications for scheduling decisions.

Next, we describe the testing platform and evaluate the impact
of the placement strategies to allocate GPUs for the DL applications
outlined in section 2.

3.1 Testing Platform and Con�guration
All experiments are conducted on an IBM Power8 System S822LC re-
lease, code-named as “Minsky” shown in Figure 1. The server has 2
sockets and 8 cores per socket that run at 3.32 GHz and two NVIDIA
GPU P100’s per socket. Each GPU has 3584 processor cores at boot
clocks from 1328 MHz to 1480 MHz, and 16 GB of memory. Each
socket is connected with 256 GB of DRAM. Where the intra-socket
CPU-to-GPU and GPU-to-GPU are linked via dual NVLinks that
uses NVIDIA’s new High-Speed Signaling interconnects (NVHS). A
single link supports up to 20GB/s of unidirectional bandwidth be-
tween endpoints. A high-level illustration of the hardware topology
is pictured in Figure 1 and Figure 2.

For the software stack, this machine is con�gured with Red Hat
Enterprise Linux Server release 7.3 (Maipo), kernel version 3.10.0-
514.el7.ppc64le, Ca�e version v0.15.14-nv-ppc compiled with NCCL
1.2.3, CUDA 8.0 and CUDA driver 375.39. All Ca�e workloads are
con�gured with a set of images from the dataset used in the 2014
ImageNet Large Scale Visual Recognition Challenge (which is one of
the most well-known datasets for image classi�cation and publicly
available on the ImageNet competition website).

All experiments were repeated �ve times. For each experiment,
the maximum number of iterations is 4000, except when generating
the GPU pro�le where the iterations are only 40. The iterations are
decreased because pro�ling consumes a lot of memory, and a large
pro�le does not �t in the GPU memory. The tool used to pro�le the
application was the NVIDIA nvprofile. For all workloads, the NN
training batch sizes range from 1 up to 128.

3.2 Pack versus Spread
Figure 4 shows the relative speedup achieved when allocating GPUs
within the same socket (pack) or over cross-socket (spread). When
the speedup is higher than 1, the application performs better with
the pack strategy. The performance depends on both the workload
type and the batch size. When AlexNet is con�gured with batch size
1 or 2, it has a speedup of up to ≈1.30x, but for batch sizes larger
than 16 both pack or spread have even performance. GoogLeNet
has a di�erent behavior than the other NNs with less or no impact,
which will be better detailed next.

To better explain the cause of the performance delivered by the
strategies, the application breakdown is presented in Figure 3. The
analysis shows the percentage of computation and communication
represented in the whole execution time. The results indicate that
larger batch sizes signi�cantly increase computation time, while
communication time becomes less signi�cant overall.

Taking AlexNet, for instance, when con�gured with tiny batch
sizes, the computation time is ≈1s for 40 iterations; with big batch
sizes, this time increases to ≈66s. The communication time instead
remains ≈2s for all batch sizes. While NNs with a bigger batch size
increases the amount of data exchanged between the GPUs, it starts
to spend much longer time performing computation in the GPU



SC17, November 12–17, 2017, Denver, CO, USA Marcelo Amaral, Jordà Polo, David Carrera, Seetharami Seelam, and Malgorzata Steinder

0%
20%
40%
60%
80%

100%

AlexNet CaffeRef GoogLeNet

%
 o

f 
E

x
e
c
. 
T

im
e

GPU-Computation GPU-Comm(pa=P2P) GPU-Comm(sp=No-P2P)

Figure 3: Application breakdown showing the percentage GPU computation and communication in relation to the whole
execution time. All workloads have the GPUs allocated using either the pack (pa) or the spread (sp) strategies.

0.9

1.0

1.1

1.2

1.3

1 2 4 8 16 32 64 128

S
p
ee

d
u
p

Batch Size (per-GPU)

AlexNet CaffeRef GoogLeNet

Figure 4: Pack (P2P) vs. Spread (No-P2P). When the
speedup is higher than 1, pack is better than spread.

for each batch step. Hence, the communication starts to be less
frequent with bigger batch sizes. On the other hand, smaller batch
sizes require many more steps to process the whole dataset and
then require more frequent communication. This behavior can be
veri�ed with the NVLink bandwidth usage in Figure 5.

The communication frequency directly impacts the usage of the
NVLink bandwidth. The NN con�gured with a small batch size
reaches higher NVLink bandwidth usage ≈40GB/s, while the NN
with a bigger batch size barely reaches ≈6GB/s, as in Figure 5 (the
NVLink bandwidth calculation is described later in Section 5.1).

GoogLeNet is the less intuitive case. Since this NN contains
sizable neural network layers, and typically the intensity of com-
munications depends on the amount of information exchanged
between the layer, it is expected that GoogLeNet performs more
communication than the other NNs. Nonetheless, GoogLeNet per-
forms less communication because of its Inception Modules, which
in consequence reduces the NN layers output by applying �ltering
and clustering techniques.

We have also executed the same experiments on a Power8 ma-
chine equipped with a PCI-e Gen3 bus instead of the NVLink, as
well as NVIDIA K80 GPUs instead of P100. Due to space limitation,
we do not include additional �gures in this paper, but summarize
the results as follows. The impact of pack strategy is similar be-
tween NVLink-based and PCI-e-based machines. Except for larger
batch sizes, where the di�erence starts to be evident. For instance,
AlexNet with a batch equals one the speedup is≈1.27x with NVLink,

0 25 50 75 100 125 150 175 200 225 250
Time (s)

0
4
8

12
16
20
24
28
32
36
40
44

N
V

L
in

k
b

an
d

w
id

th
(G

B
/s

)

Batch Size -1

Batch Size -4

Batch Size -64

Batch Size -128

Figure 5: NVlink bandwidth usage for AlexNet.

0.00

0.10

0.20

0.30

tiny small medium big

S
lo

w
d

o
w

n

tiny small medium big

Figure 6: Collocation of two jobs vs. running one job solo. A
speedup higher than 1 represents that solo job execute
faster than with collocation. Both jobs are AlexNet NNs.

and ≈1.24x with PCI-e. For a batch size equals two, the speedup
drops from ≈1.30x with NVLink to ≈1.21x with PCI-e. For a batch
size equals eight, the speedup decreases from ≈1.20x to only ≈1.1x.
In conclusion, while the topology impact in the GPU communica-
tion performance is still signi�cant in the PCI-e-based machine,
improvements on the placement decision of DL workloads are even
more necessary in NVLink-based machines.

3.3 Jobs in a Co-Scheduled Environment
A typical approach to increase resource utilization in a data center
is co-scheduling workloads on the same machine. While it confers
cost bene�ts, it comes with an inherent performance impact. Al-
though the GPUs are not shared in this work (jobs have private
access to GPUs), collocated applications share the bus interconnec-
tions among other resources. Therefore, the goal of this experiment
is to evaluate the performance impact of the pack and spread strate-
gies in a co-scheduled environment. Di�erently, from the previous
experiment, this experiment shows application interference.

We have performed an experiment that collocated two jobs in
the same machine. Each job is an AlexNet NN requesting two GPUs
and varying the batch size. The results are shown in Figure 6, where
0 represents no slowdown of co-scheduling two jobs in the same
machine and a value higher than 0 accounts for the slowdown
percentage. Note that, a job with high GPU communication is more
sensitive to interference than a job with lower communication.

As analyzed in the previous experiment (Section 3.2) and shown
in Figure 5, the batch size plays the main role in de�ning the amount
of communication and the job’s performance sensitiveness. For that
reason, when co-scheduling two jobs with a tiny batch, the su�ered
slowdown is higher, which is up to ≈30%. But when collocating
two jobs with a big batch, the performance interference is very
small or nonexistent. This is because a job with a big batch is not
sensitive to perturbations in the bandwidth since it requires low
bandwidth. Nevertheless, a job composed by a big batch can cause
performance interference since it still consumes bandwidth. For



Topology-Aware GPU Scheduling for Learning Workloads
in Cloud Environments SC17, November 12–17, 2017, Denver, CO, USA

instance, in Figure 6, if the �rst job has a big batch and the second
a tiny batch, the slowdown is ≈24%, or ≈21% if the second has a
small batch.

These results evidence the necessity of a scheduling algorithm
that is aware of the performance interference to provide Quality of
Service (QoS) for jobs.

4 TOPOLOGY-AWARE SCHEDULING
ALGORITHM

To overcome the problems discussed in the earlier section, we pro-
pose a topology-aware scheduling algorithm that makes decisions
based on the workload’s communication, the possible interference
from currently running workloads, and the overall resource alloca-
tion of the system. The algorithm’s core is a graph mapping mecha-
nism: one graph represents the job’s tasks and their communication
requirements, and the other graph represents the physical GPU
topology. The mapping algorithm produces the GPU allocation that
satis�es communication requirements of jobs while minimizing the
resource interference and fragmentation.

4.1 Topology Representation
4.1.1 Job graph. This graph represents the communication re-

quirements of tasks (i.e. GPUs). Vertexes represent GPUs and edges
represent communication. Each edge has an associated weight de-
noting the communication volume, given by the average GPU-to-
GPU bandwidth usage. During the mapping process, this weight
is normalized by the total available bandwidth in the physical ma-
chine, where a value equal to 0 represents no communication and
higher than 0 accounts for the communication level.

4.1.2 Physical system topology graph. This graph represents the
GPU topology based on the underlying hardware of a machine or
a set of machines connected by a network. An example of how
di�erent physical GPU topologies are modeled is illustrated in
Figure 7, which shows the graph of Figure 1’s topology. The physical
graph can be understood as composed of multiple levels, where the
�rst level is the network. Just after this level, there is the machine
level, as represented by the vertexes M{X}, where X is the machine
ID. The next level is the socket level and is represented as S{Y},
where Y accounts for the socket ID. Other levels can exist between
the socket and the GPU, such as levels representing multiple PCI-e
or NVLink switches. The last level represents the GPUs.

A GPU vertex can be directly connected to the socket vertex, to
an intermediate vertex, and/or directly connected to other GPUs,
which represents a direct NVLink connection between the GPUs.
Consequently, some GPUs will have multiple paths to communicate.
The path distance is given by the sum of the weight of the edges
of the path. Since the weights are de�ned qualitatively, a higher
level must have a larger weight to represent longer distances. For
example, in Figure 7 each level right after the GPU level has weight
1, whilst at higher levels, such as the socket level, the edges have
weight 20. Since the distances are qualitative, there are no con-
straints on how the weights are de�ned, except that higher levels
will have larger weights.

S0 S1

GPU

0

GPU

1

GPU

2

GPU

3

40

20

NetP1

M1

IBM Power8 using NVLink NVIDIA DGX-1 using NVLink

S0

GPU

0

GPU

1

GPU

2

GPU

3

20 20

Net P2
M2

1 1

PCI-e

S0

GPU

4

GPU

5

GPU

6

GPU

7

40

PCI-e PCI-e PCI-e

1
1

1

11

10 10 10 10

[…]

M{X} = Machine ID, S{Y} = Socket ID, and GPU{Z} = GPU ID 

1 1 1 1

100

Figure 7: GPU physical topology graph.

4.2 Job Pro�le
The pro�le includes not only the job’s communication graph but
also a performance model de�ning the level of interference the
collocated jobs will su�er and cause. This model is created from
experimentation using historical data. Two types of experiments
can be de�ned. The �rst approach is injecting arti�cial load, using
micro-benchmarks, onto the shared resources and measuring the
interference, i.e. the impact on run-time of other collocated jobs.
While this �rst approach can be highly accurate, analyze all possible
combinations might be very costly. The second one is performing
a combinatorial collocation of a set of known applications. Also,
performance prediction for unknown jobs using the models from
known applications can enlarge the range of the analysis. The
previous workload executions can feed a prediction model, such
as using decision tree [14, 37] or statistical clustering [8, 22, 28].
Because of the cloud’s high variability, our model does not need to
be optimal; high-quality decisions will be accurate enough.

4.3 Objective Function and Constraints
Our objective function focuses on minimizing the tasks communi-
cation cost (tcc ), external resource interference (Ib ), and resource
fragmentation (ωd ). Formally, it can be de�ned as follows:

MIN αcc
tcc

tw
+ αb

Ib

Iw
+ αd

ωd

ωw
(1)

where αcc + αb + αd = 1. All parameters tcc , Ib and ωd are nor-
malized against the corresponding worst case tw , Iw and ωw (i.e.,
the scenario with the lowest bandwidth, the highest interference,
and the highest fragmentation). For the minimum tcc , we allocate
GPUs as close as possible once all constraints are met. For the min-
imum Ib , we allocate GPUs with the lowest possible amount of
bus sharing. For the minimum ωd , we map GPUs from the most
fragmented domains to increase the cluster utilization.

The constraints that we de�ne in this paper are the resource
capacity as the number of GPUs and the memory bandwidth. For-
mally, all possible solutions must meet the inequality constraints
de�ned as tдpu ≤ pдpu and tbw ≤ pbw , where tx and px denote
the resource requirement of a given application and the available
capacity of a given node for the resource type x , respectively. Other
constraints can be added for di�erent scenarios than the ones we
show in our experiments.



SC17, November 12–17, 2017, Denver, CO, USA Marcelo Amaral, Jordà Polo, David Carrera, Seetharami Seelam, and Malgorzata Steinder

Algorithm 1 Topology-aware job placement algorithm
A; //application’s job communication pattern graph
P ; //physical topology graph
C ; //communication cost array
Q ; //jobs waiting queue sorted by their arrival time (oldest to newest)
function scheduler(P )

while T rue do
while availableResources(P ) and Q , ∅ do

A← Q .pop()
P ′ ← filterHostsByConstraints(A, P )
s = DRB(A, P ′, C )
if U(s ) < A.minimal_util ity and postpone = T rue then

postponed_l ist .add(A)
else

place(A, s )
Q .add(postponed_l ist )
sleep(interval ) //wakeup after an event (e.g a job has �nished)

4.4 Placement Algorithm
First, we de�ne the premise and limitations. The algorithm behaves
as a greedy algorithm since the assignment of a task to a physical
GPU is never reconsidered. Hence, we perform a best-e�ort ap-
proach to �nd the optimal solution. The algorithm preferentially
places as many tasks as possible for a job in the same node. If
a job wants to get all its tasks spread across di�erent nodes in-
stead, it needs to de�ne anti-collocation policies for its tasks, and
in response, they will be placed on di�erent nodes. Also, if a job
does not support multi-node, it must be de�ned with a single-node
constraint in the pro�le. If a job cannot be placed, its placement is
postponed to the next iteration of the scheduler. To avoid starvation
and enforce fairness as much as possible, the job waiting queue is
sorted by the job’s arrival time. Thus, the oldest jobs have priority
to be placed.

We de�ne two scheduling policies for the proposed algorithm.
One policy is referred to TOPO-AWARE-P which allows out-of-
order execution of jobs and postpone the placement that the job’s
utility is lower than a threshold de�ned in the job’s pro�le. The
other policy is the TOPO-AWARE, where the jobs are placed as
soon as they arrive without consideration for the future jobs.

The placement process is formally de�ned as a function ψ ()
taking the job’s graph A and the physical topology P asψ (A, P ) and
transforming them into the GPU list д. Where |A| is the number of
requested GPUs, |P | is the number of available GPUs, and ��д�� is the
number of allocated GPUs to the job, being ��д�� ≤ |P |.

Algorithm 1 outlines the placement process. It is a loop-based
approach that each iteration attempts to place jobs while there are
jobs in the waiting queue Q and available resources. Otherwise,
the scheduler sleeps until a job has �nished or a time interval has
expired. During each iteration, the scheduler takes a job fromQ and
�lters the available nodes, eliminating the ones that do not satisfy
the constraints (e.g. resources types, anti-a�nity, etc.), creating the
graph P ′. Then, the function DRB() is called to traverse the physical
graph P ′ and de�ne the GPU allocation. After that, if the utility of
the solution s does not satisfy the job’s requirements and the policy
allows postponement, the job is added back to the waiting queue
at the end of the iteration; otherwise, the placement is enforced.

The function DRB(), outlined in Algorithm 2, is based on the Hi-
erarchical Static Mapping Dual Recursive Bi-partitioning algorithm

Algorithm 2 Recursive Bi-Partitioning Mapping based in [12]
1: function DRB(A, P , C )
2: if ( |A | == 0) then
3: return nil //This partition is not a candidate
4: if ( |P | == 1) then
5: return д ← (P, A) //Map job’s task to physical GPU
6: (P 0, P 1) = physicalGraphBiPartition(P)
7: (A0, C0, A1, C1) = jobGraphBiPartition(A, P 0, P 1, C)
8: д0 = DRB(A0, P 0, C0)
9: д1 = DRB(A1, P 1, C1)

10: return (д0+д1)

Algorithm 3 Utility-based job graph bi-partitioning

1: function jobGraphBiPartition(A, P0, P1, C)
2: while A , ∅ do
3: task ← A.pop()
4: (P 0.tcc , P 1.tcc )← getCommCost(task , P 0, P 1, C )
5: (P 0.Ib , P 1.Ib )← getInter(task , P 0, P 1, A.prof ile )
6: (P 0.ωd , P 1.ωd )← getFragmentation(P 0, P 1, A)
7: if (U(task , P 0) ≥ U(task , P 1)) and (constraints ) then
8: A0.add(task )
9: else

10: A1.add(task )
11: return A0, P 0.tcc , A1, P 1.tcc

proposed by [12] and implemented by [34]. Its asymptotic complex-
ity is de�ned as Θ( |EA | ∗ loд2 ( |VP |)) [35], where in our case |EA | is
the number of edges from the job’s graph and |VP | is the number
of a vertex from the physical graph.

More speci�cally, during each recursive iteration of DRB() two
other functions are called, physicalGraphBiPartition() to bi-
partition the physical graph P, and jobGraphBiPartition() to
bi-partition the job’s graph A. The recursion stops when A = ∅,
returning ∅, or when Py only has one element, returning the map-
ping pair (Ay , Py ), where y ∈ {0,1} partitions. The C parameter is
an array that contains the communication cost of all GPUs, even
the ones not into the sub-partition Py . C is used to calculate the
communication cost between sub-partitions.

Similarly to the implementation of DRB() in [34], the physi-
cal graph bi-partition is performed with the well-known Fiduccia
Mattheyses algorithm [15] that minimizes the cut-sets in linear
time. However, di�erently from [34], we do not only account the
communication cost, but also the job’s preference using a utility
function to bi-partition the job’s graph, as shown in the function
jobGraphBiPartition() outlined in Algorithm 3.

Algorithm 3 creates two sub-partitions A0 and A1, where each
partition can have part or all the job’s tasks. Since the tasks in A0

will be placed in P0 and A1 in P1, the function evaluates for each
task which sub-partition Py provides higher utility. Then, if P1
gives better utility and has enough available resources, the task is
added to A0. Otherwise, the task is added to A1.

For each task, Algorithm 3 evaluates each sub-partition via cal-
culating the communication cost t , the workload interference I and
the resource fragmentation ω, using the functions getCommCost(),
getInter() and getFragmentation(), respectively. Then, with those
parameters the job’s utility is calculated using the utility function
U , which can be de�ned as the convex function in Equation 2.



Topology-Aware GPU Scheduling for Learning Workloads
in Cloud Environments SC17, November 12–17, 2017, Denver, CO, USA

U = (αcc
1
t
+ αb

1
I
+ αd

1
ω
) (2)

Next, we describe how the U parameters are calculated. The
communication cost (t ) is de�ned as the sum of the combinatorial
shortest paths p between all GPUs within the solution as:

t =

|P |∑
i=1

|P |−i∑
j=1

pi, j ,where i , j (3)

The level of interference (I ) is measured using the job’s pro�le. As
described in section 4.2, the pro�le is composed by the completion
time of the job running solo and running with other jobs (or with
arti�cial loads). Therefore, the algorithm measures the average
slowdown that the job su�ers and causes in the currently running
jobs. Thus, the average interference is calculated as follows:

I =

∑runninд_jobs+1
j=1 (solo_time (j )/collocation_time (j ))

runninд_jobs + 1
(4)

System fragmentation (ω) is the average fragmentation of all
sockets, which is calculated as follows:

ω =

∑sockets
i=1 ( f reeGPUs (socketi )/totalGPUs (socketi ))

sockets
(5)

5 TOPOLOGY-AWARE SCHEDULER
EVALUATION

In this section, we present both a prototype implementation and a
trace-driven simulation to evaluate the proposed topology-aware
scheduler algorithm. The prototype evaluation was performed on a
single machine with characteristics described in section 3.1. The
simulation evaluates the algorithm on a large scale cluster.

While the focus of this work is in learning workloads, any work-
load can be submitted in the prototype. Also, there is no need
to change how applications are implemented in order to use the
scheduler. In the future, we plan to test the proposed algorithm in
a cluster manager framework like Kubernetes [17] or Mesos [21],
similar to the enhancements described in the related work [45].

5.1 Prototype Implementation
We implemented the prototype for the scheduler using C and
Python. The program continuously loads JSON �les containing
the necessary information about the submitted jobs. To place a job,
the system creates the job’s manifest, �lling it with the information
received from the JSON �le, and uses that information to determine
the placement of the job. If the algorithm decides to place the job,
it enforces the decision of running the job on the given machine.
Until the job �nishes, the system keeps track of the execution of
the job while collecting statistics including the ending time.

For the placement, the system captures various performance met-
rics. The DRAM memory bandwidth is calculated using the Power8
performance counters described in [1], which are accessed using the
library Perfmon2 [36]. To calculate the NVLink bandwidth (which
is shown in most of the experiments), we access the NVIDIA CUDA
driver API using the command nvidia-smi nvlink -i $gpu_id
that returns the transmitted bytes from each link. Then, the algo-
rithm calculates the NVLink bandwidth usage of CPU-to-GPU or
GPU-to-GPU communication based on their link connections.

For discovering the topology during the system startup, it ex-
ecutes the nvidia-smi topo --matrix command1 to create a
matrix of GPUs, and the command numactl --hardware to in-
clude socket distance and CPU locality in the model. For enforc-
ing the decisions, before executing any application, the system
�rst de�nes the order of the GPU ID’s by exporting the parameter
CUDA_DEVICE_ORDER=PCI_BUS_ID, and then, for each application,
it exposes only the speci�ed GPU list from the scheduler decisions
using the parameter CUDA_VISIBLE_DEVICES=$gpu_list. For pre-
venting performance variability related to NUMA remote memory
access, the applications with only GPUs in the same socket are
bound to the socket using the command numactl.

To feed the performance prediction model, the application pro-
�les are experimentally generated, de�ning the optimal resource al-
location (best-performing) and some possible sub-optimal resource
allocation (worst-performing) for both solo (when the job runs
alone with no other jobs) and co-scheduled modes, as previously
shown in Section 3. The pro�le then contains the 95th percentile of
the execution time from �ve executions of each workload within
di�erent scenarios. A simple, but e�ective performance prediction
approach is then performed using the pro�les, characterizing the
workload slowdowns for various con�gurations; we plan to extend
it with more robust statistical techniques in the future. Since Ca�e
framework is based on data-parallelism model, all GPUs perform
similar work, and then, they have a similar amount of communi-
cation between each other. Therefore, we de�ne in the workload
graph all GPUs communicating between each other with the same
weight. However, for di�erent batch sizes, di�erent weights are
used, ranging from 4 to 1, where 4 represents the smallest batch
size and 1 the largest one.

5.2 Prototype Evaluation
We implement two well-known greedy approaches: First Come First
Served (FCFS) with a FIFO queue, and Best Fit (BF) performing bin
packing (i.e. allocating �rst the GPUs from highly used domains)
and compare them to our proposed placement algorithm with the
two scheduling policies: TOPO-AWARE and TOPO-AWARE-P. Fi-
nally, we evaluate the prototype in a cloud environment, where
jobs have varied GPU requirements: some needing a single GPU,
some needing more than two GPUs, some requiring P2P to be fully
satis�ed, others needing multiple GPUs, but communication re-
quirements are minimal. Additionally, as in a cloud environment,
the jobs concurrently share any machine’s resources.

Con�g. Job0 Job1 Job2 Job3 Job4 Job5
DL NN A G A A A C

Batch Size 1 4 1 4 1 1
Num. GPUs 1 1 1 2 2 2
Min. Utility 0.3 0.3 0.3 0.5 0.5 0.5

Arrival Time 0.51s 15.03s 24.36s 25.33s 29.33s 29.89s

Table 1: A=AlexNet, C=Ca�eRef, G=GoogLeNet

5.2.1 Description of the experiment. Our �rst experiment is a
simple, easy-to-verify scenario, with �ve jobs dynamically sharing
the machine described in Section 3.1. The workload con�gurations
are summarized in Table 1. Jobs’ arrival time follow a Poisson
distribution con�gured with λ = 10 (i.e. the arrival of ten jobs per
1The system targets only NVIDIA GPUs. But, for detecting GPUs from other vendors
the library HWLOC can be used.



SC17, November 12–17, 2017, Denver, CO, USA Marcelo Amaral, Jordà Polo, David Carrera, Seetharami Seelam, and Malgorzata Steinder

0

1

2

3

G
P

U
ID

s
(a)

BF
J1
J0
J3
J2
J5
J4

0 48 96 14
4

19
2

24
0

28
8

33
6

38
4

43
2

48
0

52
8

0
16
32
48

G
B

/s

GPU-CPU-GPU

P2P

0

1

2

3

G
P

U
ID

s

(b)
FCFS

J1
J0
J3
J2
J5
J4

0 48 96 14
4

19
2

24
0

28
8

33
6

38
4

43
2

48
0

52
8

0
16
32
48

G
B

/s GPU-CPU-GPU

P2P

0

1

2

3

G
P

U
ID

s

(c)
TOPO-AWARE

J1
J0
J3
J2
J5
J4

0 48 96 14
4

19
2

24
0

28
8

33
6

38
4

43
2

48
0

52
8

0
16
32
48

G
B

/s

GPU-CPU-GPU

P2P

0

1

2

3

G
P

U
ID

s

(d)
TOPO-AWARE-P

J1
J0
J3
J2
J5
J4

0 48 96 14
4

19
2

24
0

28
8

33
6

38
4

43
2

48
0

52
8

Time (s)

0
16
32
48

G
B

/s GPU-CPU-GPU

P2P

3 4 1 5 0 2
Ordered jobs from worst to best-performing

0.0

0.2

0.4

0.6

0.8

S
lo

w
d

ow
n

(e)
JOB’S QOS

BF

FCFS

TOPO-AWARE

TOPO-AWARE-P

5 4 3 1 0 2
Ordered jobs from worst to best-performing

0.0

0.2

0.4

0.6

0.8

S
lo

w
d

ow
n

(f)
JOB’S QOS + WAITING TIME

Figure 8: [Prototype] Figures (a) to (d) present the time line of the placement decisions of each evaluated algorithm. A
colored box can be on one or more GPU IDs, which represents the GPU allocation for a job. Figures (e) and (f) present the

slowdown is in comparison with the ideal scenario and the jobs are ordered from worst to best-performing.

0

1

2

3

G
P

U
ID

(a)
BF

J1
J0
J3
J2
J5
J4

0 48 96 14
4

19
2

24
0

28
8

33
6

38
4

43
2

48
0

52
8

0.0
0.2
0.4
0.6
0.8
1.0

U
ti

lit
y Mean Job Utility

0

1

2

3

G
P

U
ID

(b)
FCFS

J1
J0
J3
J2
J5
J4

0 48 96 14
4

19
2

24
0

28
8

33
6

38
4

43
2

48
0

52
8

0.0
0.2
0.4
0.6
0.8
1.0

U
ti

lit
y Mean Job Utility

0

1

2

3

G
P

U
ID

(c)
TOPO-AWARE

J1
J0
J3
J2
J5
J4

0 48 96 14
4

19
2

24
0

28
8

33
6

38
4

43
2

48
0

52
8

0.0
0.2
0.4
0.6
0.8
1.0
U

ti
lit

y Mean Job Utility

0

1

2

3

G
P

U
ID

(d)
TOPO-AWARE-P

J1
J0
J3
J2
J5
J4

0 48 96 14
4

19
2

24
0

28
8

33
6

38
4

43
2

48
0

52
8

Time (s)

0.0
0.2
0.4
0.6
0.8
1.0

U
ti

lit
y Mean Job Utility

1 4 3 5 0 2
Ordered jobs from worst to best-performing

0.0

0.2

0.4

0.6

0.8

S
lo

w
d

ow
n

(e)
JOB’S QOS

BF

FCFS

TOPO-AWARE

TOPO-AWARE-P

5 4 3 1 0 2
Ordered jobs from worst to best-performing

0.0

0.2

0.4

0.6

0.8

S
lo

w
d

ow
n

(f)
JOB’S QOS + WAITING TIME

Figure 9: [Simulation] Behavioral description of the simulation performing a similar experiment to that shown for the
prototype in Figure 8.

minute), except the Job 0 which arrives at time t = 0.51s to introduce
the initial load in the system. We set equal weights (0.33) to the
parameters of the utility function in Equation 2 to provide equal
consideration for communication cost and resource interference
and fragmentation. Small batch sizes represent a reliable example
of NNs that requires high GPU communication (especially for NNs
using model-parallelism). Hence, we conduct this experiment using
small batch sizes.

5.2.2 Prototype experimental results. The results are shown in
Figure 8. In the beginning, only Job 0 is being placed. And since it
requires only one GPU and there is no other job to cause interfer-
ence, any placement decision fully satis�es its requirements. At the
15th second, Job 1 arrives and the pro�le indicates that it su�ers in-
terference from Job 0. Thus, the overall system utility will be lower

if Job 0 and Job 1 are collocated in the same CPU socket. On the
other hand, TOPO-AWARE-P prevents the undesirable collocation;
it places Job 1 on a di�erent socket than Job 0. When Job 3 arrives, it
cannot be placed since it requires more GPUs than available. So Job
3 is only placed after Job 0 has �nished, ≈70th second. However, at
this point resource availability is non-uniform: the available GPUs
are in di�erent sockets.

Here is where the TOPO-AWARE-P di�ers from the other ap-
proaches. If Job 3 receives the two free GPUs, one from each of
the sockets, this will result in cross-socket communication over
the CPU bus and results in lower performance. For this reason,
the TOPO-AWARE-P delays the job placement to until it can allo-
cate co-located GPUs, that is, when these GPUs become available.
Any job with the utility lower than a threshold de�ned in the job’s



Topology-Aware GPU Scheduling for Learning Workloads
in Cloud Environments SC17, November 12–17, 2017, Denver, CO, USA

pro�le will have the placement postponed to the next scheduler
iteration. As a result, the TOPO-AWARE-P performs better in exe-
cution time than the others, as shown in Figure 8 (d) vs Figures 8
(a)-(c). For example, Job 3 had the completion time as ≈120s for the
scenario with the TOPO-AWARE-P (Figure 8 (d)), and ≈240s with
the other algorithms. Note that the performance improvement is
mainly related to enabling P2P over the NVLink interface to Job 3.
Only the TOPO-AWARE-P provides P2P for jobs as shown in Figure
8 (d), in all the other scenarios the GPU communication is routed
through the processor’s memory, which leads to higher latency,
and lower bandwidth because of additional memory copies and
potential contention of the shared bus.

The quality of the placement is highlighted in Figure 8 (e) and
(f). Both �gures show the job’s slowdown compared to the ideal
scenario, where the job has the fastest execution time. Also, both
�gures sort the jobs from worst to best-performing. While Figure
8 (e) focuses on showing the job slowdown strictly related to the
placement decision, Figure 8 (f) shows the slowdown also consider-
ing the waiting time in the scheduler’s queue. The results indicate
that TOPO-AWARE-P is the most e�cient algorithm. For instance,
with TOPO-AWARE-P, jobs 1, 3, and 4 have no slowdown com-
pared to the best-performing scenario, while these same jobs su�er
≈50% slowdown when the other algorithms are making placement
decisions, as shown in Figure 8 (e).

Intuitively, delaying jobs gives the impression that the queue
waiting time might end up being longer. However, the results sur-
prisingly show that TOPO-AWARE-P has a lower waiting time for
some jobs than other algorithms, as shown in Figure 8 (f). This hap-
pens because having better knowledge of the requirements enables
the scheduler to prevent performance interference, and then some
jobs will execute faster, opening space to place other jobs sooner.
This can also be seen in the cumulative execution time of the algo-
rithms. BF �nishes in ≈461.7s, FCFS in ≈456.2s, TOPO-AWARE in
≈454.2s, and TOPO-AWARE-P ≈356.9s. Hence, TOPO-AWARE-P
a�ords a speedup of ≈1.30x, ≈1.28x, and ≈1.27x, respectively.

5.3 Trace-Driven Simulation
Based on the logs from the prototype described in Section 5, we
developed a trace-driven simulation to evaluate the scheduling
algorithm in large shared clusters. In this section, we �rst describe
the main characteristics and con�guration of the simulation. And
second, we validate the simulation and perform experiments with
a larger number of jobs and machines.

To evaluate the scalability, the proposed algorithm was executed
to handle trace-driven simulated data at di�erent scales of the sys-
tem. The traces are generated by performing multiple experiments
on the previously described prototype. Afterward, the trace �les are
parsed and transformed into a format compatible with the simulator,
creating application and resource usage pro�les. For generating the
workloads, a Poisson distribution with arrival rate λ = 10 is used.
To create the job’s con�guration, we used a Binomial distribution
generating integer values between 0 and 3 to de�ne the batch size,
where 0=tiny, 1=small, 2=medium, and 3=big. And also a Binomial
distribution generating integer values between 0 and 2 to determine
the NN type, where 0=AlexNet, 1=Ca�eRef, and 2=GoogLeNet. Ad-
ditionally, all simulated machines are homogeneous and follow the

hardware topology described in Section 3.1. All the jobs can run in
the machines when there are enough resources.

5.4 Validation of The Simulation
We validate the reliability of the simulation system by comparing it
with the same scenario as in the prototype experiments in Section 5.
The simulation results are shown in Figure 9. The algorithms behave
very similarly in both prototype and the simulation, despite some
expected small di�erences, which are acceptable when considering
the standard deviations.

5.5 Large-Scale Cluster Simulation and Results
To verify the behavior of the proposed algorithm in a large-scale
environment, we use the trace-driven simulation in two di�erent
scenarios as follows.

Ordered jobs from worst to best
0.00

0.25

0.50

0.75

S
lo

w
d

ow
n

(a)

JOB’S QOS

BF

FCFS

TOPO-AWARE

TOPO-AWARE-P

Ordered jobs from worst to best
0.00

0.25

0.50

0.75

S
lo

w
d

ow
n

(b)

JOB’S QOS + WAITING TIME

Figure 10: Scenario 1: 100 jobs and 5 machines. Job’s
slowdown relative to the best performing con�guration.

5.5.1 Scenario 1: 100 jobs and 5 machines. We start the �rst
experiment with few machines and jobs. The results in Figure 10 (a)
show that the TOPO-AWARE-P policy performs slightly better than
the other; it does not violate the job’s SLO. The other strategies
introduce similar slowdowns in general, except FCFS that adds
slowdown in more jobs.

The performance di�erence between the placement strategies
is more evident when analyzing the waiting time of jobs in the
scheduling queue, as illustrated in Figure 10 (b). Both TOPO-AWARE
and TOPO-AWARE-P clearly outperform the greedy algorithms.

The lower performance of the greedy algorithms is explained
by the fact that a sub-optimal placement decision can also limit
the possible placements of other jobs. If a machine is left with
only one GPU and the waiting jobs require more GPUs, the jobs
must wait to be placed until enough resource becomes available.
While less expressive, TOPO-AWARE-P performs better than only
TOPO-AWARE. The second still presents slowdown in some jobs,
and the former does not, since it allows out-of-order execution of
jobs. TOPO-AWARE-P results in better performance because it does
not schedule jobs to resources that do not fully satisfy its QoS.

Ordered jobs from worst to best
0.0

0.2

0.4

0.6

0.8

S
lo

w
d

ow
n

(a)

JOB’S QOS

FCFS

BF

TOPO-AWARE

TOPO-AWARE-P

Ordered jobs from worst to best
0.0

0.2

0.4

0.6

0.8

S
lo

w
d

ow
n

(b)

JOB’S QOS + WAITING TIME

Figure 11: Scenario 2: 10k jobs and 1k machines. Job’s
slowdown relative to the best performing con�guration.



SC17, November 12–17, 2017, Denver, CO, USA Marcelo Amaral, Jordà Polo, David Carrera, Seetharami Seelam, and Malgorzata Steinder

5.5.2 Scenario 2: 10k jobs and 1k machines. The results in Fig-
ure 11 show that the FCFS algorithm has the worst performance,
followed by BF. In summary, the new algorithm signi�cantly and
consistently outperforms the greedy algorithms in achieving the
least slowdown and in minimizing the waiting time. The new al-
gorithm’s ability to achieve this is mainly due to its utility-based
heuristics and the strategy that does not place jobs when the place-
ment is not e�cient from a communication perspective.

5.5.3 Overhead. The average time that the algorithms spend
when evaluating the placement decision in scenario 2 is ≈3s for
TOPO-AWARE and TOPO-AWARE-P, while for FCFS and BF it is
≈0.45s and ≈0.44s respectively. Although the proposed algorithm
has higher overhead, 3 seconds on average is fast enough for sched-
uling learning workload on a cluster with high demands.

The proposed algorithm has a higher execution time than the
greedy ones mainly because it requires more computation to pro-
vide a better decision. Note that in the worst case, our proposed
algorithm will evaluate Θ( |VP |) ∗ Θ( |EA | ∗ loд2 ( |VP |)), where the
�rst Θ represents the host �ltering phase and the second represents
the phase to make the placement decision. Where the |EA | is the
number of edges from the job’s graph and |VP | is the number of a
vertex from the physical graph. The other greedy algorithms have
the asymptotic complexity as Θ( |EA | + |VP |) since every machine
will be explored in the worst case.

6 RELATEDWORK
Communication cost. Kindratenko et. al. [26] proposed a CUDA
wrapper that works in sync with Torque batch system. The wrapper
overrides some CUDA device management API calls to expose GPUs
to users, taking into account the GPUs distance to provide best-
e�orts on minimizing the communication cost. Faraji et. al. [13]
propose a topology-aware GPU selection scheme to assign GPU
devices to MPI processes based on the GPU-to-GPU communication
pattern and the physical characteristics of a multi-GPU machine.
With pro�le information from the MPI application, it allocates GPUs
performing a graph mapping algorithm using the SCOTCH library.
While those e�orts e�ectively minimize the communication cost,
they do not consider the potential performance interference from co-
scheduled jobs. In this paper, di�erent from the above-related work,
we further analyze and mitigate performance problem, and leverage
P2P communication for multi-GPU based learning workloads in a
co-scheduled environment.

Workload Collocation. Several papers investigate the perfor-
mance of co-running CPU-based workload [41], [20], [24], [27], [11],
and GPU-based workloads [25] and [44]. In addition, several papers
proposed scheduling algorithms to avoid problematic collocation
within the same machine [33], [9], [32], [7], or with best-e�orts
on minimize the CPU resources interference performing low-level
resource partitioning [38], [4], [19], and [29]. While those papers
describe the performance bottlenecks for CPU-only application
and/or providing best-e�orts on mitigating workload interference,
they neither directly show the performance constraints of mixing
multiple GPU-based learning workloads, nor do they propose a
GPU-topology-aware scheduling algorithm.

Mapping Algorithm. Several researchers have been proposing
heuristics for graph mapping such as graph contraction [5], and

graph embedding [39], [43], [30], [40] and recursive bi-partitioning
algorithm [12] that has been implemented in the software package
SCOTCH [34]. While those methods have been proved to be an
e�ective approach, most of them are contiguous with static alloca-
tion approaches leading to resource fragmentation and focus only
minimizing the communication cost, not considering the other char-
acteristics, such as the resource sharing interference. In contrast,
our work considers a utility function during the mapping phase,
which captures the application’s preference on di�erent scenarios,
and therefore, preventing SLO violations.

7 CONCLUSIONS
Multi-GPU applications are becoming popular because they can
deliver performance improvements and increased energy e�ciency.
But at the same time, they present new challenges as they usually
require inter-GPU communications. Such communications can take
place directly between devices (with P2P) or may need to be routed
through the processors’ main memory, depending on the system
topology and the resource allocations for the existing jobs.

In this paper, we presented a new topology-aware placement
algorithm for scheduling workloads in modern multi-GPU systems.
The foundation of this approach is based on the use of a new graph
mapping algorithm built from application objectives and the system
topology. Applications can express their performance objectives
as SLOs that are later translated into abstract utility functions to
drive the placement decisions. The algorithm has been validated
through the construction of a real prototype on top of an IBM
Power8 system enabled with 4 NVIDIA Tesla P100 cards, as well as
through large-scale simulations.

Our experiments show that our algorithm e�ectively reduces
the communication cost while preventing interference related to
resource contention, mainly for the scheduling policy that allows
postponing the placement of unsatis�ed jobs. In particular, with
this policy, the performance impact of minimizing the GPU commu-
nication cost and avoiding interference re�ects in a speedup of up
to ≈1.30x in the cumulative execution time, and no SLO violations.
Finally, a trace-driven simulation of a large-scale cluster reveals that
compared with greed approaches our algorithm produces solutions
that satisfy more jobs, minimizes the SLO violations and improves
the job’s execution time even in a heavily loaded scenario.

In the future, we plan to extend this work to transparently scale
learning applications to multiple disaggregated GPUs across the
cluster and test the implementation of our algorithm in popular
resource management systems such as Kubernetes and Mesos.

ACKNOWLEDGMENTS
This project is supported by the IBM/BSC Technology Center for Super-
computing collaboration agreement. It has also received funding from the
European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No 639595). It is
also partially supported by the Ministry of Economy of Spain under contract
TIN2015-65316-P and Generalitat de Catalunya under contract 2014SGR1051,
by the ICREA Academia program, and by the BSC-CNS Severo Ochoa pro-
gram (SEV-2015-0493). We thank our IBM Research colleagues Alaa Youssef
and Asser Tantawi for the valuable discussions. We also thank SC17 com-
mittee member Blair Bethwaite of Monash University for his constructive
feedback on the earlier drafts of this paper.



Topology-Aware GPU Scheduling for Learning Workloads
in Cloud Environments SC17, November 12–17, 2017, Denver, CO, USA

REFERENCES
[1] Andrew V. Adinetz, Paul F. Baumeister, Hans Böttiger, Thorsten Hater, Thilo

Maurer, Dirk Pleiter, Wolfram Schenck, and Sebastiano Fabio Schifano. 2015. Per-
formance Evaluation of Scienti�c Applications on POWER8. Springer International
Publishing, Cham, 24–45. DOI:http://dx.doi.org/10.1007/978-3-319-17248-4_2

[2] Amazon. 2017. Amazon Machine Learning. (2017). https://aws.amazon.com/
machine-learning/

[3] Soheil Bahrampour, Naveen Ramakrishnan, Lukas Schott, and Mohak Shah. 2015.
Comparative Study of Ca�e, Neon, Theano, and Torch for Deep Learning. CoRR
abs/1511.06435 (2015). http://arxiv.org/abs/1511.06435

[4] Gaurav Banga, Peter Druschel, and Je�rey C. Mogul. 1999. Resource Containers:
A New Facility for Resource Management in Server Systems. In Proceedings of
the Third Symposium on Operating Systems Design and Implementation (OSDI
’99). USENIX Association, Berkeley, CA, USA, 45–58. http://dl.acm.org/citation.
cfm?id=296806.296810

[5] Francine Berman and Lawrence Snyder. 1987. On Mapping Parallel Algorithms
into Parallel Architectures. J. Parallel Distrib. Comput. 4, 5 (Oct. 1987), 439–458.
DOI:http://dx.doi.org/10.1016/0743-7315(87)90018-9

[6] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. 2016. Optimization Methods
for Large-Scale Machine Learning. CoRR abs/1606.04838 (2016). http://arxiv.org/
abs/1606.04838

[7] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes.
2016. Borg, Omega, and Kubernetes. ACM Queue 14 (2016), 70–93.

[8] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-e�cient
and QoS-aware Cluster Management. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’14). ACM, New York, NY, USA, 127–144. DOI:http://dx.doi.
org/10.1145/2541940.2541941

[9] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-e�cient
and QoS-aware Cluster Management. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’14). ACM, New York, NY, USA, 127–144. DOI:http://dx.doi.
org/10.1145/2541940.2541941

[10] Chris Edwards. 2015. Growing Pains for Deep Learning. Commun. ACM 58, 7
(jun 2015), 14–16. DOI:http://dx.doi.org/10.1145/2771283

[11] Yaakoub El-Khamra, Hyunjoo Kim, Shantenu Jha, and Manish Parashar. 2010.
Exploring the Performance Fluctuations of HPC Workloads on Clouds. In Pro-
ceedings of the 2010 IEEE Second International Conference on Cloud Computing
Technology and Science (CLOUDCOM ’10). IEEE Computer Society, Washington,
DC, USA, 383–387. DOI:http://dx.doi.org/10.1109/CloudCom.2010.84

[12] F. Ercal, J. Ramanujam, and P. Sadayappan. 1988. Task Allocation Onto a Hyper-
cube by Recursive Mincut Bipartitioning. In Proceedings of the Third Conference
on Hypercube Concurrent Computers and Applications: Architecture, Software,
Computer Systems, and General Issues - Volume 1 (C3P). ACM, New York, NY,
USA, 210–221. DOI:http://dx.doi.org/10.1145/62297.62323

[13] Iman Faraji, Seyed Hessam Mirsadeghi, and Ahmad Afsahi. 2016. Topology-
Aware GPU Selection on Multi-GPU Nodes. In 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops, IPDPS Workshops 2016, Chicago, IL,
USA, May 23-27, 2016. 712–720. DOI:http://dx.doi.org/10.1109/IPDPSW.2016.44

[14] Damon Fenacci, Björn Franke, and John Thomson. 2010. Workload Characteri-
zation Supporting the Development of Domain-speci�c Compiler Optimizations
Using Decision Trees for Data Mining. In Proceedings of the 13th International
Workshop on Software &#38; Compilers for Embedded Systems (SCOPES ’10). ACM,
New York, NY, USA, Article 5, 10 pages. DOI:http://dx.doi.org/10.1145/1811212.
1811219

[15] C. M. Fiduccia and R. M. Mattheyses. 1982. A Linear-time Heuristic for Improving
Network Partitions. In Proceedings of the 19th Design Automation Conference
(DAC ’82). IEEE Press, Piscataway, NJ, USA, 175–181.

[16] Google. 2017. Google Cloud Prediction API Documentation. (2017). https:
//cloud.google.com/prediction/docs/

[17] Google. 2017. Kubernetes. (2017). https://github.com/googlecloudplatform/
kubernetes Accessed in: 21-January-2015.

[18] Samuel Greengard. 2016. GPUs Reshape Computing. Commun. ACM 59, 9 (Aug.
2016), 14–16. DOI:http://dx.doi.org/10.1145/2967979

[19] Akhila Gundu, Gita Sreekumar, Ali Sha�ee, Seth Pugsley, Hardik Jain, Rajeev
Balasubramonian, and Mohit Tiwari. 2014. Memory Bandwidth Reservation in
the Cloud to Avoid Information Leakage in the Memory Controller. In Proceedings
of the Third Workshop on Hardware and Architectural Support for Security and
Privacy (HASP ’14). ACM, New York, NY, USA, 11:1–11:5. DOI:http://dx.doi.org/
10.1145/2611765.2611776

[20] Anshul Gupta. 2010. An Evaluation of Parallel Graph Partitioning and Ordering
Softwares on a Massively Parallel Computer. IBM T. J. Watson Research Center.
All pages.

[21] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D.
Joseph, Randy Katz, Scott Shenker, and Ion Stoica. 2011. Mesos: A Platform
for Fine-grained Resource Sharing in the Data Center. In Proceedings of the 8th
USENIX Conference on Networked Systems Design and Implementation (NSDI’11).

USENIX Association, Berkeley, CA, USA, 295–308. http://dl.acm.org/citation.
cfm?id=1972457.1972488

[22] Kenneth Hoste, Aashish Phansalkar, Lieven Eeckhout, Andy Georges, Lizy K.
John, and Koen De Bosschere. 2006. Performance Prediction Based on Inherent
Program Similarity. In Proceedings of the 15th International Conference on Parallel
Architectures and Compilation Techniques (PACT ’06). ACM, New York, NY, USA,
114–122. DOI:http://dx.doi.org/10.1145/1152154.1152174

[23] IBM. 2017. Go beyond arti�cial intelligence with Watson. (2017). https://www.
ibm.com/watson/

[24] Alexandru Iosup, Nezih Yigitbasi, and Dick Epema. 2011. On the Performance
Variability of Production Cloud Services. In Proceedings of the 2011 11th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID ’11).
IEEE Computer Society, Washington, DC, USA, 104–113. DOI:http://dx.doi.org/
10.1109/CCGrid.2011.22

[25] Onur Kayiran, Nachiappan Chidambaram Nachiappan, Adwait Jog, Rachata
Ausavarungnirun, Mahmut T. Kandemir, Gabriel H. Loh, Onur Mutlu, and Chita R.
Das. 2014. Managing GPU Concurrency in Heterogeneous Architectures. In
Proceedings of the 47th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO-47). IEEE Computer Society, Washington, DC, USA, 114–126.
DOI:http://dx.doi.org/10.1109/MICRO.2014.62

[26] V. V. Kindratenko, J. J. Enos, G. Shi, M. T. Showerman, G. W. Arnold, J. E. Stone, J. C.
Phillips, and W. m. Hwu. 2009. GPU clusters for high-performance computing.
In 2009 IEEE International Conference on Cluster Computing and Workshops. 1–8.
DOI:http://dx.doi.org/10.1109/CLUSTR.2009.5289128

[27] Philipp Leitner and Juergen Cito. 2014. Patterns in the Chaos - a Study of
Performance Variation and Predictability in Public IaaS Clouds. arXiv:1411.2429
[cs] (Nov. 2014). arXiv: 1411.2429.

[28] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and
Christos Kozyrakis. 2015. Heracles: Improving Resource E�ciency at Scale. In
Proceedings of the 42Nd Annual International Symposium on Computer Architecture
(ISCA ’15). ACM, New York, NY, USA, 450–462. DOI:http://dx.doi.org/10.1145/
2749469.2749475

[29] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and
Christos Kozyrakis. 2016. Improving Resource E�ciency at Scale with Heracles.
ACM Trans. Comput. Syst. 34, 2, Article 6 (May 2016), 33 pages. DOI:http://dx.
doi.org/10.1145/2882783

[30] Virginia Lo, Kurt J. Windisch, Wanqian Liu, and Bill Nitzberg. 1997. Non-
contiguous Processor Allocation Algorithms for Mesh-Connected Multicom-
puters. IEEE Trans. Parallel Distrib. Syst. 8, 7 (July 1997), 712–726. DOI:
http://dx.doi.org/10.1109/71.598346

[31] Microsoft. 2017. Project Oxford - Cognitive Services APIs. (2017). https://www.
microsoft.com/cognitive-services/

[32] Ripal Nathuji, Aman Kansal, and Alireza Gha�arkhah. 2010. Q-clouds: Managing
Performance Interference E�ects for QoS-aware Clouds. In Proceedings of the
5th European Conference on Computer Systems (EuroSys ’10). ACM, New York,
NY, USA, 237–250. DOI:http://dx.doi.org/10.1145/1755913.1755938

[33] Dejan Novaković, Nedeljko Vasić, Stanko Novaković, Dejan Kostić, and Ricardo
Bianchini. 2013. DeepDive: Transparently Identifying and Managing Perfor-
mance Interference in Virtualized Environments. In Presented as part of the 2013
USENIX Annual Technical Conference (USENIX ATC 13). USENIX, San Jose, CA.

[34] FranÃğois Pellegrini. 2001. Scotch and libScotch 3.4 User’s Guide. (2001).
[35] FranÃğois Pellegrini and Jean Roman. 1996. Experimental Analysis of the Dual

Recursive Bipartitioning Algorithm for Static Mapping. Technical Report. TR
1038-96, LaBRI, URA CNRS 1304, Univ. Bordeaux I.

[36] Perfmon2. 2016. Improving performance monitoring on Linux. (2016). http:
//perfmon2.sourceforge.net

[37] J. R. Quinlan. 1986. Induction of Decision Trees. Mach. Learn. 1, 1 (March 1986),
81–106. DOI:http://dx.doi.org/10.1023/A:1022643204877

[38] Moinuddin K. Qureshi and Yale N. Patt. 2006. Utility-Based Cache Partitioning:
A Low-Overhead, High-Performance, Runtime Mechanism to Partition Shared
Caches. In Proceedings of the 39th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO 39). IEEE Computer Society, Washington, DC, USA,
423–432. DOI:http://dx.doi.org/10.1109/MICRO.2006.49

[39] Roberto Tamassia. 1987. On Embedding a Graph in the Grid with the Minimum
Number of Bends. SIAM J. Comput. 16, 3 (June 1987), 421–444. DOI:http://dx.
doi.org/10.1137/0216030

[40] Ozan Tuncer, Vitus J. Leung, and Ayse K. Coskun. 2015. PaCMap: Topology Map-
ping of Unstructured Communication Patterns Onto Non-contiguous Allocations.
In Proceedings of the 29th ACM on International Conference on Supercomputing (ICS
’15). ACM, New York, NY, USA, 37–46. DOI:http://dx.doi.org/10.1145/2751205.
2751225

[41] Akshat Verma, Puneet Ahuja, and Anindya Neogi. 2008. Power-aware Dynamic
Placement of HPC Applications. In Proceedings of the 22Nd Annual International
Conference on Supercomputing (ICS ’08). ACM, New York, NY, USA, 175–184.
DOI:http://dx.doi.org/10.1145/1375527.1375555

[42] Linnan Wang, Wei Wu, George Bosilca, Richard W. Vuduc, and Zenglin Xu.
2016. E�cient Communications in Training Large Scale Neural Networks. CoRR

http://dx.doi.org/10.1007/978-3-319-17248-4_2
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/
http://arxiv.org/abs/1511.06435
http://dl.acm.org/citation.cfm?id=296806.296810
http://dl.acm.org/citation.cfm?id=296806.296810
http://dx.doi.org/10.1016/0743-7315(87)90018-9
http://arxiv.org/abs/1606.04838
http://arxiv.org/abs/1606.04838
http://dx.doi.org/10.1145/2541940.2541941
http://dx.doi.org/10.1145/2541940.2541941
http://dx.doi.org/10.1145/2541940.2541941
http://dx.doi.org/10.1145/2541940.2541941
http://dx.doi.org/10.1145/2771283
http://dx.doi.org/10.1109/CloudCom.2010.84
http://dx.doi.org/10.1145/62297.62323
http://dx.doi.org/10.1109/IPDPSW.2016.44
http://dx.doi.org/10.1145/1811212.1811219
http://dx.doi.org/10.1145/1811212.1811219
https://cloud.google.com/prediction/docs/
https://cloud.google.com/prediction/docs/
https://github.com/googlecloudplatform/kubernetes
https://github.com/googlecloudplatform/kubernetes
http://dx.doi.org/10.1145/2967979
http://dx.doi.org/10.1145/2611765.2611776
http://dx.doi.org/10.1145/2611765.2611776
http://dl.acm.org/citation.cfm?id=1972457.1972488
http://dl.acm.org/citation.cfm?id=1972457.1972488
http://dx.doi.org/10.1145/1152154.1152174
https://www.ibm.com/watson/
https://www.ibm.com/watson/
http://dx.doi.org/10.1109/CCGrid.2011.22
http://dx.doi.org/10.1109/CCGrid.2011.22
http://dx.doi.org/10.1109/MICRO.2014.62
http://dx.doi.org/10.1109/CLUSTR.2009.5289128
http://dx.doi.org/10.1145/2749469.2749475
http://dx.doi.org/10.1145/2749469.2749475
http://dx.doi.org/10.1145/2882783
http://dx.doi.org/10.1145/2882783
http://dx.doi.org/10.1109/71.598346
https://www.microsoft.com/cognitive-services/
https://www.microsoft.com/cognitive-services/
http://dx.doi.org/10.1145/1755913.1755938
http://perfmon2.sourceforge.net
http://perfmon2.sourceforge.net
http://dx.doi.org/10.1023/A:1022643204877
http://dx.doi.org/10.1109/MICRO.2006.49
http://dx.doi.org/10.1137/0216030
http://dx.doi.org/10.1137/0216030
http://dx.doi.org/10.1145/2751205.2751225
http://dx.doi.org/10.1145/2751205.2751225
http://dx.doi.org/10.1145/1375527.1375555


SC17, November 12–17, 2017, Denver, CO, USA Marcelo Amaral, Jordà Polo, David Carrera, Seetharami Seelam, and Malgorzata Steinder

abs/1611.04255 (2016). http://arxiv.org/abs/1611.04255
[43] Kurt Windisch, Virginia Lo, and Bella Bose. 1995. Contiguous And Non-

Contiguous Processor Allocation Algorithms For K-Ary n-Cubes. IEEE Transac-
tions on Parallel and Distributed Systems 8 (1995), 712–726.

[44] J. Wu and B. Hong. 2013. Collocating CPU-only Jobs with GPU-assisted Jobs on
GPU-assisted HPC. In 2013 13th IEEE/ACM International Symposium on Cluster,
Cloud, and Grid Computing. DOI:http://dx.doi.org/10.1109/CCGrid.2013.19

[45] Seetharami R. Seelam Yu Bo Li, IBM Research. 2017. Speeding up Deep Learn-
ing Services: When GPUs meet Container Clouds, NVIDIA GPU Technology
Conference. (2017). http://on-demand.gputechconf.com/gtc/2017/presentation/
s7258-seetharami-seelam-speed-up-deep-learning-service.pdf Accessed in: 5-
August-2017.

A APPENDIX
A.1 Description

(1) Check-list (artifact meta information):
• Algorithm: the paper describes in details the utility-

based algorithm that performs a bipartite graph match-
ing algorithm and used for scheduling Deep Learning
jobs in a prototype and a simulation.

• Program: the experiments use only open-source tools
and benchmarks.

• Compilation: The application that collects hardware
counters also requires to be compiled, but, apart from
that, there is no special compilation needed.

• Binary: Ca�e framework and the perfmon2 library are
compiled from source. All the source code is available
on-line.

• Run-time: all experiments are run on the Linux oper-
ating system running with and without enabling the
simulation mode in the system.

• Hardware: all experiments are run on the Power8
system further detailed in the paper.

• Run-time state: the system is idle and only running
our experiments.

• Execution: from the shell command line as described
in this appendix.

• Output: the results are shown in the paper as graphs.
• Experiment work�ow: outlined in this appendix.

(2) How delivered: The system implemented is delivered as
source code in Github: http://github.com/HiEST/gpu-
topo-aware.

(3) Hardware dependencies: The system relies on NVIDIA
GPUs and commands for topology discovering and metrics
collection. Some PMU events code are speci�c to Power8
architecture, whose documentation is public available in
IBM o�cial website. Additionally, it is necessary that P2P
capabilities are enabled in the BIOS.

(4) Software dependencies: Ca�e is public available in
https://github.com/BVLC/ca�e and the library perfmon2 in
http://perfmon2.sourceforge.net/. All the benchmarks used
for the experiments are available in the Ca�e source code
and requires no modi�cation except from changing the
training batch size.

A.2 Installation
There is no special installation of the system, except only for the
previous dependencies described before.

A.3 Experiment work�ow
This section describes how to con�gure the system and the experi-
ment work�ow.

The system can run in the simulation mode or as a real prototype
based on prede�ned con�guration �le etc/configs/sys-config.
ini, changing the parameter simulation to True or False. When the
simulation is false, the system will run jobs accordingly to user-
de�ned bash script �le (workload manifest), which receives the
jobs and runtime (e.g. GPU ids) information and translate it to a
command to execute a Ca�e instance.

There is also a workload generator, which receives as parameters
the arrival rate and probabilities of batch size, the amount of GPUs
and workload type as described in the paper.

Each scheduler algorithm also has a con�guration �le
etc/configs/algo-name-config.ini, which must be provide
from at least one algorithm. If many are provided, the system will
execute multiples runs con�gured with di�erent schedule algo-
rithm.

After providing the needed con�guration �les and workload
manifests, to execute the system is only required to run the main
�le as “python main.py”.

Samples of all con�guration �les and workload manifest are
provided in the source code.

The �gures generated for the experiment section in the paper
were provided from the scripts in the src/plot/*.

A.4 Experiment customization
There is no customization needed for the experiment

http://arxiv.org/abs/1611.04255
http://dx.doi.org/10.1109/CCGrid.2013.19
http://on-demand.gputechconf.com/gtc/2017/presentation/s7258-seetharami-seelam-speed-up-deep-learning-service.pdf
http://on-demand.gputechconf.com/gtc/2017/presentation/s7258-seetharami-seelam-speed-up-deep-learning-service.pdf

	Abstract
	1 Introduction
	2 Deep Learning Workloads
	3 Evaluating the Impact of Placement Strategies
	3.1 Testing Platform and Configuration
	3.2 Pack versus Spread
	3.3 Jobs in a Co-Scheduled Environment

	4 Topology-Aware Scheduling Algorithm
	4.1 Topology Representation
	4.2 Job Profile
	4.3 Objective Function and Constraints
	4.4 Placement Algorithm

	5 Topology-Aware Scheduler Evaluation
	5.1 Prototype Implementation
	5.2 Prototype Evaluation
	5.3 Trace-Driven Simulation
	5.4 Validation of The Simulation
	5.5 Large-Scale Cluster Simulation and Results

	6 Related Work
	7 Conclusions
	References
	A Appendix
	A.1 Description
	A.2 Installation
	A.3 Experiment workflow
	A.4 Experiment customization


