11 research outputs found

    Min-Max Theorems for Packing and Covering Odd (u,v)(u,v)-trails

    Full text link
    We investigate the problem of packing and covering odd (u,v)(u,v)-trails in a graph. A (u,v)(u,v)-trail is a (u,v)(u,v)-walk that is allowed to have repeated vertices but no repeated edges. We call a trail odd if the number of edges in the trail is odd. Let ν(u,v)\nu(u,v) denote the maximum number of edge-disjoint odd (u,v)(u,v)-trails, and τ(u,v)\tau(u,v) denote the minimum size of an edge-set that intersects every odd (u,v)(u,v)-trail. We prove that τ(u,v)≤2ν(u,v)+1\tau(u,v)\leq 2\nu(u,v)+1. Our result is tight---there are examples showing that τ(u,v)=2ν(u,v)+1\tau(u,v)=2\nu(u,v)+1---and substantially improves upon the bound of 88 obtained in [Churchley et al 2016] for τ(u,v)/ν(u,v)\tau(u,v)/\nu(u,v). Our proof also yields a polynomial-time algorithm for finding a cover and a collection of trails satisfying the above bounds. Our proof is simple and has two main ingredients. We show that (loosely speaking) the problem can be reduced to the problem of packing and covering odd (uv,uv)(uv,uv)-trails losing a factor of 2 (either in the number of trails found, or the size of the cover). Complementing this, we show that the odd-(uv,uv)(uv,uv)-trail packing and covering problems can be tackled by exploiting a powerful min-max result of [Chudnovsky et al 2006] for packing vertex-disjoint nonzero AA-paths in group-labeled graphs

    Odd Multiway Cut in Directed Acyclic Graphs

    Get PDF
    We investigate the odd multiway node (edge) cut problem where the input is a graph with a specified collection of terminal nodes and the goal is to find a smallest subset of non-terminal nodes (edges) to delete so that the terminal nodes do not have an odd length path between them. In an earlier work, Lokshtanov and Ramanujan showed that both odd multiway node cut and odd multiway edge cut are fixed-parameter tractable (FPT) when parameterized by the size of the solution in undirected graphs. In this work, we focus on directed acyclic graphs (DAGs) and design a fixed-parameter algorithm. Our main contribution is an extension of the shadow-removal framework for parity problems in DAGs. We complement our FPT results with tight approximability as well as polyhedral results for 2 terminals in DAGs. Additionally, we show inapproximability results for odd multiway edge cut in undirected graphs even for 2 terminals

    Constant-Factor Approximation Algorithms for the Parity-Constrained Facility Location Problem

    Get PDF
    Facility location is a prominent optimization problem that has inspired a large quantity of both theoretical and practical studies in combinatorial optimization. Although the problem has been investigated under various settings reflecting typical structures within the optimization problems of practical interest, little is known on how the problem behaves in conjunction with parity constraints. This shortfall of understanding was rather discouraging when we consider the central role of parity in the field of combinatorics. In this paper, we present the first constant-factor approximation algorithm for the facility location problem with parity constraints. We are given as the input a metric on a set of facilities and clients, the opening cost of each facility, and the parity requirement - odd, even, or unconstrained - of every facility in this problem. The objective is to open a subset of facilities and assign every client to an open facility so as to minimize the sum of the total opening costs and the assignment distances, but subject to the condition that the number of clients assigned to each open facility must have the same parity as its requirement. Although the unconstrained facility location problem as a relaxation for this parity-constrained generalization has unbounded gap, we demonstrate that it yields a structured solution whose parity violation can be corrected at small cost. This correction is prescribed by a T-join on an auxiliary graph constructed by the algorithm. This auxiliary graph does not satisfy the triangle inequality, but we show that a carefully chosen set of shortcutting operations leads to a cheap and sparse T-join. Finally, we bound the correction cost by exhibiting a combinatorial multi-step construction of an upper bound

    Packing Odd Walks and Trails in Multiterminal Networks

    Get PDF
    Let G be an undirected network with a distinguished set of terminals T ? V(G) and edge capacities cap: E(G) ? ?_+. By an odd T-walk we mean a walk in G (with possible vertex and edge self-intersections) connecting two distinct terminals and consisting of an odd number of edges. Inspired by the work of Schrijver and Seymour on odd path packing for two terminals, we consider packings of odd T-walks subject to capacities cap. First, we present a strongly polynomial time algorithm for constructing a maximum fractional packing of odd T-walks. For even integer capacities, our algorithm constructs a packing that is half-integer. Additionally, if cap(?(v)) is divisible by 4 for any v ? V(G)-T, our algorithm constructs an integer packing. Second, we establish and prove the corresponding min-max relation. Third, if G is inner Eulerian (i.e. degrees of all nodes in V(G)-T are even) and cap(e) = 2 for all e ? E, we show that there exists an integer packing of odd T-trails (i.e. odd T-walks with no repeated edges) of the same value as in case of odd T-walks, and this packing can be found in polynomial time. To achieve the above goals, we establish a connection between packings of odd T-walks and T-trails and certain multiflow problems in undirected and bidirected graphs

    Odd Paths, Cycles and TT-joins: Connections and Algorithms

    Full text link
    Minimizing the weight of an edge set satisfying parity constraints is a challenging branch of combinatorial optimization as witnessed by the binary hypergraph chapter of Alexander Schrijver's book ``Combinatorial Optimization'' (Chapter 80). This area contains relevant graph theory problems including open cases of the Max Cut problem, or some multiflow problems. We clarify the interconnections of some problems and establish three levels of difficulties. On the one hand, we prove that the Shortest Odd Path problem in an undirected graph without cycles of negative total weight and several related problems are NP-hard, settling a long-standing open question asked by Lov\'asz (Open Problem 27 in Schrijver's book ``Combinatorial Optimization''. On the other hand, we provide a polynomial-time algorithm to the closely related and well-studied Minimum-weight Odd {s,t}\{s,t\}-Join problem for non-negative weights, whose complexity, however, was not known; more generally, we solve the Minimum-weight Odd TT-Join problem in FPT time when parameterized by ∣T∣|T|. If negative weights are also allowed, then finding a minimum-weight odd {s,t}\{s,t\}-join is equivalent to the Minimum-weight Odd TT-Join problem for arbitrary weights, whose complexity is only conjectured to be polynomially solvable. The analogous problems for digraphs are also considered.Comment: 24 pages, 2 figure

    Odd multiway cut in directed acyclic graphs

    Get PDF
    We investigate the odd multiway node (edge) cut problem where the input is a graph with a specified collection of terminal nodes and the goal is to find a smallest subset of non-terminal nodes (edges) to delete so that the terminal nodes do not have an odd length path between them. In an earlier work, Lokshtanov and Ramanujan showed that both odd multiway node cut and odd multiway edge cut are fixed-parameter tractable (FPT) when parameterized by the size of the solution in undirected graphs. In this work, we focus on directed acyclic graphs (DAGs) and design a fixed-parameter algorithm. Our main contribution is a broadening of the shadow-removal framework to address parity problems in DAGs. We complement our FPT results with tight approximability as well as polyhedral results for 2 terminals in DAGs. Additionally, we show inapproximability results for odd multiway edge cut in undirected graphs even for 2 terminals

    Matching

    Get PDF

    Packing and Covering Odd (u,v)-trails in a Graph

    Get PDF
    In this thesis, we investigate the problem of packing and covering odd (u,v)(u,v)-trails in a graph. A (u,v)(u,v)-trail is a (u,v)(u,v)-walk that is allowed to have repeated vertices but no repeated edges. We call a trail \emph{odd} if the number of edges in the trail is odd. Given a graph GG and two specified vertices uu and vv, the odd (u,v)(u,v)-trail packing number, denoted by ν(u,v)\nu(u,v), is the maximum number of edge-disjoint odd (u,v)(u,v)-trails in GG. And, the odd (u,v)(u,v)-trail covering number, denoted by τ(u,v)\tau(u,v), is the minimum size of an edge-set that intersects every odd (u,v)(u,v)-trail in GG. In 2016, Churchley, Mohar, and Wu, were the first ones to prove a constant factor bound on the \coverpack ratio, by showing that τ(u,v)≤8⋅ν(u,v)\tau(u,v) \leq 8 \cdot \nu(u,v). Our main result in this thesis is an improved bound on the covering number: τ(u,v)≤5⋅ν(u,v)+2\tau(u,v) \leq 5 \cdot \nu(u,v) + 2. The proof leads to a polynomial-time algorithm to find, for any given k≥1k \geq 1, either kk edge-disjoint odd (u,v)(u,v)-trails in GG or a set of at most 5k−35k-3 edges intersecting all odd (u,v)(u,v)-trails in GG

    Packing odd paths

    No full text
    corecore