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Abstract
Facility location is a prominent optimization problem that has inspired a large quantity of both
theoretical and practical studies in combinatorial optimization. Although the problem has been
investigated under various settings reflecting typical structures within the optimization problems of
practical interest, little is known on how the problem behaves in conjunction with parity constraints.
This shortfall of understanding was rather discouraging when we consider the central role of parity
in the field of combinatorics.

In this paper, we present the first constant-factor approximation algorithm for the facility location
problem with parity constraints. We are given as the input a metric on a set of facilities and clients,
the opening cost of each facility, and the parity requirement – odd, even, or unconstrained – of every
facility in this problem. The objective is to open a subset of facilities and assign every client to an
open facility so as to minimize the sum of the total opening costs and the assignment distances,
but subject to the condition that the number of clients assigned to each open facility must have the
same parity as its requirement.

Although the unconstrained facility location problem as a relaxation for this parity-constrained
generalization has unbounded gap, we demonstrate that it yields a structured solution whose parity
violation can be corrected at small cost. This correction is prescribed by a T -join on an auxiliary
graph constructed by the algorithm. This auxiliary graph does not satisfy the triangle inequality,
but we show that a carefully chosen set of shortcutting operations leads to a cheap and sparse T -join.
Finally, we bound the correction cost by exhibiting a combinatorial multi-step construction of an
upper bound.
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21:2 Approximation Algorithms for the Parity-Constrained Facility Location Problem

1 Introduction

Parity plays a central role in a myriad of topics in combinatorics. This is quite natural
that one would not need examples; yet, as a short sample of previous works, Schrijver
and Seymour [34] for example studied the packing of odd paths, Everett et al. [13] and
Kamiński & Nishimura [21] considered induced path parities in connection with the theory
of perfect graphs, and Kakimura et al. [20] studied the packing of parity-constrained cycles
intersecting a given vertex set. Naturally, there also exists a large volume of previous research
that incorporates parity constraints into different combinatorial optimization problems.
Submodular function minimization [15, 16], the minimum cut problem [31, 7], the shortest
path problem (cf. [17]), and the connected subgraph problem [35, 9] are all examples of such
problems. However, introducing parity constraints to combinatorial optimization problems
usually results in a significant level of added complexity in their algorithms, and perhaps due
to this, not all parity-constrained combinatorial optimization problems are as well studied as
one would expect from the centrality of parity in this field.

The facility location problem is one of the prominent optimization problems that has
guided a large volume of studies in both computer science and operations research (see,
e.g., [5, 23, 27, 37]). In this problem, we are given as the input a set of facilities and a set of
clients, along with the opening cost of each facility and the metric distance between every
pair of facility and client. The goal of the problem is to choose a subset of facilities to open
and a clustering that assigns every client to an open facility, so as to minimize the sum of the
facility opening costs and the distance between each client and the facility it is assigned to.
While the facility location problem also served as a test bed on which a variety of algorithmic
theories were developed, another primary reason the problem has attracted the interests of
many researchers is that it closely reflects the structure of optimization problems witnessed
in practice. Precisely for this reason, facility location problems are studied in a wide variety
of settings that better reflect typical constraints imposed on the problem, including the
capacitated version [23, 22, 32, 6, 4] that places an upper bound on the number of clients
assigned to an open facility, online and/or dynamic variants [10, 14, 12, 24], mobile facility
location [3], planar versions [28], fusion with network design problems [29, 30, 1], and the
lower-bounded version that imposes a lower bound on the number of clients assigned to an
open facility [26]. Yet, in conjunction with parity constraints, it was not previously known
how this problem behaves on the other hand.

This paper aims at filling this gap. In the O-facility location problem, a subset of facilities
O is specified as part of the input in addition to the usual input for the unconstrained
facility location problem. The goal of the problem is still to find a minimum-cost subset of
open facilities with a clustering of the clients, but now we also need to ensure an additional
constraint that the number of clients assigned to each open facility i must be odd if i ∈ O,
and must be even if i /∈ O. Note that this version of the problem definition is equivalent to
a version in which we allow three types of parity constraints: unconstrained in addition to
odd and even. (See Appendix A for a simple equivalence argument.) It is regrettable that
we do not have a proper understanding of this generalized version to this date, especially
when we consider its practical relevance. In many problems that seek an optimal clustering,
we sometimes have a strong preference for either parity of the cluster sizes. For example,
Ahamad and Ammar [2] demonstrate that the performance of a distributed database system
(DDBS), measured by success rates and mean response times, depends on the parity of the
number of storage sites. In fact, this preferred parity is determined as a function of the server
failure rates and the ratio between the number of read and write transactions. Thus, the
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task of clustering a given set of storage sites into multiple instances of distributed database
systems, which host different applications whose parameters vary, can be formulated as an
O-facility location problem. Preference on a particular parity can also be witnessed in other
distributed system design settings (see, e.g., [38]).

In this paper, we present the first constant-factor approximation algorithms for the
parity-constrained facility location problem: first for the special case where every facility is
even-constrained, and then for the general case. Let ρFL be the approximation ratio of an
algorithm for the unconstrained facility location problem.

I Theorem 1. There exists a randomized 2ρFL-approximation algorithm for the ∅-facility
location problem.

I Theorem 2. There exists a (3ρFL + 2)-approximation algorithm3 for the O-facility location
problem for arbitrary O.

The difficulty of the classic unconstrained facility location problem lies in the fact that it
is a “joint optimization” problem: it is trivial to find an optimal assignment when the set
of open facilities is given, but the simultaneous optimization of the choice of open facilities
along with the assignment makes the problem difficult and, in fact, NP-hard. The O-facility
location problem is a generalization of the unconstrained facility location problem and
therefore inherits this difficulty. Moreover, even when the set of open facilities is given, it
is not as trivial to find an optimal assignment for this problem (although polynomial-time
solvable).

In order to obtain good approximation algorithms for the unconstrained facility location
problem, many algorithmic tools have been used. In particular, linear programming (LP)
relaxations and methods based on them have been successful [36, 19, 18, 8, 25]. Unfortunately,
however, the O-facility location problem does not appear directly amenable to LP-based
techniques, and it is easy to show that the standard LP relaxation devised in the context of
the unconstrained problem has an unbounded integrality gap, i.e., the LP optimum can be
away from the true optimum by an arbitrarily large factor. In fact, even the integral optimum
to the unconstrained instance obtained by dropping the parity constraints can be arbitrarily
away from the true optimum.4 Despite this gap, we will prove that the approximation
algorithms for the unconstrained facility location problem can serve as a useful subroutine of
an approximation algorithm for the parity-constrained generalization.

In Section 3, we present a “warm-up” approximation algorithm for the all-even case, i.e.,
O = ∅. The algorithm begins with finding a minimum perfect matching on the set of clients.
Using the fact that every facility is assigned an even number of clients in an optimal solution,
we can “shortcut” the optimal solution into a perfect matching, bounding the minimum cost
of a perfect matching. We then reduce the given problem to an instance of the unconstrained
facility location problem by designating one of the two matched clients as the representative,
at the cost of a constant multiplicative factor in the approximation ratio.

This clean approach, however, crucially relies on the fact that every facility is even-
constrained, and does not extend to the general case. This necessitates a different approach,
which is presented in Section 4. The first step of our algorithm for the general case is to
drop the parity constraints and solve this instance using an algorithm for the unconstrained

3 A (somewhat loose) calculation of the approximation ratio gives 6.464.
4 Consider an instance with two pairs of an even-constrained facility and a client, where the distance
within each pair is zero and one across. Both opening costs are zeroes.
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problem.5 The unconstrained optimum is a lower bound on the true optimum, but as
was noted earlier, it may be arbitrarily smaller. We show that the parity violation of the
unconstrained initial solution can be repaired by performing a set of three types of operations:
reassigning one client from an open facility to another, opening a new facility, and closing
down an open facility after reassigning all its clients to another facility. It is easy to show
that all three types of these operations are essential for repairing parity violation. Among
them, the last type of operation is particularly costly as it involves the reassignment of
multiple clients; however, we observe that it suffices to permit the third type of operation
only when the facility is odd-constrained, and this allows such a set of operations to be
encoded as a sparse T -join on an auxiliary graph (that unfortunately does not satisfy the
triangle inequality). The auxiliary graph has three types of edges corresponding to the three
types of operations. The key step of the analysis is then to show that the minimum cost of a
T -join on the auxiliary graph is bounded by a combination of the initial solution (despite
the gap) and an optimal solution.

Future Directions. One of the interesting questions that follow this paper is whether we can
write an algorithmically useful LP relaxation for the O-facility location problem. As we could
use an LP-based approximation algorithm for the unconstrained facility location problem as a
subroutine of our algorithm, one could say that our algorithm can technically be an LP-based
algorithm; this, of course, is not a satisfactory answer. Rather than having to solve an LP
relaxation which itself is parameterized by a rounded integral solution to another relaxation
(which is the case for our algorithm), it would be interesting to have a single relaxation
that can be separated in polynomial time and solved to obtain an O(1)-approximate lower
bound on the optimum. Recall that, for the minimum-cost T -join problem, an exact and
polynomial-time separable relaxation exists [11].

Another intriguing future direction is in introducing parity constraints to further com-
binatorial optimization problems. A natural first target could be the k-median problem.
As we noted earlier, there remain many parity-constrained optimization problems yet to be
studied. We envision that a further understanding of our algorithm, particularly if we can
positively answer our first open question, may lead to extending our knowledge to other
parity-constrained optimization problems.

2 Preliminaries

Problem Definition. As the input of the O-facility location problem, we are given a set of
facilities F , a set of clients D, opening costs f : F → Q≥0, assignment costs6 c :

(
F∪D

2
)
→ Q≥0

satisfying the triangle inequality, and a set of facilities O ⊆ F that, if open, are required to
be assigned odd number of clients.

A feasible solution to the problem is given by a set of open facilities S ⊆ F and an
assignment of clients σ : D → S to the open facilities. In order for (S, σ) to be a feasible
solution, it must satisfy the parity constraints: for all i ∈ S ∩O, |σ−1(i)| must be odd; for all
i ∈ S ∩O, |σ−1(i)| must be even. The objective is to find a feasible solution that minimizes
the total solution cost, defined as

∑
i∈S f(i) +

∑
j∈D c(σ(j), j).

5 The analysis in Section 4 treats the algorithm for the unconstrained problem as a black box; using a
bi-factor approximation algorithm will lead to a further improvement in the approximation ratio.

6 Assignment costs are sometimes defined only between facilities and clients. In this “bipartite” case,
the domain of c will be defined as F ×D instead. These two definitions, however, are equivalent, since
we can deduce inter-facility (and inter-client) distances by computing the metric closure of the given
“bipartite” assignment cost.
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An Equivalent Problem Definition. Alternatively, we can define our problem as taking a
parity constraint function π : F → {odd, even, unconstrained} instead of O. In this case, the
parity constraint is redefined as follows: for each i ∈ S, |σ−1(i)| must be odd if π(i) = odd
and even if π(i) = even. If π(i) = unconstrained, we do not impose any parity constraints
on |σ−1(i)|.
I Observation 3. The two problem definitions are equivalent.
Its proof is deferred to Appendix A. Note that this observation also shows the NP-hardness
of the O-facility location problem.

Notation. To simplify the presentation, we introduce the following shorthands: for any
S ⊆ F , let f(S) :=

∑
i∈S f(i), and for any σ : D → S, let c(σ) :=

∑
j∈D c(σ(j), j).

Using this notation, the objective function of the problem can be rewritten as f(S) + c(σ).
For D′ ⊆ D and σ : D → S, let σ|D′ : D′ → S denote the restriction of σ to D′ as
the new domain, i.e., σ|D′(j) = σ(j) for all j ∈ D′. Accordingly, c(σ|D′) is defined as
c(σ|D′) :=

∑
j∈D′ c(σ|D′(j), j) =

∑
j∈D′ c(σ(j), j). Let σ−1 : S → D denote the inverse

function of σ, i.e., σ−1(i) := {j ∈ D | σ(j) = i}. We will slightly abuse the notation by
letting σ−1(i) := ∅ for i ∈ F \ S.

Additional Definitions. Let G = (V,E) be a graph. For T ⊆ V , we say J ⊆ E is a T -join
if, for every vertex v ∈ V , the number of edges in J that are incident with v is odd if and
only if v ∈ T . Given a weighted graph, the minimum-cost T -join can be found in polynomial
time [11] (see also [33]).

Given T ⊆ V , we say U ⊆ V is T -odd if |U ∩ T | is odd, and Y ⊆ E is a T -join dominator
if, for every T -odd set U ⊆ V , there exists at least one edge in Y that has exactly one
endpoint in U . Equivalently, Y ⊆ E is a T -join dominator if and only if every connected
component of the graph (V, Y ) contains an even number of vertices from T .
I Lemma 4 ([11, 33]). Given a weighted graph G = (V,E) with T ⊆ V and a T -join
dominator Y , the minimum cost of a T -join on G is no greater than the cost of Y .

Given two sets P and Q, let P4Q denote the symmetric difference of the sets, i.e.,
P4Q := (P \Q) ∪ (Q \ P ). Finally, let AFL denote a ρFL-approximation algorithm for the
unconstrained facility location problem.

3 All-Even Case

In this section, we present a constant-factor approximation algorithm for a special case of
the problem where the parity constraint of every facility is even, i.e., O = ∅. We assume that
|D| is even in what follows; otherwise, the instance is infeasible.

Our Algorithm. We first find a minimum-cost perfect matching M? on D, using c as the
cost function. For each e ∈ M?, we independently choose one of the two endpoints of e
uniformly at random. Let je be the chosen client and ĵe be the remaining one. Let D′ be the
set of chosen clients, i.e., D′ = {je | e ∈M?}. We now construct an unconstrained facility
location instance where the client set is replaced with D′. The rest of the input (F , c, and
f) remains the same. We execute AFL on this instance; let SI ⊆ F and σI : D′ → SI denote
the solution returned by AFL. We construct a solution SALG and σALG : D → SALG to our
problem as follows: we choose SALG simply as SI . For each remaining client ĵe ∈ D \D′, we
assign ĵe to the same facility to which its pair is assigned, i.e.,

σALG(j) =
{
σI(j), if j ∈ D′,
σI(je), if j = ĵe for some e ∈M?.

ISAAC 2020
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Analysis. Now we show that this algorithm is a randomized 2ρFL-approximation algorithm
for the problem. It is easy to see that our algorithm returns a feasible solution since every
facility is assigned exactly twice the number of the clients it is assigned in σI . Fix an
arbitrary optimal solution to the original problem, and let SO ⊆ F and σO : D → SO denote
this solution.

I Lemma 5. There exists a matching M whose cost is no greater than c(σO).

Proof. Let i be a facility in SO. Observe that i is assigned an even number of clients in the
optimal solution: |σ−1

O (i)| is even. We can thus find a matching Mi on σ−1
O (i) by arbitrarily

pairing them, and the cost of Mi is at most
∑
j∈σ−1

O (i) c(i, j) since, for every (j1, j2) ∈ Mi,
c(j1, j2) ≤ c(i, j1) + c(i, j2). Choose M as the union of Mi for all i ∈ SO. The lemma now
follows from the fact that {σ−1

O (i)}i∈SO form a partition of D. J

I Lemma 6. E [c(σI) + f(SI)] ≤ ρFL ·
[
c(σO)

2 + f(SO)
]
.

Proof. Observe that (SO, σO|D′) is a feasible solution to the unconstrained classic facility loc-
ation instance. Let (SO′ , σO′) be an optimal solution to this instance, i.e., the unconstrained
problem where the client set is replaced with D′. Then, we have

E [c(σO′) + f(SO′)] ≤ E [c(σO|D′) + f(SO)] .

Since we constructed a perfect matching and chose one of the two endpoints of each
edge in the matching uniformly at random, the marginal probability that a client is in D′ is
exactly 1

2 ; thus we have

E [c(σO|D′) + f(SO)] =
∑
j∈D

c(σO(j), j) · Pr [j ∈ D′] + f(SO) = c(σO)
2 + f(SO),

where the first equality follows from the linearity of expectation. The desired conclusion
follows from the fact that AFL is a ρFL-approximation algorithm for the unconstrained facility
location problem. J

I Lemma 7. E [c(σALG) + f(SALG)] ≤ (ρFL + 1) · c(σO) + 2ρFL · f(SO).

Proof. Observe that we have c(σALG(ĵe), ĵe) ≤ c(σI(je), je) + c(je, ĵe) for every client ĵe ∈
D \D′ from the triangle inequality, yielding

c(σALG|D\D′) ≤ c(σI) + c(M?)

since M? is a perfect matching. We thus have

E [c(σALG) + f(SALG)] = E
[
c(σALG|D′) + c(σALG|D\D′) + f(SALG)

]
≤ E [c(σI) + c(σI) + c(M?) + f(SI)]
≤ (ρFL + 1) · c(σO) + 2ρFL · f(SO),

where the last inequality follows from Lemmas 5 and 6. J

I Theorem 1. There exists a randomized 2ρFL-approximation algorithm for the ∅-facility
location problem.

Proof. Immediate from Lemma 7. It is easy to observe that the algorithm runs in polynomial
time. J
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4 General Case

In this section, we consider the general O-facility location problem.

4.1 Our Algorithm
Outline. We start with a brief outline of our algorithm. As the first step of the algorithm,
we execute AFL for the unconstrained facility location problem on the given input, but with
its parity constraints dropped. Let SI ⊆ F and σI : D → SI be the algorithm’s output.
Note that (SI , σI) may be infeasible since we dropped the parity constraints; though, our
algorithm will use it as the “initial” solution and correct the parities at small cost.

The second step of our algorithm is to construct an auxiliary weighted graph G and a set
of vertices T ⊆ V (G). The construction is designed so that a T -join (almost) prescribes a
way to correct the parities. Naturally, our algorithm will find a minimum-cost T -join.

Then the last step of our algorithm is to modify the initial solution as indicated by the
minimum-cost T -join on the auxiliary graph. We first post-process the minimum-cost T -join
we found to obtain a sparse T -join. We will show that this sparsified T -join specifies a
“realizable” modification to the initial solution that restores the parity constraints.

In what follows, we describe the last two steps in more detail. As a final remark, we note
that the running time of our algorithm depends on that of AFL; given that LP-rounding
algorithms [36, 8, 25] typically yield better approximation ratios for the unconstrained
problem, the running time of our algorithm will be dominated by the LP solution time.
However, one could instead use primal-dual algorithms [19, 18] if faster running time is
preferred.

Construction of the Auxiliary Graph. We say a facility i ∈ SI is invalid if its parity
constraint is violated in the initial solution. Let Sinv denote the set of invalid facilities, i.e.,
Sinv := {i ∈ SI ∩O | |σ−1

I (i)| is even} ∪ {i ∈ SI ∩O | |σ−1
I (i)| is odd}.

The vertex set of the auxiliary graph G is F ∪ {z} for an artificial vertex z /∈ F . Let E
be the edge set of the auxiliary graph and γ : E → Q≥0 be the edge cost. The following are
three types of edges that we create in G.

(reassign edges) For each pair of distinct facilities i, i′ ∈ F , we create an edge (i, i′) in the
auxiliary graph with cost γ(i, i′) := c(i, i′).
(opening edges) For each odd-constrained, initially closed facility i ∈ O \ SI , we create an
edge (z, i) with cost γ(z, i) := f(i).
(closing edges) This last type of edges is created only if |SI | ≥ 2 or |O \ SI | ≥ 1. For
each odd-constrained, initially open facility i ∈ O∩SI , we create an edge (z, i) with cost

γ(z, i) := min


min

i′∈SI\{i}

[∣∣σ−1
I (i)

∣∣ · c(i, i′)]
min

i′∈O\SI

[∣∣σ−1
I (i)

∣∣ · c(i, i′) + f(i′)
]
,

(1)

where min ∅ := +∞. Note that γ(z, i) is finite since we have |SI | ≥ 2 or |O \ SI | ≥ 1.

Finally, we choose T = Sinv if |Sinv| is even; we choose T = Sinv ∪ {z} otherwise.
We remark that this auxiliary graph does not satisfy the triangle inequality, and hence a

minimum-cost T -join may be cheaper than a minimum-cost perfect matching on the subgraph
induced by T . For notational convenience, for a set E′ ⊆ E, let γ(E′) :=

∑
e∈E′ γ(e).

Intuitively speaking, if the T -join chooses a reassign edge (i, i′), it is instructing us to
reassign a client between i and i′; an opening edge (z, i) corresponds to opening an initially
closed facility i; finally, a closing edge (z, i) corresponds to closing down an initially open

ISAAC 2020
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facility i. Although we will formally describe this correction procedure later, here we introduce
one more definition: if we decide to close down a facility i, we will need to reassign all clients
that were previously assigned to i to some other facility. This facility is called the substitute
of i. The substitutes are selected as the facilities that attain the minimum in (1). That is,
for each closing edge (z, i), the substitute of i, denoted by φ(i), is given as follows (ties are
broken arbitrarily when the arg min has more than one element):

φ(i) ∈


arg min
i′∈SI\{i}

[∣∣σ−1
I (i)

∣∣ · c(i, i′)] , if γ(z, i) = min
i′∈SI\{i}

[∣∣σ−1
I (i)

∣∣ · c(i, i′)] ,
arg min
i′∈O\SI

[∣∣σ−1
I (i)

∣∣ · c(i, i′) + f(i′)
]
, otherwise.

(2)

Sparsifying the T -join. Given a minimum T -join J , we examine whether any of the following
operations can be performed; if so, we perform the operation and repeat. We terminate when
none of the operations can be applied any more.
(i) If (i, i1), (i, i2) ∈ J for some i, i1, i2 ∈ F , remove (i, i1) and (i, i2) from J and add (i1, i2)

instead.
(ii) If (z, i) ∈ J for some open odd-constrained facility i and (z, φ(i)) ∈ J , remove (z, i)

and (z, φ(i)) from J and add (i, φ(i)) instead. (Note that the condition implies that
(z, i) is a closing edge and φ(i) is, therefore, well-defined.)

(iii) If J contains a cycle, remove all edges on the cycle.

Parity Correction. The final step of the algorithm is to modify the initial solution as
prescribed by the sparsified T -join J . The parity correction is performed in the following
three substeps:
1. Firstly, for each opening edge (z, i) ∈ J , open i and remove (z, i) from J .
2. Secondly, for each reassign edge (i1, i2) ∈ J , reassign one arbitrary client from one of the

two facilities to the other and remove (i1, i2) from J as follows:
if (z, i1) ∈ J (or (z, i2) ∈ J), reassign from i1 to i2 (or from i2 to i1, respectively);
otherwise, at least one of these facilities is guaranteed to be currently assigned at least
one client; reassign from that facility to the other.

3. Lastly, for each closing edge (z, i) ∈ J , close i and reassign all clients currently assigned
to i to φ(i); if necessary, open φ(i). Remove (z, i) from J .

4.2 Analysis of the Sparsification and Parity Correction
In this section, we show that a sparsified T -join, unlike a general T -join, prescribes a cheap
modification for correcting the invalid facilities in the initial solution. We first prove that
the sparsification does not increase the cost of a T -join. We will slightly abuse the notation
and treat a T -join J interchangeably as a graph (F ∪ {z}, J). For x ∈ F ∪ {z}, let degJ(x)
denote the degree of x in such a graph J .

I Lemma 8. The given sparsification procedure yields a T -join of no greater cost.

Proof. It suffices to prove that each single operation produces a T -join of no greater cost,
and the lemma follows from the induction on the number of operations. Observe that, for
every vertex x ∈ F ∪ {z}, the parity of degJ (x) remains the same when we apply any of the
three operations. It remains to show that all three operations never increase the cost of J .
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Consider Operation (i) that replaces (i, i1) and (i, i2) with (i1, i2). The net increase in
the cost is

γ(i1, i2)− [γ(i, i1) + γ(i, i2)] = c(i1, i2)− [c(i, i1) + c(i, i2)] ≤ 0,

where the inequality follows from the triangle inequality.
Operation (iii) does not increase the cost of J since all costs are nonnegative.
Now consider Operation (ii). We can assume without loss of generality that AFL returns

a solution such that i ∈ SI implies σ−1
I (i) 6= ∅. (Otherwise, we can simply exclude i from

SI .) Since (z, i) is a closing edge, (1) and (2) imply that

γ(z, i) ≥
∣∣σ−1
I (i)

∣∣ · c(i, φ(i)) ≥ c(i, φ(i)) = γ(i, φ(i)).

The operation does not increase the cost of J since γ(z, φ(i)) ≥ 0. J

Following are the key sparsity observations we will use in the parity correction step. Let
J denote the sparsified T -join on which no further operation was possible.

I Observation 9. For all i ∈ F , i is adjacent in J with at most one vertex in F .

Proof. If i were adjacent in J with more than one facility, say, i1 and i2, edges (i, i1) and
(i, i2) would have been replaced with (i1, i2). J

I Observation 10. For all edges (i1, i2) ∈ J such that i1, i2 ∈ F , at least one of i1 and i2
belongs to SI , the set of initially open facilities.

Proof. Suppose towards contradiction that i1, i2 ∈ F \ SI . Since i1 /∈ T , there exists some
vertex x other than i2 that is adjacent with i1; we have x = z from Observation 9. Likewise,
we have (z, i2) ∈ J , leading to contradiction since {(i1, i2), (z, i1), (z, i2)} forms a cycle. J

I Observation 11. If a closing edge (z, i) is in J , we have (z, φ(i)) /∈ J .

Proof. Since (z, i) ∈ J is a closing edge, we know i is an open odd-constrained facility.
Suppose (z, φ(i)) ∈ J . Then (z, i) and (z, φ(i)) would have been replaced with (i, φ(i)),
leading to contradiction. J

We can now analyze the parity correction prescribed by J . Observations 9 and 10 show
that, when we process a reassign edge, the facility that gives a client does have at least one
client to give, and the facility that receives a client is open. Observation 11 proves that,
when we process a closing edge (z, i), the substitute φ(i) is indeed open and never got closed
by the algorithm. These arguments are formalized by the following lemma.

I Lemma 12. The corrected solution is a feasible solution. Moreover, the correction cost is
bounded by γ(J) from above.

Its full proof uses Observations 9, 10, and 11, which is deferred to Appendix A.

4.3 Bounding γ(J)
We show in this section that the cost of a minimum T -join in the auxiliary graph G is within
a constant factor of the optimum. Here we fix an arbitrary optimal solution SO ⊆ F and
σO : D → SO; let OPT := f(SO) + c(σO) denote its value. In the interest of a simpler
analysis, we will exhibit a T -join dominator Y ⊆ E such that γ(Y ) ≤ O(1) · OPT, rather
than explicitly constructing a set of reassignment/opening/closing operations to restore the
parity constraints.
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(A)

z

(B)

Figure 1 (A): An initial solution (SI , σI) and an optimal solution (SO, σO). A facility (and a
client) is represented as a square (and a circle, respectively). Odd-constrained facilities have red
dashed borders; even-constrained ones have navy-blue solid borders. The upper-right triangle is
filled with black if the facility is open in the initial solution; the lower-left triangle is filled with gray
if it is open in the optimal solution. Assignments in the initial solution are marked with black solid
lines; assignments in the optimal solution are gray solid lines.
(B): A T -join dominator Y . If a facility i is in Sinv, it is marked with a thicker border. Every edge
in Y1 is drawn as a green densely-dotted line; Y2 as a navy-blue loosely-dotted line; and Y3 as a
coral solid line. The remaining closing edges are drawn as black thin solid lines. (We omitted the
remaining reassign edges.)

We construct Y as the union of three edge sets Y1, Y2, and Y3, each of which is a subset of
reassign edges, opening edges, and closing edges, respectively. Compared to the first two types
of edges, closing edges are more expensive. (Recall that their costs contain a multiplicative
factor given by the number of clients a facility is assigned in the initial solution.) Hence, in
constructing Y3, edges must be used much more sparingly compared to the first two sets.
We will, however, show that a careful choice of closing edges ensures that the cost of Y3 can
be charged against 2 · OPT, while maintaining the required cut connectivity for Y to be a
T -join dominator. The three edge sets are defined as follows. (See Figure 1.)

For each client j ∈ D, we add an edge to Y1 between the facility j is assigned to in the
initial solution and the facility j is assigned to in the fixed optimal solution. If both
facilities are the same, we just ignore the client rather than creating a loop.
Let Y2 be the set of edges between z and each odd-constrained facility that is closed in
the initial solution but open in the optimal solution.
Let C be the set of connected components C in (F ∪ {z}, Y1 ∪ Y2) such that C does not
contain z and is T -odd, i.e.,

C := {C | C is a conn. comp. in (F ∪{z}, Y1∪Y2), z /∈ V (C), and |V (C)∩T | is odd},

where V (C) denotes the set of vertices in C. For each component C ∈ C, pick an arbitrary
odd-constrained facility iC ∈ V (C) that is open in the initial solution but closed in the
optimal solution. We thus have iC ∈ V (C)∩O ∩ SI \ SO. We now define Y3 as the set of
edges between z and iC for all C ∈ C.

The following observation holds since, if a client is assigned to different facilities in the
initial and optimal solutions, we have an edge in Y1 between these facilities, placing them in
the same connected component in C.
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I Observation 13. For each C ∈ C, let nCI (and nCO) be the number of clients assigned to a
facility in V (C) by the initial solution (and by the optimal solution, respectively). We then
have nCI = nCO.

In order to show that Y is a T -join dominator, it suffices to prove that iC can be chosen
for every connected component C ∈ C. Suppose that iC is well-defined for each C ∈ C. Then,
in the graph (F ∪{z}, Y1∪Y2∪Y3), every connected component that does not contain z must
contain an even number of vertices in T , since otherwise, an edge in Y3 would have connected
this component to z. That is, the only connected component in (F ∪ {z}, Y1 ∪ Y2 ∪ Y3) that
may have an odd number of vertices in T is the one that contains z; however, since |T | is
even, this component also has even number of vertices in T . The conclusion now follows
from the definition of a T -join dominator.

I Lemma 14. For each connected component C ∈ C, there exists an odd-constrained facility
that is open in the initial solution but closed in the fixed optimal solution.

Proof. From construction, for any facility i that is closed in both solutions, i cannot be
incident with any edges in Y1 or Y2. Such facility i, therefore, forms a singleton connected
component in (F ∪ {z}, Y1 ∪ Y2) and we have i /∈ T . Thus, for the T -odd component C, we
have that every facility in V (C) must be open in at least one of the two solutions.

Suppose towards contradiction that there does not exist an odd-constrained facility in
V (C) that is open in the initial solution but closed in the fixed optimal solution. That is,
every facility i ∈ V (C) that is open only in the initial solution is even-constrained.

If some facility i ∈ V (C) is open only in the optimal solution, i cannot be odd-constrained:
otherwise, the opening edge (z, i) would be in Y2, contradicting C ∈ C. So we now have that
every facility i ∈ V (C) that is open only in one of the two solutions is even-constrained.
In other words, every facility in V (C) is either even-constrained or open in both solutions.
This, together with nCO =

∑
i∈V (C) |σ

−1
O (i)| and the fact that the optimal solution satisfies

all parity constraints, implies that the parity of nCO is the same as that of |V (C) ∩O|.
On the other hand, since V (C) contains invalid facilities, we have that the parity of

nCI is equal to that of |V (C) ∩ O|+ |V (C) ∩ Sinv|. From Observation 13, this implies that
|V (C) ∩ Sinv| is even, contradicting the fact that C is T -odd. J

To argue that the closing edge (z, iC) indeed exists in G, we need to verify that |SI | ≥ 2
or |O \ SI | ≥ 1. Note that |SI | ≥ 1 as long as D 6= ∅.

I Lemma 15. If |SI | = 1 and O \ SI = ∅, we have C = ∅.

Proof. Suppose towards contradiction that |SI | = 1, O\SI = ∅, and C ∈ C. Since |V (C)∩T |
is odd, we can choose some i ∈ V (C) ∩ T . Moreover, we have i ∈ T \ {z} = Sinv ⊆ SI since
z /∈ V (C).

Now we claim that V (C) = {i}. Suppose not. Let i′ be an arbitrary facility in V (C) \ {i}.
Since SI = {i}, we have i′ /∈ SI . This, together with O \ SI = ∅, yields i′ ∈ O. Since C does
not contain z, we have (z, i′) /∈ Y2, showing i′ /∈ SO. Recall from the proof of Lemma 14 that
a facility in V (C) cannot be closed in both solutions.

Therefore, i must be open in the optimal solution because the clients assigned to i in SI
can only be assigned to i in SO. Since V (C) does not contain any facility that is closed in
the optimal solution, we cannot choose iC , contradicting Lemma 14. J

Now we bound the cost of Y .
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I Observation 16. We have γ(Y1) ≤ c(σI) + c(σO).

Proof. By the definition of Y1, for every edge (i, i′) ∈ Y1, there exists a client j such that
σI(j) = i and σO(j) = i′, yielding that γ(i, i′) = c(i, i′) ≤ c(i, j) + c(i′, j). We thus have

γ(Y1) =
∑

(i,i′)∈Y1

γ(i, i′) ≤
∑
i∈F,

j∈σ−1
I (i)

c(i, j) +
∑
i′∈F,

j∈σ−1
O (i′)

c(i′, j) = c(σI) + c(σO). J

I Observation 17. We have γ(Y2) ≤ f(SO).

Proof. Note that the cost of each edge (z, i) ∈ Y2 is the opening cost of i and we add (z, i)
to Y2 only if i ∈ SO \ SI . J

I Lemma 18. We have γ(Y3) ≤ c(σI) + c(σO) + f(SO).

Proof. Let C be an arbitrary connected component in C. By Lemma 14, iC is well-defined.
Let BC ⊆ D be the set of the clients that are assigned to iC in the initial solution, i.e.,
BC := σ−1

I (iC).
We claim that BC can be partitioned into two sets BCopen and BCec where the former is a set

of clients assigned in the optimal solution to a facility which is also open in the initial solution
and the latter is to a facility which is even-constrained and closed in the initial solution.
For each j ∈ BC , consider σO(j) =: i′ ∈ SO. Note that i′ ∈ V (C) from the construction of
Y1. If i′ is open in the initial solution, since iC is closed in the optimal solution, we have
i′ ∈ SI \ {iC}. Otherwise, since i′ is open in the optimal solution but (z, i′) was not chosen
in Y2, it must be the case that i′ is even-constrained. Thus, to reiterate,

BCopen :=
{
j | σI(j) = iC and σO(j) ∈ (SI \ {iC}) ∩ V (C)

}
;

BCec :=
{
j | σI(j) = iC and σO(j) ∈ (O \ SI) ∩ V (C)

}
.

Let λ :=
∣∣BCopen

∣∣ / ∣∣BC∣∣. Since BCopen and BCec forms a partition of BC , we have 0 ≤ λ ≤ 1
and

∣∣BCec
∣∣ / ∣∣BC∣∣ = 1− λ.

Now we bound γ(z, iC) from above using the assignment costs (in both solutions) of the
clients in BC , along with the opening costs of V (C) ∩ SO.

Assume for now that λ > 0. Then we have

c(σI |BC
open

) + c(σO|BC
open

) =
∑

j∈BC
open

c(iC , j) +
∑

j∈BC
open

c (σO(j), j)

≥
∑

j∈BC
open

c
(
iC , σO(j)

)
≥
∣∣BCopen

∣∣ · min
i′∈SI\{iC}

c(iC , i′)

= λ · min
i′∈SI\{iC}

[∣∣σ−1
I (iC)

∣∣ · c(iC , i′)] , (3)

where the first inequality holds due to the triangle inequality and the second inequality is
from the fact that, for every j ∈ BCopen, we have σO(j) ∈ SI \ {iC}. Note that the above
trivially holds if λ = 0.

Now suppose for the moment that λ < 1. Let SCec be the set of the facilities that are
assigned a client from BCec in the optimal solution, i.e., SCec :=

{
σO(j) | j ∈ BCec

}
. Let iec be

the closest facility from iC in SCec. We then have the following:
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c(σI |BC
ec

) + c(σO|BC
ec

) + f(SCec) =
∑
j∈BC

ec

c(iC , j) +
∑
j∈BC

ec

c (σO(j), j) +
∑
i∈SC

ec

f(i)

≥
∑
j∈BC

ec

c
(
iC , σO(j)

)
+
∑
i∈SC

ec

f(i)

≥
∣∣BCec

∣∣ · c(iC , iec) + f(iec)
≥ (1− λ) ·

[∣∣σ−1
I (iC)

∣∣ · c(iC , iec) + f(iec)
]

≥ (1− λ) · min
i′∈O\SI

[∣∣σ−1
I (iC)

∣∣ · c(iC , i′) + f(i′)
]
. (4)

Again, the above trivially holds when λ = 1. Combining (3) and (4) yields

c(σI |BC ) + c(σO|BC ) + f(SCec) ≥ γ(z, iC).

It is noteworthy that BC ’s for C ∈ C are mutually disjoint since a client can be assigned
to exactly one facility. We can also observe that SCec’s are mutually disjoint because each
facility belongs to at most one connected component in C. We thus have

γ(Y3) =
∑
C∈C

γ(z, iC) ≤
∑
C∈C

(
c(σI |BC ) + c(σO|BC ) + f(SCec)

)
≤ c(σI) + c(σO) + f(SO).J

I Lemma 19. There exists a T -join J in G whose cost is at most 2·(c(σI) + c(σO) + f(SO)).7

Proof. Immediate from Lemmas 4, 14 and 18, and Observations 16 and 17. J

We can now prove our main theorem.

I Theorem 2. There exists a (3ρFL + 2)-approximation algorithm for the O-facility location
problem.

Proof. Immediate from Lemmas 12 and 19. Note that our algorithm returns a feasible
solution of cost at most

(c(σI) + f(SI)) + 2 · (c(σI) + c(σO) + f(SO)) ≤ (3ρFL + 2) · OPT,

since c(σI)+f(SI) ≤ ρFL ·OPT. It can be easily verified that the algorithm runs in polynomial
time. J
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A Deferred Proofs

This appendix presents the deferred proofs.

I Observation 3. The two problem definitions are equivalent.

Proof. Given an O-facility location problem instance, simply by defining the parity constraint
π as

π(i) :=
{

odd, if i ∈ O,
even, otherwise,

we arrive at an equivalent instance of the second form, i.e., the form where unconstrained
facilities are allowed. Now suppose that we are given an instance of the second form. We
create two copies of every facility i such that π(i) = unconstrained and put exactly one of
these two copies into O, in addition to the facilities i with π(i) = odd. Since all opening
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costs are nonnegative, we can assume without loss of generality that an optimal solution to
the new instance will open at most one copy of the duplicates. This shows the equivalence of
the two problem definitions. J

I Lemma 12. The corrected solution is a feasible solution. Moreover, the correction cost is
bounded by γ(J) from above.

Proof. We say a facility i has the incorrect parity in a solution (S, σ) if the parity constraint
of the facility is violated in the “current” solution. (This definition differs from the invalid
facilities, which are fixed as the facilities with the incorrect parities in the initial solution.)
We show the feasibility of the corrected solution by establishing invariants throughout the
parity correction procedure. We will modify the procedure so that it now modifies T in
addition to J in each iteration. The invariants are the following:

J is a T -join in the auxiliary graph, and
T \ {z} is exactly the set of facilities having the incorrect parities.

Observe that |J | decreases by one in each iteration; the corrected solution is, therefore,
feasible since the empty set of edges is an ∅-join. The correction cost will be bounded
by showing that the cost incurred in each iteration can be covered by the cost of the
corresponding edge removed from J . Recall that we start with the sparsified T -join J where
T \ {z} = Sinv; it is clear that both invariants initially hold.

Now we start erasing the edges from J . Here we remark that, given a T -join J and an
edge (i1, i2) ∈ J , J \ {(i1, i2)} is a T4{i1, i2}-join since the degrees of i1 and i2 decrease
by one.

Let us consider the first substep. For each opening edge (z, i) ∈ J , we open facility
i in the solution, remove (z, i) from J , and update T ← T4{z, i}. It can be easily seen
that J is still a T -join. By the construction of the auxiliary graph, facility i is closed in
the initial solution and hence i /∈ T at the beginning of this iteration. Moreover, since i is
odd-constrained at the same time, after opening i, this facility enters the set of facilities
having the incorrect parities, establishing the second invariant. Observe that the cost for
opening i can be covered by γ(z, i). At this point after completing the first substep, any
facility i with degJ (i) 6= 0 is currently open. To observe this fact, consider the initial sparse
T -join J before the first substep. If any i /∈ SI has a nonzero degree, the degree must be
at least two since i /∈ T . This implies (from Observation 9) that (z, i) must have been in J ,
which causes i to be opened during the first substep.

Next, for each reassign edge (i1, i2) ∈ J , we transfer a client j from one of the two facilities
to the other. We then remove (i1, i2) ∈ J and update T ← T4{i1, i2}. By Observation 10,
at least one of i1 and i2 was open in SI . Recall that we can assume without loss of generality
that AFL returns a solution such that i ∈ SI implies σ−1

I (i) 6= ∅. Thus, we can always choose
a client j to be reassigned. (Note that Observation 9 shows that every facility can participate
in at most one reassignment.) Since exactly one client is reassigned, the parities of i1 and i2
are flipped and the second invariant is maintained. Note that the cost of reassigning j from,
say, i1 to i2 is −c(i1, j) + c(i2, j) ≤ c(i1, i2) = γ(i1, i2) from the triangle inequality. If the
reassignment is from i2 to i1, the symmetric argument holds.

Let us now consider the last substep where we handle closing edges. For each closing
edge (z, i) ∈ J , we close i and reassign all the clients currently assigned to i to its substitute
φ(i). We then remove (z, i) from J and update T ← T4{z, i}.

Consider the time point right before closing i. We claim that the number of clients
assigned to i is even. Due to the construction of the auxiliary graph, we have i ∈ O. Since
we have already processed (and removed) all reassign edges, i is adjacent with only z at



K. Kim, Y. Shin, and H.-C. An 21:17

the moment and thus is in T . This, from the induction hypothesis, implies that i has the
incorrect parity, i.e., i is assigned even number of clients. Therefore, reassigning all the
clients assigned to i to φ(i) would not change the parity of φ(i). (Note that, if φ(i) was
closed at the beginning, then φ(i) ∈ O \ SI ⊆ O.) With the fact that i becomes closed at
this iteration, this shows that both invariants hold.

We finally verify that the correction cost here is no more than γ(z, i). Recall that we close
facility i and reassign every client j assigned to i to φ(i). Thus, the change of the assignment
cost for each j is exactly −c(i, j) + c(φ(i), j). As argued above, by the triangle inequality,
we know that this value can be bounded by c(i, φ(i)) from above. We can thus see that the
total assignment cost may increase by at most |σ−1

I (i)| · c(i, φ(i)) since the number of clients
assigned to i does not increase during the previous substeps. (During the second substep,
when we process (i1, i2) and find that one of the facilities, say i1, is adjacent with z in J , we
reassigned a client from i1 to i2.) If φ(i) was closed at the beginning of the correction, we
may need to open φ(i), but γ(z, i) already pays for it. If φ(i) was open, by Observation 11,
we know φ(i) will never be closed. These together imply that the correction cost is no greater
than γ(z, i). J
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