
© 2021 Sahand Mozaffari



ODD MULTIWAY CUT IN DIRECTED ACYCLIC GRAPHS

BY

SAHAND MOZAFFARI

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2021

Urbana, Illinois

Adviser:

Assistant Professor Karthekeyan Chandrasekaran



ABSTRACT

We investigate the odd multiway node (edge) cut problem where the input is a graph
with a specified collection of terminal nodes and the goal is to find a smallest subset of
non-terminal nodes (edges) to delete so that the terminal nodes do not have an odd length
path between them. In an earlier work, Lokshtanov and Ramanujan showed that both
odd multiway node cut and odd multiway edge cut are fixed-parameter tractable (FPT)
when parameterized by the size of the solution in undirected graphs. In this work, we
focus on directed acyclic graphs (DAGs) and design a fixed-parameter algorithm. Our main
contribution is a broadening of the shadow-removal framework to address parity problems
in DAGs. We complement our FPT results with tight approximability as well as polyhedral
results for 2 terminals in DAGs. Additionally, we show inapproximability results for odd
multiway edge cut in undirected graphs even for 2 terminals.

ii



ACKNOWLEDGMENTS

The author would like to thank his advisor Professor Karthekeyan Chandrasekaran for
many helpful conversations and his support throughout this work.

iii



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

CHAPTER 2 FIXED-PARAMETER TRACTABILITY OF ODDMULTIWAY-
NODECUT IN DAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Easy Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Parity-Preserving Torso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Difficult Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

CHAPTER 3 (S → T )-ODDPATHNODEBLOCKER IN DAGS . . . . . . . . . 20
3.1 Hardness of Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Approximation and Integrality Gap . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Extreme Point Structure of the Odd Path Cover Polyhedron . . . . . . . . . 23

CHAPTER 4 {S, T}-ODDPATHEDGEBLOCKER IN UNDIRECTED GRAPHS 26
4.1 Hardness of Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Integrality Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

CHAPTER 5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

APPENDIX A EQUIVALENCE OF ODDMULTIWAYEDGECUT AND ODD-
MULTIWAYNODECUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

iv



CHAPTER 1: INTRODUCTION

In the classic {s, t}-cut problem, the goal is to delete the smallest number of edges so
that the resulting graph has no path between s and t. A natural generalization of this
problem is the multiway cut problem, where the input is a graph with a specified set of
terminal nodes and the goal is to delete the smallest number of non-terminal nodes/edges
so that the terminals cannot reach each other in the resulting graph. In this work, we
consider a parity variant of the multiway cut problem. A path1 is an odd-path (even-path) if
it has an odd (even) number of edges. In the OddMultiwayNodeCut (similarly, Odd-
MultiwayEdgeCut), the input is a graph with a collection of terminal nodes and the
goal is to delete the smallest number of non-terminal nodes (edges) so that the resulting
graph has no odd-path between the terminals. This is a generalization of {s, t}-OddPath-
NodeBlocker (and similarly, {s, t}-OddPathEdgeBlocker), which is the problem of
finding a minimum number of nodes (edges) that are disjoint from s and t that cover all
s− t odd-paths.

Covering and packing paths has been a topic of intensive investigation in graph theory
as well as polyhedral theory. Menger’s theorem gives a perfect duality relation for covering
s− t paths: the minimum number of nodes (edges) that cover all s− t paths is equal to the
maximum number of node-disjoint (edge-disjoint) s − t paths. However, packing paths of
restricted kinds has been observed to be a difficult problem in the literature. One special
case is when the paths are required to be of odd-length for which many structural results
exist [1, 2, 3]. In this work, we study the problem of covering s − t odd-paths and more
generally all odd-paths between a given collection of terminals.

Covering s − t odd-paths in undirected graphs has been explored in the literature from
the perspective of polyhedral theory—e.g., see Chapter 29 in Schrijver’s book [3]. Given an
undirected graph G = (V,E) with distinct nodes s, t ∈ V and non-negative edge lengths,
we may find a shortest length s − t odd-path in polynomial time. The shortest s − t odd-
path problem can be reduced to the shortest s′ − t even-path problem by adding a new
source s′ and connecting it to the old source s. Edmonds gave a polynomial-time algorithm
for the shortest length s − t even-path problem by reducing it to the minimum-weight
perfect matching problem [4, 5, 6]. However, as observed by Schrijver and Seymour [7], his
approach of reducing to a matching problem does not extend to address other fundamental

1We emphasize that the term paths refers to simple paths and not walks. This distinction is particularly
important in parity-constrained settings, because the existence of a walk with an odd number of edges
between two nodes s and t does not imply the existence of an odd-path between s and t. This is in contrast
to the non-parity-constrained settings where the existence of a walk between s and t implies the existence
of a path between s and t.

1



problems about s − t odd-paths. One such fundamental problem is the {s, t}-OddPath-
EdgeBlocker problem. Towards investigating {s, t}-OddPathEdgeBlocker, Schrijver
and Seymour [7] considered the following polyhedron:

Podd-cover :=

{
x ∈ RE

+ :
∑
e∈P

xe ≥ 1 ∀ s− t odd-path P in G

}
. (1.1)

This leads to a natural integer programming formulation of {s, t}-OddPathEdgeBlocker:
min

{∑
e∈E xe : x ∈ Podd-cover ∩ ZE

}
. By Edmonds’ algorithm, we have an efficient sep-

aration oracle for Podd-cover and hence there exists an efficient algorithm to optimize over
Podd-cover using the ellipsoid algorithm [8]. It was known that the extreme points of Podd-cover

are not integral. Schrijver and Seymour [7] proved a conjecture of Cook and Sebő that all ex-
treme points of Podd-cover are half-integral. Schrijver and Seymour’s work also gave a min-max
relation for the maximum fractional packing of s − t odd-paths. However, their work does
not provide algorithms to address {s, t}-OddPathEdgeBlocker. In fact, to the best of
our knowledge, even the computational complexity of {s, t}-OddPathEdgeBlocker has
not been addressed in the literature.

In this work, we undertake a comprehensive study of OddMultiwayNodeCut and
OddMultiwayEdgeCut in directed acyclic graphs (DAGs). In addition to approxima-
bility, we focus on fixed-parameter tractability. Fixed-parameter algorithms have served
as an alternative approach to address NP-hard problems [9]. A fixed-parameter algorithm
for a problem decides all the problem’s instances of size n in time f(k) · nO(1) for some
computable function f , where k is some integer parameter. Fixed-parameter algorithms
for cut problems have provided novel insights into the connectivity structure of graphs [9].
The notion of important separators and the shadow-removal technique have served as the
main ingredients in the design of fixed-parameter algorithms for numerous cut problems
[10, 11, 12, 13, 14]. Our work also builds upon the shadow-removal technique to design
fixed-parameter algorithms but differs from known applications substantially owing to the
parity constraint. Parity-constrained cut problems have attracted much interest in the pa-
rameterized complexity community [15, 16, 17, 18] mainly due to their challenging nature:
indeed, designing fixed-parameter algorithms for parity-constrained cut problems sparked
the development of new and powerful techniques [15, 17, 18, 19, 20, 21, 22].

1.1 OUR CONTRIBUTIONS

The main focus of this work is the problem OddMultiwayNodeCut in directed acyclic

2



graphs (DAGs). Before describing the reason for focusing on DAGs among directed graphs,
we note that problems OddMultiwayNodeCut and OddMultiwayEdgeCut are equiv-
alent in directed graphs by standard reductions (e.g., see Lemma A.1). The reason we focus
on DAGs as opposed to all directed graphs is due to the following fact: it is NP-complete to
verify if a given directed graph has an s→ t odd-path (e.g., see LaPaugh-Papadimitriou [6]).
This fact already illustrates a stark contrast in the complexity between problem {s, t}-Odd-
PathEdgeBlocker in undirected graphs and problem (s→ t)-OddPathEdgeBlocker
in directed graphs: while in undirected graphs, verifying feasibility of a solution to {s, t}-
OddPathEdgeBlocker can be done in polynomial-time, verifying feasibility of a solution
to (s → t)-OddPathEdgeBlocker in directed graphs is NP-complete. However, there
exists a polynomial time algorithm to verify if a given directed acyclic graph (DAG) has an
s→ t odd-path (e.g., see Lemma 3.1). For this reason, we restrict our focus to DAGs.

Our main contribution is the first fixed-parameter algorithm for problem OddMultiway-
NodeCut in DAGs parameterized by solution size k. We complement the fixed-parameter
algorithm by showing NP-hardness and tight approximability results as well as polyhedral
results for the two-terminal variant, namely problem(s → t)-OddPathNodeBlocker, in
DAGs.

In addition to the above results for DAGs, we also show NP-hardness and an inapprox-
imability result for {s, t}-OddPathEdgeBlocker in undirected graphs.

1.2 RELATED WORK

We are not aware of any work on this problem in directed graphs. We describe the known
results in undirected graphs. A simple reduction2 from Vertex Cover shows that {s, t}-
OddPathNodeBlocker in undirected graphs is NP-hard and does not admit a (2 − ε)-
approximation for ε > 0 assuming the Unique Games Conjecture [23]. These hardness
results also hold for OddMultiwayNodeCut. The most relevant results to this work are
that of Lokshtanov and Ramanujan [16, 24]. They studied an extension of OddMultiway-
NodeCut and OddMultiwayEdgeCut that they termed as ParityMultiwayNode-
Cut (and ParityMultiwayEdgeCut)—the input is an undirected graph and two subsets
of terminals Te and To and the goal is to find the smallest number of non-terminal nodes
(edges) so that every node u ∈ To has no odd-path to any node in Te ∪ To and every node
u ∈ Te has no even-path to any node in Te ∪ To. Lokshtanov and Ramanujan designed

2Given an instance G of Vertex Cover, introduce two new nodes s and t that are adjacent to all nodes
in G to obtain a graph H. Then a set S ⊆ V (G) is a vertex cover in G if and only if S is a feasible solution
to {s, t}-OddPathNodeBlocker in H.

3



a fixed-parameter algorithm for ParityMultiwayNodeCut by reducing the problem to
OddMultiwayNodeCut and designing a fixed-parameter algorithm for OddMultiway-
NodeCut. However, their algorithmic techniques work only for undirected graphs and do
not extend to the case of OddMultiwayNodeCut in DAGs.

Lokshtanov and Ramanujan also showed that OddMultiwayEdgeCut is NP-hard in
undirected graphs for three terminals. However, their reduction is not an approximation-
preserving reduction. Hence the approximability of OddMultiwayEdgeCut in undirected
graphs merits careful investigation. In particular, the complexity of OddMultiwayEdge-
Cut in undirected graphs even for the case of two terminals has not been addressed in the
literature in spite of existing polyhedral work by Schrijver and Seymour [7] for this problem.

The subset odd cycle transversal problem (SubsetOCT) generalizes the OddMultiway-
NodeCut problem in undirected graphs. Here, the input is an undirected graph G with a
subset of vertices T and the goal is to determine a smallest subset of vertices that intersects
every odd cycle containing a vertex from T . Fixed-parameter algorithms for SubsetOCT
are also known in the literature [25].

1.3 RESULTS

Directed acyclic graphs. Recall that OddMultiwayNodeCut and OddMultiway-
EdgeCut are equivalent in DAGs by standard reductions. Hence, all of the following results
for DAGs hold for both problems.

The following is our main result.

Theorem 1.1. OddMultiwayNodeCut and OddMultiwayEdgeCut in DAGs can be
solved in 2O(k2) · nO(1) time, where k is the size of the optimal solution and n is the number
of nodes in the input graph.

In order to prove Theorem 1.1, we exploit the acyclic property of the input directed graph
to reduce the instance to an instance of Odd Cycle Transversal. In Odd Cycle
Transveral, the goal is to remove the smallest number of nodes to make an undirected
graph bipartite. Odd Cycle Transversal is fixed-parameter tractable when parame-
terized by the number of removed nodes. Our algorithm builds upon the shadow-removal
framework to accomplish the reduction to the Odd Cycle Transversal problem. We
view our technique as an illustration of the broad applicability of the shadow-removal frame-
work.

We complement our fixed-parameter algorithm in Theorem 1.1 with tight approximability
results for the special case of 2 terminals. We refer the reader to Table 1.1 for a summary of

4



the complexity and approximability results. Unlike the case of undirected graphs where there
is still a gap in the approximability of both problems {s, t}-OddPathEdgeBlocker and
{s, t}-OddPathNodeBlocker, we present tight approximability results for both problems
(s→ t)-OddPathEdgeBlocker and (s→ t)-OddPathNodeBlocker in DAGs:

Theorem 1.2. The following inapproximability and approximability results hold:

(i) (s → t)-OddPathNodeBlocker in DAGs is NP-hard, and has no efficient (2 − ε)-
approximation for any ε > 0 assuming the Unique Games Conjecture.

(ii) There exists an efficient 2-approximation algorithm for (s → t)-OddPathNode-
Blocker in DAGs.

We emphasize that our efficient 2-approximation algorithm for (s→ t)-OddPathEdge-
Blocker mentioned in Theorem 1.2 is a combinatorial algorithm and not LP-based. We
note that Schrijver and Seymour’s result [7] that all extreme points of Podd-cover are half-
integral holds only in undirected graphs and fails in DAGs—see Theorem 1.3 below. Con-
sequently, we are unable to design a 2-approximation algorithm using the extreme point
structure of the natural LP-relaxation of the path-blocking integer programming. Instead,
our approximation algorithm is combinatorial in nature. The correctness argument of our al-
gorithm also shows that the integrality gap of the LP-relaxation of the path-blocking integer
program is at most 2 in DAGs.

Theorem 1.3. The odd path cover polyhedron given by

Podd-cover-dir :=

{
x ∈ RE

+ :
∑
e∈P

xe ≥ 1 ∀ s→ t odd-path P in D

}
(1.2)

for directed acyclic graphs D = (V,E) is not necessarily half-integral.

Undirected graphs. We next turn our attention to undirected graphs. As mentioned in
Section 1.2, the problem {s, t}-OddPathNodeBlocker is NP-hard and does not admit
a (2 − ε)-approximation assuming the Unique Games Conjecture. We are unaware of a
constant-factor approximation for {s, t}-OddPathNodeBlocker. For {s, t}-OddPath-
EdgeBlocker, the results of Schrijver and Seymour [7] show that the LP-relaxation of a
natural integer linear programming formulation of {s, t}-OddPathEdgeBlocker is half-
integral and thus leads to an efficient 2-approximation algorithm. However, the complexity
of {s, t}-OddPathEdgeBlocker has not been addressed in the literature. We address
this gap in complexity by showing the following NP-hardness and inapproximability results.

5



Problem Undirected graphs DAGs

{s, t}-OddPathNodeBlocker (2− ε)-inapprox 2-approx (Thm. 1.2)
(2− ε)-inapprox (Thm 1.2)

{s, t}-OddPathEdgeBlocker LP is half-integral [7] LP is NOT half-integral
(Thm. 1.3)

2-approx [7] 2-approx (Thm. 1.2)
(65 − ε)-inapprox (Thm. 1.4) (2− ε)-inapprox (Thm 1.2)

OddMultiwayEdgeCut NP-hard for 3 terminals [16] 2O(k2) · poly(n) (Thm. 1.1)
(65 − ε)-inapprox for

two terminals (Thm 1.4)

OddMultiwayNodeCut 2O(k2) · poly(n) (Thm. 1.1)

Table 1.1: Complexity and approximability. Text in gray refers to known results while text
in black refers to the results from this work.

Theorem 1.4. {s, t}-OddPathEdgeBlocker is NP-hard and has no efficient (6/5− ε)-
approximation assuming the Unique Games Conjecture.

Organization. We summarize the preliminaries in Section 1.4. We devise the fixed-
parameter algorithms for DAGs (Theorem 1.1) in Section 2. We complement with ap-
proximability results for DAGs (Theorems 1.2 and 1.3) in Section 3. Next, we focus on
undirected graphs and present the inapproximability result (Theorem 1.4) in Section 4. We
conclude by discussing a few open problems in Section 5.

1.4 PRELIMINARIES

Let G be a (directed) graph with vertex set V (G) and edge set E(G). For single vertices
v ∈ V (G), we will frequently use v instead of {v}. For a subset W ⊆ V (G), a W -path in G

is a path with both of its end nodes in W .
For a directed acyclic graph G and node sets T , V ∞ ⊆ V (G) where T ⊆ V ∞, an odd

multiway cut in G is a set M ⊆ V (G) \ V ∞ of nodes that intersects every odd T -path in G.
We refer to elements of T as terminals, elements of V (G)\T as non-terminals, and elements
of V ∞ as protected nodes.

We restate the problem of OddMultiwayNodeCut in DAGs in Figure 1.1.
For subsets X and Y of V (G) we say that M ⊆ V (G) \ V ∞ is an X → Y separator in G

when G \M has no path from X to Y . The set of nodes that can be reached from a node
set X in G is denoted by RG(X). We note that RG(X) always includes X.

6



OddMultiwayNodeCut in DAGs Parameter: k
Input: A DAG G with a set V ∞ ⊆ V (G) of protected nodes, set T ⊆ V ∞ of terminal

nodes, and an integer k ∈ Z+.
Task: Verify if there is an odd multiway node cut in G of size at most k.

Figure 1.1: Statement of the OddMultiwayNodeCut problem in DAGs

We define the forward shadow of a node set M to be fG(M) := V (G \M) \RG\M(T ), i.e.,
the set of nodes v such that there is no T → v path in G disjoint from M . Similarly, the
reverse shadow of M , denoted rG(M), is the set of nodes v from which there is no path to
T in G \M . Equivalently, the reverse shadow is fGrev(M), where Grev is the graph obtained
from G by reversing all the edge orientations. We refer to the union of the forward and the
reverse shadow of M in G, as shadow of M in G and denote it by sG(M). A set M ⊆ V (G)

is thin, if every node v ∈ M is not in rG(M \ {v}). See Fig. 1.2 for an example illustrating
these concepts.

x1

x2

x3

x4

x5

x6

x7

x8

Figure 1.2: In this graph G, suppose T = {x2, x4} and M = {x6, x8}. Then, we have the
forward shadow fG(M) = {x1, x7}, the reverse shadow rG(M) = {x5, x7} and the shadow
sG(M) = {x1, x5, x7}.

We need the notion of important separators [12]. An X → Y -separator M ′ is said to
dominate another X → Y -separator M , if |M ′| ≤ |M | and RG\M(X) ⊊ RG\M ′(X). A mini-
mal X → Y -separator that is not dominated by any other separator is called an important
X → Y -separator.

For a directed graph G, its underlying undirected graph ⟨G⟩ is the undirected graph ob-
tained from G by dropping the edge orientations. In an undirected graph H with protected

7



nodes V ∞, an odd cycle transversal is a set U ⊆ V (H) \ V ∞ of nodes such that H \ U
is bipartite. The problem of finding a minimum odd cycle transversal in a given instance
(H, V ∞) is the OddCycleTransversal problem. This problem is NP-hard, but admits
fixed-parameter algorithms when parameterized by the size k of an optimal solution. The
asymptotically fastest fixed-parameter algorithm for OddCycleTransversal in terms of
k is due to Lokshtanov et al. [26]; it runs in time 2.32k · nO(1), and is based on linear pro-
gramming techniques. While their algorithm does not allow for protected nodes, the problem
OddCycleTransversal with protected nodes can be reduced to OddCycleTransver-
sal without protected nodes by iteratively replacing each protected node with k + 1 nodes
and connecting them to the same set of neighbors as the original node. We thus have:

Proposition 1.1. There is an algorithm that, given an n-node graph H, a set V ∞ ⊆ V (H)

of protected nodes and an integer k, in time 2.32k · nO(1) decides if H has an odd cycle
transversal of size at most k disjoint from V ∞, and if so, returns one.

We will use OddCycleTransversal(H, V ∞, k) to denote the procedure that imple-
ments this fixed-parameter algorithm for the input graph H with protected nodes in V ∞

and parameter k.

8



CHAPTER 2: FIXED-PARAMETER TRACTABILITY OF
ODDMULTIWAYNODECUT IN DAGS

To solve OddMultiwayNodeCut in DAGs, we will use the shadow-removal technique
introduced by Chitnis, Hajiaghayi and Marx [11]. We will reduce the problem to the Odd-
CycleTransversal problem in undirected graphs, which is a fixed-parameter tractable
problem when parameterized by the solution size. We introduce the following property:

Definition 2.1 (Isolated Shadows Property). Given an instance (G, V ∞, T, k), a set M ⊆ V

has the isolated shadows property, if every node v ∈ sG(M) has total degree at most one in
G \M .

We begin by arguing about “easy” instances, where we define an instance (G, V ∞, T, k) as
easy if it has a solution M (of size at most k) with the isolated shadows property provided
that it has some solution (of size at most k) at all.

2.1 EASY INSTANCES

Theorem 2.1. There is an algorithm that, given any easy instance (G, V ∞, T, k) of Odd-
MultiwayNodeCut where G is a DAG, finds a solution of size at most k in time 2.32k·nO(1),
where n is the number of nodes in the input graph G.

Proof. Let (G, V ∞, T, k) be an instance of OddMultiwayNodeCut. Let ⟨G⟩ denote the
undirected graph obtained from G by dropping the orientations of the edges in G. We show
the following equivalence: a set M ⊆ V \V ∞ with the isolated shadows property is a solution
if and only if ⟨G⟩ \M is bipartite with a bipartition (A,B) such that T ⊆ A.

Suppose ⟨G⟩ \M is bipartite with a bipartition (A,B) such that T ⊆ A. In a bipartite
graph, every two end-nodes of any odd path are necessarily in different parts. Hence, there
is no odd T -path in ⟨G⟩ \M . Thus, there is no odd T -path in G \M . Hence, the set M is
a solution for the OddMultiwayNodeCut instance (G, V ∞, T, k).

Suppose the solution M has the isolated shadows property. Define the set U := V (G \
M) \ sG(M). Define

A := {x ∈ U : there is an even T → x-path in G \M} and (2.1)
B := {x ∈ U : there is an odd T → x-path in G \M} . (2.2)

It follows from the definition of the shadow that every node in U has a path P1 from T in
G \M . Therefore, every node of U is in A ∪B. Also by definition, every node v in U has a

9



path P2 to T in G \M . The parity of every T → v-path has to be the same as the parity of
P2, because the concatenation of a T → v-path and a v → T -path in G \M is a T -path in
G\M and therefore must be even. We note that such a concatenation cannot create a cycle
since G is acyclic. In a general directed graph, this concatenation would result in a T -walk,
but in a DAG the result will be a T -path. Thus, no node of U is in both A and B. Hence,
we have that (A,B) is a partition of U .

We observe that there cannot exist an edge from a node v in A to a node u in A, as
otherwise the concatenation of the even T → v-path Q1 with the edge v → u is an odd
T → u-path in G \M which means u ∈ B. This contradicts our conclusion about A and
B being disjoint. By a similar argument, there is no edge between any pair of nodes in B.
Thus, the sets A and B are independent sets in the the subgraph of G induced by those two
sets respectively. Hence ⟨G⟩[A∪B] is a bipartite graph. Furthermore, (A,B) is a bipartition
of ⟨G⟩[A∪B] with every node of T in A. By assumption, the degree of every node x ∈ sG(M)

is at most one. Therefore, x has neighbors in at most one of A and B. Thus, we can extend
the bipartition (A,B) of ⟨G⟩[A ∪ B] to a bipartition (A′, B′) of ⟨G⟩ \M as follows: denote
H := ⟨G⟩[A ∪ B]; repeatedly pick a node x ∈ sG(M) \ V (H) with a neighbor in H, include
x in a part (A or B) in which x has no neighbor and update A, B and H.

Hence, if the given instance has a solution M of size at most k such that every node
v ∈ sG(M) has total degree at most one, then such a solution can be found by the fixed-
parameter algorithm for OddCycleTransversal. To ensure that the terminal nodes will
be in the same part, we introduce a new protected node into the graph and connect it to
every terminal node. This approach is described in Algorithm 2.1.

Algorithm 2.1 SolveEasyInstance

1: Input: A DAG G with a set V ∞ ⊆ V (G) of protected nodes, a set T ⊆ V ∞ of terminals,
and an integer k ∈ Z+.

2: Output: A minimum odd multiway cut for (G, V ∞, T, k).
3: G1 ← the underlying undirected graph of G, i.e., ⟨G⟩.
4: Let G2 be the graph obtained from G1 by introducing a new node x and connecting it

to every node in T .
5: N ← OddCycleTransversal(G2, V

∞ ∪ {x} , k)
6: return N

All steps in Algorithm 2.1 can be implemented to run in polynomial time except Step 5.
By Proposition 1.1, Step 5 can run in time 2.32k · nO(1). QED.

We will use the name SolveEasyInstance to refer to the algorithm of Theorem 2.1.
Theorem 2.1 suggests that the existence of a solution M of size at most k, such that every

10



node v ∈ sG(M) has total degree at most one, is a useful property in an instance of Odd-
MultiwayNodeCut. However, it is not necessarily the case that some solution of size at
most k always has this property. Our aim now is to reduce the given arbitrary instance
(G, V ∞, T, k) to another instance that has such a solution or determine that no solution of
size at most k exists. For this purpose, we define the operation parity-preserving torso on
DAGs, as follows.

2.2 PARITY-PRESERVING TORSO

The parity-preserving torso operation was introduced by Lokshtanov and Ramanujan [16]
for undirected graphs. We extend it in a natural fashion for DAGs.

Definition 2.2 (Parity-preserving torso.). Let G be a DAG and Z ⊆ V (G). Let G′ be the
DAG obtained from G \ Z by adding an edge from node u to v, for every pair of nodes
u, v ∈ V (G) \Z such that there is an odd-path from u to v in G all of whose internal nodes
are in Z. We obtain ParityTorso(G, V ∞, Z) from (G′, V ′∞) by including a new node xuv

and edges u → xuv and xuv → v for every pair of nodes u, v ∈ V (G) \ Z such that there is
an even path from u to v in G all of whose internal nodes are in Z. The set V ′∞ is defined
to be the union of V ∞ \ Z and all the new nodes xuv (see Fig. 2.1).

v1 z1

z4

z2 v2

z3 z5v3 v4 v5

Z

(a) The original graph G.

xv3v4

v3
v4

v5

xv3v2

v1 v2

(b) ParityTorso(G,Z).

Figure 2.1: An illustration of the parity-preserving torso operation.

We emphasize that the acyclic nature of the input directed graph allows us to implement
the parity-preserving torso operation in polynomial time (e.g., using Lemma 3.1). Moreover,
applying parity-preserving torso on a DAG results in a DAG as well. In what follows, we
state the properties of the ParityTorso operation that are exploited by our algorithm. The
parity-preserving torso operation, has the property that it maintains u → v-paths along
with their parities between any pair of nodes u, v ∈ V (G) \ Z. More precisely:

11



Lemma 2.1. Let G be a DAG and Z, V ∞ ⊆ V (G). Also define the pair (G′, V ′∞) :=

ParityTorso(G, V ∞, Z). Let u, v be nodes in V (G) \ Z. There is a u → v-path P in G if
and only if there is a u → v-path Q of the same parity in G′. Moreover, the path Q can
be chosen so that the nodes of P in G \ Z are the same as the nodes of Q in G \ Z, i.e.,
V (P ) ∩ (V (G) \ Z) = V (Q) ∩ (V (G) \ Z).

Proof. We prove the forward direction by induction on the length of P . For the base case
of induction, consider paths of length zero in G that are disjoint from Z. Such a path is not
affected by the ParityTorso operation. Suppose that the claim holds for all paths of length
less than ℓ, for some ℓ > 0. Let P be a u→ v-path of length ℓ in G, where u, v ∈ V (G) \Z.
If all internal nodes of P are in Z, then by definition of ParityTorso, a path Q of the same
parity exists in G′ and V (P )∩(V (G)\Z) = V (Q)∩(V (G)\Z). Otherwise, let w ∈ V (G)\Z
be an internal node of P . Let P1 and P2 be the subpaths of P from u to w and from w

to v. By induction hypothesis, there is a u → w-path Q1 in G′ of the same parity as P1

where V (P1) ∩ (V (G) \ Z) = V (Q1) ∩ (V (G) \ Z), and similarly, a w → v-path Q2 is found
of the same parity as P2 where V (P2) ∩ (V (G) \ Z) = V (Q2) ∩ (V (G) \ Z). Since G′ is
a DAG, the path Q obtained by concatenating Q1 and Q2 has the same parity as P and
V (P ) ∩ (V (G) \ Z) = V (Q) ∩ (V (G) \ Z).

Conversely, suppose Q is a path u = x0, x1, x2, . . . , xr = v in G′ from u to v where u, v ∈
V (G). Then for every node xi of Q in V (G′) \ V (G), replace the subpath xi−1, xi, xi+1 with
the even path in G that connects xi−1 to xi+1. Also, for every pair i where xi, xi+1 ∈ V (G)

but (xi, xi+1) is not an edge in G, replace the subpath xi, xi+1 of Q with the odd path that
connects xi to xi+1 in G. By construction, the resulting sequence is a path P in G and has
the same parity as Q and V (P ) ∩ (V (G) \ Z) = V (Q) ∩ (V (G) \ Z). QED.

Corollary 2.1. Let I = (G, V ∞, T, k) be an input of OddMultiwayNodeCut and let Z ⊆
V (G) \ T . Let (G′, V ′∞) := ParityTorso(G, V ∞, Z) and denote the instance (G′, V ′∞, T, k)

by I ′. The instance I admits a solution S of size at most k that is disjoint from Z if and
only if the instance I ′ admits a solution of size at most k.

Proof. Let M ′ be a solution to the instance I ′ of size at most k. As V ∞ \ Z ⊆ V ′∞ and
M ′∩V ′∞ = ∅ and M ′∩Z = ∅, we have that M ′∩V ∞ = ∅. By definition of the ParityTorso
operation, V (G′) \ V (G) is contained in V ′∞ and therefore is disjoint from M ′. Thus,
M ′ ⊆ V (G). Suppose P is an odd T -path in G and is disjoint from M ′. By Lemma 2.1,
there is an odd T -path in G′ that is also disjoint from M ′, contradicting our assumption
about M ′.

Conversely, suppose M is a solution for the instance I of size at most k that is disjoint
from Z. Suppose P ′ is an odd T -path in G′ and is disjoint from M . By Lemma 2.1, there

12



is an odd T -path in G that is also disjoint from M , contradicting our assumption about
M . QED.

Corollary 2.1 reveals that if there exists a solution M in G that is disjoint from Z and V ∞,
then it also exists in the DAG obtained from ParityTorso(G, V ∞, Z) and hence it is suf-
ficient to search for it in ParityTorso(G, V ∞, Z). Therefore, we are interested in finding
a set Z of nodes that is disjoint from some solution of size at most k, and moreover, the
instance (ParityTorso(G, V ∞, Z), T, k) is an easy instance of the problem, i.e., satisfies the
property mentioned in Theorem 2.1. The following lemma shows that it is sufficient to find
a set Z that contains the shadow of a solution.

Lemma 2.2. Let G be a DAG and M,Z, V ∞ ⊆ V (G). Suppose M intersects every odd
T -path in G and sG(M) ⊆ Z ⊆ V (G) \M . Let (G′, V ′∞) := ParityTorso(G, V ∞, Z). Then
every node in sG′(M) has total degree at most one in G′ \M .

Proof. We claim that sG′(M) is contained in V (G′) \ V (G). Suppose not. Then there is a
node v ∈ V (G)\Z that is in sG′(M). Suppose v ∈ rG′(M). Thus, there is no path from v to
T in G′ that is disjoint from M . By Lemma 2.1, every path in G from v to T intersects M .
Therefore, v is in the shadow of M in G and is hence contained in Z. This is a contradiction.
A similar contradiction arises if v ∈ fG′(M). Therefore, sG′(M) is disjoint from V (G).

Let x ∈ sG′(M). We observe that by definition of the ParityTorso operation, every
node x ∈ V (G′) \ V (G) has in-degree and out-degree one. Let u and v be the in-neighbor
and out-neighbor of x in G′. Suppose x has total degree two in G′ \M . This implies that
u, v /∈ M . Since u is not in the shadow of M in G′, there is a T → u-path disjoint from
M in G′. Appending the u → x edge to that path, gives a T → x-path in G′ disjoint from
M . Thus, x /∈ fG′(M). Similarly, x /∈ rG′(M), because v /∈ M . Thus, x /∈ sG′(M), a
contradiction. QED.

2.3 DIFFICULT INSTANCES

Corollary 2.1 and Lemma 2.2 show that if we find a set Z such that for some solution
M , the set Z is disjoint from M and contains the shadow of M in G, then considering
ParityTorso(G, V ∞, Z) will give a new instance that satisfies the conditions of Theorem
2.1. Our goal now is to obtain such a set Z. We will show the following lemma. We
emphasize that the lemma holds for arbitrary digraphs.

Lemma 2.3. There is an algorithm ShadowContainer that, given an instance (G, V ∞, T, k)

of OddMultiwayNodeCut, in time 2O(k2) poly(|V (G)|) returns a family Z of 2O(k2) log |V (G)|

13



subsets of V (G), with the property that if the instance admits a solution of size at most k,
then for some solution M of size at most k and there exists a set Z ∈ Z that is disjoint from
M and contains sG(M).

We defer the proof of Lemma 2.3 to first see its implications. We now show how the
procedure ShadowContainer can be used to obtain a fixed-parameter algorithm for the
OddMultiwayNodeCut problem in DAGs and thus prove Theorem 1.1.

Algorithm 2.2 Minimum odd node multiway cut in DAGs
1: Input: A DAG G with terminal set T , a set V ∞ ⊇ T of protected nodes, and k ∈ Z+.
2: Output: An odd node multiway cut for (G, T ) of size at most k and disjoint from V ∞,

or “no solution of size at most k” if such does not exist.
3: Z ← ShadowContainer(G, T, V ∞, k)
4: for Z ∈ Z do
5: (G1, V

∞
1 )← ParityTorso(G, V ∞, Z)

6: N ← SolveEasyInstance(G1, V
∞
1 , T, k)

7: if N is a solution in G then
8: return N
9: return “no solution of size at most k”

Theorem 2.2. There exists an algorithm that, given an instance (G, V ∞, T, k) of Odd-
MultiwayNodeCut where G is a DAG, in 2O(k2) poly(|V (G)|) time either finds a solution
of size at most k or determines that no such solution exists.

Proof. We use Algorithm 2.2. Let (G, V ∞, T, k) be an instance of OddMultiwayNode-
Cut, where G is a DAG. Suppose there exists a solution of size at most k. By Lemma 2.3,
the procedure ShadowContainer(G, T, V ∞, k) in Line 3 returns a family Z of subsets of V (G)

with |Z| = 2O(k2) log |V (G)| containing a set Z such that there is a solution M of size at
most k that is disjoint from Z and Z contains sG(M). Let (G1, V

∞
1 ) be the result of applying

ParityTorso operation to the set Z in G (i.e., the result of Step 2 in Algorithm 2.2). By
Lemma 2.2, every node in sG1(M) has total degree at most one in G1 \M . Therefore, by
Theorem 2.1, the set N returned in Line 6 is a solution to the instance (G1, V

∞
1 , T, k). By

Corollary 2.1, the set N is also a solution to the original instance of the problem.
If there is no solution of size at most k, the algorithm will not find any. Therefore, the

algorithm is correct. The runtime of the algorithm is dominated by Line 2 which can be
implemented to run in 2O(k2)poly(|V (G)|) time by Lemma 2.3. QED.

To complete this proof, it remains to prove Lemma 2.3. In order to do so, we will use the
following result.

14



Theorem 2.3 (Chitnis, Hajiaghayi and Marx [27, Thm. 3.18]). There is an algorithm
that, given a digraph G, a set of protected nodes V ∞ ⊆ V (G), terminal nodes T ⊆ V ∞ and
an integer k, in time 2O(k2) poly(|V (G)|) returns a family Z of subsets of V (G) \ V ∞ with
|Z| = 2O(k2) log |V (G)| such that for every S, Y ⊆ V (G) satisfying (i) and (ii) below, there
is some Z ∈ Z for which Y ⊆ Z ⊆ V (G) \ S:

(i) S is a thin set with |S| ≤ k and

(ii) for every v ∈ Y , there exists an important v → T -separator contained in S.

To invoke Theorem 2.3, we need to guarantee that there exists a solution S of size at most
k such that S is thin and its reverse shadow Y in G has the property that for every v ∈ Y

there is an important v → T -separator contained in S. Towards obtaining such a solution,
we prove the following.

Lemma 2.4. Let (G, V ∞, T, k) be an instance of OddMultiwayNodeCut, where G is
a DAG. If there is a solution M that does not contain an important v → T -separator
for some v ∈ rG(M), then there is another solution M ′ of size at most |M | such that
rG(M) ∪ fG(M) ∪M ⊆ rG(M

′) ∪ fG(M
′) ∪M ′, and rG(M) ⊊ rG(M

′).

Proof. Let M0 be the set of nodes u ∈ M for which there is a v → u-path in G that is
internally disjoint from M . Since v ∈ rG(M), every v → T -path intersects M . For a v → T -
path P , the first node u ∈ P ∩M along P is in M0. Hence, every v → T -path intersects
M0. Therefore, the set M0 is a v → T -separator in G. Therefore, it contains a minimal
separator M1. Since we assumed that there is no important v → T -separator contained in
M , the set M1 is not an important v → T -separator. Suppose M1 is dominated by another
v → T -separator and let M2 be an important v → T -separator that dominates M1. Define
M ′ as (M \M1)∪M2. We recall that a separator is by definition, disjoint from the protected
node set. Therefore, M ′ ∩ V ∞ = ∅. We will show that M ′ contradicts the choice of M . We
need the following claims.

Claim 2.1. M \M ′ ⊆ rG(M
′).

Proof of Claim 2.1. We observe that M \M ′ = M1 \M2. Let u be an arbitrary node in
M1 \M2. Since u ∈M1 and M1 is a minimal v → T -separator, there is a v → u-path P1 that
is internally disjoint from M1. Since M2 dominates M1, therefore, RG\M1(v) ⊆ RG\M2(v).
Thus, V (P1) ⊆ RG\M2(v). Hence, P1 is disjoint from M2. Suppose P2 is an arbitrary u→ T -
path in G. Concatenation of P1 and P2 is a v → T -path in G and therefore, has to intersect

15



M2. Since P1 is disjoint from M2, the path P2 has to intersect M2. Hence, every u → T -
path in G intersects M2 and in particular, intersects M ′. Equivalently, u ∈ rG(M

′). This
completes the proof of Claim 2.1. QED.

We next show that M ′ is a feasible solution for the problem and is no larger than M .

Claim 2.2. The set M ′ intersects every odd T -path in G and |M ′| ≤ |M |.

Proof of Claim 2.2. By assumption, every odd T -path P intersects M . If P intersects M ∩
M ′, then it also intersects M ′. If P intersects M \M ′, then by Claim 2.1 it also intersects
M ′. Thus, every odd T -path in G intersects M ′. Furthermore, by definition of M ′, we have

|M ′| = |M |+ (|M2 \M | − |M1 \M2|) ≤ |M |+ (|M2| − |M1|) ≤ |M | . (2.3)

This completes the proof of Claim 2.2. QED.

Claim 2.3. rG(M) ⊆ rG(M
′).

Proof of Claim 2.3. Let u be an arbitrary node in rG(M). The set M is a u→ T -separator.
Therefore, every u → T -path intersects M . We need to show that every u → T -path also
intersects M ′. Let P be a u → T -path. If P intersects M ∩ M ′, then it also intersects
M ′. If P does not intersect M ∩M ′, then it has to intersect M \M ′. By Claim 2.1, every
M \ M ′ → T -path intersects M ′. Therefore, u ∈ rG(M

′). This completes the proof of
Claim 2.3. QED.

Claim 2.4. rG(M) ∪ fG(M) ∪M ⊆ rG(M
′) ∪ fG(M

′) ∪M ′.

Proof of Claim 2.4. By Claim 2.1, M \M ′ ⊆ rG(M
′); and by Claim 2.3, rG(M) ⊆ rG(M

′).
Thus, it remains to prove that fG(M) ⊆ rG(M

′)∪ fG(M ′)∪M ′. Let u be an arbitrary node
in fG(M) \ (rG(M ′)∪ fG(M ′)∪M ′). Since u /∈ fG(M

′), there is a T → u-path P1 in G that
is disjoint from M ′. But u ∈ fG(M). Thus P1 has to intersect M , particularly it has to
intersect M \M ′. Let P2 be a subpath of P1 from M \M ′ to u. Since u /∈ rG(M

′), there is
a u → T -path P3 in G that is disjoint from M ′. The concatenation of P2 and P3 is a path
from M \M ′ to T that is disjoint from M ′. But by Claim 2.1, every M \M ′ → T -path in G

must intersect M ′. This contradiction shows that fG(M) ⊆ (rG(M
′) ∪ fG(M

′) ∪M ′). This
completes the proof of Claim 2.4. QED.

Claim 2.5. rG(M) ⊊ rG(M
′).

16



Proof of Claim 2.5. By Claim 2.3, rG(M) ⊆ rG(M
′). We need to prove that rG(M) ̸=

rG(M
′). We recall that M \M ′ = M1 \M2. Since M2 is an important v → T -separator,

it follows that the v → T -separator M1 is not contained in M2. Therefore, M \M ′ is non-
empty. Furthermore, by definition of reverse shadow, M \M ′ is not contained in rG(M),
but by Claim 2.1, it is contained in rG(M

′). This completes the proof of Claim 2.5. QED.

By Claim 2.2, M ′ is a solution of size not larger than M . Therefore, the set M ′ has the
properties claimed in Lemma 2.4. This completes the proof of Lemma 2.4. QED.

We recall that a set M ⊆ V (G) is thin, if every node v ∈M is not in rG(M \ {v}).

Corollary 2.2. Let (G, V ∞, T, k) be an input of OddMultiwayNodeCut, where G is a
DAG. Let M∗ be an optimal solution that maximizes the size of |rG(S) ∪ fG(S) ∪ S| among
all optimal solutions S. If more than one optimal solution maximizes this quantity, choose
the one with largest |rG(S)|. The set M∗ is thin and for every node v ∈ rG(M

∗) there is an
important v → T -separator in M∗.

Proof. The set M∗ is thin. If not, there is a node v ∈ M∗ that belongs to rG(M
∗ \ {v}).

Then M∗ \ {v} is a solution too, contradicting the optimality of M∗.
If there is a node v ∈ rG(M

∗) for which there is no important v → T -separator in M∗,
then by Lemma 2.4, there exists a solution M ′ such that rG(M) ∪ fG(M) ∪M ⊆ rG(M

′) ∪
fG(M

′)∪M ′, and rG(M) ⊊ rG(M
′). This contradicts the choice of M∗. Therefore, for every

node v ∈ rG(M
∗) there is an important v → T -separator in M∗. QED.

We will use Corollary 2.2 to prove Lemma 2.3.

Proof of Lemma 2.3. Let us use ReverseShadowContainer(G, V ∞, k) to denote the algo-
rithm from Theorem 2.3. We will show that Algorithm 2.3 generates the desired set.

By Theorem 2.3, the cardinality of Z returned by the algorithm is 2O(k2) log |V (G)|. The
analysis of the runtime of the algorithm follows from the runtime analysis of the procedure
ReverseShadowContainer in Theorem 2.3. To prove the correctness of this algorithm, we
argue that at least one of the sets in the returned family Z has the desired properties.

Suppose there exists a solution of size at most k and let M∗ be an optimal solution that
maximizes the size of |rG(S) ∪ fG(S) ∪ S| among all optimal solutions S. If more than one
solution maximizes this quantity, choose the one with largest |rG(S)|. By Corollary 2.2,
the solution M∗ is thin and has the property that every node v in the reverse shadow of
M∗ has an important v → T -separator contained in M∗. By Theorem 2.3, the procedure
ReverseShadowContainer(G, V ∞, k) in Line 4 will return a family Z1 of sets containing a
set Z1 that is disjoint from M∗ and contains its reverse shadow. Let us fix such a Z1.

17



Algorithm 2.3 ShadowContainer
1: Input: A digraph G with terminal set T , a set V ∞ of protected nodes containing T ,

and k ∈ Z+.
2: Output: A set Z of at most 2O(k2) log |V (G)| subsets of V (G) with the property that

if (G, T, V ∞, k) admits a solution of size at most k, then for some solution M of size at
most k, there exists a set Z ∈ Z that is disjoint from M and contains sG(M).

3: Let Grev denote the graph obtained from G by reversing the orientation of all edges
4: Z1 ← ReverseShadowContainer(G, V ∞, k)
5: for Z1 ∈ Z1 do
6: Z2 ← ReverseShadowContainer(Grev, V ∞ ∪ Z1, k)
7: for Z2 ∈ Z2 do
8: Z ← Z ∪ {Z1 ∪ Z2}
9: return Z

Note that Grev is a DAG on the same node set as G. What’s more, any solution for the
OddMultiwayNodeCut instance (Grev, V ∞ ∪ Z1, T, k) is also a solution for the instance
(G, V ∞, T, k). Conversely, a solution for the instance (G, V ∞, T, k) that is disjoint from Z1 is
also a solution for the instance (Grev, V ∞∪Z1, T, k). Therefore, the set M∗ is also an optimal
solution to the instance (Grev, V ∞∪Z1, T, k). We observe that fG(S) = rGrev(S) and rG(S) =

fGrev(S) for all S ⊆ V (G) \ V ∞. Therefore, M∗ maximizes the size of rGrev(S)∪ fGrev(S)∪S
among all optimal solutions S to (Grev, V ∞ ∪ Z1, T, k). We have the following claim.

Claim 2.6. If for an optimal solution M ′ for the instance (Grev, V ∞ ∪ Z1, T, k) of Odd-
MultiwayNodeCut we have the inclusions rGrev(M∗) ⊆ rGrev(M ′) and
rGrev(M∗) ∪ fGrev(M∗) ∪M∗ ⊆ rGrev(M ′) ∪ fGrev(M ′) ∪M ′, then M ′ = M∗.

Proof of Claim 2.6. On the one hand, M∗ maximizes |rGrev(S) ∪ fGrev(S) ∪ S| among all
optimal solutions for the instance (G, V ∞, T, k). On the other hand, rGrev(M∗)∪fGrev(M∗)∪
M∗ ⊆ rGrev(M ′) ∪ fGrev(M ′) ∪M ′. Consequently, the two sets rGrev(M∗) ∪ fGrev(M∗) ∪M∗

and rGrev(M ′)∪fGrev(M ′)∪M ′ must be equal. Therefore, the set M ′ \M∗ is contained inside
rGrev(M∗)∪ fGrev(M∗)∪M∗. Since nodes in fGrev(M∗) are protected in Grev by construction,
the solution M ′ cannot contain any node from fGrev(M∗). Since rGrev(M∗) ⊆ rGrev(M ′) and by
definition of reverse shadow, M ′ is disjoint from rGrev(M∗). Thus, the set M ′ \M∗ is disjoint
from M∗ and rGrev(M∗) and fGrev(M∗), while being contained in rGrev(M∗)∪fGrev(M∗)∪M∗.
Hence, M ′ \M∗ = ∅ or equivalently M ′ ⊆ M∗. Therefore, M ′ = M∗, because |M ′| = |M∗|.
This completes the proof of Claim 2.6. QED.

Suppose there is a node v ∈ rGrev(M∗) such that no important v → T -separator in Grev

is contained in M∗. Then by Lemma 2.4, there is another optimal solution M ′ such that

18



rGrev(M∗) ∪ fGrev(M∗) ∪M∗ ⊆ rGrev(M ′) ∪ fGrev(M ′) ∪M ′ and rGrev(M∗) ⊊ rGrev(M ′). By
Claim 2.6, the set M ′ = M∗, which contradicts rGrev(M∗) ⊊ rGrev(M ′). This contradiction
shows that for every node v ∈ rGrev(M∗), there is an important v → T -separator in Grev that
is contained in M∗. Thus, by Theorem 2.3, the procedure ReverseShadowContainer(Grev, V ∞∪
Z1, k) from Line 6 will return a family Z2 of sets containing a set Z2 that is disjoint from
M∗ and contains rGrev(M∗) = fG(M

∗). Hence Z1 ∪ Z2 is disjoint from M∗ and contains
sG(M

∗). QED.

19



CHAPTER 3: (S → T )-ODDPATHNODEBLOCKER IN DAGS

In this chapter, we prove Theorem 1.2 by showing nearly-matching hardness of approxi-
mation (Theorem 3.1) and approximability results (Theorem 3.2). We also exhibit instances
of DAGs for which Podd-cover-dir is not half-integral (Theorem 1.3).

3.1 HARDNESS OF APPROXIMATION

The main result of this section is the following:

Theorem 3.1. (s → t)-OddPathNodeBlocker in DAGs is NP-complete, and has no
efficient (2− ε)-approximation for any ε > 0 assuming the Unique Games Conjecture.

As a first step, we show that (s→ t)-OddPathNodeBlocker is in NP. While this is a
folklore result, we present the proof for the sake of completeness.

Lemma 3.1. There exists a polynomial-time algorithm that, given a DAG D and nodes s

and t in D, decides whether there exists an odd-length s→ t-path in D.

Proof. We construct a directed bipartite graph G as follows. For each node v ∈ V (D),
introduce nodes vL and vR in G. For each edge uv ∈ E(D), add edges uLvR and uRvL to
G. We claim that there is an odd-length s→ t path in D if and only if there is an sL → tR

path in G. Since existence of an sL → tR path is decidable in polynomial time, this would
prove the theorem.

We now prove the mentioned claim. Suppose s = u0, u1, u2, . . . , uℓ = t is an odd-length
s → t-path in D with intermediate nodes u1, . . . , uℓ−1. Then sL = u0

L, u
1
R, u

2
L, . . . , u

ℓ
m = tm

is a path in G and since ℓ is odd, we have m = R and hence, the path in G ends in tR.
Conversely, suppose sL = u0

L, u
1
R, u

2
L, . . . , u

ℓ
R = tR is a path in G. Since the path starts in

one part and ends in the other, it must be of odd length. Therefore, s = u0, u1, u2, . . . , ul = t

is an odd walk in D. Since every walk in a DAG is a path, we have an odd-length s → t

path in D. QED.

With this result we are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. We consider the decision version of problem (s → t)-OddPath-
NodeBlocker, where the input consists of a directed acyclic graph D and a non-negative
integer w and the goal is to decide if there exists a feasible solution for (s→ t)-OddPath-
NodeBlocker with at most w nodes. Let (D,w) be an instance of the decision version

20



of (s → t)-OddPathNodeBlocker. By Lemma 3.1, given a set of nodes U ⊆ V (D)

of cardinality at most w, we can verify in polynomial time whether D \ U has no s → t

odd-path. Therefore (s→ t)-OddPathNodeBlocker in DAGs is in NP.
To prove NP-hardness of (s → t)-OddPathNodeBlocker in DAGs, we give a reduc-

tion from Vertex Cover. Recall that the input to the Vertex Cover problem is an
undirected graph G and k ∈ Z and the goal is to verify if there exists a vertex cover of size
at most k. We construct a directed acyclic graph H from G as follows: pick an arbitrary
ordering of the nodes and orient the edges {u, v} of G as u→ v if u < v in the ordering; we
add two new nodes s, t with directed edges s→ u, u→ t for every u ∈ V (G). The resulting
graph H is a directed acyclic graph. A subset U ⊆ V (G) is a vertex cover in G if and only
if U is a feasible solution to (s→ t)-OddPathNodeBlocker in H. QED.

3.2 APPROXIMATION AND INTEGRALITY GAP

In this section we present an approximation algorithm of factor 2 for (s → t)-Odd-
PathEdgeBlocker in DAGs. This factor matches the lower bound on the hardness of
approximation shown in Section 3.1. We will use the following integer linear programming
formulation of (s→ t)-OddPathEdgeBlocker and its LP-relaxation.

min
∑

e∈E(D)

c(e)xe (3.1)

subject to
∑
e∈P

xe ≥ 1 for all odd-length s→ t path P in D,

xe ∈ {0, 1} ∀ e ∈ E(D).

where each binary variable xe indicates whether e is in the solution. This integer program
can then be relaxed to a linear program by replacing the constraints xe ∈ {0, 1} with xe ≥ 0.
We denote the resulting LP as odd path blocker LP.

Theorem 3.2. There exists a 2-approximation algorithm for (s → t)-OddPathEdge-
Blocker in DAGs.

Proof. Our algorithm uses a construction similar to what was described in the proof of
Lemma 3.1. Let D be an instance of (s→ t)-OddPathEdgeBlocker with edge costs c :

E → R+. Construct the directed bipartite graph G with V (G) := {vL, vR : v ∈ V (D)} and
E(G) := {uLvR, uRvL : uv ∈ E(D)}. Define the cost of the edges uRvL and uLvR to be c(uv).
Let X ⊆ E(G) be a minimum sL → tR-cut in G. Let F := {uv : uLvR ∈ X or uRvL ∈ X}

21



be the projection of the edges of X onto the edges of D. Claims 3.1 and 3.2 below prove
that F is a 2-approximate solution for (s→ t)-OddPathEdgeBlocker in D. QED.

Claim 3.1. The set F is a feasible solution for (s→ t)-OddPathEdgeBlocker in D.

Proof. For sake of contradiction, suppose not. Then there must exist an odd s→ t-path in
D\F . Let s = u0, u1, . . . , uℓ = t be such a path. We note that the edge uiui+1 is not in F for
i = 0, 1, . . . , ℓ− 1. Thus, ui

Lu
i+1
R and ui

Ru
i+1
L are not in X. Hence, sL = u0

L, u
1
R, u

2
L, . . . , u

ℓ
R =

tR is a path in G. This contradicts the feasibility of X as an sL → tR-cut. Therefore F is a
feasible solution. QED.

Let x∗ be an optimal solution to the odd path blocker LP for D. Let c(x) denote the
objective value of a feasible solution x to the odd path blocker LP for D. We use the same
notation to denote the cost of an sL → tR cut in G.

Claim 3.2. The cost of F is at most twice that of x∗.

Proof. We note that c(F ) ≤ c(X), by the construction of F . It would suffice to show that
c(X) ≤ 2c(x∗).

Define Y : E(G) → R+ by setting Y (uLvR) = Y (uRvL) = x∗(uv) and let c(Y ) :=∑
e∈E(G) ceY (e). We have that c(Y ) = 2c(x∗). We recall that any minimum sL → tR-cut

has the same value as an optimal solution to the following path blocking integer program,
as well as its linear programming relaxation:

min
∑

e∈E(G)

w(e)ye (3.2)

∑
e∈P

ye ≥ 1 ∀ sL → tR path P in G,

ye ∈ {0, 1} ∀ e ∈ E(G).

Hence, it suffices to prove that Y is a feasible solution to the LP-relaxation of the above
integer program. For sake of contradiction, suppose it is not. It means that there is an
sL → tR path sL = u0

L, u
1
R, u

2
L, . . . , u

ℓ
R = tR in G, such that the sum of the Y -values over its

edges is less than one. Since sL and tR are in different parts of G, the length ℓ of this path
must be odd. Now consider the path s = u0, u1, . . . , uℓ = t in D. The sum of x∗ values on
its edges is also less than one and since ℓ is odd, this contradicts the feasibility of x∗ to the
odd path blocker LP for D. Therefore Y must be feasible. QED.

The proof of Theorem 3.2 also yields the following corollary.

Corollary 3.1. The integrality gap of the odd path blocker LP in DAGs is at most 2.

22



3.3 EXTREME POINT STRUCTURE OF THE ODD PATH COVER POLYHEDRON

In this section, we examine the extreme point structure of the polyhedron Podd-cover-dir

defined in Section 1 but for the case of DAGs. Concretely, Podd-cover-dir in a DAG is the
set of feasible solutions to the odd path blocker LP defined in Section 3.2 and is given
in the statement of Theorem 1.3. We say that a polyhedron is half-integral if each of its
extreme points is a half-integral vector (i.e., each coordinate is an integer multiple of 1/2).
Half-integrality is a desirable property in polyhedra associated with covering LPs, because
it yields a simple rounding scheme that achieves an approximation factor of 2. Schrijver and
Seymour [7] showed that Podd-cover in undirected graphs is half-integral. In this section, we
exhibit a DAG for which Podd-cover-dir has a non-half-integral extreme point.

Proof of Theorem 1.3. Consider the DAG in Fig. 3.1. Subdivide every edge, except for the
five thick edges in the top row, into two. All edges have unit cost. Let us denote the resulting
DAG as Γ = (V,E).

We first observe that in Γ, every odd-length path from s to t must use an odd number of
the thick edges. Let m be the number of edges in this network. We introduce a solution x

for this instance that is not half-integral. Set

x(A) = 1/4, x(B) = 1/2, x(C) = 1/4, x(D) = 1/2, (3.3)
x(E) = 1/4, x(F ) = 1/4, x(G) = 3/4, x(H) = 1/4,

and let x(e) be zero for every other edge e. The x value of a subdivided edge is assigned to
exactly one of the two resulting edges, with the value of the other edge being set to zero. It
can be verified that x ∈ Podd-cover-dir for this instance.

s t

A B C

D E

F G

H

Figure 3.1: An instance of (s → t)-OddPathEdgeBlocker. All edges are subdivided
into two, except for the five thick edges in the top row.

23



Next, we show that this solution x is an extreme point of Podd-cover-dir, i.e., x is an optimal
solution to the odd path blocker LP. For this, we find a solution to the dual linear program
with the same objective value. Let Qs→t be the collection of edge-sets corresponding to
odd-length paths from s to t. As the dual of odd path blocker LP, we obtain:

max
∑

P∈Qs→t

fp (3.4)

subject to
∑

P∈Qs→t:e∈P

fP ≤ c(e), for each edge e

fP ≥ 0, for all P ∈ Qs→t

Let us call the dual LP as odd flow packing LP. The dual formulation describes the problem
of sending the maximum flow along odd paths in the network, such that the amount of flow
going through each edge does not exceed its capacity.

Consider the following paths in Fig. 3.2:

P1 =(29, 1, 2, 11, 12, 19, 20, 25, 26, 30, 31, 32) (3.5)
P2 =(29, 11, 12, 3, 4, 13, 14, 21, 22, 27, 28, 32) (3.6)
P3 =(29, 19, 20, 13, 14, 5, 6, 15, 16, 23, 24, 32) (3.7)
P4 =(29, 25, 26, 21, 22, 15, 16, 7, 8, 17, 18, 32) (3.8)
P5 =(29, 30, 31, 27, 28, 23, 24, 17, 18, 9, 10, 32) (3.9)
P6 =(29, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 32) (3.10)

The dual solution that we introduce sends a flow of value 1/2 along each of P1, P2, . . . , P6.
The total flow, therefore would be 3. By strong duality condition, the feasible solutions of
an LP and its dual match only at optimal solutions. Therefore, the primal solution x is
optimal.

Finally, we prove that the primal solution x is an extreme point of the polyhedron Podd-cover-dir

for this instance. For this, we present m linearly independent constraints of the odd path
blocker LP that are satisfied as equations by x. For each of the m− 8 edges that are not in
the support of x, the non-negativity constraint is tight. Consider P1, P2, . . . , P6 above, along
with the following two odd-length s→ t paths in D:

P7 =(29, 1, 2, 3, 4, 5, 6, 15, 16, 23, 24, 32) (3.11)
P8 =(29, 11, 12, 3, 4, 5, 6, 7, 8, 17, 18, 32) (3.12)

24



30 31

26
25

27
28

20
19

21 22 23
24

1211 13 14 15 16 17 18

21 3 4 5 6 7 8 9 10

29 32

Figure 3.2: In this dual solution, flows of value 1/2 are being sent through p1, p2, . . . , p6.

We observe that the constraints corresponding to each of these paths are tight with respect
to x. It remains to prove that these m constraints are linearly independent. Since each of
the non-negativity constraints have exactly one non-zero entry and no two of them have the
same non-zero entry, they are linearly independent. To prove that all the constraints are
linearly independent, it remains to show that the path constraints are linearly independent
when restricted to the edges not in the support of x. This can be verified by computing the
determinant of the corresponding constraint matrix. QED.

25



CHAPTER 4: {S, T}-ODDPATHEDGEBLOCKER IN UNDIRECTED
GRAPHS

In this chapter, we focus on the approximability of {s, t}-OddPathEdgeBlocker. We
will show inapproximability results and an integrality gap instance which suggests that new
techniques might be needed to improve on the approximation factor.

4.1 HARDNESS OF APPROXIMATION

In this section we prove Theorem 1.4, i.e., NP-hardness of {s, t}-OddPathEdgeBlocker.

Theorem 1.4. {s, t}-OddPathEdgeBlocker is NP-hard and has no efficient (6/5− ε)-
approximation assuming the Unique Games Conjecture.

Proof. Edmonds gave a polynomial time algorithm to decide whether a given undirected
graph with nodes s and t has an odd-length s− t path; cf. LaPaugh and Papadimitriou [6].
Therefore, given a candidate solution, one can verify its feasibility in polynomial time. Thus,
{s, t}-OddPathEdgeBlocker is in NP. We will show that the decision version of {s, t}-
OddPathEdgeBlocker is NP-complete by a polynomial-time reduction from Multiway-
Cut. We recall that the input to MultiwayCut is an undirected graph G, a collection
T of nodes in G known as terminals and k ∈ Z+, and the goal is to verify if there exists a
subset of at most k edges of G whose deletion ensures that no pair of terminals can reach
each other.

Suppose (G, T, k) is an instance of MultiwayCut where G is an undirected graph with
n nodes and m edges, and T ⊆ V (G) is the set of terminals to be separated. We ob-
tain a graph H from G as follows. Introduce nodes s, t, xv, x

′
v and let H have vertex set

V (H) := V (G) ∪ {s, t} ∪ {xv, x
′
v : v ∈ T}. Further, let H have edge set E(H) := E(G) ∪

{{xv, v} , {x′
v, v} , {xv, x

′
v} , {s, xv} , {t, xv} : v ∈ T}; replace every edge in E(H) \ E(G) by

m + 1 parallel edges (see Fig. 4.1). For k ≤ m, we claim that the MultiwayCut instance
(G, T, k) has a solution of size at most k if and only if the {s, t}-OddPathEdgeBlocker
instance H has a solution of size at most k. Suppose F ⊆ E(G) is a solution to Multiway-
Cut in (G, T ). If F is not a solution to {s, t}-OddPathEdgeBlocker in H, then there
is an odd path from s to t in H \ F . By construction, this path is of the form sP1vP2uP3t,
where v, u ∈ T . Hence, there is a v − u-path P2 in G \ F , contradicting the feasibility of F
as a solution to MultiwayCut in (G, T ).

Conversely, suppose F ⊆ E(H) is a solution to {s, t}-OddPathEdgeBlocker in H of
size at most k. Since k ≤ m, and by construction, we may assume that F ⊆ E(G). Suppose

26



u v

(a) An instance of MultiwayCut with termi-
nal set {u, v}.

u v

xu

x′
u

xv

x′
v

s t

(b) The reduced instance of {s, t}-OddPath-
EdgeBlocker

Figure 4.1: Illustration of the reduction from MultiwayCut to {s, t}-OddPathEdge-
Blocker.

F is not a solution to MultiwayCut in (G, T ). Then there is a v − u-path P in G \ F for
some distinct u, v ∈ T . If P is even, then let Q be the path sxvvPux′

uxut in G′ and if P is
odd, then let Q be the path sxvvPuxut in G′. In both cases, the path Q is an odd-length s−t
in H−F , contradicting the feasibility of F as a solution to {s, t}-OddPathEdgeBlocker
in (G,E∞, s, t).

We note that the above reduction is an approximation factor preserving reduction. It is
known that MultiwayCut is NP-hard and does not admit a polynomial-time approxima-
tion scheme, unless P = NP [28]. Moreover, there is no efficient (6/5 − ε)-approximation
for MultiwayCut assuming the Unique Games Conjecture [29, 30]. Hence, the results
follow. QED.

4.2 INTEGRALITY GAP

By the half-integrality of the extreme points of P odd-cover as established by Schrijver and
Seymour [7], we have a 2-approximation algorithm for {s, t}-OddPathEdgeBlocker by
solving the LP-relaxation of the odd path blocker LP. The following proposition shows that
the integrality gap of the odd path blocker LP is indeed 2 and hence we cannot hope to
improve on the 2-approximation using the odd path blocker LP.

Lemma 4.1. The integrality gap of the following odd path blocker LP for {s, t}-OddPath-

27



EdgeBlocker is at least 2:

min
∑
e∈E

c(e)xe (4.1)∑
e∈P

xe ≥ 1, for all odd-length s− t paths P in G

xe ≥ 0, e ∈ E(G).

Proof. For every k ∈ Z+, we construct a graph G for which the integrality gap of the
odd path blocker LP is at least 2(1 − 1/k). Let Sk be the star graph on k nodes (i.e.,
V (Sk) := {u1, u2, . . . , uk} and E(Sk) := {uiuk : i ∈ {1, . . . , k − 1}}). Let T be the set of
leaves of Sk. Let G be the graph obtained from (Sk, T ) by applying the construction in the
proof of Theorem 1.4. An optimal solution to the odd path blocker LP for G, assigns the
value 1/2 to every edge of Sk, while an optimal integral solution removes all but one edges
of Sk that are in G. Therefore, the ratio of the integral solution to the fractional solution is
(k − 1)/(k/2) = 2(1− 1/k). QED.

The same arguments as in Lemma 4.1 also show that the integrality gap of the odd path
node blocker LP for {s, t}-OddPathNodeBlocker is also at least 2.

28



CHAPTER 5: CONCLUSIONS

In this work, we studied a natural cut problem with parity constraints in undirected
and directed graphs. Our main results are fixed-parameter algorithms parameterized by
the solution size, as well as constant-factor polynomial-time approximation algorithms and
inapproximability reductions.

Several questions lend themselves for future work. Firstly, it would be interesting to deter-
mine the exact approximability bound achievable in polynomial time for OddMultiway-
EdgeCut in undirected graphs, closing the gap between the lower bound of 6/5 and the
upper bound of 2.

Secondly, an important line of investigation in parameterized complexity is the design
of fixed-parameter algorithms that have the best possible asymptotic dependence on the
parameters (modulo the Exponential-Time Hypothesis), with only linear time dependence
on the instance size [13, 17, 19, 31, 32, 33]. Thus, it would be interesting to know whether
the proposed fixed-parameter algorithms for OddMultiwayNodeCut in DAGs can be
expedited to run in time 2O(k) ·O(n).

Finally, we ask about the parameterized complexity of the common generalization of Odd-
MultiwayNodeCut and Multicut known as Odd Multicut: given a graph G with
terminal pairs {s1, t1}, . . . , {sp, tp} and an integer k, decide if some set S of at most k nodes
intersects all odd-paths between si and ti, for i = 1, . . . , p. Does this problem admit a
fixed-parameter algorithm parameterized by the solution size k?

29



REFERENCES

[1] M. Chudnovsky, J. Geelen, B. Gerards, L. Goddyn, M. Lohman, and P. Seymour,
“Packing non-zero A-paths in group-labelled graphs,” Combinatorica, vol. 26, no. 5,
pp. 521–532, 2006.

[2] S. Ibrahimpur and C. Swamy, “Min-max theorems for packing and covering odd (u, v)-
trails,” in International Conference on Integer Programming and Combinatorial Opti-
mization. Springer, 2017, pp. 279–291.

[3] A. Schrijver, Combinatorial optimization. Polyhedra and efficiency. Vol. A, ser. Al-
gorithms and Combinatorics. Springer-Verlag, Berlin, 2003, vol. 24, paths, flows,
matchings, Chapters 1–38.

[4] J. Edmonds, “Maximum matching and a polyhedron with 0, 1-vertices,” J. Res. Nat.
Bur. Standards Sect. B, vol. 69B, pp. 125–130, 1965.

[5] J. Edmonds, “Paths, trees, and flowers,” Canad. J. Math., vol. 17, pp. 449–467, 1965.

[6] A. S. LaPaugh and C. H. Papadimitriou, “The even-path problem for graphs and di-
graphs,” Networks, vol. 14, no. 4, pp. 507–513, 1984.

[7] A. Schrijver and P. D. Seymour, “Packing odd paths,” J. Combin. Theory Ser. B,
vol. 62, no. 2, pp. 280–288, 1994.

[8] M. Grötschel, L. Lovász, and A. Schrijver, Geometric algorithms and combinatorial
optimization, 2nd ed., ser. Algorithms and Combinatorics. Springer-Verlag, Berlin,
1993, vol. 2.

[9] M. Cygan, F. V. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh, Parameterized algorithms. Springer, Cham, 2015.

[10] K. Bringmann, D. Hermelin, M. Mnich, and E. J. van Leeuwen, “Parameterized com-
plexity dichotomy for Steiner Multicut,” J. Comput. System Sci., vol. 82, no. 6, pp.
1020–1043, 2016.

[11] R. Chitnis, M. Hajiaghayi, and D. Marx, “Fixed-parameter tractability of directed
multiway cut parameterized by the size of the cutset,” SIAM J. Comput., vol. 42, no. 4,
pp. 1674–1696, 2013.

[12] D. Marx, “Parameterized graph separation problems,” Theoret. Comput. Sci., vol. 351,
no. 3, pp. 394–406, 2006.

[13] D. Marx, B. O’Sullivan, and I. Razgon, “Finding small separators in linear time via
treewidth reduction,” ACM Trans. Algorithms, vol. 9, no. 4, pp. Art. 30, 35, 2013.

30



[14] D. Marx and I. Razgon, “Fixed-parameter tractability of multicut parameterized by the
size of the cutset,” SIAM J. Comput., vol. 43, no. 2, pp. 355–388, 2014.

[15] S. Kratsch and M. Wahlström, “Compression via matroids: a randomized polynomial
kernel for odd cycle transversal,” ACM Trans. Algorithms, vol. 10, no. 4, pp. Art. 20,
15, 2014.

[16] D. Lokshtanov and M. S. Ramanujan, “Parameterized tractability of multiway cut with
parity constraints,” in Proc. ICALP 2012, ser. Lecture Notes Comput. Sci., 2012, vol.
7391, pp. 750–761.

[17] D. Lokshtanov, M. S. Ramanujan, S. Saurabh, and M. Zehavi, “Parameterized com-
plexity and approximability of directed odd cycle transversal,” 2017, https://arxiv.org/
abs/1704.04249.

[18] B. Reed, K. Smith, and A. Vetta, “Finding odd cycle transversals,” Oper. Res. Lett.,
vol. 32, no. 4, pp. 299–301, 2004.

[19] M. Etscheid and M. Mnich, “Linear kernels and linear-time algorithms for finding large
cuts,” Algorithmica, vol. 80, pp. 2574–2615, 2018.

[20] B. M. P. Jansen, M. Pilipczuk, and E. J. van Leeuwen, “A deterministic polynomial
kernel for odd cycle transversal and vertex multiway cut in planar graphs,” in Proc.
STACS 2019, ser. Leibniz Int. Proc. Informatics, vol. 126, 2019, pp. 39:1–39:18.

[21] N. Kakimura and K. ichi Kawarabayashi, “Fixed-parameter tractability for subset feed-
back set problems with parity constraints,” Theoret. Comput. Sci., vol. 576, pp. 61–76,
2015.

[22] S. Kolay, D. Lokshtanov, F. Panolan, and S. Saurabh, “Quick but odd growth of cacti,”
Algorithmica, vol. 79, pp. 271–290, 2017.

[23] S. Khot and O. Regev, “Vertex cover might be hard to approximate to within 2 − ϵ,”
J. Comput. System Sci., vol. 74, no. 3, pp. 335–349, 2008.

[24] S. Ramanujan, “Parameterized graph separation problems: New techniques and algo-
rithms,” Ph.D. dissertation, The Institute of Mathematical Sciences, Chennai, 2013.

[25] D. Lokshtanov, P. Misra, M. S. Ramanujan, and S. Saurabh, “Hitting selected (odd)
cycles,” SIAM J. Discrete Math., vol. 31, no. 3, pp. 1581–1615, 2017.

[26] D. Lokshtanov, N. S. Narayanaswamy, V. Raman, M. S. Ramanujan, and S. Saurabh,
“Faster parameterized algorithms using linear programming,” ACM Trans. Algorithms,
vol. 11, no. 2, pp. Art. 15, 31, 2014.

[27] R. Chitnis, M. Cygan, M. Hajiaghayi, and D. Marx, “Directed subset feedback vertex
set is fixed-parameter tractable,” ACM Trans. Algorithms, vol. 11, no. 4, pp. Art. 28,
28, 2015.

31



[28] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis,
“The complexity of multiterminal cuts,” SIAM J. Comput., vol. 23, no. 4, pp. 864–894,
1994.

[29] R. Manokaran, J. Naor, P. Raghavendra, and R. Schwartz, “SDP gaps and UGC hard-
ness for multiway cut, 0-extension, and metric labeling [extended abstract],” in Proc.
STOC 2008, 2008, pp. 11–20.

[30] H. Angelidakis, Y. Makarychev, and P. Manurangsi, “An improved integrality gap for
the Călinescu-Karloff-Rabani relaxation for multiway cut,” in Proc. IPCO 2017, ser.
Lecture Notes Comput. Sci., vol. 10328, 2017, pp. 39–50.

[31] Y. Iwata, K. Oka, and Y. Yoshida, “Linear-time FPT algorithms via network flow,” in
Proc. SODA 2014, 2014, pp. 1749–1761.

[32] D. Lokshtanov, M. S. Ramanujan, and S. Saurabh, “A linear time parameterized algo-
rithm for directed feedback vertex set,” 2016, https://arxiv.org/abs/1609.04347.

[33] M. S. Ramanujan and S. Saurabh, “Linear time parameterized algorithms via skew-
symmetric multicuts,” in Proc. SODA 2014, 2014, pp. 1739–1748.

32



APPENDIX A: EQUIVALENCE OF ODDMULTIWAYEDGECUT AND
ODDMULTIWAYNODECUT

In this chapter, we show an approximation-preserving and parameter-preserving equiva-
lence between OddMultiwayEdgeCut and OddMultiwayNodeCut in directed graphs.
To establish the notation, we restate the definitions of the two problems below.

OddMultiwayEdgeCut Parameter: k
Input: A directed acyclic graph G with a set T ⊆ V (G) of terminal nodes and a set

E∞ ⊆ E(G) of protected edges, and an integer k ∈ Z+.
Task: Verify if there exists an odd multiway edge cut of T in G of size at most k and

disjoint from E∞, that is, a set M ⊆ E(G) \ E∞ of edges that intersects every
odd T -path in G.

Figure A.1: Statement of the OddMultiwayEdgeCut problem in DAGs

OddMultiwayNodeCut Parameter: k
Input: A directed acyclic graph G with a set T ⊆ V of terminal nodes and a set V ∞ ⊆

V (G) of protected nodes, and an integer k ∈ Z+.
Task: Verify if there exists an odd multiway node cut in G of size at most k and disjoint

from V ∞, that is, a set M ⊆ V (G)\V ∞ of nodes that intersects every odd T -path
in G.

Figure A.2: Statement of the OddMultiwayNodeCut problem in DAGs

Lemma A.1. There exist approximation-preserving and parameter-preserving reductions
between OddMultiwayEdgeCut in directed graphs and OddMultiwayNodeCut in
directed graphs.

Proof. We first show an approximation preserving and parameter preserving reduction from
OddMultiwayEdgeCut to OddMultiwayNodeCut. Let I = (G,E∞, T, k) be an
instance of the OddMultiwayEdgeCut problem in directed graphs. We create a new
graph G′ by subdividing every edge e ∈ E(G) \ E∞ into three edges, by introducing two
new nodes xe and ye. By construction, G′ is a directed graph too. Define V ∞ := V (G). We
claim that the instance I of OddMultiwayEdgeCut has a solution of size, say r, if and
only if the instance I ′ = (G′, V ∞, T, k) of OddMultiwayNodeCut has some solution of
size r.

33



Let M ⊆ E(G)\E∞ be an odd edge multiway cut in G. We claim that M ′ := {xe : e ∈M}
is an odd multiway cut in G′. Let P ′ be an odd T -path in G′. Let P be the corresponding
path in G. By construction, P has the same parity as P ′ and therefore, is odd. Since M is
an odd multiway cut in G, it must contain an edge e ∈ E(P ). Therefore, M ′ contains xe.
Thus, every odd T -path in G′ intersects M ′. Hence, M ′ is a solution for the instance I ′ of
the OddMultiwayNodeCut problem. Moreover, |M ′| = |M |.

Conversely, let N ′ be a solution to the instance I ′ of the OddMultiwayNodeCut
problem. Define N := {e : xe ∈ N ′ or ye ∈ N ′}. By construction, N is disjoint from E∞.
Let P be an odd T -path in G and let P ′ be the corresponding path in G′. The path P ′ is
an odd T -path in G′. Since N ′ is an odd multiway node cut in G′, it must contain a node
v ∈ V (P ′). Since V (G) ⊆ V ∞, it must be the case that v ∈

∪
e∈E(G) {xe, ye}. Suppose

v ∈ {xe, ye} for some e ∈ E(G). By construction, we have e ∈ N . Therefore, N includes
an edge from every odd T -path in G. Thus, N is a solution to the instance I of the Odd-
MultiwayEdgeCut problem. Moreover, |N | = |N ′|. We next show an approximation
preserving and parameter preserving reduction from OddMultiwayNodeCut to Odd-
MultiwayEdgeCut. Let I = (G, V ∞, T, k) be an instance of the OddMultiwayNode-
Cut problem in directed graphs. We create a new graph G′ as follows. For every node
v ∈ V (G), we create three nodes vin, vmid and vout and put an edge from vin to vmid and
an edge from vmid to vout. For every edge uv ∈ E(G), we put an edge from uout to vin

in G′. Define E∞ := {uoutvin : uv ∈ E(G)} ∪ {vinvmid, vmidvout : v ∈ V ∞} and define T ′ as
{tin : t ∈ T}. We claim that the instance I of the OddMultiwayNodeCut problem has
a solution of size, say r, if and only if the instance I ′ := (G′, E∞, T ′, k) of OddMultiway-
EdgeCut has a solution of size r.

Let M ⊆ V (G) be a solution to the instance I of the OddMultiwayEdgeCut. We
claim that M ′ := {vmidvout : v ∈M} is an odd multiway cut in G′. By construction, M ′

is disjoint from E∞. We show that it intersects every odd T ′-path in G′. Let P ′ be an
odd T ′-path in G′. Let P be the corresponding path in G. By construction, P has the
same parity as P ′ and therefore, is odd. Since M is an odd multiway cut in G, it must
contain a node v ∈ V (P ). Therefore, M ′ contains vmidvout. Thus, every odd T ′-path in G′

intersects M ′. Hence, M ′ is a solution for the instance I ′ of OddMultiwayEdgeCut.
Moreover |M ′| = |M |.

34



Conversely, suppose N ′ is a solution to the instance I ′ of the OddMultiwayNode-
Cut problem. Define N := {v : vinvmid ∈ N ′ or vmidvout ∈ N ′}. By construction, N is
disjoint from V ∞. Let P be an odd T -path in G and let P ′ be the corresponding T ′-
path in G′. The path P ′ is an odd T ′-path in G′. Since N ′ is an odd multiway edge
cut in G′, it must contain an edge e ∈ E(P ′). By choice of E∞, the edge e has to be
in {vinvmid, vmidvout : v ∈ V (G) \ V ∞}. Suppose e ∈ {vinvmid} for some v ∈ V (G) \ V ∞.
By construction, v ∈ N . Therefore, N includes a node from every odd T -path in G.
Thus, N is a solution to the instance I of the OddMultiwayNodeCut problem. Moreover,
|N | = |N ′|. QED.

35


